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Resumen
En este proyecto de tesis se estudiaron las pinzas ópticas en una nanoshell metálico con
moléculas incrustadas en la aproximación dipolar. En estas el fenómeno de la energı́a
transmitida entre las moléculas de ganancia y los plasmones de superficie resonantes
afecta la polarizabilidad de la partı́cula, y por ende cambian la fuerzas ópticas de atra-
pamiento. La polarizabilidad fue calculada numericamente para 6 niveles de ganancia
en el regimen quasistático (0, -0.044, -0.088, -0.132, -0.176, -0.22). La fuerzas ópticas
se calcularon en estos 6 niveles de ganancia para dos tipos arreglos: Rayos Gausianos
contrapopagantes, y un solo rayo Gaussiano. Finalmente, las fuerzas se aproximaron
como lineales alrededor de la posición de equilibrio demostrando que las efficiencia de
la trampa aumenta significativamente con el nivel de ganancia.

Key words: Pinzas ópticas, optica geométrica, aproximacion de dipolo, quasistatico,
nanoshell, resonancia plasmonica, moléculas fluorecentes, rayo Gaussiano.
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Abstract

In this thesis project OT were studied with trapped metallic nanoshells embedding gain
molecules by using the dipole approximation. Here the phenomenon of the resonant
energy transfer between gain molecules and the surface plasmon resonance affect the
particle polarizability thus changing the optical forces generated in the trap. The po-
larizability was numerically calculated for six gain levels in the steady-state regime (0,
-0.044, -0.088, -0.132, -0.176, -0.22). Optical forces were calculated for the 6 gain lev-
els in two arrangements: counter propagating Gaussian beams and a single Gaussian
beam. Finally, the forces were approximated as linear around the equilibrium position
demonstrating that the efficiency of the trap significantly increases with the gain levels.

Key words: Optical tweezers, geometrical optics, dipole approximation, steady-
state, nanoshell, plasmonic resonance, dye molecules, Gaussian beam.
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1 Introduction
Optical tweezers (OTs) are a well-known tool for manipulation of micro and nano-
particles . They were demonstrated for the first time in 1970 by Arthur Ashkin [1].
Essentially, an OT is a device that allows to capture and move objects in a wide range of
sizes, from atoms to microsized beads by using tightly focused laser beams. In these de-
vices, the trapping is produced by the transmission of momentum between the laser and
the particle [2]. OT experiments allow to measure with high precision the forces acting
on the trapped particle even is they are very small, typically of the order piconewtons.

1.1 OT in the Geometrical Optics regime
Optical tweezers (OTs) are a device that traps particles by using lasers.If the size of
the particle is much larger than the wavelength λ � a, it is possible to analyze this
phenomenons in the geometrical optics regime, that means that the laser can be con-
sidered as a ray and its interaction with matter can be reduced to the Snell’s law for
diffraction[2](See: Figure 1). The ray impinging on the particle is partially reflected
and partially transmitted: this corresponds to a change in the light momentum that due
to Newton’s action-reaction law results in a force acting on the particle (See Equation
1 where N is the number of photons, p is the momentum per photon, P is the light
power). This mechanism is known as radiation pressure an it also observed in the comet
tails where the stream of dust is caused by the sun-light pushing it away[2].

~Freflection = −2Npû = −2P

c
û (1)

Figure 1: Snell law for diffraction.In the interface the incident Ray (I) is partially re-
flected (R) and partially transmitted (T). The angle θ formed formed between I and R
is equal. The angle φ depends on the refraction indexes. If n1 > n2 then θ < φ. If
n1 < n2 then θ > φ.
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If a ray impinges a spherical particle such that the absorption losses are negligible,
then the transmitted ray will be refracted many times as shown in Figure 2.The resulting
force on the particle is the sum of the contributions generated in each of those multiple
refraction events. For comfort and convention, the net force can be separated into par-
allel and perpendicular components (to the propagation direction), each one known as
scattering and gradient force respectively (Equation 2).

~Fray = Fsctr̂‖ + Fgrdr̂⊥ (2)

Figure 2: Particle Under multiple refraction events. ri is the incident ray on the spherical
surface with normal n. rr,j is the j reflected ray. rt,j is the j transmitted ray[2].

The sign of the gradient force depends on the relation between the indexes of refrac-
tion of the particle and the surrounding medium, being negative (trapping) if the index
of refraction of the particle is larger than the one of the surrounding medium or posi-
tive in the opposite case (particle is pushed away)Figure 3.a;b. Anyway the scattering
force always pushes the particle in the parallel direction, preventing the possibility of an
effective trapping. There are two options to achieve optical trapping. The first method
consist in using two counter propagating laser beams so that the scattering forces are op-
posite and cancel each other[2]. The method still works if there is an angle between the
rays, but only if the angle is big enough otherwise the scattering force will prevail.(See
Figure 3.d;c).
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Figure 3: a) A Glass sphere (ng) immersed in water(nm) and illuminated by a single ray
is attracted toward the propagation axis by the gradient force sinceng > nm, but it is
also pushed in the propagation direction by the scattering force. b) An Air sphere (na)
immersed in water(nm) and illuminated by a ray is pushed away from the propagation
axis since na < nm. c) The addition of a second counter-propagating ray produces
an effective trapping d) Two counter-propagating rays at an angle can generate a stable
trapping (ng)[2].

There is a more popular method, commonly referred in literature as optical tweez-
ers, that allows to achieve the trapping by using a highly-focused single beam[2]. The
technique is based on the use of an objective microscope with a high numerical aper-
ture (NA) that allows to trap and image the particle at the same time. The beam can be
decomposed in a pack of parallel rays that converges to the focal point when focused
by the objective-lens. Each ray interacts with the sphere and will contribute to the net
force. If the NA is big enough the most external rays will work similarly to two counter-
propagating rays at an angle. This implies that trapping in the parallel direction depends
strongly on the NA as shown in Figure4.
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Figure 4: Optical Forces in the longitudinal (xz)and transverse plane (xy) as a function
of NA produced by a focused beam on a glass (ng) sphere immersed in water (nm). As
NA decreases, the parallel trapping is lost due to the scattering forces[?].

1.2 OT in the Dipole approximation
The geometrical optics regime is very useful to explain the working principle of optical
trapping and we introduced it for sake of clearness and completeness. However in our
project we are dealing with the trapping of nano-objects, so geometrical optics approx-
imation does not apply. When the wavelength is way bigger than the size of the particle
a � λ, the picture of the OTs is quite different and we can calculate optical forces by
using dipole approximation. Particle-light interaction can be described as an oscillating
dipole excited by an electromagnetic wave[2].

As we will see in the next sections the optical forces depends on the polarizability
of the particle α , defined in Equation 3, where p is the particule dipole momentum and
e is the external electric field.

~p = α~ε (3)

1.2.1 Calculation of the optical forces

Previously in this subsection we will calculated the force acting on a dipole in the
presence of a homogeneous time-varying electromagnetic field. We consider a dipole
with mass m and charges ±q, with positions ~r± respectively, and separated away by
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∆~r = ~r+ − ~r−. The equations of motion for these charges are governed by the Lorentz
forces and by the force arising from Coulomb interaction Uint:

m2d
2~r±
dt2

= ±[~εi(~r±, t) +
d~r±
dt
× ~Bi(~r±, t)]∓ ~∇Uint(∆~r, t) (4)

Consider now the position of the center of mass ~rd (Equation 5)

~rd =
~r+ + ~r−

2
(5)

By using the approximation |~r± − ~rd| � |~rd| it is possible to expand ~εi(~r±, t) and
~Bi(~r±, t) in Taylor series around the center of mass of the dipole:

~εi(~r±, t) = ~εi(~rd, t) + ((~r± − ~rd) · ~∇)~εi(~rd, t)
~Bi(~r±, t) = ~Bi(~rd, t) + ((~r± − ~rd) · ~∇) ~Bi(~rd, t)

(6)

Substituting these expressions and summing up the two equations in (4) we obtain:

~Fd(~rd, t) = (~pd · ~∇)~εi(~rd, t) + ~pd × (~∇× ~εi(~rd, t)) +
d

dt
(~pd × ~Bi(~rd, t)), (7)

where ~pd = q(~r+ − ~r−) is the dipole momentum. A the complete deduction of this
equation can be found in the bibliography [2].

This is a varying in time force. In order to obtains an effective force its necessary to
average 7 in a period of oscillation of the fields T = 2π

ω
. The last term vanish and give

us an equation that can be written in terms of the electric field phasor, the polarizability
and the extinction cross section (the complete deduction can be found in [2]):

~Fd =
1

4
α′~∇| ~Ei|2 +

σext
c
~Si −

1

2
σextc~∇× ~sd (8)

Equation 8 presents three terms, each one describes a different force.
The first term is known as the “gradient” force and it is extremely important since is

the one responsible for the optical trapping, it is related to the gradient of the intensity
and the real part of the polarizability (9).

~Fgradient(ρ) =
1

2

α′

cε0
~∇ρI ≈ −kρρr̂ρ (9)

It means that if a particle has a positive polarizabilty (α′) it will be always attracted
toward regions of higher intensity. A tigthly focused Gaussian beam will indeed be
able to trap this kind of particles in its beam waist, while it will push away particles
with negative polarizabilty. For this reason the gradient force is regarded as a restoring
force and a spring-like constant kρ can be defined, as soon as the particle is displaced
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of ρ from the equilibrium position in an arbitrary direction the gradient force will push
it back. The elastic constant of an optical trap is one the most important parameters
it is known as trap stiffness and it tell us if the trap will be able to overcome thermal
agitations.

In case of a Gaussian beam, like in our calculation, the value of the constant kρ in
the perpendicular direction is given by:

kρ = 2
α′

cε0

I0
ω2
0

(10)

We can notice that the constant depends on the light intensity, on the particle polar-
izability and to the size of the beam (ω0 is the beam waist), that means that the tighter
focusing corresponds to stronger traps (Figure 5).

Figure 5: In red, intensity distribution in the plane perpendicular to the propagation.
Black arrows represent the gradient forces acting on a particle with positive polarizabil-
ity in the plane perpendicular to the propagation. [2]

The second term is known as scattering force. It is parallel to the pointing vector ~S,
and can be expressed in terms of the extinction cross section, since it is originated from
the scattering and absorption of light by the particle. This is detrimental, because in
order to have a stable trapping the axial component of the gradient force must overcome
the scattering force.

~Fscattering(~r) =
nm
c
σextI(~r)r̂‖ (11)

The final term is the spin-curl force that is different from zero only when the polar-
ization of the trapping beam is not uniform. Since in our calculation we are assuming the
trapping beam has linear and uniform polarization, this term is not taken into account.
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2 Metallic nanoshell with gain
In the previous section we described how it is possible to calculate the optical forces in
a dipole approximation just by knowing the polarizability. This project is addressed to
the study of OT applied to gain-functionalized metallic nanoshells (NS). The reason for
which we have chosen metallic-nanoshell is that they support localized surface plasmon
resonance (LSP). LSPR is an excitation of the conduction electrons of metallic nanos-
tructures coupled to an electromagnetic field"[3]. It is an extremely interesting phe-
nomenon since it allows to concentrate very intense electric field at the nanoscale, for
these reason nanoshell are a promising candidate for cancer therapies based on nano-
medicine[4]. In our project we are interested in the coupling between LSPR and the
emission of an externally pumped active medium inside the nanoshell. This coupling
has been object of extensive studies in last years since it is a possible strategy for the
compensation of metallic losses, present at the resonance frequency[5, 6]. Since the
coupling is strongly affecting the nano-shell polarizability, and since the polarizability
determine the optical forces we decided to calculate the optical forces for a nanoshell
embedding dye molecules, for different levels of gain. Experimentally the gain level
can be changed by changing the laser pump power. The nanoparticles object of our
study are characterized by a dielectric core made of silica embedding dye molecules,
surrounded by a thin silver shell. In our calculation we considered nano-shell with a
overall radius of 20 nm, with different dimension of the metallic shell. It is known that
in metallic nanoshell the optical resonance is extraordinarily sensitive to the inner and
outer dimensions of the metallic shell layer[7].

2.1 Polarizability in a nanoshell
In the previous section we described how it is possible to calculate the optical forces in
a dipole approximation just by knowing the polarizability.

In the previous section approach to understand the polarizability in a NS is the more
simplistic nanoparticle. Lets consider and ideal core shell particle with internal radius
a1 and external radius a2immersed in and external field ~Ei = Eik̂ 6. Assuming that the
system reaches a quasi static equilibrium just as the previous examples it is possible to
calculate the field in each region ~E1,2,3 = −~∇Φ1,2,3 utilizing the Laplace equation.
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Figure 6: NS structure with (core’s and shell’s permittivities ε1 and ε2 respectively) is
surrounded by a medium with permittivity ε3. This system is immersed in a uniform
electric field ~E0.

∇2Φ1,2,3 = 0 (12)

Given the symmetry of the system the electric potential in spherical coordinates is

Φ1,2,3(r, θ) =
∞∑
l=0

[p̃l
1,2,3rl +

p1,2,3l

rl+1
]Pl(cosθ) (13)

Now its important to consider that the field should always be well defined, so con-
sidering the region number 1 its important to notice that the field should not diverge for
r = 0 which means that p1l = 0 for any l. Also for large distances the radiated field
fades away and the only remaining should be the external field

limr→∞Φ3(r, θ) = −Eircosθ (14)

Consequently, p̃3l = 0 for l 6= 1 and p̃31 = −Ei.
then the solutions for each region remains as follows.

Φ1(r, θ) =
∞∑
l=0

p̃l
1rlPl(cosθ) (15)

Φ2(r, θ) =
∞∑
l=0

[p̃l
2rl +

p2l
rl+1

]Pl(cosθ) (16)

Φ3(r, θ) =
∞∑
l=0

[−δl,1rEi +
p3l
rl+1

]Pl(cosθ) (17)
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Applying all border conditions the p3l and so the external field as function of the
incident field we obtain the complete deduction can be found in the literature[8].

p3l = al+2
2

(ε1 − ε2)[lε1 + (l + 1)ε2] + ρ2l+1(ε1 − ε2)[lε2 + (l + 1)ε3]

[lε1 + (l + 1)ε2][lε2 + (l + 1)ε3]− l(l + 1)ρ2l+1(ε1 − ε2)(ε3 − ε2)
Eiδl,1

(18)
considering only the dipole approximation l = 1 the formula 18 reduces giving a

similar relation that we are familiar with equation 3

p3 = a32
(ε1 − ε2)(ε1 + 2ε2) + ρ3(ε1 − ε2)(ε2 + 2ε3)

(ε1 + 2ε2)(ε2 + 2ε3)− 2ρ3(ε1 − ε2)(ε3 − ε2)
Ei (19)

where the polarizabilty is given by Equation 19 that depends purely on the dielectric
constants, the external-internal ratio ρ = a2

a1
.

α =
3V

4π

(ε1 − ε2)(ε1 + 2ε2) + ρ3(ε1 − ε2)(ε2 + 2ε3)

[1ε1 + 2ε2)(ε2 + 2ε3)− 2ρ3(ε1 − ε2)(ε3 − ε2)
(20)

2.2 Polarization of a metallic nanoshell with gain material
The calculation of the polarizability is quite different if we consider the presence of gain
molecules in the region 1 and a metallic material in the region 2 (figure 7). In order to
obtain a new formulation, we may write the field equations in terms of the displacement
field ~D = ε0 ~E + ~P

~D1 = ε0εb ~E1 + 2~Π∗ = ε0εb(−~∇Φ1) + 2(−~∇ψ1)
∗ (21)

~D2 = ε0 ~E2 + ε0χm ~P2 = ε0(−~∇Φ2) + ε0χm(−~∇ψ2) (22)

~D3 = ε0ε3 ~E3 = ε0ε3(−~∇Φ3) (23)
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Figure 7: NS with a gaining made core (region 1) and metallic shell (region 2) placed in
a solvent (region 3). This system is immersed in an homogeneous time varying electric
field ~E0(t).

where ~Π = −~∇ψ1 and ~P = −~∇ψ2. Notice that these formulas quite similar to the
previous section, except by the terms ~Πand ~P2 these are related to the polarization in
the gaining material and in the metallic shell respectively. From the fact that there is
no free charges in the three regions the divergence of the Displacement results Laplace
equations (13) for each potential. In fact Φ1,2,3 have solution as in 151617. The solutions
for the remaining potentials are:

ψ1 = q1rcosθ (24)

ψ2 = q2r +
σ

r2
cosθ (25)

In region 2 the polarizability is ~P2is related to the electric permittivity εm = 1 +χm.
Given that this is metallic medium, εm depends on the frequency of the impinging field,
and it has a contributions due to free electrons and LSP (Equations 26 and 27):

εm,free−electrons(ω) = 1−
ω2
f

ω(ω + iγf )
, (26)

εm,lsp(ω) = 1− ω2
b

ω(ω + iγb)
(27)

where ωf and γf are resonance frequency and the damping coefficient for free elec-
trons respectively. Similarly ωb and γb are the resonance and the damping coefficient
for bound electrons[2].

Considering now the boundary condition for the equations of the potentials(15,16,17,24,25),
we may obtain the 5 following equations, a complete deduction can be found in the
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literature[8]. We can numerically solve this set of equations to obtain the polarizability
of the NS.

dq1
dt

+ [i(ω − ω21) +
1

τ2
]q1 =

iNε′′h(ω21)

2τ2
[E∗i − p∗3 − (1− ρ3)p∗2] (28)

dN

dt
+
N −N0

τ1
=

1

τ1
Im{q1[Ei − p3 − (1− ρ3)p2]} (29)

dq2
dt
− iω

ω2(1− εm) + 1
q2 = − iω(1− εm)

ω2(1− εm) + 1
[Ei − p3 + ρ3p2] (30)

dσ

dt
− iω

ω2(1− εm) + 1
σ = − iω(1− εm)

ω2(1− εm) + 1
p2 (31)

p2 =
(1− ε3)(Ei − ρ3p3) + q2 − 2(q∗1 + σ)

εb + 2− ρ3(εb − 1)
(32)

p3 = (1−ε3)(εb+2)+ρ3(εb−1)(ε3+2)
(εb+2)(1+2ε3)−2ρ3(εb−1)(ε3−1)

Ei

−6ρ3q∗1+(1−ρ3)[(εb+2)q2−2ρ3(εb−1)σ]
(εb+2)(1+2ε3)−2ρ3(εb−1)(ε3−1)

(33)
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3 Results and discussion
In order to calculate the optical forces that would be generated in an optical trapping
experiment for a NS particle, the polarizability is derived from Equations 29-33 using
numerical tools. The particle considered has an external radius of 20nm and an internal
radius equal to 15.4nm. The shell is made of silver whose polarizability has been extrap-
olated from database[9], the internal core is made of silica. The particle is immersed in
ethanol. The dye molecule present in the core is Rodamine-123, whose emission peak
is around 530nm, it has to be noticed that ρ has been chosen so that the LSPR could
match the peak[10]. The polarizability has been calculated by using a total of six values
of gaining G = 0.63 × 10−2nτ2µ

2. The Top gain G = −0.22 because we can’t found
steady-state solutions for higher gaining. Results in Figures 8. Notice that the Behavior
of these curves are similar to the polarizability for metals as expected from the metallic
shell.
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Figure 8: Nanoshell polarizability real Re{α} = α′ and imaginary part Im{α} = α′ as
a function of the wavelength. Gaining G = 0
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Figure 9: Nanoshell polarizability real Re{α} = α′ and imaginary part Im{α} = α′ as
a function of the wavelength. Gaining G = −0.044
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Figure 10: Nanoshell polarizability real Re{α} = α′ and imaginary part Im{α} = α′

as a function of the wavelength. Gaining G = −0.088
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Figure 11: Nanoshell polarizability real Re{α} = α′ and imaginary part Im{α} = α′

as a function of the wavelength. Gaining G = −0.132
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Figure 12: Nanoshell polarizability real Re{α} = α′ and imaginary part Im{α} = α′

as a function of the wavelength. Gaining G = −0.176
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Figure 13: Nanoshell polarizability real Re{α} = α′ and imaginary part Im{α} = α′

as a function of the wavelength. Gaining G = −0.22

3.1 OT counterpropagating Beams
The first OT studied consists of two counter propagating Gaussian beams (c.p.) with
intensity defined by equation 34. Due to the symmetry of this system scattering forces
cancel each other everywhere. The trapping constants k has been derived from equation
9, the obtained in the propagation direction (Equation 35) and in the perpendicular plane
(Equation 36). Stiffness’s k

P
of the trapping are presented as a function of wavelength λ

in figures14

I(ρ, z) (34)

kc.p.z = 4
α′

cnm
(2− 2kmz0 + k2mz

2
0)
I0
z20

(35)

kc.p.ρ = 8
α′

cnm

I0
ω2
0

(36)
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Figure 14: Stiffness ( k
P

)of the trapping for counterpropagating gaussian beams in
nanoshell particle embedding gain (G = 0) for Parallel (in red) and perpendicular (in
blue) as a function of wavelength λ.

Figure 15: Stiffness ( k
P

)of the trapping for counterpropagating gaussian beams in
nanoshell particle embedding gain (G = −0.44) for Parallel (in red) and perpendic-
ular (in blue) as a function of wavelength λ.
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Figure 16: Stiffness ( k
P

)of the trapping for counterpropagating gaussian beams in
nanoshell particle embedding gain (G = −0.088) for Parallel (in red) and perpendicular
(in blue) as a function of wavelength λ.

Figure 17: Stiffness ( k
P

)of the trapping for counterpropagating gaussian beams in
nanoshell particle embedding gain (G = −0.132) for Parallel (in red) and perpendicular
(in blue) as a function of wavelength λ.
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Figure 18: Stiffness ( k
P

)of the trapping for counterpropagating gaussian beams in
nanoshell particle embedding gain (G = −0.176) for Parallel (in red) and perpendicular
(in blue) as a function of wavelength λ.

Figure 19: Stiffness ( k
P

)of the trapping for counterpropagating gaussian beams in
nanoshell particle embedding gain (G = −0.22) for Parallel (in red) and perpendic-
ular (in blue) as a function of wavelength λ.

These calculations show that for all gain values there is a range of wavelength in
which the trap stiffness is negative, that as expected corresponds to the same range in
which the polarizability is negative. However located on the other side of the resonance
resonance there is a range of wavelength in which the trapping is possible and it corre-
sponds to a positive polarizability. These behavior is common to all the gain levels.

Moreover, as the value of the trap stiffeness increases with gain as shown in figure
3.13, we can notice by looking at figures 14-19 that the trapping range become smaller.

The gain shows a tremendous impact on the optical trapping for c.p. beams (See
Figure 20) especially in the propagation direction.
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Figure 20: Maximum value for constant stiffness (k
max

P
) as function of the gaining G

c.p. system. In red parallel Direction, in blue perpendicular plane direction. a)Linear
scaling for b) Logaritmic scaling

It’s important to consider that the steady-state regime is valid until gaining of -0.22,
so we cannot predict the behavior of the trap overcoming this value. After this value of
gain, the system enters in the so called spaser regime, losses are completely compen-
sated and an analogous of a laser emission is expected[11]. Achieving this regime in
the experiments would bring extremely interesting and novel results. However at this
border the quasi-static approximation breaks and the polarizability cannot be described
as we did.

3.2 OT single Gaussian beam
In this section we present the calculation of optical forces for a optical trap that uses
a single Gaussian beam. In this configuration the scattering force must be taken into
account. Here we look at the sum of scattering and gradient force. To calculate constants
k we used equations 37 and 38. Like before the stiffness of the trap at the maximum
grows with gain, while the trapping region become narrower. The impact of gain on this
configuration seems to be less effective. This quantities are similar to the previous ones
in 14 so there is no further analysis involved. Perhaps there are presented the maximum
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stiffness trapping for each gain in figure 21. Its important to notice that in these cases
the trapping in the perpendicular plane is more effective that the one in the parallel
direction.

ks.g.z =
α′

cnm

I0
z20

(37)

ks.g.ρ = 2
α′

cnm

I0
ω2
0

(38)

Figure 21: Maximum value for constant stiffness (k
max

P
) as function of the gaining G

s.g. system. In red parallel Direction, in blue perpendicular plane direction. a)Linear
scaling for b) Logaritmic scaling

In order to have an OT the summation of the forces in 9 and 11 should be negative.
In figure 22 are plotted both forces as function of the wavelength, and there is also a
plotted the dependence between this force and the displacement from the equilibrium
position at a given λ = 590. We choose this wavelength because there is an optical
trapping for every gain level. As shown in the figure 22 the total force is repulsive
for most of the spectrum, except after a given wavelength. The main reason is that
the scattering force (dependent on α′′) decreases fast away from the resonance, but the
gradient force (dependent on α′) decreases slower. Moreover, in the right picture the
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total force is plotted as function of the displacement from the equilibrium position z0 at
λ = 590.4. We choose this wavelength because there is optical trapping for all gaining
levels. Also notice the strength of the trap in the parallel direction decrease with the
gain, this is because near the resonance the complex polarizability increases faster than
the real part with the level gaining.

Figure 22: On the left Scattering force (dotted line), Gradient force (dashed line), and
Total force (solid line) as a function of the wavelength. On the right Scattering force
(dotted line), Gradient force (dashed line), and Total force (solid line) as a function of
the wavelength as a function of the displacement (G = 0).

Figure 23: On the left Scattering force (dotted line), Gradient force (dashed line), and
Total force (solid line) as a function of the wavelength. On the right Scattering force
(dotted line), Gradient force (dashed line), and Total force (solid line) as a function of
the wavelength as a function of the displacement (G = −0.044).
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Figure 24: On the left Scattering force (dotted line), Gradient force (dashed line), and
Total force (solid line) as a function of the wavelength. On the right Scattering force
(dotted line), Gradient force (dashed line), and Total force (solid line) as a function of
the wavelength as a function of the displacement (G = −0.088).

Figure 25: On the left Scattering force (dotted line), Gradient force (dashed line), and
Total force (solid line) as a function of the wavelength. On the right Scattering force
(dotted line), Gradient force (dashed line), and Total force (solid line) as a function of
the wavelength as a function of the displacement (G = −0.132).
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Figure 26: On the left Scattering force (dotted line), Gradient force (dashed line), and
Total force (solid line) as a function of the wavelength. On the right Scattering force
(dotted line), Gradient force (dashed line), and Total force (solid line) as a function of
the wavelength as a function of the displacement (G = −0.176).

Figure 27: On the left Scattering force (dotted line), Gradient force (dashed line), and
Total force (solid line) as a function of the wavelength. On the right Scattering force
(dotted line), Gradient force (dashed line), and Total force (solid line) as a function of
the wavelength as a function of the displacement (G = −0.22).
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4 Conclusions
In this work we used a quasi static approximation for the calculation of a metallic
nanoshell embedding gain molecules. We used to calculate optical forces in two dif-
ferent experimental configuration: the single beam optical tweezers and the counter-
propagating beams. The forces have been calculated for six different values of gain.
The gain seems to affect the optical force in particular the trap stiffness grows with
the gain level, more importantly for the c.p. than for a single beam OT. However the
trapping spectral region is becoming narrower with gain. These calculations are a good
indication for experiments. Optical tweezers experiment are a good tool to prove plas-
mon gain coupling and could represent an important tool to distinguish between the
steady-state and the emission regime.
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