UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

Diseño y Construcción de una Impresora 3D de Plástico

Proyecto de investigación

Miguel Ángel Romero Calderón

Ingeniería Mecánica

Trabajo de titulación presentado como requisito para la obtención del título de Ingeniero Mecánico

Quito, 24 de junio de 2016

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ COLEGIO DE CIENCIAS E INGENIERIAS

HOJA DE CALIFICACIÓN DE TRABAJO DE TITULACIÓN

Diseño y Construcción de una Impresora 3D de Plástico

Miguel Angel Romero Calderón

Calificacion:			
Nombre del profesor, Título académico	Alfredo Valarezo , Ph.D.		
Firma del profesor			

Derechos de Autor

Por medio del presente documento certifico que he leído todas las Políticas y Manuales de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este trabajo en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior.

Firma del estudiante:

Nombres y apellidos: Miguel Ángel Romero Calderón

Código: 00100946

Cédula de Identidad: 1720508223

Lugar y fecha: Quito, junio de 2016

RESUMEN

La impresión 3D es una técnica de manufactura que cuenta con una gran precisión y velocidad en la fabricación de piezas en plástico que sirve para generar modelos a escala o prototipos., Esta cualidad le ha permitido a esta técnica expandirse a diferentes áreas del conocimiento como la medicina, ingeniería, gastronomía entre otras. Esta aplicabilidad ha promovido, el desarrollo de variados diseños de impresoras 3D que permitan mejorar la calidad del acabado de las piezas así como su precisión al momento de depositar plásticos. En el presente trabajo se muestra el proceso de diseño de la estructura de una impresora 3D tipo delta así como otros componentes relacionados con el movimiento del extrusor como son: los acoples o estructuras de rodamiento, etc. El diseño de la estructura se fundamenta en la elección de varios componentes fundamentales como: perfiles de aluminio, ejes de acero calibrados de 12mm y rodamientos para los ejes, etc. Una vez ensamblada la impresora y realizado el proceso de calibración, se encontró que la tolerancia de las piezas impresas varía entre +0.4 y +0.6 mm que es un rango aceptado y usual entre las impresoras que se encuentra en el mercado. La última parte del documento muestra un análisis de costos de los materiales implicados en la construcción de la impresora y una comparación con los precios de máquinas similares en el mercado ecuatoriano.

Palabras clave: Impresora 3D tipo Delta, diseño, proceso, tolerancia, plástico

ABSTRACT

3d printing processing presents accuracy and velocity in the fabrication of plastic elements, which are usefull as scale models and prototypes. Therefore, the quality offered by 3d printing makes this process to expand to different areas of knowledge such as Medicine. Engineering, Gastronomy among others. The areas have promoted the search of 3d printer designs that enable to improve the finishing quality of the plastic elements and the printer's precision at the moment of extruding plastic. The present work shows the structural design process of a delta 3D printer and its components; specially, those related with the movement of the extruder like the joints and bearing structures. The 3D printer design has its basis in the selection of the primary components as the aluminum profiles, 12 mm calibrated shafts, bearings for that shafts, etc. Once the 3d printer was assembled and the calibration process was implemented, it was found that the total tolerance of the printed elements varied among 0.4 mm and 0.6 mm; this is a very acceptabe and usual range of tolerance between the printers that are found in the market. The last part of this document shows a cost analysis of the material involved in the construction of the printer and a prize comparison with a common printers that are offered in the Ecuadorian market.

Key words: delta 3D printer, design, process, tolerance, plastic

ÍNDICE DE CONTENIDO

1. INTRODUCCIÓN	13
1.1 Objetivo General	17
1.2 Objetivo Especifico	17
1.3 Tipos de Impresoras D	17
1.4 Impresora delta	19
1.5 Metrología	21
2. METODOS Y MATERIALES.	22
3. RESULTADOS	27
3.1 Diseño CAD	27
3.1.1 Estructura	27
3.1.1.1 Perfiles	27
3.1.1.2 Acople 3 vias superior	28
3.1.1.3 Acople 3 vias inferior	28
3.1.1.4 Superficie superior	29
3.1.1.5 Eje	30
3.1.1.6 Motor	30
3.1.1.7 Soporte Motor	31
3.1.1.8 Acople Tuerca	31
3.1.2 Eje	32
3.1.2.1 Acople Perfil Eje	32
3.1.2.2 Plataforma	33
3.1.2.3 Correa	33
3.1.2.4 Polea	34
3.1.2.5 Cojinete Lineal	34

3.1.2.6 Brazo	35
3.1.3 Plataforma de impresion	35
3.1.4 Cama Prusa	36
3.1.5 Otros Componentes	36
3.1.5.1 Arduino	36
3.1.5.2 RAMPS	37
3.1.5.3 Pololu	37
3.1.5.4 Fuente de poder Altek de 650W	38
3.1.5.4 Fin de Carrera	38
3.1.5.5 Termocuplas	39
3.1.5.6 Ventilador	39
3.1.6 Ensamble General	40
3.2 Analisis Metrologico	41
3.3 Afinamiento	53
3.4 Analisis Deformacion	58
3.5 Analisis de costos	62
4. CONLUSIONES	67
5. RECOMENDACIONES	70
6. REFERENCIAS BIBLIOGRÁFICAS	71
7. ANEXOS	73
Anexo 1: Planos Motor	73
Anexo 2: Catálogo de perfilería Cedal	74
Anexo 3: Ensamble impresora delta 3D	75
Anexo 4: Ensamble base superio	76
Anexo 4: Ensamble base superio	77

Anexo 6: Perfil cedal 1386	78
Anexo 7: Superficie superior	79
Anexo 8: Ensamble motor	80
Anexo 9: Soporte motor	81
Anexo 10: Ensamble base inferior	82
Anexo 11: Acople 3 vías inferior	83
Anexo 12: Plataforma de aluminio	84
Anexo 13: Plataforma de impresora	85
Anexo 14: Ensamble banda motor	86
Anexo 15: Acople tuerca	87
Anexo 16: Ensamble acople perfil	88
Anexo 17: Perfil cedal cortado 1386	89
Anexo 18: Acople perfil eje	90
Anexo 19: Brazo	91
Anexo 20: Plataforma	92
Anexo 21: Eje acero	93

ÍNDICE DE FIGURAS

Figura 1.1 Prótesis mano (columnadigitalrd, 2016)	16
Figura 1.2 Impresión 3D de chocolate (impresoras3d.net, 2016)	16
Figura 1.3 Makerbot (Gutiérrez, 2013)	18
Figura 1.4 Form1 (Gutiérrez, 2013)	19
Figura 1.5 DelatMaker (Gutiérrez, 2013)	19
Figura 1.6 Impresoras Delta (Peña, 2014)	21
Figura 2.1 Guía (1), Brazo (2) y Extrusor (3). (Sánchez, 2016)	22
Figura 2.2 (A) Medicion Cojinete, (B) Medición Perfil 1386 cortado,	
(C) Medición Perfil 1386 y (D) Medición Eje Acero Plata	24
Figura 2.3 Modelado por deposicion Fundida (FDM) (Rosanne, 2016)	25
Figura 3.1 CAD Perfiles	27
Figura 3.2 CAD Acople 3 vias superior	28
Figura 3.3 CAD Acople 3 vias inferior	28
Figura 3.4 CAD Superficie superior acrilico	29
Figura 3.5 CAD Eje Acero Plata	30
Figura 3.6 CAD Motor KL17H248-15-4a	30
Figura 3.7 CAD Soprte Motor	31
Figura 3.8 CAD Acople Tuerca	31
Figura 3.9 CAD Acople Perfil Eje	32
Figura 3.10 CAD Plataforma	33
Figura 3.11 Correa (Madinaveitia, 2014)	33
Figura 3.12 Polea (Madinaveitia, 2014)	34
Figura 3.13 Ruliman Lineal 1228 (zilinearbearing.es, 2016)	34

Figura 3.14 CAD Brazo	35
Figura 3.15 CAD Superficie Inferior	35
Figura 3.16 Cama Supra	36
Figura 3.17 Arduino	36
Figura 3.18 RAMPS	37
Figura 3.19 Pololu	37
Figura 3.20 Fuente de poder Altek de 650W	38
Figura 3.21 Fin de Carrera	38
Figura 3.22 Termocuplas	39
Figura 3.23 Ventilador	39
Figura 3.24 CAD En samble General	40
Figura 3.25 Ensamble General	41
Figura 3.26 Dibujo Cilindro	42
Figura 3.27 Diagrama de Control Cilindro Diametros exteriores	43
Figura 3.28 Diagrama de Control Cilindro Diametros interiores	44
Figura 3.29 Diagrama de control Espesor	44
Figura 3.30 Cilindros impresos con impresora 3D	45
Figura 3.31 Dibujo Cuadrado	46
Figura 3.32 Diagrama de Control Cuadrado Lados	47
Figura 3.33 Diagrama de Control Cuadrado Espesor	47
Figura 3.34 Cuadrados impresos con impresora 3D	48
Figura 3.35 Dibujo Triangulos	49
Figura 3.36 Diagrama de Control Triangulos Lados	50
Figura 3.37 Diagrama de Control Triangulos Altura	50
Figura 3.38 Diagrama de Control Triangulos Espesor	51

Figura 3.39 Triangulos impresos con impresora 3D	52
Figura 3.40 Impresión de Perrilla de ajuste 3D	52
Figura 3.41 Impresión Dragón USFQ 3D	53
Figura 3.42 Rebababas en impresión 3D	54
Figura 3.43 Calibración manual Cama Prusa	54
Figura 3.44 Dimensiones Calibración	56
Figura 3.45 Gráfica Arduino Valores	56
Figura 3.46 Gráfica Arduino Tamano de impresion	57
Figura 3.47 Aplicación Fuerzas	58
Figura 3.48 Von Misses	59
Figura 3.49 Deformación Principal	60
Figura 3.50 Desplazamiento	62

ÍNDICE DE TABLAS

Tabla 1. Ventajas Impresora Delta e Impresora Cartesiana (Sánchez, 2015)	20
Tabla 2. Desventajas Impresora Delta e Impresora Cartesiana (Sánchez, 2015)	20
Tabla 3 Elementos de construcción	23
Tabla 4 Comparativa ABS y PLA (Peña, 2014)	26
Tabla 5. Temperaturas para ABS y PLA (Peña, 2014)	26
Tabla 6. Mediciones Cilindro	42
Tabla 7. Tolerancia Cilindro	45
Tabla 8. Mediciones Cuadrado	46
Tabla 9. Tolerancia Cuadrado	48
Tabla 10. Mediciones Triangulo	49
Tabla 11. Tolerancia Triangulo	51
Tabla 12. Costo Estructural	63
Tabla 13 Costo Electrónico.	64
Tabla 14 Costo total Impresora 3D	65
Tabla 15. Costo real de Impresora 3D	66

1. INTRODUCCIÓN

La Impresora 3D tiene como objetivo producir un diseño 3D con el ordenador en un modelo real, es decir mediante cualquier programa CAD se puede imprimir en la realidad y obtener el producto físico. El tipo de impresora 3D que se desarrolló en este proyecto es de tipo *Delta*, el cual usa la tecnología *Robot Delta* denominado robot paralelo que consiste en una cadena cinemática cerrada, en donde su funcionamiento se basa en la sincronización de los eslabones en forma individual, ya que debe generar un desplazamiento correcto mediante la combinación de movimientos.

Los componentes que constituyen la impresora 3D se dividen en la parte estructural y electrónica. En la parte estructural tenemos:

- 1. Estructura
- 1. Perfiles
- 2. Acoples 3 Vías Superior
- 3. Acoples 3 Vías Inferior
- 4. Superficie superior
- 5. Superficie inferior
- 6. Eje Calibrado
- 7. Motor
- 8. Soporte Motor

9.	Acople Tuerca
10.	Eje
11.	Acople Perfil Eje
12.	Correas
13.	Cojinete lineal
14.	Brazos
15.	Plataforma
16.	Extrusor
17.	Electrónica
18.	Arduino
19.	RAM
20.	Pololus (Responsable del movimiento de loa motores paso a paso)
21.	Fuente de poder
22.	Fin de carrera
23.	Termocuplas
24.	Cableado
25.	Superficie de impresión

26. Cama Supra

El diseño de la estructura se fundamenta en la elección de varias partes importantes como: los perfiles de aluminio, los ejes de acero calibrados de 12mm y los rodamientos para los ejes. También se basa en la realización de varios acoples y piezas diseñados específicamente para la impresora 3D (Unión de tres vías para perfiles, desplazamiento de eje con el perfil, soporte de los motores, plancha de aluminio).

Este diseño no toma en cuenta lo relacionado con el conjunto electrónico, no se encarga del diseño del cabezal de extrusión, se seleccionará uno existente en el mercado ecuatoriano. Tampoco se involucra totalmente en la programación del software y la selección del hardware, sino solo se inserta los parámetros de diseño en el Arduino, puesto que es un Open Source (Código Abierto).

En la actualidad se puede encontrar una gran variedad de impresoras 3D, entre las cuales tenemos de tipo Extrusión, que consiste en el modelado por deposición fundida (Termoplásticos, productos comestibles), otro tipo es *Granular* que utiliza el métodos de *Fusión* selectiva por láser (Metales), también hay *Hilado*, que se refiere a la fabricación por haz de electrones (aleaciones de metales) y por último, de tipo *Laminado*, que se basa en el laminado de capas (Papel, Hojas metálicas, Película de plástico).

Además se ha encontrado utilidad en varios campos de estudios, desde la Medicina hasta la Gastronomía. En Medicina se ha desarrollado prótesis de manos como se puede observar en la figura 1.1, además se utiliza para la realización de piezas mecánicas, en la creación de maquetas en el campo de Arquitectura y en Gastronomía, en donde se ha realizado impresiones de chocolate como se puede observar en la figura 1.2.

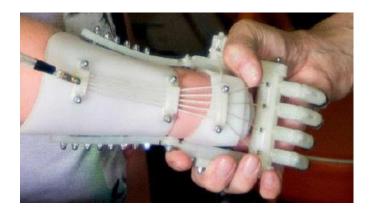
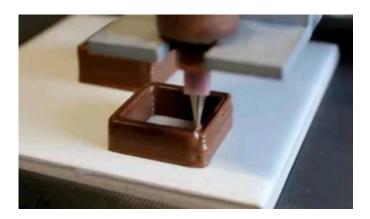



Figura 1.1.- Prótesis mano (columnadigitalrd, 2016)

Figura 1.2.- Impresión 3D de chocolate (impresoras3d.net, 2016)

En el Ecuador se puede encontrar varias microempresas que ofrecen el servicio de impresión 3D, venta de la materia prima (Filamento de plástico: ABS, PLA), calibración. Empresas ofrecen en el mercado local, pocos modelos de impresoras y piezas de la mismas como por ejemplo: SAIS 3D y Andina3D. Piezas cotizadas por estas empresas cobran en función del tipo de plástico (ABS y PLA), el peso y el tiempo que se trabaja.

En el mercado ecuatoriano se puede encontrar impresoras 3D tipo delta y cartesiana, las cuales se caracterizan por su velocidad de impresión, plataforma de impresión y su calidad. El valor de

impresión no es muy asequible cuando el volumen de la pieza es grande, además no se realizan post-procesamientos, los cuales mejoran su calidad.

1.1 Objetivo general

Diseñar y construir una impresora 3D que utiliza plástico PLA, ABS o Nylon, tipo delta, de bajo costo, y realizar el control metrológico en los productos impresos.

1.2 Objetivo específico

- 1. Diseñar acoples para la unión de tres perfiles de aluminio y para el desplazamiento con el eje y el perfil
- 2. Diseñar una impresora de bajo costo
- 3. Utilizar materiales que se puedan encontrar en el mercado ecuatoriano
- 4. Diseñar una estructura rígida que permita la producción de piezas a medida.
- 5. Realizar un análisis metrológico del producto.

1.3 Tipos de impresoras 3D

En la actualidad se puede clasificar en dos tipos de impresoras 3d, las que se utilizan para el sector industrial, las cuales su valor puede llegar a millones de dólares y su resultado final del producto va a tener una calidad mejor (mejores propiedades mecánicas), ya que su tecnología utilizada es más avanzada. Otro tipo de impresoras 3D son las que se comercializan masivamente. Las personas interesadas en este producto tienen la facilidad de adquirir los materiales sin ningún problema, y su valor puede oscilar entre \$600 a \$3000, lo cual es

asequible. Tres de las impresoras marcan el futuro de esta tecnología son: Makerbot, Form1 y DeltaMaker. (Gutiérrez, 2013)

Makerbot es considerada la más popular. La empresa Makerbot Industries apostó por un modelo simple de usar, instalar y mantener. El objetivo de esta industria es posicionarse en un mercado de consumo masivo (Figura 1.3). Form1 es considerado el mejor diseño, es decir la mejor estéticamente. La empresa Formlabs apostó no solo por la tecnología, sino por el estilo (Figura 1.4). Por último, DeltaMaker, es considerada la más nueva, la cual combina su estructura de diseño sólida con un sistema de impresión invertida que se apoyen en tres patas que controlan los ejes (Figura 1.5).

Figura 1.3.- Makerbot (Gutiérrez, 2013)

Figura 1.4.- Form1 (Gutiérrez, 2013)

Figura 1.5.- DeltaMaker (Gutiérrez, 2013)

1.4 Impresora Delta

En el mercado mundial actual, existen una gran cantidad de impresoras delta, la cual se basa en la tecnología del robot delta, la cual consiste en un tipo de robot paralelo que su diseño se basa en el uso de paralelogramos en los brazos. El funcionamiento mecánico de una impresora delta se basa en el desplazamiento sobre tres columnas verticales y con los brazos que sujetan el

extrusor, la transmisión de movimiento se puede hacer mediante bandas y poleas. Unas de las principales ventajas y desventajas en comparación con una impresora cartesiana se muestran en las tablas 1 y 2.

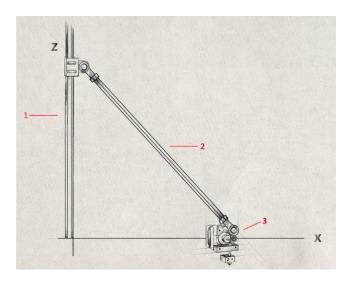
Delta	Cartesiana	
Alta velocidad y aceleración de impresión	Fácil de calibrar	
Alta definición	Fácil análisis y corrección de errores	
Redimensionamiento de la impresora sin	Gran cantidad de recursos informativos	
afectar la calidad	disponibles	
Fiable y precisa	Más fácil de ajustar y evitar errores	
Amplia capacidad de movimiento		
Cama de impresión estática		

Tabla 1.- Ventajas Impresora Delta e Impresora Cartesiana (Sánchez, 2015)

Delta	Cartesiana	
Primera calibración tediosa	Menor velocidad de impresión	
Mayor volumen del equipo	Desplazamiento de la cama de impresión	
Malas construcciones hacen que la calibración	Tienen inercias en cada eje de movimiento y	
nunca sea satisfactoria	puede afectar la aceleración	
Difícil aislar los problemas calibración-	Se debe monitorizar la tensión de la correa	
Menos información disponible		

Tabla 2.- Desventajas Impresora Delta e Impresora Cartesiana (Sánchez, 2015)

En la figura 1.6 se puede observar varias impresoras tipo delta que se pueden encontrar actualmente en el mercado.


Figura 1.6.- Impresoras Delta (Peña, 2014)

1.5 Metrología del producto

El sistema de metrología se realizó en SI (Sistemas internacionales), y los elementos de medición utilizados fueron: Flexómetro y calibrador electrónico. Se utilizó limas para corregir mediciones para las piezas que se imprimieron en 3D, porque su tolerancia de impresión normalmente varía entre -0.1 y -0.2 (mm). Esto se verifica en este estudio.

2. MÉTODOS Y MATERIALES

El funcionamiento de la impresora delta consiste en tres guías verticales que se deslizan de arriba abajo en el eje Z, las cuales forman un triángulo equilátero. En cada una de las guías existe un acoplamiento de un brazo, el cual realiza la función de la transmisión de movimiento al extrusor. A través de las guías, el extrusor se desplaza por todo el espacio de impresión en función de la altura que tenga cada brazo (Figura 2.1).

Figura 2.1.- Guía (1), Brazo (2) y Extrusor (3). (Sánchez, 2016)

Para la realización del diseño de la estructura de la impresora delta se diseñó en el software Autodesk Inventor (versión 2017). Con la ayuda de este programa se exportó las principales piezas a un formato .stl, el cual nos permite mediante una impresora 3D fabricar estas piezas de plástico (PLA). Los demás componentes de la estructura se adquirieron en el mercado nacional para un ensamblaje final. Se utilizaron perfiles de aluminio (Cedal, Industria Ecuatoriana) para la estructura. Se puede observar en la tabla 3 los materiales de aluminio utilizados y otros elementos de acero adquiridos.

Código Comercial Cedal	Descripción	Longitud	Proveedor	Unidades
1386	PERFIL	40 cm	Cedal	6
1386	PERFIL CORTADO	80 cm	Cedal	3
-	Eje de ACERO 12 mm diámetro	3 m	ACEROS MG	1
-	PLANCHA ACRILICO	50 x 50 cm	ARTMAKEIT	1
-	PLANCHA ALUMINIO	50 x 50 cm	Andrade Badillo Xavier Edmundo	2
-	AS 1427 - M3 x 10	-	Casa del Perno	24
-	AS 1427 - M3 x 30	-	Casa del Perno	12
-	ANSI B18.2.2 - 8 - 36	-	Casa del Perno	21
-	ANSI B18.6.3 - 8 - 32 x 5/8 SR HMS	-	Casa del Perno	12
-	ANSI B18.6.3 - 8 - 32 x 1/2 SR HMS	-	Casa del Perno	21
-	ANSI B18.6.3 - 8 - 32 x 3/16 SR HMS	-	Casa del Perno	21
-	ANSI B18.6.3 - 8 - 32 x 2 SR HMS	-	Casa del Perno	12
-	ANSI B18.2.2 - 8 - 32	-	Casa del Perno	12
-	RODAMIENTO KH1228	-	Casa del Rulimán	3

Tabla 3.- Elementos de construcción

Para la verificación de las medidas obtenidas en las impresiones de los acoples y los cortes realizados por la empresa Cedal, se utilizó un calibrador electrónico, de resolución de 0.01 mm.

Además se comprobó que los perfiles, los ejes y los cojinetes tengan la medida deseada como se puede observar en la Figura 2.2

Figura 2.2.- (A) Medición cojinete, (B) Medición Perfil 1386 cortado, (C) Medición Perfil 1386 y (D) Medición Eje Acero 12 mm diámetro

Para definir la temperatura tanto en el extrusor como en la plataforma de impresión, ésta depende del material que se va a utilizar, en este caso se utiliza la tecnología FDM (Modelado por deposición fundida) y se utilizará materiales termoplásticos (PLA).

La tecnología FDM se refiere a la realización de piezas por capas mediante la extrusión de un filamento de polímero termoplástico, el material está a 1°C por debajo de su punto de fusión, entonces se solidifica de manera instantánea sobre la capa anterior (Figura 2.3).

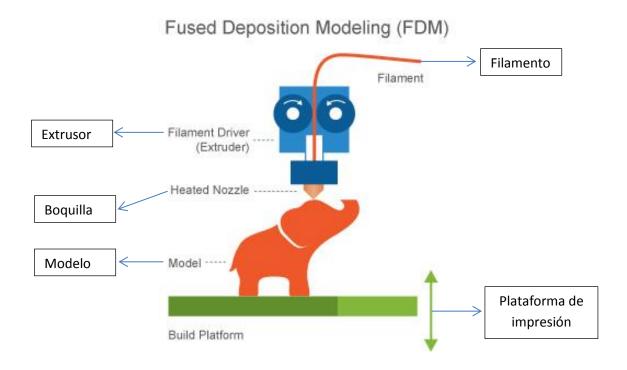


Figura 2.3.- Modelado por Deposición fundida (Rosanne, 2016)

Para la mayoría de impresoras personales, según la página impresoras3D.com el 95% utilizan los materiales PLA (ácido poliláctico) y ABS (acrilonitrilo butadieno estireno).

El ABS es resistente y posee flexibilidad, además en el momento en que llega al punto de fusión, desprende gases que a altas concentraciones son nocivos. El PLA no es muy conocido como el ABS, sin embargo es un producto natural (plantas del maíz). En comparación con el ABS, el PLA tiene mayor velocidad de enfriamiento y solidificación.

Varias características de los materiales PLA en comparación con ABS se pueden observar en las tablas 4 y 5.

	ABS	PLA	
Descripción	Plástico común, resistente, duro	Plástico duro v resistente. Con	
	y rígido.	buen acabado.	
Diámetro alambre	1,75 mm y 3 mm	1,75 mm y 3 mm	
Temperatura de impresión	230-260 °C	210 °C	
Impacto ambiental	Emite gases nocivos	No emite gases nocivos	
Utilidad	Piezas sólidas, densas y resistente	Piezas huecas con paredes finas.	
Limitaciones y características	Necesita base de impresión caliente (120 °C) Sensible a cambios de temperatura.	No necesita base caliente No resiste altas temperaturas (50-60 °C)	
	temperatura.	Más fácil de imprimir	

Tabla 4.- Tabla Comparativa de materiales ABS y PLA (Peña, 2014)

	Extrusor		Plataforma	
	Min	Max	Min	Max
ABS	220 ℃	275 °C	100 ℃	130 °C
PLA	150 °C	210 °C	0 ℃	50 °C

Tabla 5.- Temperaturas para ABS y PLA (Peña, 2014)

3. RESULTADOS Y DISCUSIÓN

3.1 Diseño CAD

El diseño de la estructura de la impresora 3D ejecutado mediante el software Autodesk Inventor, consta de:

- 1. Estructura
- 2. Eje
- 3. Plataforma de impresión
- 4. Otros componentes

3.1.1 Estructura.

A la estructura se la puede identificar como el chasis de la máquina, es decir que su meta principal es dar rigidez a la Impresora 3D.

3.1.1.1 Perfiles.

Figura 3.1.- CAD Perfiles

Estos perfiles de 38.1 x 38.1 mm forman parte de la estructura principal, se cortó 3 perfiles de 40 cm y 80 cm como se puede observar en la figura 3.1.

3.1.1.2 Acoples 3 vías superior.

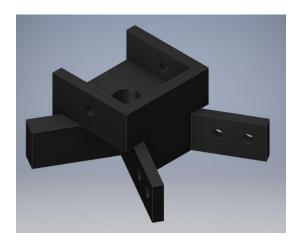


Figura 3.2.- CAD Acople 3 vías superior

El *Acople 3 vías superior* es el encargado de la unión de 3 perfiles, los cuales son: 2 de 40 cm forman un ángulo de 60° (parte del triángulo equilátero) y el otro de 80 cm se posiciona de forma perpendicular al acople como se puede observar en el ensamble general (Figura 3.17).

3.1.1.3 Acoples 3 vías inferior.

Figura 3.3.- CAD Acople 3 vías inferior

El Acople 3 vías inferior es el encargado de la unión de 3 perfiles, los cuales son: 2 de 40 cm forman un ángulo de 60° (parte del triángulo equilátero) y el otro de 80 cm se posiciona de forma perpendicular al acople como se puede observar en el ensamble general (Figura 3.16). Además, se ensambla el soporte por donde pasa la banda de distribución del motor.

3.1.1.4 Superficie superior.

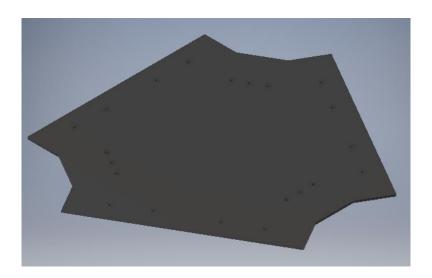


Figura 3.4.- CAD Superficie superior acrílico

La Superficie superior de acrílico se posiciona en el extremo más alto de la estructura, en donde se deberán colocar los ensambles de los motores. También aseguran que los perfiles formen un triángulo equilátero.

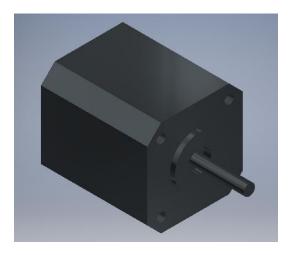

3.1.1.5 Eje.

Figura 3.5.- CAD Eje Acero Plata

El eje de acero se coloca en el centro del perfil cortado formando parte de la columna, su longitud va desde el extremo inferior hasta el extremo superior. En este eje se deslizarán los cojinetes y acoples, que a su vez moverán el extrusor.

3.1.1.6 Motor.

Figura 3.6.- CAD Motor KL17H248-15-4a

Se implementa 3 motores paso a paso, éstos permiten generar el movimiento vertical de los acoples con los ejes.

3.1.1.7 Soporte motor.

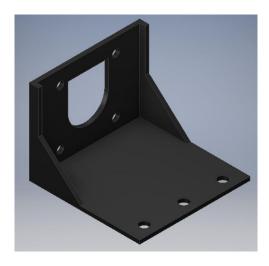
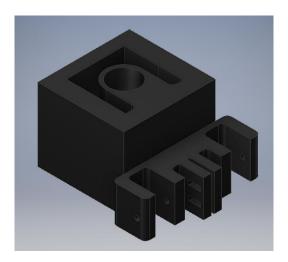


Figura 3.7.- CAD Soporte Motor

Con el Soporte Motor se encarga de sujetar el motor con la Superficie Superior, y de esta manera se podrá tensar la correa para una mejor transmisión de movimiento.

3.1.1.8 Acople tuerca.


Figura 3.8.- CAD Acople Tuerca

El Acople Tuerca se encarga de tensar en la parte inferior de la estructura, éste se ensambla al Acople 3 vías inferiores. En éste soporte se coloca un perno que sostiene la polea que tensa una correa de transmisión de movimiento.

3.1.2 Eje.

Los ejes, se montan en la estructura para que esta parte de la máquina cumpla su función de movimiento.

3.1.2.1 Acople perfil eje.

Figura 3.9.- CAD Acople Perfil Eje

En el Acople Perfil Eje se monta los cojinetes, los cuales juntos con los ejes y los motores se podrán desplazar de un extremo a otro, y de esa manera también el Extrusor.

3.1.2.2 Plataforma.

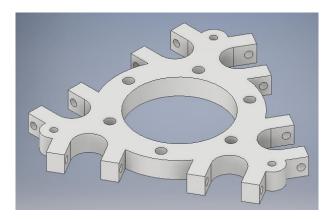


Figura 3.10.- CAD Plataforma

La Plataforma cuelga del Acople Perfil Eje mediante los Brazos. En la plataforma se colocara el Extrusor, el cual es el encargado de la fundición del plástico (PLA) para la realización de piezas 3D.

3.1.2.3 Correas.

Figura 3.11.- Correas (Madinaveitia, 2014)

Las correas se colocan en las poleas que son unidas a los motores, también se agarran en el Acople Perfil Eje para el movimiento vertical en los ejes y así tenga el funcionamiento deseado.

3.1.2.4 Poleas.

Figura 3.12.- Poleas (Madinaveitia, 2014)

Las Poleas se colocan en los ejes de los motores y se engranan con las correas para el movimiento vertical.

3.1.2.5 Cojinete lineal.

Figura 3.13 - Rulimán Lineal 1228 (zjlinearbearing.es, 2016)

La función que desarrollan los cojinetes lineales es el movimiento vertical sobre los ejes, éstos se colocan en el Acople Perfil Eje.

3.1.2.6 Brazo.

Figura 3.14.- CAD Brazo

Los Brazos se acoplan al Acople Perfil Eje y son los encargados de transmitir el movimiento a la plataforma que contiene el Extrusor.

3.1.3 Plataforma inferior.

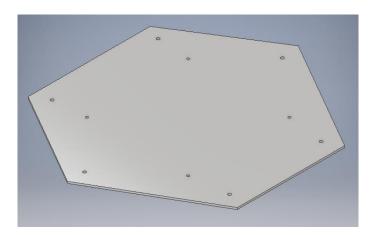


Figura 3.15.- CAD Plataforma Inferior

La Plataforma Inferior se coloca sobre el triángulo equilátero formado por los perfiles. Esta pieza es de Aluminio de espesor de 3mm, se la cortó mediante el proceso de corte por chorro de agua.

3.1.4 Cama PRUSA.

Figura 3.16.- Cama Prusa

La Cama Prusa (modelo impresora Prusai3) se coloca sobre la Plataforma inferior, la cual se calienta para la impresión de cualquier pieza deseada.

3.1.5 Otros componentes.

En ésta sección se tiene todos los pernos y tuercas que componen la estructura. También se coloca toda la parte electrónica de la máquina.

3.1.5.1 Arduino.

Figura 3.17.- Arduino

Es un plataforma de hardware libre, el cual consiste en un procesador integrado que puede ser utilizado para muchas aplicaciones, que en este caso sirve para hacer funcionar la Impresora 3D

3.1.5.2 RAMPS.

Figura 3.18.- RAMPS

RAMPS (RepRap Arduino Mega Pololu Shield) es una placa montada sobre el Arduino, en donde se conectan todo los componentes electrónicos necesarios, el diseño es específicamente para una Impresora 3D.

3.1.5.3 Pololus.

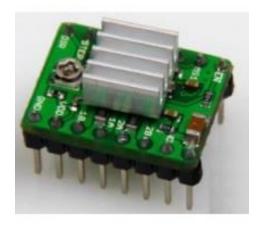


Figura 3.19.- Pololu

Es montado sobre la RAMPS y se encargan del control de los motores a pasos, además constan de un potenciómetro, el cual ajusta la potencia que les llega a los motores.

3.1.5.4 Fuente de poder altek de 650W.

Figura 3.20.- Fuente de Poder

La Fuente de Poder es un sistema que alimenta equipos, que en este caso es la Cama de Impresión y el Extrusor.

3.1.5.5 Fin de Carrera.

Figura 3.21.- Fin de Carrera

Es un sensor interruptor, que este caso determinar cuál es el tamaño máximo de impresión que tiene el diseño de la Impresora 3D tipo Delta.

3.1.5.6 Termocuplas.

Figura 3.22.- Termocuplas

Son sensores de temperaturas más utilizados en la industria, los cuales en la Impresora 3D determinar la temperatura de la Cama Prusa y el Extrusor.

3.1.5.7 Ventilador.

Figura 3.23.- Ventilador

La función del Ventilador es refrigerar el Extrusor.

3.1.6 Ensamble general.

Figura 3.24.- CAD Ensamble General

Figura 3.25.- Ensamble General

3.2 Análisis metrológico

Para el análisis metrológico, se imprimió piezas simples en las que se pueda observar ángulos, circunferencias y dimensiones como cilindros, triángulos y cuadrados para de esta manera obtener la tolerancia de impresión de la Impresora 3D.

Se imprimió 4 cilindros con las siguientes dimensiones que se pueden observar en la figura 3.26.

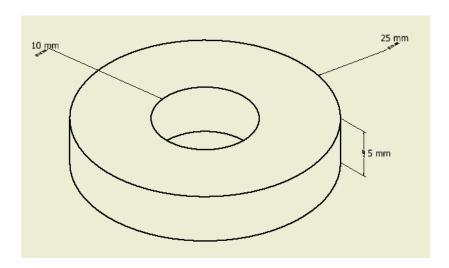


Figura 3.26.- Dibujo Cilindro hueco.

	REAL (mm)	PRUEBA 1 (mm)	PRUEBA 2 (mm)	PRUEBA 3 (mm)	PRUEBA 4 (mm)	PROMEDIO PRUEBAS (mm)	ERROR %	DESVIACION ESTANDAR
DIAMETRO EXTERNO 1	25	25,63	25,45	25,72	25,64	25,61	2,39	0,29
DIAMETRO EXTERNO 2	25	25,58	25,72	25,86	25,66	25,71	2,74	0,33
DIAMETRO INTERNO 1	10	9,9	9,88	9,6	9,89	9,82	1,86	0,15
DIAMETRO INTERNO 2	10	9,98	9,92	9,58	9,85	9,83	1,70	0,17
ESPESOR	5	5,56	5,46	5,44	5,42	5,47	8,59	0,21

Tabla 6.- Mediciones Cilindro hueco.

Como se puede observar en la Tabla 6, se tomó 2 medidas en el diámetro exterior, diámetro interior y una medida del espesor de la pieza para las 4 impresiones realizadas. Se determinó el promedio de la pruebas realizadas con un error aproximado de 3.45%, también se obtuvo la

desviación estándar de las pruebas, las cuales nos indican la dispersión de los valores con respecto a su valor promedio.

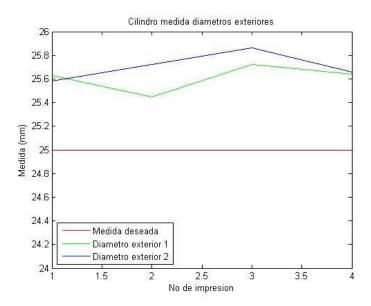


Figura 3.27.- Diagrama de control Diámetros exteriores

En la Figura 3.27 la línea de color rojo nos muestra la medida real (25 mm) del diámetro exterior y los demás puntos que se puede observar (línea verde y azul) nos indica como varia con respecto al valor real.

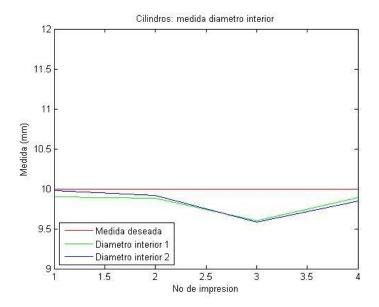


Figura 3.28.- Diagrama de control Diámetros Interiores

En las Figura 3.28 la línea de color rojo nos indica el valor real del diámetro (10 mm) y los demás puntos mostrados de los diámetros interiores 1 y 2 (línea verde y azul) no indican como varían con respecto a la medida real.

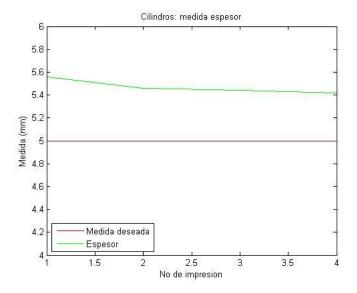


Figura 3.29.- Diagrama de control Espesor

En la Figura 3.29 en el eje de las medidas, el valor real del espesor (5 mm) nos muestra las líneas de color rojo y los demás puntos mostrados (línea verde) en la gráfica muestra como varía con respecto al valor real.

	PRUEBA 1	PRUEBA 2	PRUEBA 3	PRUEBA 4	PROMEDIO
	(mm)	(mm)	(mm)	(mm)	(mm)
TOLERANCIA					
EXTREMO 1	+0,63	+0,45	+0,72	+0,64	+0,61
TOLERANCIA					
EXTREMO 2	+0,58	+0,72	+0,86	+0,66	+0,705
TOLERANCIA					
INTERNO 1	-0,1	-0,02	-0,28	-0,29	-0,1725
TOLERANCIA					
INTERNO 2	-0,02	-0,06	-0,34	-0,27	-0,1725
ESPESOR	+0,56	+0,46	+0,44	+0,42	+0,47

Tabla 7.- Tolerancia Cilindro

En la Tabla 7 nos muestran la variación de las mediciones con respecto a la dimensión real realizadas en cada una de la impresiones, en la fila 6 se determinó el promedio de las tolerancias obtenidas. En la figura 3.30 se puede observar los cilindros impresos.

Figura 3.30.- Cilindros impresos con impresora 3D

Se imprimió 4 cuadrados con las siguientes dimensiones que se pueden observar en la figura 3.31.

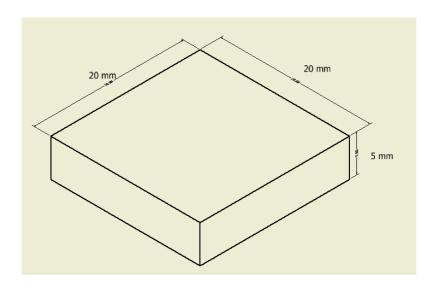


Figura 3.31.- Dibujo Cuadrado

	REAL (mm)	PRUEBA 1 (mm)	PRUEBA 2 (mm)	PRUEBA 3 (mm)		PROMEDIO PRUEBAS (mm)		DESVIACION ESTANDAR
LADO 1	20	20,63	20,85	20,84	20,65	20,74	3,58	0,12
LADO 2	20	20,57	20,8	20,85	20,85	20,77	3,69	0,13
ESPESOR	5	5,54	5,36	5,46	5,31	5,42	7,70	0,10

Tabla 8.- Mediciones Cuadrado

En la Tabla 8, se tomó 2 medidas de los lados que forman el cuadrado y una medida del espesor de la pieza para las 4 impresiones realizadas. Se determinó el promedio de la pruebas realizadas con un error aproximado de 4.99%, también se obtuvo la desviación estándar de las pruebas, las cuales nos indican la dispersión de los valores con respecto a su valor promedio.

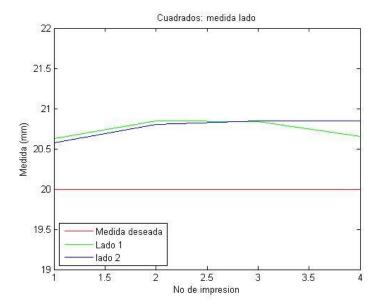


Figura 3.32.- Diagrama de Control Cuadrado Lados

En la Figura 3.32 en el eje de las medidas, el valor real de los lados (20 mm) nos referimos a las líneas de color rojo y los demás puntos mostrados en la figura (línea verde y azul) nos muestra como varia con respecto al valor real.

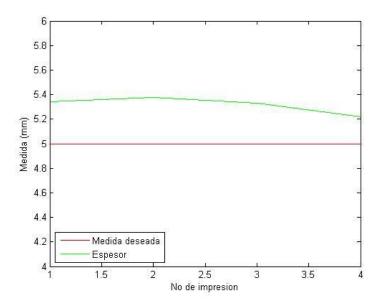


Figura 3.33.- Diagrama de Control Cuadrado Espesor

En la Figura 3.33 la línea rojo nos indica el valor real del espesor (5 mm) y los demás puntos mostrados en la figura (línea verde) nos indican como varían los demás valores con respecto al valor real.

	PRUEBA 1	PRUEBA 2	PRUEBA 3	PRUEBA 4	PROMEDIO
	(mm)	(mm)	(mm)	(mm)	(mm)
TOLERANCIA	+0,63	+0,85	+0,84	+0,65	+0,7425
LADO 1	+0,03	+0,63	+0,04	10,03	+0,7423
TOLERANCIA	+0,57	+0,8	+0,85	+0,85	+0,7675
LADO 2	10,57	±0,6	10,03	10,03	+0,7073
TOLERANCIA	+0,54	+0,36	+0,46	+0,31	+0,4175
ESPESOR	10,54	10,50	10,40	10,31	10,7175

Tabla 9.- Tolerancia Cuadrado

En la Tabla 9 podemos observar como varían las mediciones con respecto a la dimensión real que se realizó en cada una de la impresiones. En la figura 3.34 se puede observar los cuadrados impresos.

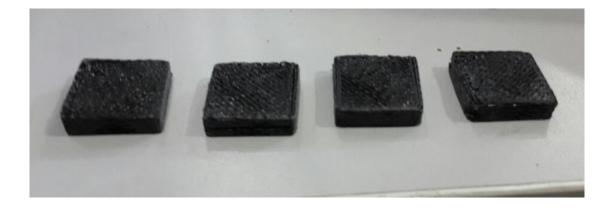


Figura 3.34.- Cuadrados impresos con impresora 3D

Se imprimió 4 triángulos con las siguientes dimensiones que se puede observar en la Figura 3.35.

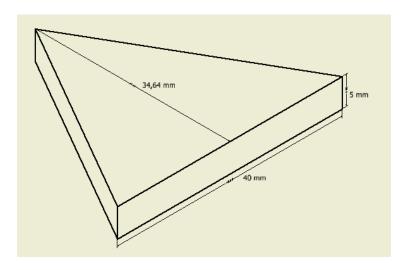


Figura 3.35.- Dibujo Triangulo

						PROMEDIO		
	REAL	PRUEBA	PRUEBA	PRUEBA	PRUEBA	PRUEBAS	ERROR	DESVIACION
	(mm)	1 (mm)	2 (mm)	3 (mm)	4 (mm)	(mm)	%	ESTANDAR
LADO 1	40	40,5	40,46	40,1	40,55	40,40	0,99	0,205
LADO 2	40	40,46	40,02	40,3	40,6	40,34	0,85	0,249
ALTURA	34,64	35,25	35,08	35,13	35,24	35,17	1,52	0,08
ESPESOR	5	5,34	5,38	5,33	5,22	5,317	5,97	0,07

Tabla 10.- Mediciones Triángulo

En la Tabla 10, se tomó 2 medidas de los lados que forman el triángulo, una medida de la altura y una medida del espesor de la pieza para las 4 impresiones realizadas. . Se calculó el promedio de la pruebas realizadas con un error aproximado de 2.33%, también se obtuvo la desviación estándar de las pruebas, las cuales nos indican la dispersión de los valores con respecto a su valor promedio.

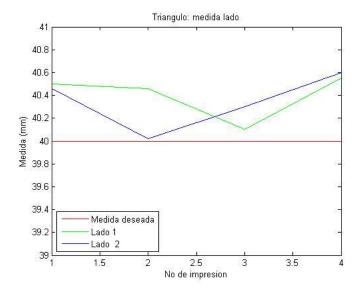


Figura 3.36.- Diagrama de Control Triangulo Lados

En la Figura 3.36 en el eje de las medidas, el valor real nos muestra la línea roja (40 mm) y los demás puntos mostrados en la figura (línea verde y azul) nos muestra como varia con respecto al valor real.

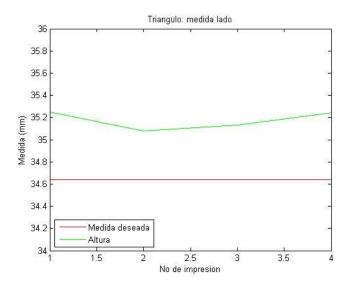


Figura 3.37.- Diagrama de Control Triangulo Altura

En la Figura 3.37 la línea roja nos muestra el valor real de la altura (34.64 mm) y la línea verde nos indica como varia en relación al valor real.

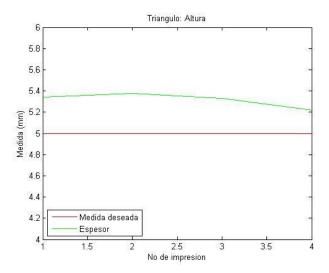


Figura 3.38.- Diagrama de Control Triangulo Espesor

En la Figura 3,38 la línea roja nos muestra el valor real del espesor (5 mm) y los demás puntos mostrados en la figura (línea verde) nos indican como varían en relación con el valor real.

	PRUEBA 1	PRUEBA 2	PRUEBA 3	PRUEBA 4	PROMEDIO
	(mm)	(mm)	(mm)	(mm)	(mm)
TOLERANCIA					
LADO 1	+0,5	+0,46	+0,1	+0,55	+0,40
TOLERANCIA					
LADO 2	+0,46	+0,02	+0,3	+0,6	+0,35
TOLERANCIA					
ALTURA	+0,61	+0,44	+0,49	+0,6	+0,54
TOLERANCIA					
ESPESOR	+0,34	+0,38	+0,33	+0,22	+0,32

Tabla 11.- Tolerancia Triángulo

En la Figura 4.6 y en la Tabla 11 se observar la variación de las mediciones con respecto a la dimensión real que se realizó en cada una de la impresiones. En la fila 6 de la tabla podemos observar los valores promedios de las tolerancias de cada medida de la figura impresa. En la figura 3.39 se puede observar los triángulos impresos.

Figura 3.39.- Triángulos impresos con impresora 3D

Además, se realizaron varias impresiones distintas que llevan un poco más de complejidad que se pueden observar en la figura 3.40.

Figura 3.40.- Impresión de Perrilla de ajuste 3D

En la Figura 3.40 las mediciones reales en relación al diámetro exterior, diámetro interior y espesor son: 35 mm, 10 mm y 10 mm respectivamente. La medidas obtenidas de la impresión 3D varían entre 0.4 a 0.6 mm para el diámetro exterior, de -0.6 a -0.5 mm para el diámetro interior y por ultimo varían ente 0.1 a 0.2 mm para el espesor

Figura 3.41.- Impresión Dragón USFQ 3D

En la Figura 3.41 se puede observar el Dragón de la USFQ, el su tolerancia de todas sus medidas varían entre 0.4 a 0.6 mm.

3.3 Afinamiento

Para las piezas finales obtenidas mediante la impresión 3D, se realizó un proceso de limado de las rebabas de las piezas impresas para la obtención de un mejor acabado, de ésta manera la tolerancia de la piezas disminuyeron en un porcentaje pequeño. Uno de los problemas presentes con respecto a las tolerancias es que varían entre 0.4 - 0.6 mm, puesto que el extrusor de la impresora no fluye de una manera constante y ésta es una de las razones por la que se puede

observar la presencia de rebabas y por ende disminuye la calidad de impresión, se puede observar en la figura 3.42.

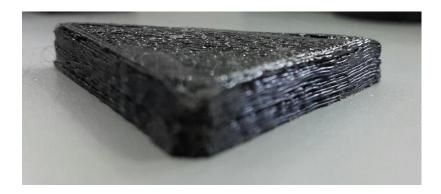


Figura 3.42.- Rebababas en impresión 3D

En relación a la calibración manual de la cama, se debe dejar el espesor de una hoja A4 (0.10 mm) entre la punta del extrusor y la Cama Prusa para que la impresión tenga la mejor calidad posible, se puede observar en la Figura 3.43.

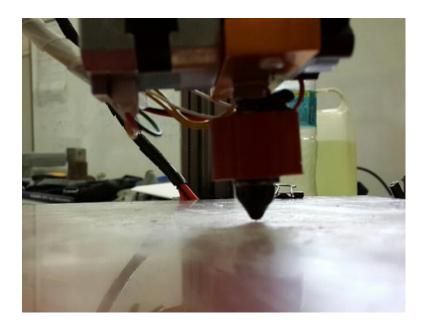


Figura 3.43.- Calibración manual Cama Prusa

La comunidad RepRap nació con Adrián Bowyer (Impresora 3D Darwin), la cual consiste en la creación de máquinas de prototipado rápido auto-replicables. Toda esta comunidad no hubiera existido sin el concepto Open Source, la cual quiere decir código abierto, en donde el primer camino de difusión es por medio del internet.

El programa de control (Marlin) que es un código abierto es el enlace entre el software y el hardware, que explica los comandos del archivo de código G (generados por el software Slic3r que trabaja conjuntamente con Repetier) y controla el movimiento. La conformación del programa de control es única para cada impresora, es decir depende mucho del diseño propuesto, puesto que los parámetros de diseño cambian de modelo.

Al referirnos a un código abierto , los parámetros de calibración con el Software Arduino se relaciona con las dimensiones que conlleva nuestro diseño de Impresora 3D como: Delta Diagonal Rod (Longitud del Brazo), Delta Smooth Rod Offset (Distancia desde el Eje de acero hasta la punta de la boquilla del Extrusor), Delta Effector Offset (Distancia del punto de anclaje del Brazo con la Plataforma hasta la punta del Extrusor) y Delta Carriage Offset (Distancia del Eje hasta la punta del anclaje del Brazo con el Acople eje perfil), puesto que éstos valores determinan nuestro Delta Radius (Radio de impresión) como se pueden observar en las Figuras 3.44 y 3.45

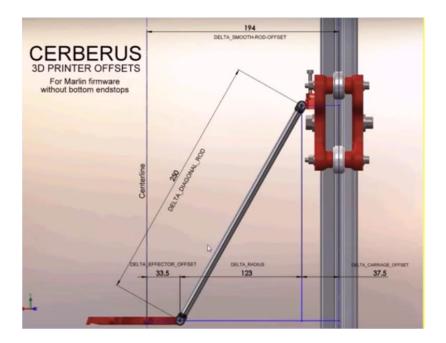


Figura 3.44.- Dimensiones Calibración

La Figura 3.45 nos muestra las líneas de código de la 109 hasta 124, los cuales nos indican los parámetros de diseño anteriormente mencionados que se introdujeron en la programación para la obtención de una calibración satisfactoria de la Impresora 3d.

```
// Center-to-center distance of the holes in the diagonal push rods.
#define DELTA_DIAGONAL_ROD 253.8// mm

// Horizontal offset from middle of printer to smooth rod center.
#define DELTA_SMOOTH_ROD_OFFSET 251 // mm

// Horizontal offset of the universal joints on the end effector.
#define DELTA_EFFECTOR_OFFSET 33 // mm

// Horizontal offset of the universal joints on the carriages.
#define DELTA_CARRIAGE_OFFSET 48.15 // mm

// Horizontal distance bridged by diagonal push rods when effector is centered.
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET)

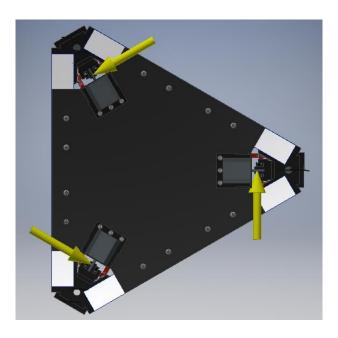
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
#define DELTA_PRINTABLE_RADIUS 220 //original 80
```

Figura 3.45.- Gráfica Arduino Valores

El procedimiento de calibración y alineación se divide en los siguientes pasos:

- Introducir los parámetros de diseño en el software Arduino (Figura 3.45)
- Introducir el tamaño máximo de impresión que se muestra en la Figura 3.46 (Código de línea de la 460 a 462)

```
#define MANUAL_X_HOME_POS 0
#define MANUAL_Y_HOME_POS 0
#define MANUAL_Z_HOME_POS 352 /
```


Figura 3.46.- Gráfica Arduino Tamaño de impresión

- -Ya realizada la programación con los parámetros de diseño y del tamaño de impresión, mediante el software Repetier (programa que conjuntamente con Slic3r controlan la impresora 3D) se le comunica al Extrusor que se coloque en el punto (0,0,352) en el cual se observa el tamaño máximo de impresión (Figura 3.46).
- Nivelación de la Cama Prusa mediante un nivel (180°)
- Mediante el Repetir, se le informa a la impresora que se coloque en la posición (0, 0,0), la cual se debe verificar que quede un espacio de una hoja A4 (0.10 mm) entre la punta del Extrusor y la Cama Prusa (Figura 3.43).
- Mover el Extrusor del punto (0, 0,0) a las cuatro esquinas de la cama de impresión y comprobar un espacio de una hoja A4 entre el Extrusor y la Cama Prusa.
- Luego de haber hecho todos los pasos anteriores, se calibra el suministro de plástico.

- Se señala mediante una raya el filamento 10 mm antes de que entre al Extrusor, y luego con el programa Repetir se le comunique que jale dicha distancia y se comprueba que la distancia señalada quede justo antes de que entre al Extrusor.

3.4 Análisis de deformaciones

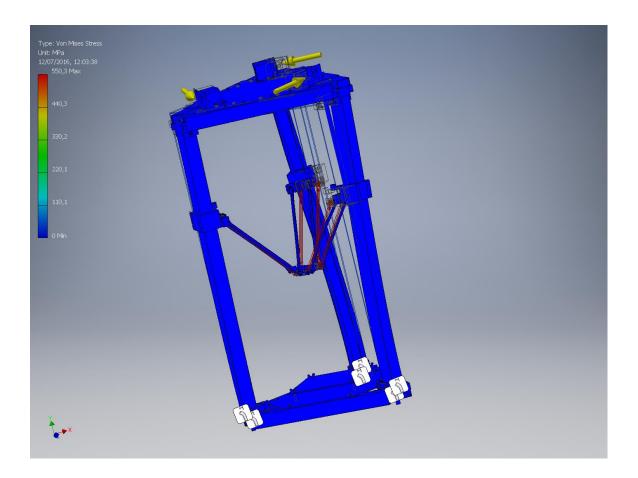

El análisis de deformaciones se realizó mediante el software Autodesk Inventor

Figura 3.47.- Aplicación de Fuerzas

En la figura 3.47 se puede observar la distribución de las cargas a lo largo de la estructura de la impresora 3D. Cada uno de los perfiles superiores soporta una carga de 107,15 N; basada en el torque generado por los motores, que tiene un valor de 5.5 kg cm (anexos), y en la medida de los ejes que soportan la banda, 12 mm. La ubicación de los motores en la superficie superior de la estructura de la Impresora 3D tiene una forma triangular por lo cual es una buena aproximación suponer que se aplica fuerzas en dirección tangencial al punto más alto de la polea de cada uno de los motores que se encuentran en cada una de las esquinas de dicho triángulo.

En la simulación, se introdujo el valor de las fuerzas aplicadas (107.15 N) además de las restricciones geométricas necesarias, entre las cuales se encuentran la definición de la base de la impresora como una geometría empotrada que impide el desplazamiento de la misma; además, de las restricciones respectivas de ensamblaje de los diferentes componentes de la impresora. Se utilizó un sistema estacionario bajo de la suposición de que las cargas aplicadas en la impresora tendrán el mismo valor a lo largo del tiempo puesto que el torque de los motores se mantiene constante, la explicación de esto es que en ciertos momento en donde la impresora está en pleno funcionamiento los tres motores generan cargas simultáneas.

Figura 3.48.- Esfuerzos de Von Misses en la estructura

Una vez ya generada la simulación se obtuvieron las gráficas del esfuerzo de Von Mises aplicado en la impresora así como la deformación principal. En la Figura 3.48 se puede apreciar las distribución del esfuerzos de Von mises en cada uno de los puntos de la impresora; el análisis mostró que bajo las cargas estipuladas la mayoría de la estructura presentará un esfuerzos de Von Misses que varía entre 0 y 110.1 MPa. Al comparar el último valor con el esfuerzo de fluencia del Aluminio (275 MPa) se puede concluir que la estructura es lo bastante resistente para soportar las cargas aplicadas con un alto factor de seguridad.

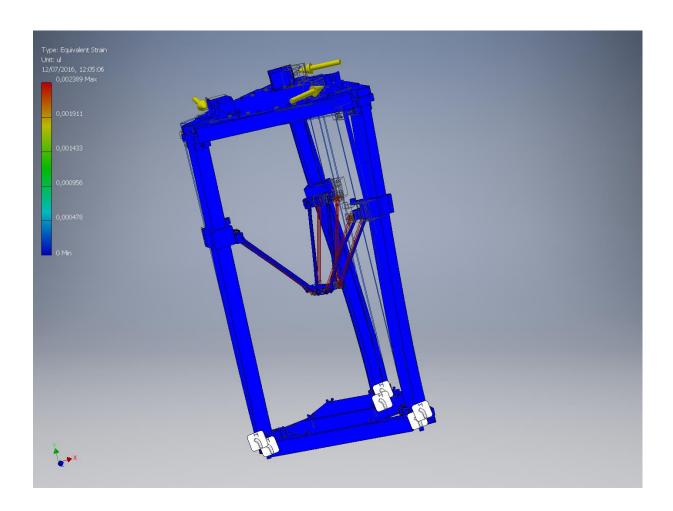


Figura 3.49.- Deformación unitaria principal

En la Figura 3.49 podemos observar el resultado de la simulación para la deformación principal. La deformación creada en la estructura debido a las cargas antes mencionadas oscila entre los valores de 0 y 0.000478. Esta deformación es muy baja al comprarla con la deformación del aluminio en fluencia que por convención tiene un valor de 0.002; lo anterior da como conclusión que la estructura no presenta deformaciones importantes en ningún de sus puntos que puedan alterar su funcionamiento.

Un factor importante que se debe tomar en cuenta es la posible deflexión producida en los perfiles debido a las cargas antes mencionadas, este factor es de vital importancia puesto que los pilares sirven de guía a los soportes que sostienen los brazos que sostienen el extrusor. Grandes deformaciones por flexión dificultarían el movimiento de los soportes lo que ocasionaría una desviación grande en las dimensiones de la pieza a imprimir. Para poder descartar problemas con la deflexión se tomaron en cuenta los resultados de los análisis de desplazamiento de la estructura bajo las cargas mencionadas. En la figura 3.49 se muestran dichos resultados. Dada la simetría de la geometría de la impresora basta con considerar uno de los pilares para poder predecir el comportamiento del resto.

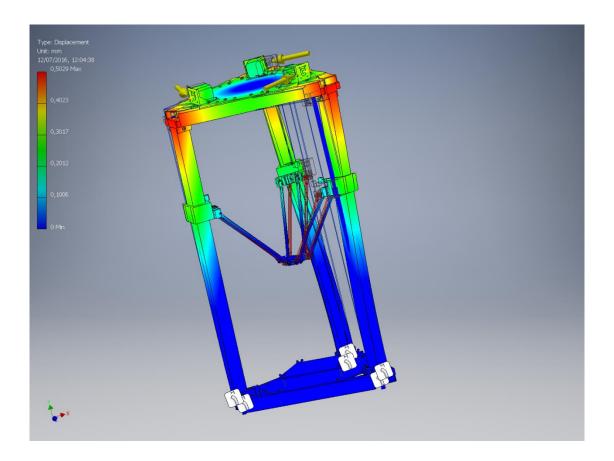


Figura 3.50.- Desplazamiento Principal

Como se observa en la Figura 3.50 la dirección en la que se está flejando el pilar de la izquierda de la impresora es en la del eje x y dicho pilar alcanza una deflexión máxima con un valor que oscila entre 0.11006 mm y 0.4023 mm; dado el orden de magnitud de estos valores se puede descartar un fallo en la precisión de la impresora debido a deformaciones producidas por la deflexión de los pilares.

3.5 Análisis de costos

En la Tabla 12 se muestra el costo de todos los componentes de la estructura, utilizados en el desarrollo de la impresora. Este costo va a ser mayor en relación al valor de reproducción del diseño puesto que este primero, suma el costo de construcción y desarrollo de una impresora 3D.

Descripción	Proveedor	Unidades	Costo Unitario (\$)	Costo (\$)
PERFIL Y CORTADA	Cedal	1	17.11	17.11
ACERO PLATA 12	ACEROS MG	1	37,2	37,2
PLANCHA ACRILICO CON CORTE LASER	ARTMAKEIT	1	7,03	7,03
PLANCHA ALUMINIO CON CORTE POR CHORRRO DE AGUA	Andrade Badillo Xavier Edmundo	1	13	13
AS 1427 - M3 x 10	Casa del Perno	24	0,04	0,96
AS 1427 - M3 x 30	Casa del Perno	12	0,04	0,48
ANSI B18.6.3 - 8 - 32 x 5/8 SR HMS	Casa del Perno	12	0,04	0,48
ANSI B18.6.3 - 8 - 32 x 1/2 SR HMS	Casa del Perno	45	0,04	1,8
ANSI B18.6.3 - 8 - 32 x 3/16 SR HMS	Casa del Perno	21	0,04	0,84
RODAMIENTO KH1228	Palacio del Rulimán	3	12,5	37,5
MATERIAL PLA	SAIS 3D	1	56,5	56,5
MOTORES	APM	4	33	132
EXTRUSOR	-	1	90	90
POLEAS-BANDA	-	3	16	48
RODAMIENTOS	Palacio del Rulimán	3	11	33
PLATAFORMA	-	1	20,5	20,5
IMPRESIÓN BRAZOS	-	6	16,8	100,8
IMPRESIÓN ACOPLES	SAIS 3D	2	20,5	41
			TOTAL \$	638,2
			COSTO IVA \$	76,584
			COSTO TOTAL \$	714,784

Tabla 12.- Costo Estructural

Los demás acoples de la Impresora 3D fueron realizadas con una impresora 3D prestada y no fue considerada en el costo que se muestra en la Tabla 12.

En la Tabla 13 se refleja el costo de todos los componentes electrónicos adquiridos para una impresora 3D.

Descripción	Proveedor	Unidades	Costo Unitario (\$)	Costo (\$)
ARDUINO	APM	1	58	58
RAM	APM	1	69	69
POLOLUS	APM	4	8	32
FUENTE DE PODER	COMPUTRON	1	24	24
FIN DE CARRERA	-	3	3	9
TERMOCUPLAS	-	2	2,5	5
			TOTAL	197
			COSTO IVA	23,64
			COSTO TOTAL	220,64

Tabla 13.- Costo Electrónico

Sumando el costo de los componentes mecánicos y electrónicos, obtenemos costo total de desarrollo de la máquina como se puede observar en la tabla, además en estos valores se toma en cuenta gastos extras que conllevas el proceso de desarrollo como por ejemplo la impresión 3D de varias piezas.

Descripción	Costo Total (\$)
PARTE MECANICA	714,784
PARTE ELECTRONICA	220,64
	935,424

Tabla 14.- Costo total Impresora 3D

En el mercado nacional las impresoras 3D tipo Delta varían entre \$1000 a \$1400 y de tipo Cartesiana están entre \$700 a \$1000. Se puede comparar con el valor de la tabla, que es el costo de producción de una impresora 3D con componentes obtenidos en el sector nacional.

El costo de producción de esta impresora 3D es de \$679.17, que es menor al costo que se encuentra en el mercado nacional y si tomamos en cuanta en producción en masa, el costo será menor.

Descripción	Proveedor	Unidades	Costo Unitario (\$)	Costo Total (\$)
PERFIL Y CORTE	Cedal	1	17,11	17,11
ACERO PLATA 12	ACEROS MG	1	37,2	37,2
PLANCHA ACRILICO CON CORTE LASER	ARTMAKEIT	1	7,03	7,03
PLANCHA ALUMINIO CON	Andrade Badillo	1		
CORTE POR CHORRRO DE AGUA	Xavier Edmundo	1	6	6
AS 1427 - M3 x 10	Casa del Perno	24	0,04	0,96
AS 1427 - M3 x 30	Casa del Perno	12	0,04	0,48
ANSI B18.6.3 - 8 - 32 x 5/8 SR HMS	Casa del Perno	12	0,04	0,48
ANSI B18.6.3 - 8 - 32 x 1/2 SR HMS	Casa del Perno	45	0,04	1,8
ANSI B18.6.3 - 8 - 32 x 3/16 SR HMS	Casa del Perno	21	0,04	0,84
RODAMIENTO KH1228	Palacio del Rulimán	3	12,5	37,5
Cama SUPRA	SAIS3D	1	30	30
MOTORES	APM	3	33	99
EXTRUSOR	-	1	90	90
POLEAS-BANDA	-	3	16	48
RODAMIENTOS	Palacio del Rulimán	3	11	33
ARDUINO	APM	1	58	58
RAM	APM	1	69	69
POLOLUS	APM	4	8	32
FUENTE DE PODER	COMPUTRON	1	24	24
FIN DE CARRERA	-	3	3	9
TERMOCUPLAS	-	2	2,5	5
			TOTAL	606,4
			COSTO IVA	72,768
			COSTO TOTAL	679,168

Tabla 15.- Costo real de Impresora 3D

4. CONCLUSIONES

El costo de producción de la Impresora 3D expuesta en este proyecto fueron relativamente bajos (\$679,17). El costo es menor al costo de desarrollo (\$935,434), sin embargo en comparación con el costo que se encontró en el mercado nacional, que oscila entre \$1000 a \$1400, puesto que no existe una producción nacional de estas impresoras, solo se importa. Por lo tanto, se concluye que se pudo producir una impresora de bajo costo. Además, cabe recalcar que todos los componentes fueron adquiridos en el Ecuador.

La desviación contenida en la piezas impresas varía entre 0.4 a 0.6 mm, lo cual en comparación con la página de makezine nos indican que la calidad de impresión que ellos aceptan para impresiones sin mucha complejidad es de 0.2 mm a 0.4 mm, las impresiones mostradas en la sección de resultados se encuentra por arriba de lo que esta referencia, sin embargo en comparación con el servicio que podemos encontrar en el Ecuador como SAIS3D que es de 0.5 mm a 0.7 mm se encuentra entre los limites. Se destaca que las tolerancias siempre permiten remoción de material para dejarlo a la medida estipulada, es decir en longitudes la dimensión es mayor y en orificios la dimensión es menor, lo que permite remover material hasta llegar a la dimensión especificada.

Los acoples de la superficie superior e inferior fueron hechos de PLA, en donde el diseño utilizado fue realizado con el fin de obtener una ángulo de 60 o entre los 3 perfiles, puesto que esta configuración es necesaria para la impresora tipo delta.

Los acoples que producen el desplazamiento eje perfil se fabricaron en ABS, puesto que se necesita un material más denso que evite las vibraciones de las guías, los cuales mejoran la calidad de impresión.

Los componentes adquiridos para el ensamblaje de la estructura se compraron dentro del mercado nacional (Perfiles, Impresión 3D acoples, ejes, corte de acrílico y aluminio)

Los parámetros de configuración que trabajan conjuntamente con el Software Arduino son sumamente importantes, puesto que al poner estas dimensiones (Delta Diagonal Rod, Delta Smooth Rod Offset, Delta Effector Offset y Delta Carriage Offset) lo más precisas posibles en la programación produjeron como resultado un movimiento recto sobre la cama de impresión aceptable.

Se observó en el momento de imprimir que el filamento en algunas secciones de las piezas no se pega correctamente, ya que se encontró un problema de extrusión en donde la impresora no pudo suministrar la cantidad de plástico que se necesita, además existe complicaciones en el momento que se quiere imprimir piezas que se demoran aproximadamente 50 minutos, puesto que el extrusor se bloquea y deja de suministrar el filamento fundido.

La temperatura de la cama es de suma importancia puesto que de ésta depende que la pieza no se despegue mientras se está imprimiendo, además la calibración manual debe procurar tener el espesor de una hoja A4 (0.10 mm) entre la punta del extrusor y la cama en todos los puntos del área de impresión, además, se procuró tener la mejor calibración del movimiento de los tres brazos para que la calibración de la cama fuese sencilla, es decir se tomó un punto de referencia (punto (0,0)), lo cual mediante un nivel se determinó que la cama sea totalmente plana (ángulo de 180) en relación a las demás esquinas del cuadrado.

El desplazamiento que producen los motores a la estructura varía entre 0.1006 mm y 0.4023 mm, entonces no existió un fallo en la precisión de la impresora debido a deformaciones producidas por la deflexión de los perfiles.

La deformación unitaria principal creada en la estructura (Figura 3.49) oscila entre los valores de 0 y 0.00047, en donde la deformación es baja al compararla con la deformación del aluminio en fluencia (0.002), entonces se concluye que la estructura no presenta deformaciones importantes que puedan alterar su funcionamiento.

El esfuerzo de Von Mises que se presenta en la Figura 3.48 una variación entre 0 y 110.1 MPa, lo cual en comparación con el esfuerzo de fluencia del Aluminio (275 MPa) se comprueba que la estructura es sumamente rígida para soportar las cargas aplicadas con un alto factor de seguridad.

5. RECOMENDACIONES

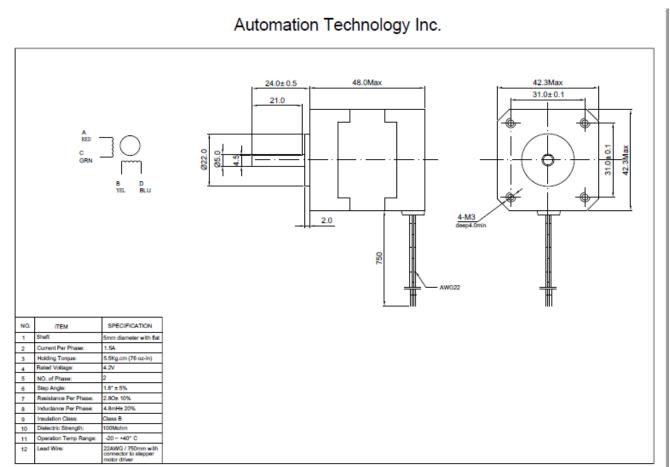
Implementar perfiles más rígidos (ejm. 80-20), puesto que sus perfiles se acoplan con gran facilidad para la construcción de este tipo de impresoras tipo *Delta*.

Implementar un Extrusor de mejores prestaciones que nos permita tener un suministro constante de plástico para obtener una buena calidad de impresión, se propone extrusores refrigerados por líquido para las impresoras Delta denomina Win3rl creada por Mathias Dragosits la cual se caracteriza por tener un cabezal con tres boquillas (hotends) que garantiza imprimir a la vez con tres filamentos de 1,75 mm y con una temperatura máxima de 250°, además, funciona adecuadamente durante muchas horas ininterrumpidamente.

6. REFERENCIAS

- Peña, G & Cañete, V (2014). *Diseño del prototipo de un kit de impresora 3D*. Recuperado de upcommons.upc.edu
- Amigó, M. (2014). *Diseño y construcción de una impresora 3D delta*. Recuperado de upcommons.upc.edu
- Álvarez-Cedillo, J. A., Sandoval-Gutierrez, J., Herrera-Lozada, J. C., de Jesús Medel Juárez, J., & Olguín-Carbajal, M. (2016). Diseño, fabricación y funcionamiento de un robot delta de bajo costo. DYNA-Ingeniería e Industria, 91(3).
- Rosanne, B. (2016). *The FDM technology One Step Closer to the Future*. Recuperado de http://3devo.eu/guide-fdm-printable-plastics-3d-printing-filament/
- Sánchez, A. (2016). *Análisis cinemático: Impresoras 3D Cartesianas vs. Impresoras 3D Delta*.

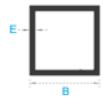
 Recuperado de http://diwo.bq.com/3d-cartesianas-vs-delta-analisis-cinematico/
- Sánchez, A. (2015). *Impresoras 3D Cartesianas vs. Impresoras 3D Delta*. Recuperado de http://diwo.bq.com/impresoras-3d-cartesianas-vs-delta/
- Gutiérrez, P. (2013). *Tres impresoras 3D que marcan el rumbo en el futuro de esta tecnología*.


 Recuperado https://www.fayerwayer.com/2013/02/tres-impresoras-3d-que-marcan-el-rumbo-en-el-futuro-de-esta-tecnologia/
- Gómez, N. (2013). *Qué es una impresora 3D?* Recuperado de http://www.3dimpresoras3d.com/que-es-una-impresora-3d/

- Regidor, A. (2016). Tres extrusores refrigerados por líquido para las impresoras Delta.

 Recuperado de http://www.impresion3daily.es/tres-extrusores-refrigerados-por-liquido-para-las-impresoras-delta/
- Kaziunas, A. (2013). *Top Ten Tips: Designing Models For 3D Printing*. Recuperado de http://makezine.com/2013/12/11/top-ten-tips-designing-models-for-3d-printing/
- Columna Digital RD. (2015). *Un niño francés sin mano recibe una prótesis hecha con una impresora 3D*. Recuperado de http://columnadigitalrd.com/un-nino-frances- sin-mano-recibe-una-protesis-hecha-con-una-impresora-3d/
- Impresora3D. (2013). *Impresora 3D de chocolate*. Recuperado de http://www.impresoras3d.net/2012/05/impresora-3d-de-chocolate/

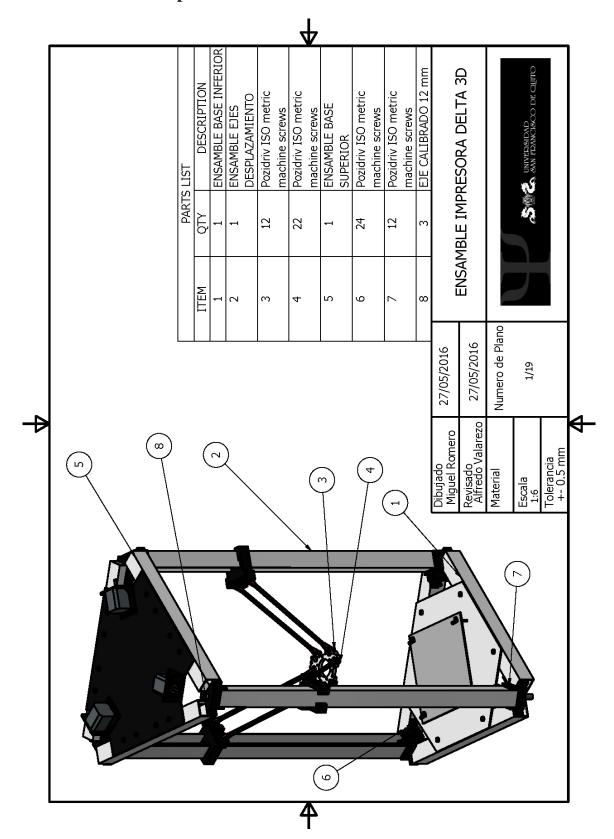
7. ANEXOS


Anexo 1: Planos de motor

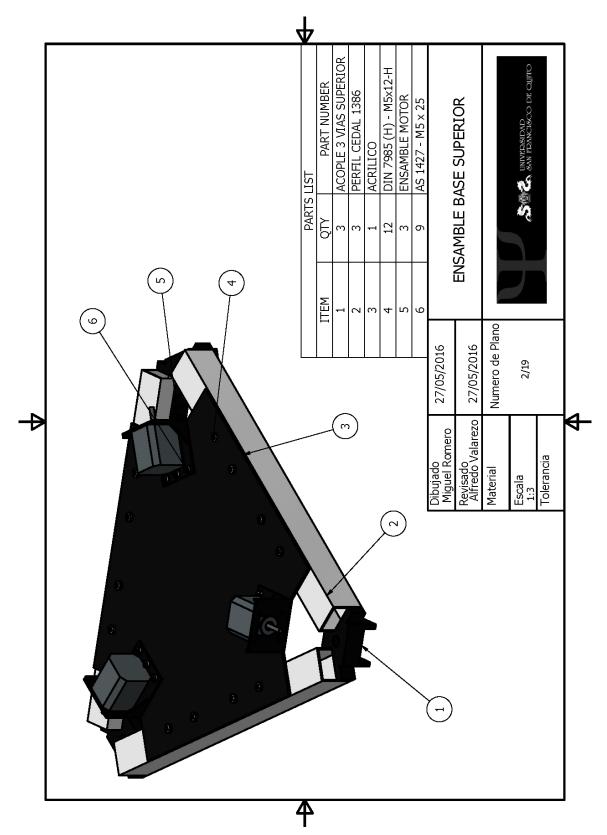
Automationtechnologiesinc.com

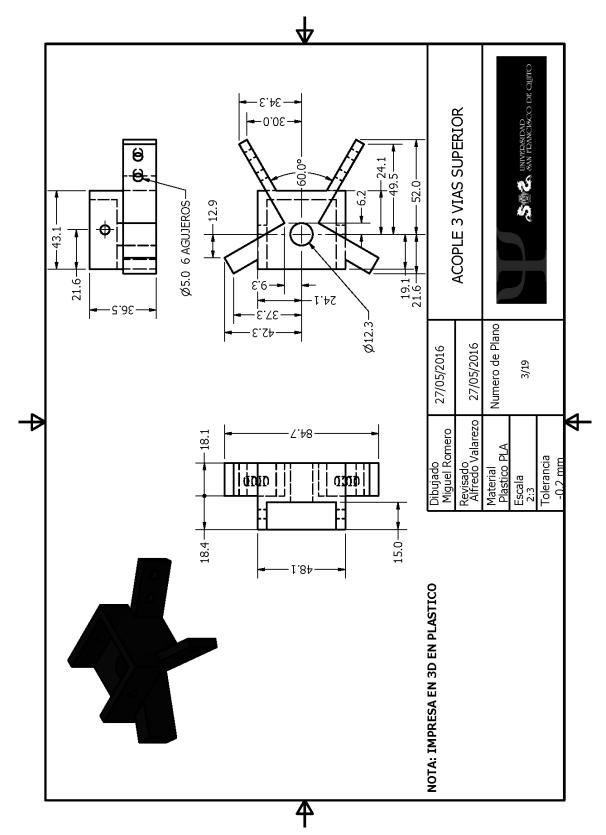
Support@automationtechnologiesinc.com

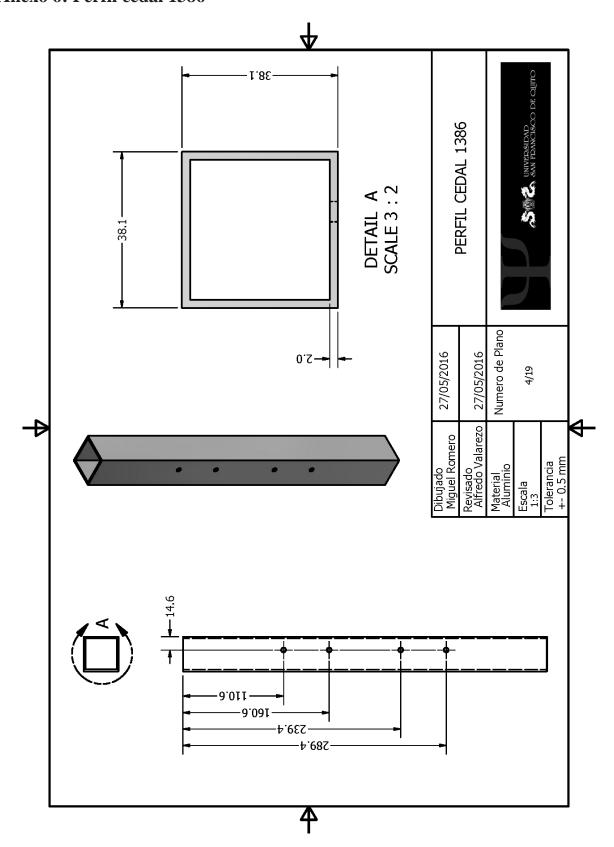
Anexos 2: Catalogo de perfilaría Cedal

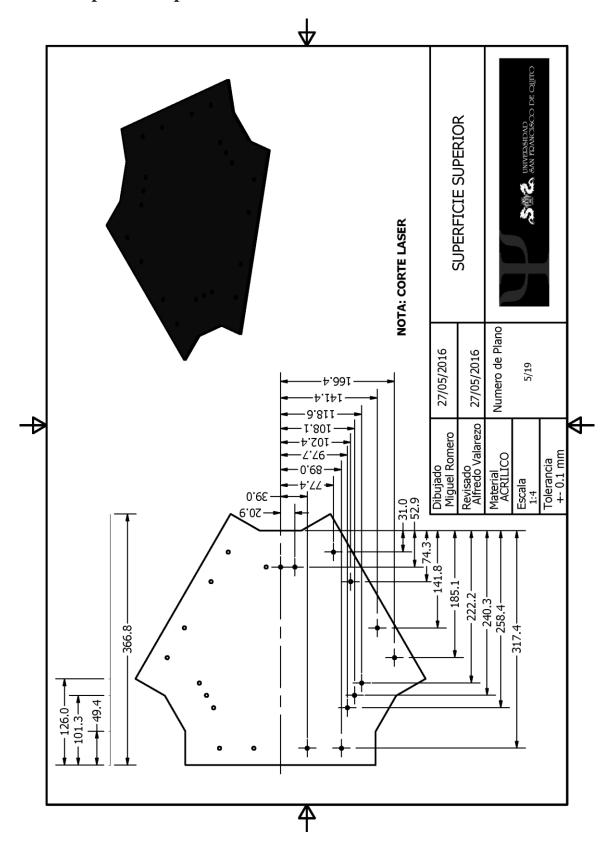

REFERENCIA	Lado B		Espesor(E)	Peso
	Milimetros	Pulgadas	mm	Kg/m
1014	44.40	1 3/4	1.90	0.875
1015	50.80	2	2.00	1.058
1017	38.10	1 1/2	2.40	0.929
**1244	22.20	7/8	1.20	0.298
*1285	25.40	1	1.60	0.488
1286	25.40	1	1.80	0.461
1373	31.73	1 1/4	1.80	0.584
1386	38.10	1 1/2	1.80	0.708
**1466	22.20	7/8	1.00	0.231
1555	16.00	5/8	1.20	0.193
1567	28.50	1 1/8	1.30	0.383
1583	38.10	1 1/2	1.20	0.480
1714	25.40	1	1.30	0.340
1848	50.80	2	3.18	1.642
1852	50.80	2	1.40	0.750
1854	31.75	1 1/4	1.10	0.366
*1855	25.40	1	1.30	0.412
1893	76.20	3	1.80	1.451
**1900	101.60	4	6.35	6.538
**1901	101.60	4	4.80	5.018
**1902	101.60	4	3.20	3.365
**1903	101.60	4	2.30	2.457
**1904	76.20	3	4.40	3.406
**1905	76.20	3	3.60	2.815
**1906	76.20	3	2.00	1.590
**1981	17.00	43/64	1.00	0.162
2036	25.90	1 1/64	1.10	0.290
2439	19.00	3/4	1.10	0.214
2442	38.10	1 1/2	1.46	0.580
2779	30.00	1 3/16	1.20	0.375
2836	38.00	1 1/2	1.05	0.420
2856	19.00	3/4	1.00	0.195
2863	38.10	1 1/2	1.10	0.441
2968	44.40	1 3/4	1.20	0.562
3073	63.50	2 1/2	2.50	1.653
3273	44.50	1 3/4	3.00	1.349
3275	25.40	1	3.00	0.728
3343	50.80	2	1.20	0.645
3345	25.40	1	1.00	0.265

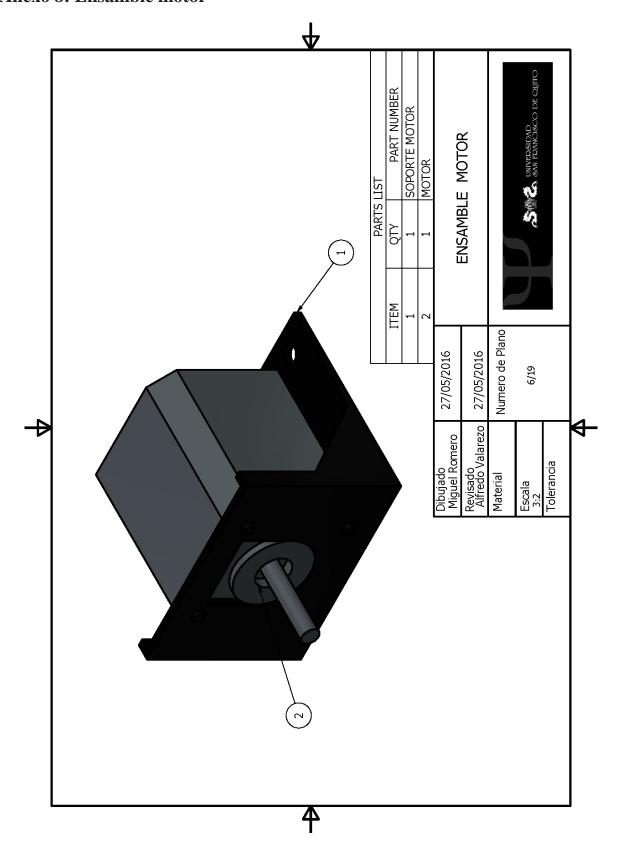
^{*}Con Tornillero

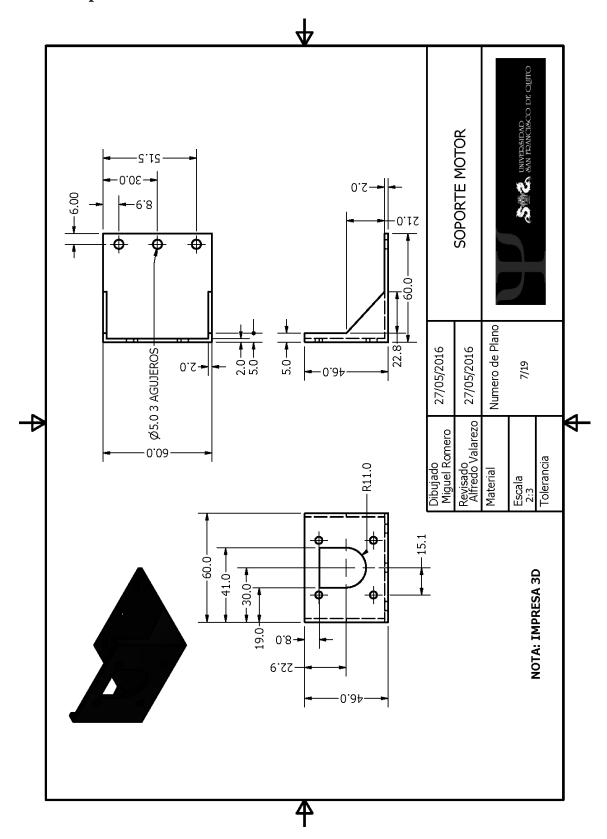

^{**}Con Aristas Redondas

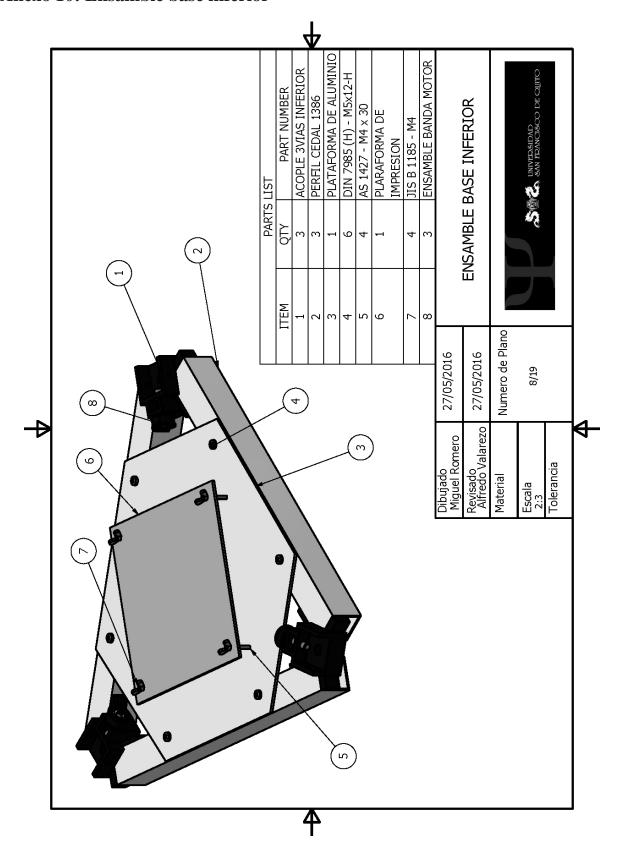

Anexo 3: Ensamble impresora delta 3D

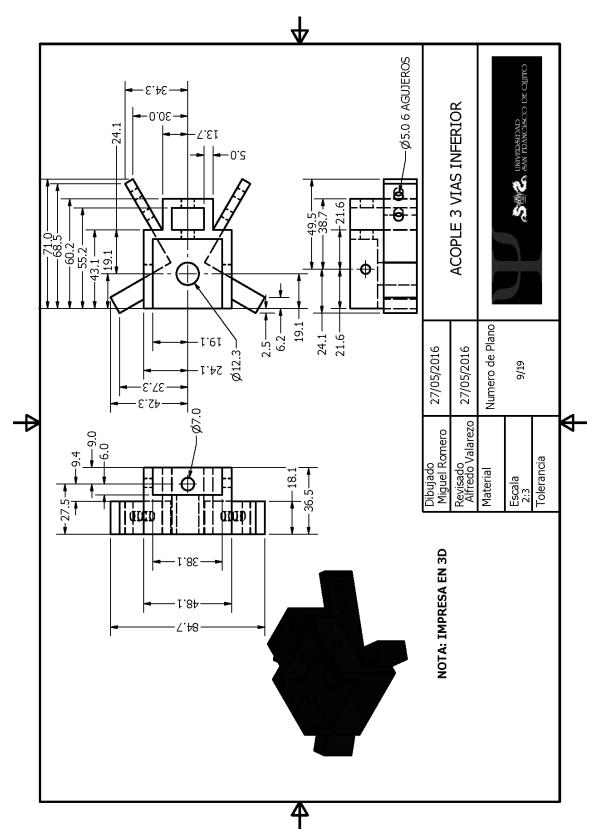

Anexo 4: Ensamble base superior

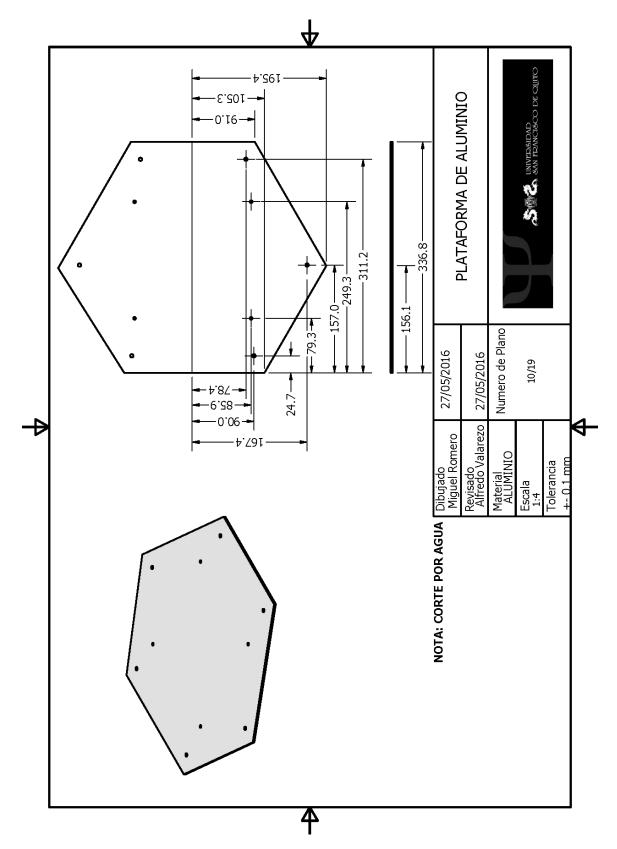

Anexo 5: Acople 3 vías superior

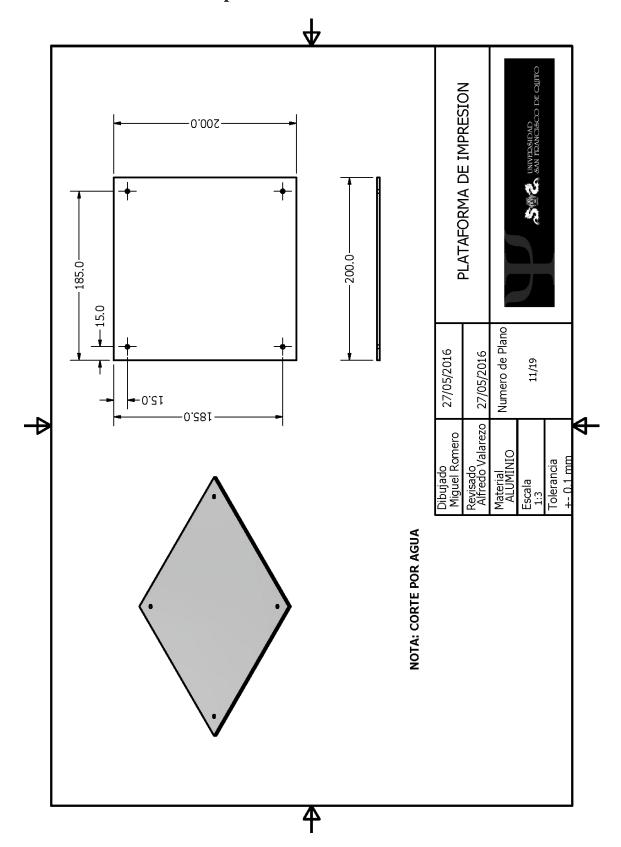

Anexo 6: Perfil cedal 1386

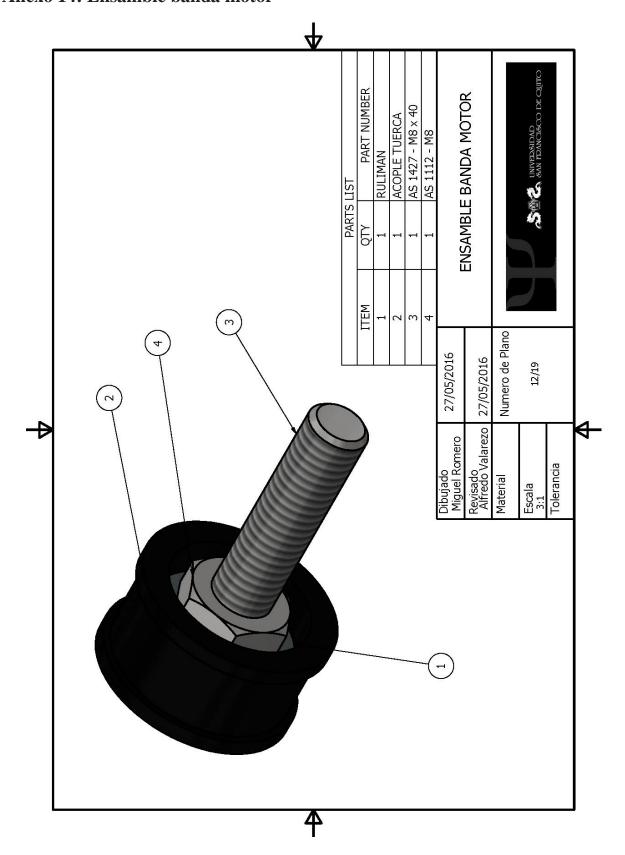

Anexo 7: Superficie superior

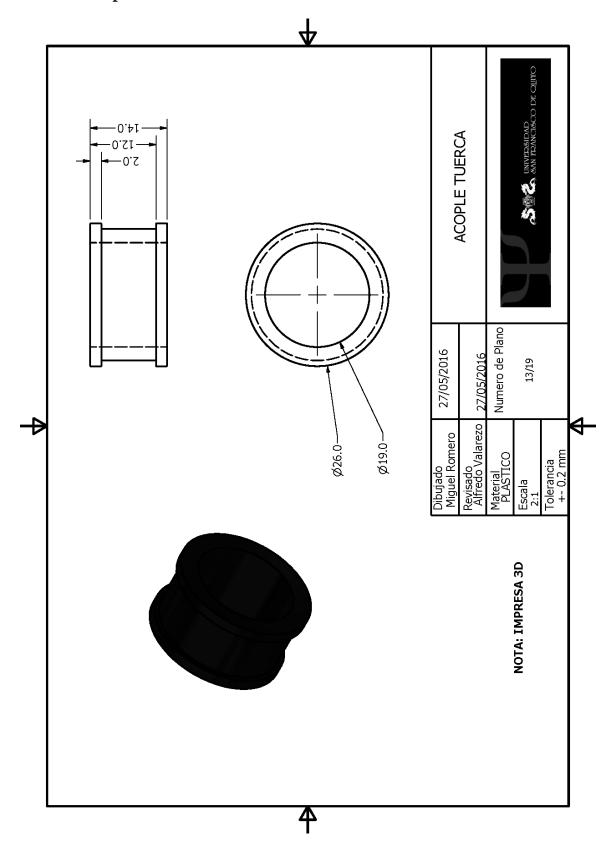

Anexo 8: Ensamble motor

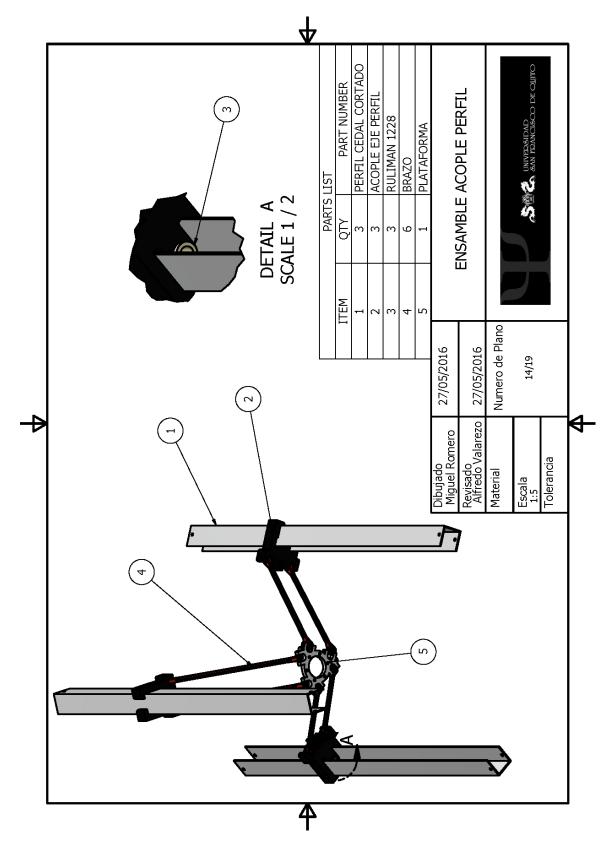

Anexo 9: Soporte motor

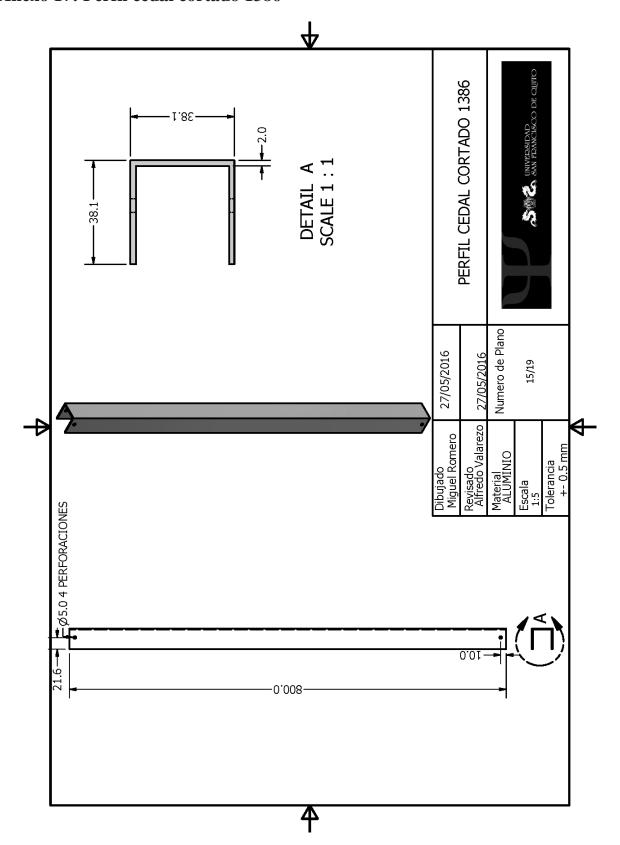

Anexo 10: Ensamble base inferior

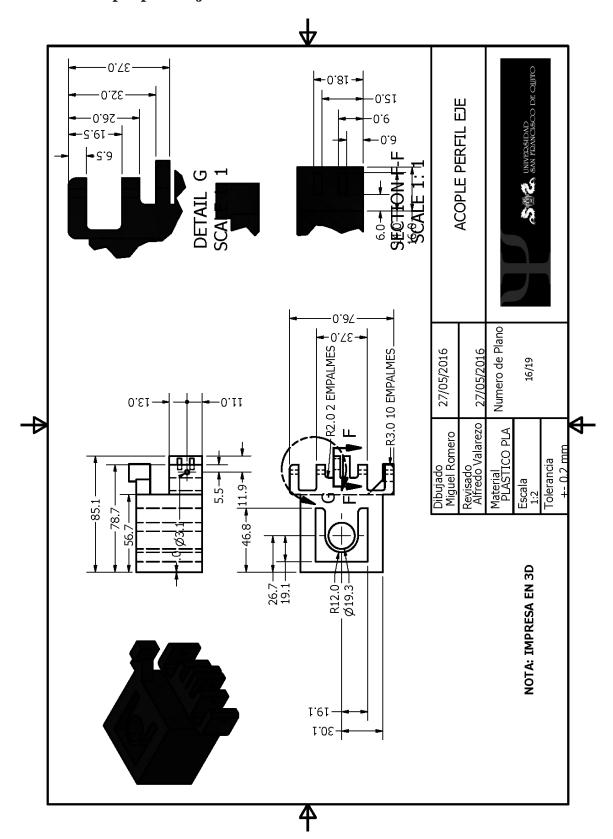

Anexo 11: Acople 3 vías inferior

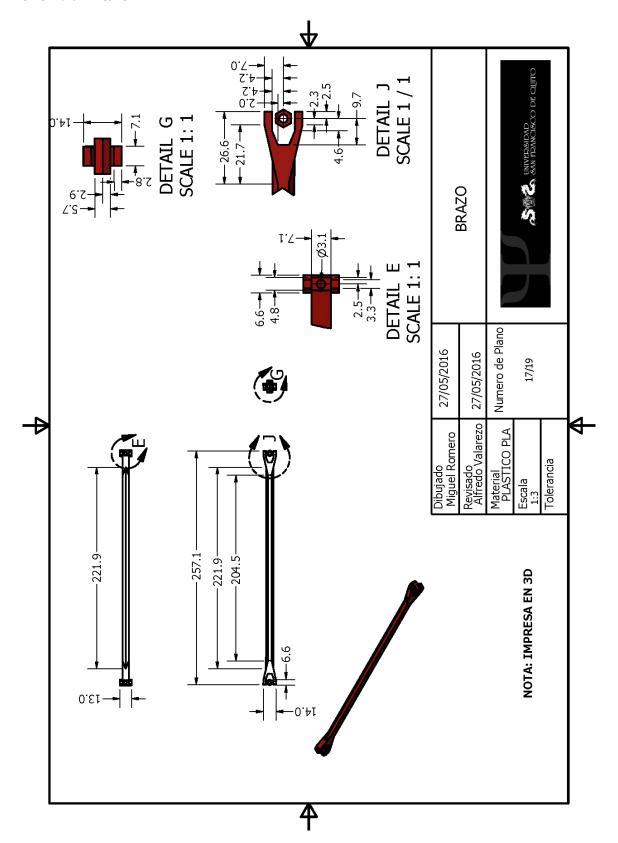

Anexo 12: Plataforma de aluminio

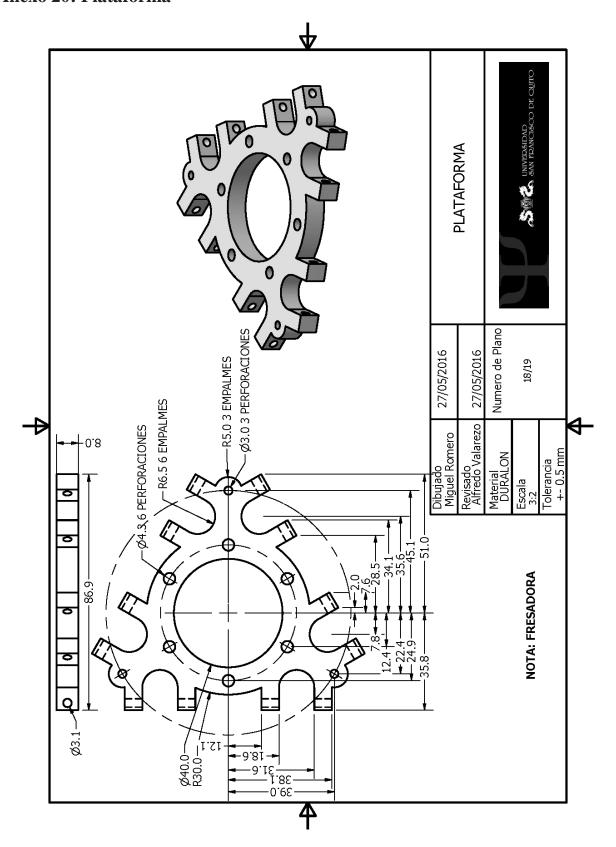

Anexo 13: Plataforma de impresora

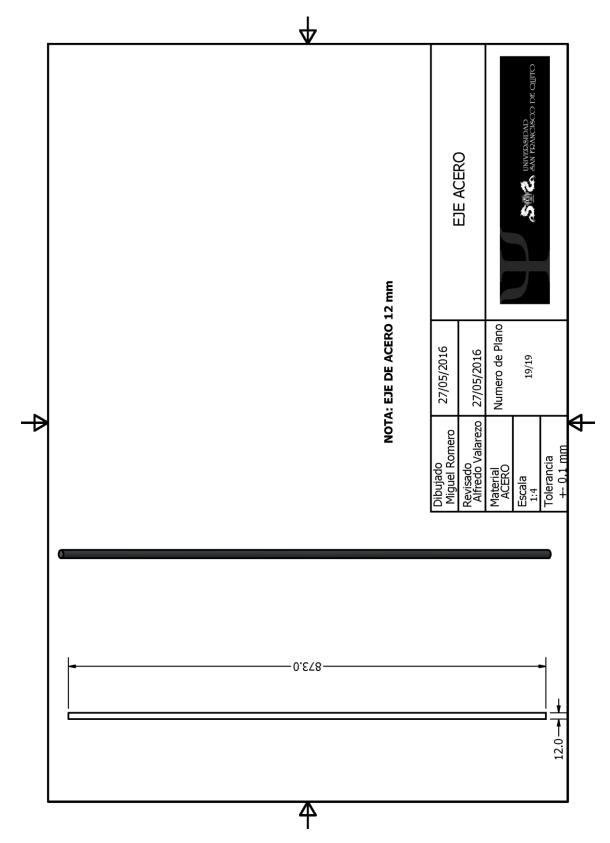

Anexo 14: Ensamble banda motor


Anexo 15: Acople tuerca


Anexo 16: Ensamble acople perfil


Anexo 17: Perfil cedal cortado 1386


Anexo 18: Acople perfil eje


Anexo 19: Brazo

Anexo 20: Plataforma

Anexo 21: Eje acero

