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RESUMEN 

Examinamos la validez del primer teorema de Hohemberg-Kohn, es decir, la relación uno a 
uno entre un potencial externo y la densidad de una partícula, cuando esta es aplicada a 
subespacios finitos y considerar la estabilidad de estos subespacios con respecto a 
potenciales externas.  Esto se realiza mediante el análisis de la descripción de DFT de 
algunos átomos simples (ejemplo, H, He, Li y Be) provistos por la solución de la ecuación de 
Kohn-Sham en un conjunto finito de bases de Gausian. Se muestra que, en el subespacio 
finito generado a partir del conjunto de bases finitas, es posible construir potenciales 
externos que difieren de una a otra por más de una constante, pero que se asocian con la 
misma densidad de una partícula. Llevamos a cabo la construcción específica de estos 
potenciales para los átomos anteriores usando funciones de onda resultantes a partir de la 
aplicación del funcional B3LYP. Comentamos el hecho de que estos potenciales de 
inestabilidad parecen ser prominentes solo en la región exterior del átomo donde la 
densidad tiende a cero. También se discute las implicaciones que los potenciales de 
inestabilidad tienen una relación con el formalismo y las ecuaciones de Kohn-Sham.  
 
Palabras clave: primer teorema HK, conjunto de bases finitas, subespacios, espacio de 
Hilbert. 
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ABSTRACT 

We examine the validity of the first Hohenberg-Kohn theorem, namely, the one-to-one 
relationship between an external potential and the 1-particle density, when it is applied to 
finite subspaces and consider the stability of these subspaces with respect to external 
potentials. This is done by analyzing the DFT description of some simple atoms (eg, H, He, Li, 
and Be) provided by the solution of the Kohn-Sham equation in a finite Gaussian basis set. 
We show that in the finite subspace generated from the finite basis set, it is possible to 
construct external potentials that differ from one another by more than a constant, but 
which associate with the same 1-particle density. We carry out the specific construction of 
these potentials for the above atoms using the wave functions resulting from the 
application of the B3LYP functional. We comment on the fact that these instability 
potentials seem to be prominent only in the outer region of the atom where the density 
tends to zero. We also discuss the implications that the instability potentials have in 
relation to the Kohn-Sham formalism and equations. 
 
Key words: first HK theorem, finite basis set, subspaces, Hilbert space. 
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Abstract
We examine the validity of the first Hohenberg-Kohn theorem, namely, the one-to-one relation-

ship between an external potential and the 1-particle density, when it is applied to finite

subspaces and consider the stability of these subspaces with respect to external potentials. This is

done by analysing the DFT description of some simple atoms (eg, H, He, Li, and Be) provided by

the solution of the Kohn-Sham equation in a finite Gaussian basis set. We show that in the finite

subspace generated from the finite basis set, it is possible to construct external potentials that dif-

fer from one another by more than a constant but which associate with the same 1-particle

density. We carry out the specific construction of these potentials for the above atoms using the

wave functions resulting from the application of the B3LYP functional. We comment on the fact

that these instability potentials seem to be prominent only in the outer region of the atom where

the density tends to zero. We also discuss the implications that the instability potentials have in

relation to the Kohn-Sham formalism and equations.

K E YWORD S

first HK theorem, finite basis set, subspaces, Hilbert space

1 | INTRODUCTION

Although methods based on density functional theory (DFT),[1–28] are among those most employed for electronic structure calculations of both crys-

talline and molecular systems,[29–31] DFT in itself cannot be considered to have reached yet a stage of full elaboration.[15,17,19,32,33] The reason for

such statement is that there are still foundational questions not fully clarified at the level of the Hohenberg-Kohn, HK, theorems.[34]

One of these questions has to do with the conditions that must be fulfilled in order to extend the range of validity of the first HK theorem to

finite subspaces. It must be mentioned that the latter is not to be considered merely an academic question since the validity of the first HK theorem

in finite subspaces is of paramount importance in two particular aspects related to the development and practical application of DFT: (1) it has to be

acknowledged, on the one hand, that most DFT approaches (eg, electronic structure calculations) are usually performed in a subspace of the Hilbert

space that emerges because the Kohn-Sham N-particle wave function is constructed from Kohn-Sham orbitals, which in turn, are expanded in terms

of a finite basis set of well-defined single-particle functions; and, on the other hand, (2) the fulfillment of the first HK theorem is a fundamental

requirement for the formulation of the second HK theorem, which states that the exact ground-state energy of an N-Fermion system can be com-

puted by minimizing a universal energy functional solely expressed in terms of 1-electron density, an idea that allows the design and implementation

of computational algorithms.

When extending the HK first theorem to finite subspaces, particular attention must be paid to the stability conditions that the subspace must

satisfy in order to guarantee the fulfillment of this theorem. Some of these restrictions have been given by Epstein et al.,[35] Katriel et al.,[36] Harri-

man,[37] and more recently by Pino et al.[38,39] According to Pino et al., one way to satisfy these conditions in a finite subspace is to have DV, defined

as Ĥv02Ĥv � V02V, equal to a constant. However, it must be considered that there may be instability potentials (ie, DV 6¼ constant) that violate the

subspace stability conditions, meaning that in a finite subspace, one can have external potentials V0 and V that differ from each other by more than

a constant and which still lead to the same 1-particle density.[39] Let us mention that the same non-uniqueness problem emerges when the

exchange correlation potential is obtained from the 2-matrix by an inverse method.[40–44]
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In the present work, we obtain KS solutions for the simple atoms H, He, Li, and Be by employing the B3LYP functional. The results are then

used to generate a subspace of Hilbert space where we construct instability external potentials, that is, potentials that differ from the ordinary Cou-

lomb external potential by more than a constant and which yield, nevertheless, the same ground-state 1-particle density. It must be mentioned that

the present represents the first report on the subject that makes use of the DFT description of multielectronic atoms.

The structure of the paper is as follows: In Section 2, we briefly discuss extensions of the first HK theorem to finite subspaces and explicitly

describe the procedure to generate instability potentials. In Section 3, we apply this procedure to each one of the atoms considered in this work

and present numerical results. In Section 4 we consider the implications of instability potentials on the Kohn-Sham theory. In particular we discuss

how these potentials affect the Kohn-Sham equations. Finally, in Section 5, we provide some final remarks and conclusions.

2 | CONSTRUCTION OF POTENTIALS ASSOCIATED WITH THE SAME GROUND STATE
DENSITY

For the sake of completeness, we present here some aspects of the first HK theorem already discussed in Refs. [38] and [39]. Consider a system

formed by N electrons interacting with an external potential

Vðr1 . . . rNÞ5
XN
i51

vðriÞ (1)

whose Hamiltonian is given by

Ĥv5Ĥ01V̂ (2)

and where the internal Hamiltonian Ĥ0 is:

Ĥ052
1
2

XN
i51

r2
ri
1
XN21

i51

XN
j5i11

1
j ri2rj j (3)

It is important to assume, as noted by Lieb,[45,46] that vðrÞ 2 Y, where Y is Lieb’s class, defined by Y5L3=21L1. This implies that

vðrÞ5v3=2ðrÞ1v1ðrÞ, with v3=2ðrÞ 2 L3=2 and v1ðrÞ 2 L1 (for a set of continuous functions fðrÞ; fðrÞ 2 Lm if
ð
drjfðrÞjm<1). If we can associate to

the above Hamiltonian a ground state wave functionWv
0ðr1; r2; . . . ; rNÞ, then the ground-state 1-electron density is defined as follows:

qv0ðrÞ5
ð
d3r1

ð
d3r2 . . .

ð
d3rNjWv

0ðr1; r2; . . . ; rN j2
XN
i51

dðri2rÞ5N
ð
dr2 . . .

ð
drNjWv

0ðr; r2; . . . ; rNj2 (4)

and, in that case, the first HK theorem states that there exists a one-to-one correspondence between the external potential vðriÞ and the exact

ground-state density qv0ðrÞ. In 1983, Lieb[46] pointed out that the original proof of this theorem, carried out by reductio ad absurdum, had some inher-

ent difficulties, which implied that a revision of the first HK theorem’s proof was required in order to circumvent them. In this vein, an alternative

proof was presented by Pino et al.[38] for the case of infinite spaces which was then extended to the case of finite subspaces. In the following, some

of the basic aspects of this extension are described:

Consider the external potentials vðrÞ 2 Y and v0ðrÞ 2 Y which define through Equation 2 the Hamiltonians Ĥv and Ĥv0 , respectively. Let F � LN

be a finite subspace of the Hilbert space LN of the antisymmetric, square-integrable N-electron wave functions, defined by:

F5fWv
I ðxÞjI50; . . . ;M;

ð
dxWv�

I ðxÞWv
J ðxÞ5dIJ;

X
I50

jWv
I ðxÞj2>0; x 2 RNg (5)

where Wv
I ðxÞ � Wv

I ðr1; r2; . . . ; rNÞ. The dimension of F isM11, and the orthogonal projector in F is defined as:

P̂F5
XM
I50

jWv
I ðxÞ><Wv

I ðxÞj (6)

Let Ev0ðMÞ � . . . � EvMðMÞ be the ordered non-zero eigenvalues of P̂FĤvP̂F . Then, the instability potential theorem of Refs. [38] and [39] states

that there exists and external potential v0ðrÞ 2 Y such that P̂FĤvP̂F and P̂FĤv0P̂F have the same ground state for DV5V02V 6¼ constant, or in view

of Equation 1, Dv5v02v 6¼ constant.

In the subspace F, the functions fWv
I gMi50 diagonalize the matrix HvðMÞ, formed by the elements Hv

ij
ðMÞ5 <Wv

i jĤv jWv
j >. In other words, these

elements satisfy:
Hv

IJðMÞ5EvI ðMÞdIJ (7)

Note that these conditions are satisfied by the set fWv
I gMI50 formed by the first M solutions of the Schr€odinger equation in the full antisymmetric

Hilbert space. But in the present case, we assume that the set fWv
I gMI50 is formed by the N-particle wave functions that diagonalize the Hamiltonian

Ĥv over the subspace F.
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Consider now the Hamiltonian matrix Hv0ðMÞ, associated with the projected Hamiltonian P̂FĤv0P̂F . The matrix elements for the first row (and

column) are:

Hv0
0IðMÞ5<Wv

0jĤv0jWv
I > (8)

Since the Hamiltonian operators are related through the expression:

Ĥ
v0
5Ĥ

v
1DV (9)

we have

Hv0
0IðMÞ5<Wv

0jĤv jWv
I >1<Wv

0jDVjWv
I >

5Ev0ðMÞd0I1
ð
d3rDvðrÞq0IðrÞ

(10)

where

q0IðrÞ5
ð
d3r2 . . .

ð
d3rNW

v
0ðr; r2; . . . ; rNÞWv

I ðr; r2; . . . ; rNÞ (11)

The proof by construction of the instability theorem proceeds by taking DvðrÞ 2 Y non-constant and requiring that

ð
d3rDvðrÞq0IðrÞ50; for I50; . . . ;M (12)

where DvðrÞ is expressed by means of a linear combination of linearly independent functions fhjðrÞgM11
j50 as:

DvðrÞ5
XM11

j50

cjhjðrÞ5cM11

XM11

j50

ajhjðrÞ (13)

where aj5cj=cM11. Setting the arbitrary coefficient cM1151 we can rewrite Equation 12 as:

XM
j50

ajAj;I52AM11;I; for I50; . . . ;M (14)

where

Aj;I5

ð
d3rhjðrÞq0IðrÞ (15)

AM11;I5

ð
d3rhM11ðrÞq0IðrÞ (16)

As Equation 14 defines a set of M11 linear equations with M11 unknowns, this problem can be readily solved by algebraic methods and, as a

result, the instability potential can be constructed. In fact, taking into account that the expansion functions fhjðrÞgM11
j50 can be chosen at will, this

procedure leads to an infinite number of such potentials. This point is illustrated below.

3 | NUMERICAL RESULTS AND DISCUSSION

3.1 | Generation of the subspace F

Although for the present application one may resort to the KS solutions obtained at any level of DFT, namely, from a variety of approximated func-

tionals and finite basis sets, the B3LYP functional as implemented in the G09 suite of programs[47] was employed in this study. Moreover, for the

purpose of avoiding the complexity that would arise from the use of Gaussian functions of higher angular momentum, all occupied and virtual KS

orbitals of H, He, Li, and Be are represented as a linear combination of m Gaussian s-type atomic functions.

uiðrÞ5
Xm
j51

Cijgjsðaj; rÞ (17)

where gjsðaj; rÞ is given by:

gjsðaj; rÞ5 2aj

p

� �3
4

e2ajr2 (18)

As mentioned above, a set of 4 un-contracted primitive s-type Gaussian functions (m54), referred to as BS-4G, was adopted to expand the KS

atomic orbitals of H, He, Li, and Be. It is important to point out that the use of such a small basis set has the only purpose of proving the concept,
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and the generality of the results would not be affected by employing more complex basis sets. In order to explore the validity of the latter state-

ment, larger basis sets were tested for the simple hydrogen atom. The results obtained by employing an un-contracted Pople’s 6-311G basis set

(m55) as well as a basis set containing 8 un-contracted Gaussian s-type atomic functions (m58) are reported as Supporting Information (Figure S1

and Table S1). The values of the exponents ai that minimize the total electronic energy computed with BS-4G were determined for each atom by

means of the Levenberg-Marquardt algorithm implemented in a computational script designed to use directly G09 results. In Table 1, we present

the values of the Gaussian parameters ai and the expansion coefficients Cij used in the present work for the H, He, Li, and Be atoms.

For hydrogen ð2SÞ, the set fuiðrÞg where i51; . . . ;4 of Kohn-Sham orbitals already defines the basis Uv
IðiÞ with I50; . . . ;M (M53) of the sub-

space F (we emphasize in this notation the dependence on the external potential v).

For helium ð1SÞ, there are 2 types of antisymmetrized 2-particle functions (ie, S50) that can be constructed from the set of fuiðrÞgmi51:

Uv
IðiiÞðr1;r1; r2;r2Þ5uiðr1Þuiðr2Þ

1ffiffiffi
2

p ðaðr1Þbðr2Þ2bðr1Þaðr2ÞÞ (19)

Uv
IðijÞðr1;r1; r2;r2Þ5 1ffiffiffi

2
p ðuiðr1Þujðr2Þ1ujðr1Þuiðr2ÞÞ

1ffiffiffi
2

p ðaðr1Þbðr2Þ2bðr1Þaðr2ÞÞ (20)

where Uv
Ið11Þ � Uv

0 is an approximation to the ground state wave function given in terms of a single determinant, corresponding to the configuration

1s2. The index I(ij) spans the M11 values from 0 toM. In this case, since i; j51; . . . ;4, with i � j it follows that M59.

For the lithium atom ð2SÞ, all the antisymmetrized wave functions formed from the orbital set fuiðrÞgmi51 are Slater determinants given by:

Uv
IðijkÞðr1;r1; r2;r2; r3;r3Þ5 1ffiffiffi

6
p det

uisðr1Þaðr1Þ ujsðr1Þbðr1Þ uksðr1Þaðr1Þ
uisðr2Þaðr2Þ ujsðr2Þbðr2Þ uksðr2Þaðr2Þ
uisðr3Þaðr3Þ ujsðr3Þbðr3Þ uksðr3Þaðr3Þ

��������

��������
(21)

with IðijkÞ50; . . . ;M, where Uv
0 � UIð112Þ. The set of Slater determinants fUv

IðijkÞg for IðijkÞ50; . . . ;M which forms the basis of the subspace are gen-

erated by spanning over the values of i; j; k51; . . . ;m subject to the conditions i � j � k and i 6¼ k. In the present case for m54 we have M515.

Similarly, for beryllium ð1SÞ we have the set of 4-particle single Slater determinants fUv
IðijklÞg where IðijklÞ50; . . . ;M and where Uv

0 � Uv
Ið1122Þ are

generated by spanning over the values i; j; k; l51; . . . ;m subject to the conditions i � j � k � l where additionally i 6¼ k and j 6¼ l. For this 4-particle

case, for m54 we have M518.

The sets fUv
I gMI50 for H, He, Li, and Be atoms are used to construct the functions fWv

I gMI50 such that the latter diagonalize the Hamiltonian

matrix. As the functions Wv
I are given as linear combinations of the functions Uv

I ,

TABLE 1 Gaussian parameters ai and normalized orbital expansion coefficients for H, He, Li, and Be atoms for m5 4

Atoms ai u1s u2s u3s u4s

18.73113696 0.08560301 0.14791224 0.09124998 8.08351627

H 2.825394365 0.15269228 0.04786874 22.29987410 21.59092901

0.64012169 0.18289640 0.67440467 0.76417228 0.27810617

0.16127776 0.11909453 20.23256445 20.10294077 20.03345203

38.42227406 0.17785145 20.12032745 20.15310403 13.38945322

He 5.78228472 0.63845458 20.34487284 22.83278342 22.05169707

0.37192174 0.50321006 21.26681636 0.89222947 0.21394200

0.25646476 20.16125861 1.05912669 20.54975310 20.12895706

36.83371926 0.73196072 20.15696290 20.66898376 13.07768411

Li 5.45155505 1.02886516 20.23393123 22.87219243 22.40905944

0.95761562 0.45945036 20.17176437 0.78017009 0.23437529

0.06589269 0.00275014 0.097160667 20.02219952 20.00507206

71.87209770 1.07508452 20.19879652 0.99890851 21.51453295

Be 10.62472215 1.73530485 20.37403801 4.57846347 23.79846965

1.67683654 0.71275977 20.21637575 21.12303668 0.31675528

0.10203848 0.00099978 0.02863460 0.028634602 20.0059781
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Wv
I ðr1;r1; . . . ; rN;rNÞ5

XM
J50

BI;JU
v
J ðr1;r1; . . . ; rN;rNÞ (22)

the variational coefficients of these expansions are determined by diagonalizing the Hamiltonian matrix HvðUÞ whose elements are

Hv
IJðUÞ5<UIjĤv jUv

J>. Clearly since HvðUÞ is Hermitian it can be diagonalized by means of a unitary transformation

HvðMÞ5B HvðUÞB21 (23)

where B is a unitary matrix satisfying B B2151 and HvðMÞ is the matrix defined by Equation 7.

3.2 | Calculation of instability potentials

Two elements are necessary for the construction of instability potentials. One is the set of transition densities q0IðrÞ (see Equation 11) and the other

is the selection of some expansion set fhjðrÞgM11
j50 . For the present examples, the expansion functions are defined by hjðrÞ5e2kr rj. Furthermore,

bearing in mind Equation 22 the elements of the transition matrix are:

q0IðrÞ5
XM
J50

XM
K50

B0JBIKSJKðrÞ (24)

where

SJKðrÞ5
ð
dr

ð
dr2d3r2 . . .

ð
drNd3rN

3Uv
J ðr; r; r2;r2 . . . ; rN; rNÞ

3Uv
Kðr; r; r2;r2; . . . ; rN; rNÞ

(25)

For the case of the lithium atom, for example, where J � JðijkÞ and K � KðpqrÞ label the corresponding Slater determinants given by Equation

21, we have the following explicit form of these matrix elements:

SJKðrÞ51
3
½uisðrÞupsðrÞdjpdkr2uisðrÞursðrÞdjqdkp

1ujsðrÞuqsðrÞdipdkr2ujsðrÞuqsðrÞdirdkp
1uksðrÞursðrÞdipdjq2uksðrÞupsðrÞdirdjp�

(26)

A similar expression may be readily derived also for the case of the beryllium atom, where J � JðijklÞ and K � KðpqrtÞ label the corresponding

Slater determinants.

In Figures 1–4 we present plots for the instability potentials for the H, He, Li, and Be atoms, respectively. These potentials are calculated from

Equations 14–16 for different choices of the parameter k. For completeness, the external potentials v52Z=r and the 1-particle density for each

one of the atoms considered here are also included.

4 | IMPLICATIONS FOR THE KOHN-SHAM EQUATIONS

Since in the present calculation of instability potentials, the 1-electron density is obtained by integration over N21 coordinates of the square of

the wave function, at first sight this procedure seems to be quite different from the familiar Kohn-Sham, KS, one where the density is computed as

the sum of the squares of the occupied Kohn-Sham orbitals f/v
i ðrÞgNi51 corresponding to an external potential vðrÞ, namely,

FIGURE 1 Instability potentials DvðrÞ2 Z
r (see Equation 13) for H with k51:5 (blue) and k52:0 (orange). The ground state density q0 (green)

and the radial density 4pr2q0 (red) are also presented. For comparison, we also plot the Coulomb external potential vðrÞ52 1
r (purple)
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qv0ðrÞ5
XN
i51

j/v
i ðrÞj2 (27)

In order to establish the connection between the construction of instability potentials and the Kohn-Sham procedure, let us consider the KS

ground state wave function given by the single Slater determinant:

Uv;KS
0 ðr1; � � � ; rNÞ5 detffiffiffiffiffi

N!
p f/v

i ðr1Þ; � � � ;/v
i ðrNÞg (28)

Consider the orthogonal projector P̂F of Equation 6 defined in terms of the finite set of N-particle functions fWv
i gMi50 and assume that Wv

0

� Uv;KS
0 and all remaining functions Wv

i ; i51; � � � ;M are orthogonal to Wv
0 and, in addition, diagonalize the matrix HvðMÞ whose elements are

Hv
ijðMÞ5<Wv

i jĤv jWv
j >, where Ĥv is the N-particle Hamiltonian of Equation 2. Following the same recipe as in Section 2 we can construct, in the

present case, instability potentials that satisfy Equation 12 and which, in particular, comply with the condition:

ð
d3rDvðrÞq00ðrÞ �

ð
d3rDvðrÞqv0ðrÞ50 (29)

Let us now show how this result has bearing on KS procedure. Consider the KS Hamiltonian

Ĥ
KS

v 5T̂1Vs (30)

where T̂5
PN

i51 t̂ðriÞ with t̂ðriÞ52ð1=2Þr2
ri
and Vs5V1VCoul1VKS

xc 5
XN

i51
vsðriÞ. If V5

XN

i51
vðriÞ is the external potential then the KS Hamiltonian

for an external potential V0 may be written as:

Ĥ
KS
v0 5T̂1V0

s5Ĥ
KS
v 1DV (31)

where DV5V02V5
XN

i51
DvðrÞ with DvðrÞ5v0ðrÞ2vðrÞ. These KS Hamiltonians satisfy the Schr€odinger equations

Ĥ
KS

v Uv;KS
0 5Ev0U

v;KS
0 (32)

Ĥ
KS
v0 U

v0;KS
0 5Ev00 U

v0;KS
0 (33)

In view of the fact that the KS Hamiltonian is the sum of 1-particle operators and that the KS wave function is a single Slater determinant,

Equation 32 is equivalent to the system of KS single particle equations ĥ
KS

v ðrÞ/v
i ðrÞ5evi /

v
i ðrÞ where ĥ

KS

v ðrÞ5t̂ðrÞ1vsðrÞ. Note that Ev05
XN

i51
evi .

Let us consider

FIGURE 2 Instability potentials DvðrÞ2 Z
r (see Equation 13) for He with k53:0 (blue) and k53:5 (orange). The ground state density q0 (green)

and the radial density 4pr2q0 (red) are also presented. For comparison, we also plot the Coulomb external potential vðrÞ52 2
r (purple)

FIGURE 3 Instability potentials DvðrÞ2 Z
r (see Equation 13) for Li with k55:0 (blue) and k55:5 (orange). The ground state density q0 (green)

and the radial density 4pr2q0 (red) are also presented. For comparison, we also plot the Coulomb external potential vðrÞ52 3
r (purple)
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<Uv;KS
0 jĤKS

v0 jUv;KS
0 >5<Uv;KS

0 jĤKS

v jUv;KS
0 >

1<Uv;KS
0 jDVjUv;KS

0 >
(34)

Bearing in mind Equation 29 we have:

<Uv;KS
0 jDVjUv;KS

0 >5

ð
d3rDvðrÞqv0ðrÞ50 (35)

Thus, we obtain from Equation 34

<Uv;KS
0 jĤKS

v0 jUv;KS
0 >5Ev0 (36)

Similarly, we have:

<Uv0;KS
0 jĤKS

v jUv0;KS
0 >5Ev00 (37)

We use these results to show by reductio ad absurdum that for a DvðrÞ obtained by the procedure indicated in this section and satisfying

Equation 29, necessarily the wavefunctions corresponding to different potentials must be equal, namely, Uv;KS
0 5Uv0;KS

0 .

Let us assume that Uv;KS
0 6¼ Uv0;KS

0 . By the variational principle we have the strict inequalities

<Uv0;KS
0 jĤKS

v jUv0;KS
0 � Ev00 (38)

<Uv;KS
0 jĤKS

v0 jUv;KS
0 � Ev0 (39)

Making use of Equations 36 and 37 and adding Equations 38 and 39 we are led to the contradiction

Ev00 1Ev0>Ev00 1Ev0 (40)

Hence, we conclude that Uv;KS
0 5Uv0;KS

0 . In view of these results, Equation 33 becomes:

Ĥ
KS
v0 U

v;KS
0 5Ev0U

v;KS
0 (41)

In terms of the KS equations, these results also imply that in addition to the KS 1-particle equation ĥ
KS

v ðrÞ/v
i ðrÞ5evi /

v
i ðrÞ, the following KS

equation also holds: ĥ
KS

v0 ðrÞ/v
i ðrÞ5evi /

v
i ðrÞ, where ĥ

KS

v0 ðrÞ5ĥ
KS

v ðrÞ1DvðrÞ.

5 | FINAL REMARKS AND CONCLUSIONS

We have shown in the present work that it is possible to construct instability potentials, that is, external potentials which differ from the external

Coulomb potential vðrÞ52 Z
r by more than a constant but which nonetheless, correspond to the same ground state density. The existence of these

potentials in finite subspaces of Hilbert space does not contradict, however, the first Hohenberg-Kohn theorem as this theorem holds in an infinite

Hilbert space. But the present results are pertinent to the usual applications of the Kohn-Sham theory, where the search for optimal Kohn-Sham

orbitals is carried out in finite spaces.

Since in the proof of the instability theorem is carried out in the domain of a finite Hilbert space generated by N-particle wave functions, the

direct relationship between these potentials and the Kohn-Sham formulation of DFT, based on the concept of 1-particle density and of functionals

of the density, is not evident. For this reason we have included in Section 4 a discussion where the connection between instability potentials and

the Kohn-Sham equations is examined. As it is shown, the Kohn-Sham Hamiltonians given by Equations 30 and 31 corresponding to an external

potential v and to an instability potential v0, respectively, lead to Schr€odinger equations having the same wave functions and the same eigenvalues.

In turn, since these Schr€odinger equations for the Kohn-Sham Hamiltonians can be reduced to the 1-particle Kohn-Sham equations, it is seen that

there exist instability potentials for the Kohn-Sham equations that yield the same ground state orbitals and energies as those obtained from the

Coulomb external potentials. In consequence, one may in principle construct instability potentials that when applied to the Kohn-Sham equations

do not modify either the energy or the 1-particle density.

FIGURE 4 Instability potentials DvðrÞ2 Z
r (see Equation 13) for Be with k56:5 (blue) and k57:0 (orange). The ground state density q0 (green)

and the radial density 4pr2q0 (red) are also presented. For comparison, we also plot the Coulomb external potential vðrÞ52 4
r (purple)
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The work presented here is precisely an attempt to bridge the theoretical result concerning the existence of these instability potentials with an

endeavor to actually calculate them for some simple atomic systems. In fact, we have used solutions to the Kohn-Sham equations for the H ð2SÞ, He

ð1SÞ, Li ð2SÞ, and Be ð1SÞ atoms obtained with the application of the B3LYP functional, in order to construct instability potentials in the particular N-

particle subspaces F generated for each atom from the set BS-4G comprising 4 primitive Gaussians. The choice of this simple basis set is made for

convenience and in no way it does affect the validity of this demonstration. The reason is that in the proof of the instability potential theorem (see

Section above) no restriction is placed on M, the size of the finite subspace. However, the effect of increasing the basis set in the present proof is

reported for the simple hydrogen atom as Supporting Information (Figure S1 and Table S1) where it can be observed that the value of r for which v0

ðrÞ and the Coulomb potential become different depends on m. The values of r where v0ðrÞ21=r begin to be sizeable are r>0.35, r>0.55, and

r>0.7 for m54, m55, and m58, respectively. It is important to note that the latter behavior suggests that the larger the value of m the larger the

value of r for which the difference v0ðrÞ21=r becomes significant, which implies that, at the limit m ! 1; v0ðrÞ521=r for the whole r domain. The

latter observations are expected to hold also for He, Li, and Be.

From an examination of the instability potentials obtained with m54 (Figures 1–4), it is seen that they do not differ noticeably from the corre-

sponding Coulomb ones in the region where the atomic densities are sizeable. In fact, these potentials show strong differences from the nuclear

Coulomb ones only in the regions where the densities are strongly decaying (tending to zero). This characteristic seems to imply that these poten-

tials have a significant effect only in regions where the physics of the systems does not seem to be affected. A possible interpretation is that in finite

subspaces these instability potentials determine boundaries to a cage where the system is confined. The region where these different boundaries

arise is sufficiently far away as not to affect, apparently, the properties of the system.

The lack of a one-to-one correspondence between the density and the potentials has also been observed for the case of Kohn-Sham

exchange-correlation potentials vKSxc . In the case of finite basis sets, when these potentials are extracted from densities they show a plurality of

results. The same is true in the case of the application of density-to-potential mapping techniques when the densities are expressed in terms of

Gaussian orbitals. This situation contrasts, of course, with those in which the vKSxc potentials are obtained directly from reconstruction methods

involving wavefunction.[42–44] We would like to emphasize, however, that the possibility of generating instability potentials discussed in the present

work is of an entirely different nature. In fact, only general properties of N-particle subspaces of Hilbert space are used in the proof of the instability

potential theorem as well as in the actual construction of potentials. For this reason, the determination of instability potentials does not hinge on

characteristics of any particular basis set, or particular DFT functional; nor does it rest on particular methods to solve the inverse problem of going

from densities to potentials. It is true, however, that the particular form that the instability potential adopts depends on the type of finite subspace

chosen. But, as discussed in Section , for each subspace there is the possibility of generating an infinite number of instability potentials just by

selecting, for example, different values for the parameter k.
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