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Resumen 

La presencia de colorantes en aguas residuales genera contaminación y amenaza a los diversos 
ecosistemas existentes, así como a los seres humanos y animales que habitan en estos; 
principalmente debido a su difícil degradabilidad mediante tratamientos convencionales. Es 
por ello, que se ha visto la necesidad de profundizar en la investigación de técnicas de 
oxidación avanzada, siendo la catálisis heterogénea, una de las más apropiadas. Esta técnica, 
a través de catalizadores produce radicales hidroxilos oxidantes que reaccionan con el 
colorante y generan la mineralización completa de estos contaminantes orgánicos en CO2 y 
H2O. Sin embargo, dado que la activación de los catalizadores se da mediante una fuente de 
energía (fotocatálisis), esta debe ser ambiental y económicamente viable; como el caso del 
BiFeO3, cuya activación se da mediante luz visible, la cual está presente en un 48% de la luz 
solar. Por lo tanto, mediante este trabajo de investigación, se presentan los hallazgos relativos 
a la síntesis del fotocatalizador GdxBi1-xFeO3 (x=0.05, 0.10, 0.15), y cuya eficiencia fue evaluada 
mediante difracción de rayos X, espectrometría UV-VIS, FT IR, TEM y mediciones magnéticas. 
 
Palabras clave: colorantes, aguas residuales, fotocatálisis, BiFeO3, BiFeO3 dopado, luz visible. 
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Abstract 

The presence of dyes in wastewater generates pollution and threatens the various 
existing ecosystems, as well as the human beings and animals that inhabit them; mainly 
due to its difficult degradability by conventional treatments. That is why we have seen 
the need to deepen the investigation of advanced oxidation techniques, with 
heterogeneous catalysis being one of the most appropriate. This technique, through 
catalysts, produces oxidative hydroxyl radicals that react with the dye and generate the 
complete mineralization of these organic pollutants in CO2 and H2O. However, since the 
activation of the catalysts is through an energy source (photocatalysis), it must be 
environmentally and economically viable; as the case of BiFeO3, whose activation is given 
by visible light, which is present in 48% of sunlight. Therefore, through this research work, 
we present the findings related to the synthesis of GdxBi1-xFeO3 (x=0.05, 0.10, 0.15) 
photocatalyst, and which efficiency was evaluated by X-ray diffraction, UV-VIS and FT IR 
spectrometry, TEM and magnetic measurements. 
 
Keywords: Dyes, wastewater, photocatalysis, BiFeO3, doped BiFeO3, visible light. 
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1. Introduction 

“Water is not a commercial product like any other but, rather, a heritage which must be 

protected, defended and treated as such”- (European Commission, 2000).  

Rapid population growth of approximately 7.7 billion people (World Population Review, 

2019) has induced a six-fold increase in freshwater withdrawals since 1900 (Ritchie & 

Roser, 2019) and in the last 50 years, this amount has tripled (Worldometers, 2019).  

However, this will be even more complicated considering that it has been projected that 

water demand will increase much faster, especially in industrial and domestic sectors, and 

in a lower, but important degree, in the agricultural one (WWAP, 2018); where the global 

average is 70 percent of currently freshwater withdrawals (Ritchie & Roser, 2019).  

Despite this, it is increasingly difficult to provide high-quality water, considering its 

global impacts due to the nutrient load associated with pathogens and the presence of 

hundreds of chemical products (WWAP, 2018), such as those from wastewater discharges 

of dyes and pharmaceutics. 

Dye discharges compared with medicine water release (and its related areas), have highest 

values for pH, conductivity, DO, TDS, COD and BOD (Aneyo et al., 2016). Additionally, 

due to their complex molecular structure, synthetic origin, high color intensity, and 

toxicity, they are difficult to degrade (Nasar & Mashkoor, 2019) by biological or 

traditional physicochemical treatments, like coagulation and flocculation or adsorption 

(Masi et al., 2019).  

All dye molecules have in common two main components responsible for imparting color 

(chromophore) and improving color attraction (auxochrome) (Nasar & Mashkoor, 2019). 

Chromophore A chromophore has a conjugated double bond that absorbs electromagnetic 
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radiation in the visible region, while an auxochrome is a functional group of atoms which 

modifies the wavelength absorption capacity of the chromophore, that is attached to it 

(Gürses, Akın & Özgür, 2016). Nevertheless, due to the great diversity of dyes, they can 

be classified based on their source (natural or synthetic), chromophore group  (acridine, 

azo, nitroso, indophenol, anthraquinone, arylmethane or xanthene dyes) or substrate 

application (acid, basic, azoic, sulfur, solvent, reactive, etc.) (Nasar & Shakoor, 2017).  

Specifically, due to colorfastness and low cost of Rhodamine B (RhB) (Khani Sobhani & 

Yari, 2019), it is intensively use in plastic, paper, leather, textile, and even food industry 

(to improve products aspect). However, it must be considered that since 1987 the 

International Agency for Research on Cancer (IARC) classified it as part of Group 3, 

implying that it is unknown its  carcinogenic potential, so there is not overall safety among 

its use (IARC, 2019). For instance, it generates irritation of the respiratory tract, eyes, and 

skin; as experimentally it has been proven the carcinogenicity, reproductive, neuro, and 

chronic toxicity if swallowed by animals and human beings (Jain et al., 2007). Therefore, 

this has led to worldwide efforts to limit exposure of organisms to RhB and other dyes by 

applying alternative methods like chemical oxidation or advanced oxidation processes, 

such as photocatalysis.  

The mechanism of photocatalysis is developed due to two key pieces: energy sources 

(like sunlight or UV light) and environmentally friendly semiconductors; which 

contribute to the degradation of dyes present in water (Jiao et al., 2018). As Figure 1 

shows, photocatalytic reactions start when the catalyst absorbs a photon that has higher 

energy than its band gap, producing the activation of its electrons (e-) by moving it from 

the valence band to the conduction band, where holes (h+) are formed. The reaction of 

H2O at these (h+) results in the production of OH* (hydroxyl radicals). These radicals 

will react with dyes and degrade it producing CO2 and H2O (Emy Marlina et al., 2015). 
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At the same time, the (e-) of the conduction band react with the dissolved oxygen species 

forming superoxide ions, which are attached to intermediate products and form hydrogen 

peroxide that is transformed into H2O (Saravanan et al., 2017).  

 

Figure 1. Photocatalysis mechanism for the degradation of dyes 

However, it is important to consider, that the photocatalytic capacity is limited by the 

recombination of (e-) on (h+), in which the absorbed light is released as heat, the OH* 

are not produced and the degradation does not take place (Ibhadon & Fitzpatrick, 2013).  

Among pioneer photocatalytic materials, it has been proven that TiO2, ZnO, and SnO2 

present robust chemical stability, nontoxicity and high reactivity (Bai, 2016). However, 

their applications are limited due to their wide bandgap bigger than 3 eV, i.e. it can just 

be activated under ultraviolet irradiation, which range of the spectrum is between 100-

400nm. Therefore, the access to it can be by natural sources, taking just 5% of sunlight, 

or artificial sources, like fluorescent lamps, gas-discharge lamps, laser and LED lights 

(Tamuri et al., 2014).  Due to this, efforts have been focusing on developing 
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photocatalysts that require less artificial energy and increases the use of visible light 

(380nm<λ<750nm).  

Fortunately, in the last years BiFeO3 has been discovered as promising material, that in 

comparison with other semiconductors, has a short band gap value between 2-2.8 eV. 

This gives larger photon efficiency and enhanced interaction between its electrons and 

holes, allowing to benefit from a wider part of the sunlight spectrum and ensuring a 

greater separation of the photogenerated charge carriers (Bai, 2016).   

However, it has been seen that pure BiFeO3 has a low conduction band position in 

comparison to the oxygen reduction level (Humayun et al., 2016). Therefore, in order to 

make BiFeO3 an ideal photocatalyst that develops efficiently oxidation-reduction 

processes for dye decomposition, it is required to expand its surface area and thus its 

reactivity (Bai, 2016). This can be achieved by replacing in a certain degree Bi3+ ions 

with rare-earth elements (La3+, Nd3+, Sm3+ or Gd3+), which also will delay recombination 

of (e-) on (h+), facilitate specific reactions on the photocatalysts surface, broaden the 

absorption spectrum and increase photo-stability (Gebreslassie et al., 2013). 

In comparison with the other chemicals, the use of Gadolinium (Gd) for doping BiFeO3 

has display desirable photocatalytic advantages as it generates more surface defects, that 

could capture the photo-induced (e-) to further produce excitons. This has been 

demonstrated by advanced techniques related to the recombination of excited (e-) and 

(h+), like photoelectrochemical, photocurrent and electrochemical impedance spectra 

measurements, in which 1-5% Gd-BiFeO3 samples were able to capture photoinduced (e-

) in a better way than pure BiFeO3 due to a reduction in the photoelectrochemical intensity 

(Zhang et al., 2016).  
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However, by the analysis of XRD Patterns, it has been probed that photocatalytic activity 

decreases with a further increase of Gd. For example, samples doped with 20% of Gd, 

synthesized by a wet chemical method exhibit a distorted structure, implying that the 

solubility limit is achieved doping with 10% of Gd (Yanoh et al., 2014). Similarly, 

samples obtained by a sol-gel procedure, doped with Gd until 10% conserve a 

rhombohedral structure in comparison with the ones doped with 5,10 and 15%, (Guo et 

al., 2010).  

Likewise, using the sol-gel technique, 1,3,5% Gd- BiFeO3 and pure BiFeO3 samples were 

compared, and  3% Gd-BiFeO3 exhibits 2.55 times more degradation efficiency, as well 

as a low emission intensity, indicating a decrease in recombination probability of excited 

(e-) and (h+) (Zhang et al., 2016). Similarly, in other experiments, samples doped with 

4,8 and 12% of Gd were analyzed using TEM images and 12% Gd-BiFeO3 sample 

showed nanoparticles well-dispersed, without aggregation, spherical symmetry and 

homogenous in size of 26nm (Lotey & Verma, 2013).  

Specifically, the mechanism to improve photocatalytic activity during the degradation of 

dyes, like RhB, starts when Gd-doped BiFeO3 particles are excited by visible light (λ 

≥420 nm) to produce photogenerated electrons (e-) and holes (h+) (Eq. 1). Gd traps those 

excited (e-) (Eq. 2) and facilitates the separation of electron-hole pairs, promoting the 

charge transfer from the bulk BiFeO3 to the surface of the photocatalyst. Therefore, the 

photoinduced electrons transferred from the Gd dopant to the photocatalyst surface could 

capture the adsorbed O2 and reduce it to O2
*- (Eq. 3). The photogenerated (h+) once 

transported to the photocatalyst surface could also react with H2O to form · OH (Eq. 4) 

to directly oxidize RhB (Eq. 5) or degrade it (Eq. 7). Apart from · OH, in the degradation 

process, (h+) and superoxide radicals are also the reactive species for RhB degradation 

(Eqs. 5 and 6), while hydroxyl radicals could also play a minor role (Eq. 7) (Zhang, 2016). 
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Bi(1−x)Gd(x)FeO3 + hν → e− + h+  (1) 

e− + Gd dopant → e− (Gd dopant trapped) (2) 

  e−(Gd dopant trapped) + O2 → O2
*-               (3) 

h+ + H2O → ⋅OH    (4) 

h+ + RhB → degradation products  (5) 

O2
*-+ RhB → degradation products  (6) 

⋅OH + RhB → degradation products  (7) 

In order to achieve a higher photocatalytic activity, it is essential to consider the catalyst 

structure and size. Ideally, nanomaterials are expected as it is known that they have large 

surface areas and band gaps of around 2.3 eV, in comparison to bulk (large) materials that 

have band gaps bigger than 3 eV. Likewise, when the size of the catalysts is smaller, more 

atoms are accumulated on the surface leading to an increase in the surface to volume ratio 

(Saravanan et al., 2017). This property increases the number of active sites (Saravanan et 

al., 2017), resulting in faster dye degradation as it can be generated by more ⋅OH radicals. 

Therefore, due to these requirements, ordered mesoporous materials are desirable as they 

have a high surface area, manageable pore size and good chemical/thermal stability of the 

rigid framework over conventional bulk and nanoparticle counterparts (Deng, Chen & 

Tüysüz, 2016).  

Concretely, as it has been described before, Gd doped BiFeO3 has a great potential to 

enhance the photocatalytic activity during the degradation of dyes, and that is why, the 

aim of this work is to develop soft templating and hard templating (nanocasting) 

techniques for obtaining GdxBi1-xFeO3 (x=0.05, 0.10, 0.15) nanomaterials as 

photocatalysts.  

Soft templating materials are obtained by a self-assembly process induced by surfactants 

or block copolymers, like Pluronic 123 (P123, Polyethylene glycol-Poly propylene 
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glycol-Poly ethylene glycol) that acts as the structure-directing agent (Deng, Chen & 

Tüysüz, 2016). It implies complex sol-gel interactions between chemical and surfactant 

species to form determined structures, which essentially depend on concentration, pH and 

solvents. Once the structures are formed, the complexes of the precursors are collocated 

around acquiring the shape of the structure; and by calcination processes, it is possible to 

obtain the desired materials in the shape of the initial copolymers (see Figure 1.1).  

 

Figure 1.1. Soft templating process 

For the hard templating processes, SBA-15 and KIT-6 (in preliminary experiments) were 

used, as both display a two-dimensional hexagonal order, in which SBA-15 has p6mm 

symmetry (Zhao et al., 1998) and KIT-6 an Ia3d symmetry with two interpenetrating bi-

continuous mesopore systems (Kleitz, Choi & Ryoo, 2003). They are obtained in a similar 

way, except for the addition of butanol to KIT-6, as it requires another decisive directing 

agent for the cubic phase formation (Deng, Chen & Tüysüz, 2016). These templates are 

hard mesoporous SiO2 with a pore size between 2-50 nm were the resulting replica 

morphology is independent of pH, concentration, and solvents. As it can be seen in Figure 

1.2, the templating reagents are infiltrated with the precursors of the desired product and 

after the evaporation of solvents, the pores are either partially or completely filled (Deng, 

Chen & Tüysüz, 2016). Subsequently, by leaching with NaOH, the silica templates are 
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removed, and depending on the techniques used to fill the material, there are obtained the 

liberated particles or wires. 

 

Figure 1.2. Hard templating process 

Regarding the synthesis of the catalysts, due to heat, it occurs the decomposition of NOx 

(essentially NO and NO2) and CO2, which come from the precursors and Tartaric acid - 

TA [C4H6O6], respectively providing the needed space for new Bi(NO3)3 and Fe(NO3)3. 

However, it is imperative to use the precursors in stoichiometrically proportions, in order 

to avoid deviations or impurities from the starting compounds, which leads to the 

formation of secondary phases like the mullite phase (Bi2Fe4O9) or a sillenite type phase 

(Bi25FeO4) (Lahmar, 2011).  

Additionally, depending on the developed procedure, TA is used as a chelating agent, as 

it complexes the metal cations of the precursors, avoiding the formation of precipitates 

before evaporation (Mukherjee, 2014). The orientation of its two hydroxyls and two 

carboxylate groups creates heterometallic polynuclear complexes in the solution, which 

lead to the bismuth ferrite formation upon calcination (Ghosh, 2005).  

Finally, the synthesized GdxBi1-xFeO3 (x=0.05, 0.10, 0.15) nanomaterials are analyzed by 

X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis diffuse 

reflectance spectroscopy and FT IR spectra measurements. Moreover, the photocatalytic 

activities are analyzed by the degradation of the dye RhB at room temperature under 
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visible-light irradiation; in which the chosen dye with an isolated band at around 555 nm 

makes it relatively easy the interpretation of the UV-Vis spectra (Santillán, 2017).   

2. Experimental description 

2.1. Characterization techniques and equipment 

The crystalline structure of all the synthesized nanomaterials and silica templates were 

examined by X-ray diffraction (XRD) using a PANalytical Empyrean diffractometer that 

has a 2θ configuration with a Cu-tube of 1.54Å and a XCELERATOR detector; as well 

as a Bruker D2 Phaser with a Cu-tube of 1.54Å and a LYNXEYE XE-T detector. The 

samples impurities were identified by Match! 3 – Phase Identification from Powder 

Diffraction. 

For the samples that required the analysis of its morphology, the transmission electron 

microscopy (TEM) images were obtained by a FEI Tecnai G2 spirit twin transmission 

electron microscope.  

By a Perkin Elmer UV-Vis spectrometer with an integrating sphere attachment, UV-Vis 

diffuse reflectance spectra of the nanomaterials were measured. The obtained values of 

absorbance per wavelength were processed using the Kubelka-Munk method (1931), 

obtaining the incident light energy as a function of the Kubelka-Munk remission function 

by photon energy squared, and at the end, the band gap values were calculated by 

extrapolation of the linear plot in the abscissa axis. 

Using the Jasco FT IR-4700 spectrometer Fourier transformed infrared (FT IR) spectra 

were obtained.  
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The photocatalytic activity measurements of the absorption spectrum of RhB was 

accomplished using the UV-Visible spectrophotometer Genesys 30 TM that has a 

Tungsten-Halogen light source and a silicon photodiode detector. This data was 

normalized and processed for obtaining the percentage and kinetics of degradation.  

2.2. Synthesis of silica templates  

2.2.1. SBA-15 & KIT-6 

Components: 

▪ Pluronic 123 (P123, Polyethylene glycol-Poly propylene glycol-Poly ethylene 

glycol); EO:PO: EO= 20:70:20 

▪ HCl (37-38 %) 

▪ 1-Butanol (99%) 

▪ Deionized H2O 

▪ TEOS (tetraethyl orthosilicate) (98%) 

The synthesis of SBA-15 & KIT-6 was done by slightly modifying the previous method 

reported by Deng and collaborators (2016). 

For the obtention of 6.9g of SBA-15 with a 95% yield, 13.9g of Pluronic P123, 252ml of 

deionized H2O and 6.42ml of HCl were mixed in a 100ml polypropylene container at 

35°C in a water bath, until a clear solution was obtained. Then, 26.8ml of TEOS was 

added and the solution was stirred in the water bath for 24h at 35°C. After that, for 

hydrothermal treatment, the solution was dried at 100°C for 24h and by vacuum filtration, 

the dense precipitate was collected and dried for 24h at 100°C. Finally, the obtained 

powder was crushed and calcined at 550°C for 9h using a 0.9°C/min heating rate. 

Similarly, in order to get 6.5g of KIT-6 with a 95% yield, 13.5g of Pluronic P123, 487.5ml 

of deionized H2O and 21.75ml of HCl were mixed in a 100ml polypropylene container at 

35°C in a water bath, until a clear solution was obtained. Then, as it requires another 
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decisive directing agent for the cubic phase formation, 13.5ml of 1-Butanol was added 

and, after 1h, 29ml of TEOS was added and the solution was stirred in the water bath for 

24h at 35°C. Subsequently, for hydrothermal treatment, the solution was dried at 100°C 

for 24h and by vacuum filtration, the dense precipitate was collected and dried for 24h at 

100°C. Finally, the obtained powder was crushed and calcined at 550°C for 9h using a 

0.9°C/min heating rate. 

2.2. Synthesis of mesoporous GdxBi1-xFeO3 (x=0.05, 0.10, 0.15) by a soft templating 

technique 

Components: 

▪ Bismuth nitrate [Bi(NO3)3(H2O)5] 

▪ Gadolinium nitrate [Gd(NO3)3(H2O)6] 

▪ Iron nitrate [Fe(NO3)3(H2O)9] 

▪ P123 

▪ Deionized H2O 

▪ Ethylene glycol [C2H6O2] 

▪ Glacial Acetic Acid [CH3COOH] 

Table 1. Precursors for the synthesis of GdxBi1-xFeO3 (x=0.05, 0.10, 0.15) nanoparticles 

via sol-gel technique 

ID Sample 
Precursors (g)   

Bi(NO3)3(H2O)5 (g) Gd(NO3)3(H2O)6 (g) 
Fe(NO3)3(H2O)9 

(g) 

P123 

(g) 

H2O 

(ml) 

D1 & 

D3 

10%-Gd 
BiFeO3 

1.0809 0.1118 

1 0.07 

- 

 mmol 2.2283 0.2476 

D2 
10%-Gd 

BiFeO3 
1.0782 0.11148 

 mmol 2.2227 0.2469 

15P 
15%-Gd 

BiFeO3 
1.01838 0.1672 

 mmol 2.0999 0.3704 

K 
5%-Gd 

BiFeO3 
1.141 0.056 5 

 mmol 2.352 0.124 277.77 

X 1.141 0.056 - 



22 

 

L 
5%-Gd 

BiFeO3 

G 
5%-Gd 

BiFeO3 
0.14 

H 

H:5%-

Gd 

BiFeO3 

0.28 

I 
5%-Gd 

BiFeO3 
0.56 

 mmol 2.352 0.124 2.47  

The precursors were mixed at room temperature (RT) according to Table 1, dissolving 

them in 24.76ml of ethylene glycol and H2O (only for sample K). After 30min, 24.76ml 

of glacial acetic acid was added and after 30min Pluronic P123 was added and the solution 

was stirred at 50°C for 2h. Subsequently, the solution was dried at 80°C for 12h until a 

gel was obtained and finally, it was calcined at 450°C for 1h30 using a 1°C/min heating 

rate.  

2.3. Synthesis of mesoporous GdxBi1-xFeO3 (x=0.05, 0.10, 0.15) by hard templating 

techniques 

2.3.1. Two-step impregnation technique 

2.3.1.1. Experiment 1 

Components: 

▪ Bismuth nitrate [Bi(NO3)3(H2O)5] 

▪ Iron nitrate [Fe(NO3)3(H2O)9] 

▪ Tartaric acid - TA [C4H6O6] 

▪ 2-Methoxyethanol [C3H8O2] 

▪ Nitric acid [HNO3] 
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Table 2. Precursors for the synthesis of BiFeO3 by the 2-step impregnation process 

Mixture 
Precursors (g) TA (g) 

Bi(NO3)3(H2O)5 Fe(NO3)3(H2O)9 C4H6O6 

1: 60% 2.9177 2.43 0.9027 

mmol 6.015 6.015 6.015 

2: 40% 1.9451 1.6199 0.6018 

mmol 4.0099 4.0099 4.0099 

According to quantities of Table 2, in two individual beakers (by duplicate), the 

precursors were mixed and dissolved taking 30ml of a solvent solution (60ml of 2-

methoxyethanol and 30ml of nitric acid [2M]). After 30min TA was added and after 1h 

of stirring, once the solution was clear, 2.156g of KIT-6 were added and the solution was 

left stirring overnight. Then, using a rotavap at 80°C, the solvent was extracted and it was 

obtained a powder that later was dried in the oven at 70°C for 3h. 

For the first impregnation, duplicates were weighed and separated each one into two 

beakers, obtaining four samples that were individually heated according to Table 3. 

Table 3. Heating temperature and time for the 2-step synthesis of BiFeO3 

ID Sample Temperature (°C) Time (h) 
Heating rate 

(°Cmin-1) 

SA1 

BiFeO3 

200 

3 
4 

SA2 300 

SA3 350 

SA4 450 2 

Afterwards, the precursors of the mixture 2 presented in Table 2 were dissolved using 

30ml of a solvent solution (60ml of 2-methoxyethanol and 30ml of nitric acid [2M]). 

Then, TA was added and the solution was left stirring at RT for 1h. To each of the 4 

samples obtained during the first impregnation process, 10ml of mixture 2 was added and 

they were left stirring overnight. After this, in the rotavap at 80°C the solvent was 

extracted, obtaining powders that were dried in the oven at 70°C for 3h. 
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Finally, for the second impregnation, the four samples were heated individually according 

to Table 3 and in the same heating process, they were additionally calcined at 500°C for 

1h.  

2.3.2. Combustion technique 

2.3.2.1. Experiment 1 

Components: 

▪ Bismuth nitrate [Bi(NO3)3(H2O)5] 

▪ Iron nitrate [Fe(NO3)3(H2O)9] 

▪ Tartaric acid - TA [C4H6O6] 

▪ Nitric acid [HNO3] 

Table 4. Precursors for the synthesis of BiFeO3 in the first experiment of the 

combustion technique 

Sample 
Precursors (g) TA (g) 

Bi(NO3)3(H2O)5 Fe(NO3)3(H2O)9 C4H6O6 

BiFeO3 1.6322 1 1.2404 

mmol 3.3648 2.4752 8.2645 

Based on quantities of Table 4, in two individual beakers (by duplicate) the precursors 

were mixed and dissolved in 24.76ml of nitric acid [2M]. After stirring the solution at RT 

for 30min, TA was added and it was left stirring for 30min more. Then, the solution was 

stirred at 150°C until the solvent was completely evaporated. Finally, the powders 

obtained by duplicate were individually calcined at 450°C and 500°C for 2h at 4°C/min. 

2.3.2.2. Experiment 2 

Components: 

▪ Bismuth nitrate [Bi(NO3)3(H2O)5] 

▪ Iron nitrate [Fe(NO3)3(H2O)9] 
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▪ Tartaric acid - TA [C4H6O6] 

▪ Nitric acid [HNO3] 

▪ Deionized H2O 

▪ 3-aminopropanoic acid - 3-APA [C3H7NO2] 

Table 5.  Precursors for the synthesis of BiFeO3 nanoparticle assemblies (MBFAS) in 

the second experiment of the combustion technique 

Sample 
Precursors (g) TA (g) 

Bi(NO3)3(H2O)5 Fe(NO3)3(H2O)9 C4H6O6 

BiFeO3 1.945 1.6199 0.602 

mmol 4.0097 4..0097 4..0097 

According to Table 5, the precursors were mixed and dissolved in 20ml of nitric acid 

[2M], and after 30min, TA was added. Then, the solution was stirred at 150°C until the 

solvent was evaporated and the obtained powder was dried at 300°C for 2h using a 

4°C/min heating rate.  

The obtained BiFeO3 NPs were added to deionized H2O that contains 0.3122g of 3-APA, 

and the pH was adjusted to 4 using nitric acid [1M]. After leaving the mixture stirring at 

RT for 48h, it was washed with deionized H2O and centrifuged until a pH of 7 was 

reached. Then, the sample was dried at 80°C and dispersed in deionized H2O to obtain a 

colloidal solution. 

Afterwards, to 2ml of the obtained solution at RT for 2h, 0.14g of Pluronic P123 were 

added and then the solution was dried at 40°C until a gel was formed. Finally, the sample 

was calcined at 360°C for 6h using a 0.5°C/min heating rate.  

2.3.3. Complexation technique 

2.3.3.1. Experiment 1 

Components: 
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▪ Bismuth nitrate [Bi(NO3)3(H2O)5] 

▪ Iron nitrate [Fe(NO3)3(H2O)9] 

▪ Tartaric acid - TA [C4H6O6] 

▪ 2-Methoxyethanol [C3H8O2] 

▪ Nitric acid [HNO3] 

Table 6. Precursors for the synthesis of BiFeO3 under evaporation of solvents without 

heating 

Sample 
Precursors (g) TA (g) 

Bi(NO3)3(H2O)5 Fe(NO3)3(H2O)9 C4H6O6 

BiFeO3 1.95 1.58 0.5868 

mmol 4.02 3.91 3.91 

According to Table 6, the precursors (with 2.74% of Bismuth excess) were mixed and 

dissolved in 40ml of 2-methoxyethanol. After 30min, TA and 4ml of nitric acid [2M] 

were added. Then after leaving the solution stirring at RT for 30min, 1g of mesoporous 

silica (SBA-15) was added. Afterwards, the solvent was extracted leaving the solution 

stirring at RT for 29 days and the obtained powder was calcined considering the 

calcination path of Figure 2. 

 

Figure 2. Calcination path for the synthesis of BiFeO3 by the first experiment of the 

complexation technique 

2.3.3.2. Experiment 2 

Components: 

▪ Bismuth nitrate [Bi(NO3)3(H2O)5] 

▪ Gadolinium nitrate [Gd(NO3)3(H2O)6] 

▪ Iron nitrate [Fe(NO3)3(H2O)9] 

▪ Tartaric acid - TA [C4H6O6] 

25°C 
1°C/min 

200°C 
250°C 1°C/min 

2h 
2h 

4°C/min 

1h 

500°C 
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▪ 2-Methoxyethanol [C3H8O2] 

▪ Nitric acid [HNO3] 

Table 7. Precursors for the synthesis of GdxBi1-xFeO3 (x=0.05, 0.10) by the 

complexation technique 

ID Sample 
Precursors (g) TA (g) 

Bi(NO3)3(H2O)5 Gd(NO3)3(H2O)6 Fe(NO3)3(H2O)9 C4H6O6 

Gd1 
5%-Gd 

BiFeO3 
1.197 0.058 1.0148 0.3770 

 mmol 2.4676 0.1285 2.5118 2.5118 

Gd2 
10%-Gd 

BiFeO3 
1.139 0.116 1.0148 0.3770 

 mmol 2.3481 0.257 2.5118 2.5118 

5L 
5%-Gd 

BiFeO3 
1.1576 0.0567 1.0148 0.3770 

 mmol 2.3864 0.1256 2.512 2.512 

10LA 

& 

10LB 

10%-Gd 

BiFeO3 
1.0966 0.1134 1.0148 0.3770 

 mmol 2.2608 0.2512 2.512 2.512 

Based on the quantities of Table 7, the precursors were mixed and dissolved in 30ml of 

2-methoxyethanol and 15 of nitric acid [2M], with exception of sample 10LA where it 

was used half of each of the solvents. After 30min TA was added and the solution was 

stirred at RT until it was clear and once this occurred, 0.7631g of mesoporous silica (SBA-

15) were added and the solution was left stirring overnight. Then, the solvent was 

extracted using a rotavap at 80°C and the obtained powder was dried for 3h at 75°C. 

Finally, the sample was calcined considering the calcination path of Figure 2. 

2.3.4. One-step impregnation technique 

2.3.4.1. Experiment 1 

Components: 

▪ Bismuth nitrate [Bi(NO3)3(H2O)5] 

▪ Gadolinium nitrate [Gd(NO3)3(H2O)6] 
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▪ Iron nitrate [Fe(NO3)3(H2O)9] 

▪ Tartaric acid - TA [C4H6O6] 

▪ Nitric acid [HNO3] 

Table 8. Precursors for the synthesis of ordered mesoporous BiFeO3 and 

Gd0.05Bi0.95FeO3 varying SBA-15 amounts 

ID Sample 
Precursors (g) TA (g) SBA-15 

(g) Bi(NO3)3(H2O)5 Gd(NO3)3(H2O)6 Fe(NO3)3(H2O)9 C4H6O6 

SA 

BiFeO3 0.97 - 0.8079 
0.3001 

0.075 

SB 0.15 

SC 0.3 

SD - 0.15 

 mmol 1.999 - 1.999 1.999  

SE 5%-Gd 

BiFeO3 
0.9216 0.0451 0.8079 0.3001 

0.15 

SF 1.5 

 mmol 1.8999 0.0999 1.999 1.999  

SY 5%-Gd 

BiFeO3 
0.9212 0.045 0.8079 0.3001 

0.075 

SZ 0.3 

 mmol 1.8990 0.099 1.999 1.999  

P1 BiFeO3 1.2184 - 1.0148 0.3726 0.763 

 mmol 2.5118 - 2.5118 2.4285  

P2 5%-Gd 

BiFeO3 
1.1574 0.05678 1.0148 0.3726 

0.763 

P3 1.144 

 mmol 2.3860 0.1258 2.5118 2.4825  

The precursors were mixed according to Table 8 and were dissolved in 10ml of nitric acid 

[2M]. Then, with the exception of SD, after 10 minutes, TA was added and the samples 

were stirred at RT until a clear solution was obtained. At this point, the samples were 

transferred to plastic containers and SBA-15 was added. After 30 min, the samples were 

dried at 70°C for 24h and at the end, they were calcined for 1h at 500°C using 4°C/min 

as heating rate. 

2.3.4.2. Experiment 2 

Components: 

▪ Bismuth nitrate [Bi(NO3)3(H2O)5] 

▪ Iron nitrate [Fe(NO3)3(H2O)9] 

▪ Tartaric acid - TA [C4H6O6] 
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▪ 2-Methoxyethanol [C3H8O2] 

Table 9. Precursors for the synthesis of BiFeO3 under reflux condensation in the second 

solvent extraction 

Sample 
Precursors (g) TA (g) 

Bi(NO3)3(H2O)5 Fe(NO3)3(H2O)9 C4H6O6 

BiFeO3 1.37 1.13 0.4197 

mmol 2.8243 2.797 2.79 

Table 10. Ratio SBA-15/ BiFeO3 

ID 
Synthesized powders Ratio 

BiFeO3 (g) SBA-15 (g) SBA-15:BiFeO3 

R, AR & BR 0.1 1 10:1 

3R 1.1671 3.5013 3:1 

UPS ≈1.5 1 ≈ 2:3 

According to Table 9, the precursors (with 0.97% of Bismuth excess) were mixed and 

dissolved in 30ml of 2-methoxyethanol. After 30min, TA was added and the solution was 

left stirring for 12h. Then, the solvent was extracted in a rotavap at 80°C and the obtained 

powder was collocated in the oven at 50°C until it was completely dried. Then, the 

obtained powder was mixed with mesoporous silica (SBA-15) in 10ml of hexane 

according to the ratios of Table 10. Then, the mixture was refluxed in 30ml of hexane, 

for 24h. The solvent was extracted in the rotavap at 69°C and at the end, it was completely 

dried in the oven at 50°C, the powder was calcined considering the calcination path of 

Figure 3. 

 

Figure 3. Calcination path for the synthesis of BiFeO3 by one-step impregnation 

technique using hexane 

25°C 
1°C/min 

200°C 
250°C 1°C/min 

1h 
1h 

4°C/min 

1h 

500°C 
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2.4. Leaching process with NaOH of the synthesized materials by hard 

templating techniques  

Components: 

▪ Synthesized nanomaterials 

▪ Sodium hydroxide [NaOH] 

In order to liberate the nanomaterials of GdxBi1-xFeO3 (x=0.05, 0.10, 0.15) synthesized 

by hard templating techniques, the silica template was removed by a two-step leaching 

process using an excess volume of 2M NaOH and subsequent heating temperature of 

70°C.  

The synthesized catalysts were collocated in plastic containers and the Sodium hydroxide 

[2M] was added according to the calculated quantity obtained by Eq. 8. After leaving the 

samples in the oven at 70°C for 12h, the decanted solution was removed and the 

calculated amount of Sodium hydroxide [2M] was added for a second time and it was left 

at the previous temperature for the same period of time. Afterwards, the material was 

washed with deionized water and centrifuged at 4000rpm for periods of 5min, until the 

effluent had an approximate pH of 7. Then, the leached sample was left in the oven at 

70°C until it was completely dried (Deng et al., 2016).   

SiO2 + 2NaOH → Na2SiO3 + H2O (8) 

2.5. Photocatalytic activity 

By means of a photoreactor that irradiates visible-light, the photocatalytic activities of all 

the samples synthesized by soft and hard templating techniques were analyzed; which 

allows the identification of the degree of RhB degradation at room temperature. 
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Specifically, it was used a self-constructed water and air cooled photoreactor, as it is 

shown in Figure 4, that has high-intensity LEDs for the simulation of sunlight in the 

spectra of 400-700 nm. 

 

Figure 4. Experimental setup of a photoreactor 

(Santillán, 2017). 

In 50mL of RhB (5mg/L), 50mg of each of the catalysts were added and to achieve the 

adsorption-desorption equilibrium between both components, the solution was left 

stirring in darkness for 1h. After this, a sample was taken and the solution was exposed 

to visible-light irradiation for 240 min. During that period samples were then every 

30min. 

Once each sample was taken, by centrifugation at 4000 rpm for 5 min, the catalyst was 

separated from the solution and using a UV-Visible spectrophotometer, the absorption 

spectrum of RhB was measured. Then, for obtaining the values of concentration through 

time, it was considered the Beer-Lambert law (Eq. 9), in which the absorption of light by 

the sample (A) is defined by the incident light intensity (Io) and the transmitted intensity 

(I). This is equivalent to the wavelength molar absorptivity coefficient in M-1cm-1 (ԑ) 
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multiplied by the path length in cm (l) and the sample concentration in M (c) (Bai et al., 

2016).  

𝐴 = log10
𝐼0

𝐼
= ԑ𝑙𝑐 (9) 

Considering the previous equation, a calibration curve of RhB with R2 of 0.9959 was 

obtained. Using this curve and the maximum absorption peak of each sample (obtained 

after linearization), the final RhB concentration was obtained. 

Additionally, the kinetics of the photocatalytic degradation of the RhB solution with each 

of the catalysts were obtained by the Langmuir Hinshelwood expression (Eq. 10), where 

Co and C are the concentrations of RhB, respectively at irradiation times to and t, and k 

(min-1) is the pseudo first-order rate constant (Soltani & Enterazi, 2013) that is followed 

by the diluted RhB solution.  

𝑙𝑛
𝐶

𝐶0
= −𝑘𝑡 (10) 

3. Results and discussion 

3.1. Characterization of SBA-15  

3.1.1. XRD measurements for the structure analysis 

Following the procedure for the synthesis of SBA-15 described in the experimental 

description, the diffractogram showed in Figure 5 was obtained in which it is possible to 

see that samples synthesized in different dates have peaks between 1-2° of the diffraction 

angle that corresponds to a typical ordered SBA-15 with an expected p6mm symmetry 

(Zhao et al., 1998).  
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Figure 5. XRD for the synthesized SBA-15 samples 

These results imply that all the components used during the synthesis display a key role. 

P123 acts as the structure directing agent, TEOS influences the interaction of the silicate 

ions oligomers with surfactant, resulting in rod-like micelles, in which the packing of the 

rod-like silica coated micelles provides the hexagonal phase, and therefore silica walls 

are formed through the hydrolysis and polymerization of TEOS (Deng et al, 2016).  

Therefore, as the silica SBA-15 was successfully obtained, it was used in the procedures 

of all the hard templating techniques. 

3.2. Characterization of mesoporous GdxBi1-xFeO3 (x=0.05, 0.10, 0.15) synthesized 

by a soft templating technique 

3.2.1. XRD measurements for the structure analysis  

The results exposed by Figure 6 indicate that the synthesis of 5%Gd-BiFeO3 varying the 

P123 ratios, exhibit a similar orthorhombic structure on the XRD zooms from 30-35° of 

diffraction angle 2θ, with exception of the sample synthesized using 0.07g of P123, but 
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in the sample that additionally was collocated 5ml of H2O, it does exhibit the same 

structure as the other samples.  

 

Figure 6. XRD of the synthesized Gd0.05Bi0.95FeO3 varying from 0.07-0.56g the amount 

of P123 

These findings suggest that P123 excess has no negative impact on the compound’s purity 

and in fact, the solvents favorably influence the formation of nanomaterials free of 

undesirable bismuth oxides. In this process, ethylene glycol also acts as a surfactant that 

influences the size uniformity of the target material, decreasing the agglomeration degree 

of the distributed sphere nanoparticles (Hai et al., 2017), while glacial acetic acid acts as 

a stabilizer that prevents sedimentation of the precursors, as well as, hydrolysis (Song, et 

al., 2009).   



35 

 

Additionally, considering Figure 7, it is visible that the synthesized 5%,10%, and 15%Gd- 

BiFeO3 have a similar rhombohedral structure on the peak from 31-33° of diffraction 

angle 2θ, which corresponds to pure BiFeO3. Therefore, this implies that there is no 

influence of doping in the compound structure. However, considering that 15%Gd- 

BiFeO3 exhibits the formation of Bi2O3 between 25-30° of diffraction angle 2θ, it suggests 

that doping BiFeO3 with 5% and 10% of Gd is enough in order to avoid alterations on the 

material purity. 

 

Figure 7. XRD of the synthesized GdxBi1-xFeO3 (x=0.05, 0.10, 0.15) using 0.07g of 

P123 

3.2.2. UV-Vis measurements for the band gaps identification  

An analysis of the bandgaps by UV-Vis diffuse reflectance spectroscopy was executed as 

it is exposed in Figure 8.  
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Figure 8. UV-Vis diffuse reflectance spectra from GdxBi1-xFeO3 (x=0.05, 0.10, 0.15) 

synthesized nanomaterials and determination its bandgaps 
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Accordding to the summary Table 11, it was found that the values are between 2.48-2.54 

eV. This implies that neither the concentration of P123 nor the doping with gadolinium 

has a direct effect on the band gap. 

Table 11. Band gaps of GdxBi1-xFeO3 (x=0.05, 0.10, 0.15) synthesized by the sol-gel 

technique 

ID Sample P123 (g) 
Bandgap 

(eV) 

Wavelength 

(nm) 

D1 & D3 10%-Gd BiFeO3 

0.07 

2.48 499.93626 

X 

5%-Gd BiFeO3 

2.51 493.96093 

L 
2.48 499.93626 

K 0.07 (+ 5ml H2O) 

G 0.14 2.54 488.12674 

H 0.28 2.49 497.92849 

I 0.56 2.48 499.93626 

 

3.2.3. FTIR measurements for the identification of functional groups 

The FT IR measurements were executed as it is exposed in Figure 9. However, due to 

the low resolution, it was not possible to emit determinant conclusions about it. 
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Figure 9. FT IR measurements of transmissibility from GdxBi1-xFeO3 (x=0.05, 0.10, 

0.15) synthesized nanomaterials and functional groups identified 
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3.3. Characterization of mesoporous GdxBi1-xFeO3 (x=0.05, 0.10, 0.15) synthesized 

by hard templating techniques 

3.3.1. Characterization of nanomaterials obtained by the two-step impregnation 

technique 

3.3.1.1. XRD measurements for the structure analysis  

The XRD of the samples presented in Figure 10 indicates that there is no significant 

difference between them, and unfortunately, they mostly exhibit the formation of Bi2O3 

instead of BiFeO3, which is attributable to the inadequate calcination at the end of the 

process. This affirmation is done considering that the final calcination of 500°C for 1h 

was executed separately from the heating process.  

 

Figure 10. XRD of BiFeO3 synthesized by a two-step impregnation technique 

Therefore, to synthesize the nanomaterials by this method, it is required to do the 

calcination of 500°C for 1 hour without interruptions at the end of its correspondent 

calcination path. 
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3.3.2. Characterization of nanomaterials obtained by combustion techniques 

3.3.2.1. XRD measurements for the structure analysis of samples obtained by 

experiment 1  

Based on the XRD presented in Figure 11, it is clear that the synthesized materials exhibit 

an orthorhombic structure between 31-33° in the diffraction angle 2θ. Despite this, both 

present an excess of bismuth leading to the formation of Bi2O3, especially in the 

diffraction angle 2θ from 23-31°, which is diminishing its purity. This may be attributed 

to the absence of equimolar proportions of the precursors used in the process, which in 

composition came hydrated, in comparison to the ones used by Ghosh and collaborators 

(2005) during its synthesis. However, it is important to consider that due to air moisture 

the precursor bismuth nitrate by itself can form Bi2O3, which  may lead to the presence 

of  Bi2O3 on the final material. 

 

Figure 11. XRD of BiFeO3 synthesized by the first experiment of a combustion 

technique 
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3.3.2.2. XRD measurements for the structure analysis of samples obtained by 

experiment 2 

During the sample synthesis, stoichiometric equimolar proportions of the precursors were 

used, however, the XRD measurements of Figure 12 exhibit that the desired BiFeO3 was 

formed partially.  

 

Figure 12. XRD of BiFeO3 synthesized by the second experiment of a combustion 

technique 

Therefore, the synthesis didn’t work well as it was expected, because, by a similar 

procedure, Papadas et al. (2012) reported the formation of a 3D mesoporous network of 

BiFeO3 nanoparticles, where 3-APA was used for the surface modification of BiFeO3. 
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3.3.3. Characterization of nanomaterials obtained by complexation techniques 

3.3.3.1. XRD measurements for the structure analysis of samples obtained by 

experiment 1  

The obtained sample, which structure is presented by Figure 13, was obtained having in 

mind the procedure of Papadas et al. (2014), in which a high surface area mesoporous 

BiFeO3 was synthesized, building it inside the mesoporous carbon CMK-3 (hard 

template). 

However, the XRD didn't exhibit the formation of BiFeO3 and only the formation of 

Bi2O3 was observed. 

 

Figure 13. XRD of BiFeO3 synthesized by the first experiment of a complexation 

technique 
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3.3.3.2. XRD measurements for the structure analysis of samples obtained by 

experiment 2 

Considering the synthesis of BiFeO3 by nano-casting developed by Lucia Morales (2019), 

the aim of this experiment was to enhance the photocatalytic activity of this 

semiconductor by doping it with 5% and 10% of Gd. 

It was discovered that samples with and without bismuth excess do not display 

differences, as both exhibits a similar peak between 31-33° of diffraction angle 2θ, which 

corresponds to a typical rhombohedral structure (see figure 14). Likewise, in all of them, 

Bi2O3 is presence as shown in the peaks between 27-29°. One possible explanation is that 

the precursor Bi(NO3)3(H2O)5 contains partially Bi2O3 leading to stoichiometric errors in 

the reaction, however, XRD of the compound is required to affirm this.  

 

Figure 14. XRD of GdxBi1-xFeO3 (x=0.05, 0.10) synthesized by the second experiment 

of a complexation technique 

Leaching processes were carried out for the removal of Bi2O3. By Figure 15, it was seen 

that glacial acetic acid can achieve this purpose if it is in contact with the material long 
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enough (10 min). Nitric acid also works but it reacts and creates unwanted phases, seen 

by the additional peaks 24.73° and 26.51° of the diffraction angle 2θ.  

 

Figure 15. XRD of leached Gd0.10Bi0.9FeO3 synthesized by the second experiment of a 

complexation technique 

Additionally, by Figure 16 it was demonstrated that the use of half of the solvents during 

the synthesis didn’t show a negative impact on the rhombohedral structure of the material. 

This constitutes a positive finding considering that 2-methoxyethanol, apart from being 

expensive and difficult to obtain, via inhalation and dermal contact produces effects on 

respiratory, nervous, reproductive and haematological systems (WHO, 2009).  
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Figure 16. XRD of Gd0.10Bi0.9FeO3 synthesized using full and half of the solvents 

However, it must be considered that 2-methoxyethanol is needed during the synthesis, as 

it is responsible for making the bismuth-iron complex, due to the oxygen-free electrons 

of methoxy (OCH3) and ethanol (CH3CH2OH) of the molecule that binds to the metals. 

Despite this, if there is too much of it, during the calcination process, it will lead to the 

formation of Bi2O3 which is seen at 2θ = 27-29° of the synthesized material that use the 

whole amount of the solvents. 

3.3.4. Characterization of nanomaterials obtained by a one-step impregnation technique 

3.3.4.1. XRD measurements for the structure analysis of samples obtained by 

experiment 1  

The XRD from Figure 17 shows that the synthesis of BiFeO3 in absence of TA didn’t 

work. This was expected considering previous XRD experiments of Papadas and 

collaborators (2014), where it was found that TA has a pronounced effect on the 

crystallization of mesoporous infiltrates as it helps to obtain a highly crystalline BiFeO3 
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mesostructure at 1:1 molar ratio with respect to metal nitrates, promoting the 

crystallization of the compound inside the template. 

 

Figure 17. XRD of BiFeO3 synthesized with 0.15g of SBA-15 but without TA 

Despite Dang et al. (2014) find that an increase on the amounts of SBA-15 could modify 

the ordered mesoporous structure of Bi2WO6, by the resulting XRD exposed in Figure 

18, it is established that the variation of the SBA-15 from 0.075g to 0.3g didn´t have a 

deep impact on the synthesized compounds, except on the compound that was synthesized 

using 0.075g of SBA-15, which exhibits a distorted rhombohedral structure of BiFeO3 in 

the peak from 31-33° of diffraction angle 2θ. However, by the XRD of the leached 

compounds (plot lines: red, green and brown), it was seen that they still exhibit the peak 

from 26-30° of diffraction angle 2θ, which corresponds to Bi2O3, implying that the NaOH 

was not useful for its removal.  
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Figure 18. XRD of BiFeO3 synthesized varying 0.075- 0.3g of SBA-15 

By Figure 19, it is clear that similarly to BiFeO3, 5%Gd- BiFeO3 synthesized with 0.075g 

and 0.3g of SBA-15, as well as, 10%Gd- BiFeO3 synthesized with 0.15g of SBA-15 

conserve the rhombohedral structure in the peak from 31-33° of diffraction angle 2θ, and 

therefore, SBA-15 didn't affect the purity of the compounds. 

However, in the case of 10%Gd- BiFeO3 synthesized with 1.5g of SBA-15, the whole 

peaks of the diffraction angle 2θ looks unclear and from 31-33° of diffraction angle 2θ, it 

seems like the formation of the orthorhombic structure, which is characteristic on doped 

BiFeO3. Therefore, by this technique, it was discovered that quantities of SBA-15 that 

vary from 0.075g to 0.3g have no impact on the purity of the compound and the 

impregnation works well. However, once the 0.3g SBA-15 are quintuplicated (1.5g), the 

concentration of doped BiFeO3 in the XRD sample is too low in order to obtain a clear 

XRD pattern. It should be noted that the main peak at 32o is visible underneath the SBA15 

peak.  
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Figure 19. XRD of GdxBi1-xFeO3 (x=0.05, 0.10) synthesized using 0.075,0.15,0.3 and 

1.5g of SBA-15 

Finally, following the methodology of this experiment but using the stoichiometric 

amounts of the precursors and SBA-15 from the experiment 2, it was found that the 

leached synthesized powders of BiFeO3 and 5%Gd- BiFeO3 present an expected distorted 

rhombohedral structure in the peak from 31-33° of diffraction angle 2θ; which is 

attributed to Gadolinium substitution (see figure 20). Likewise, from 25-35° of diffraction 

angle 2θ, the broad peaks imply that the materials are containing an amorphous part 

suggesting a replica mesostructured of SBA15.   

 



49 

 

 

Figure 20. XRD of BiFeO3 and Gd0.05Bi0.95FeO3 synthesized using stoichiometric 

amounts of the precursors and SBA-15 from experiment 2 of the complexation 

technique  

3.3.4.2. TEM measurements for the morphology analysis of samples obtained by 

experiment 1 

Previously, by XRD results it was thought that maybe it was occurring a possible reaction 

between the complexes and the silica. However, considering the TEM image of Figure 

21, it is clear that the silica and the BiFeO3 are not reacting and they are present on the 

sample, but due to the agglomeration of BiFeO3 in the top of the silica, it stays on the 

borders impeding the entrance of more BiFeO3.  

In the same way, the TEM measurements allow to establish that particle size of 10%Gd- 

BiFeO3 (without NaOH leaching) was around 8nm, which is positive considering that 

when the size of the catalysts is smaller, more atoms accumulate in the surface, which 
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leads to an increase in the surface to volume ratio (Saravanan et al., 2017), and therefore, 

increases photocatalytic activity. In the same way, this result calls the attention once it is 

considered that Bi2WO6 synthesized with 0.3g of SBA-15 presented a particle size of 100-

200 nm, leading to low particle surface area (Dang et al, 2014).   

 

Figure 21. TEM image of Gd0.10Bi0.9FeO3 synthesized using 1.5g SBA-15, following 

the developed experiment 1 of the one-step impregnation technique 

3.3.4.3. XRD measurements for the structure analysis of samples obtained by 

experiment 2 

The methodology of this experiment was developed considering that in Yen et al. (2011) 

it was synthesized crystalline mesoporous bimetal oxides (NiFe2O4, CuFe2O4, and 

Cu/CeO2) using mesoporous silicas, in which it was applied reflux condensation of nitrate 

salts with hexane to obtain high surface area metal oxides. Due to this, to determine if 

there is a reaction between SBA-15 and the complexes, variations on the SBA-15 ratios 

were done.  



51 

 

In theory, it was expected to have more possible sites to make the reaction if there is more 

SBA-15, and that it should get worst if there is a reaction. However, the results exposed 

by Figure 22 show that with less SBA-15, it gets worst, which means that the 

impregnation didn´t work due to the excess material that is deposited on the top of SBA-

15. Regarding this, the presence of amorphous SBA-15 broad peaks from 15-30° of 

diffraction angle 2θ, indicates that calcination works better in the SBA-15 channel, 

implying that SBA-15 has a stabilizing effect. However, in a future analysis, it would be 

interesting to see if after leaching with NaOH the broad peaks remain, and if this happens, 

this will imply that in fact, the obtained nanomaterials have an amorphous structure. 

 

Figure 22. XRD of BiFeO3 synthesized using different ratios of SBA-15: BiFeO3 

3.3.4.4. TEM measurements for the morphology analysis of samples obtained by 

experiment 2 

Considering the TEM images presented in Figure 23, it is noteworthy that nanoparticles 

of BiFeO3 with a diameter of approximately 24nm were obtained after leaching with 

NaOH the synthesized sample using BiFeO3 a ratio of 2 parts of SBA-15 per 3 parts of 

BiFeO3.  
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Figure 23. TEM images of the synthesized BiFeO3 with a ratio of 2 SBA-15: 3 BiFeO3, 

before (left) and after (right) leaching with NaOH 

Additionally, in order to see the dependence of the nano-casted structures with the 

precursor and silica loadings, TEM measurements of BiFeO3 synthesized with 10 parts 

of SBA-15 per 1 part of BiFeO3 were done. By Figure 24, it is clear the formation of 

particles with an approximate size of 8nm. This suggests that an increase in the amount 

of SBA-15 leads to the formation of small particles, which goes according to the 

observations of Yen and collaborators (2011), in which it passes from nanorods to 

nanowires once the precursors were increased per amount of silica. 

  

Figure 24. TEM images of the synthesized BiFeO3 with a ratio of 10 SBA-15: 1 BiFeO3 

before leaching with NaOH 
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3.4. Photocatalytic activity  

Following the photocatalytic procedure described in the section of the experimental 

description, the measurements allow the obtention of the following calculations and plots 

for the analysis of the photocatalytic degradations of RhB.  

3.4.1. Detailed analysis of the RhB degradation  

3.4.1.1. GdxBi1-xFeO3 (x=0.05, 0.10, 0.15) synthesized by a soft templating technique 

Considering the plots from Figure 25 of 5%Gd-BiFeO3 synthesized using 0-07-0.28g of 

P123, it is clear that the slight increase on degradation degree and rate when little 

amount of P123 was  used can be neglected and therefore it can be affirmed that in 

overall the samples achieved 41-59% of RhB degradation at a rate of 2.54 - 4,46E-03 

min-1. 

  

Figure 25. Photocatalytic activity of Gd0.05Bi0.95FeO3 synthesized using 0-07-0.28g of 

P123 

Additionally, by Figure 26, it is clear that using the same 0.07g of P123 for the synthesis 

of the samples, the doping amount influences the degree and rate of degradation, in which 

5%Gd-BiFeO3 performed the higher 73% of degradation at 4,46E-03 min-1.  
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This last result calls the attention when it is compared with 57% degradation of Methyl 

Orange in 3h reported by Song and collaborators (2009), essentially due to the difficulty 

of degradation that RhB poses, as it is positively charged in H2O having a repulsive 

interaction when it is in contact with the positive charges of the metals (Fe 3+, Bi3+ and/or 

Gd3+); while Methyl Orange is attracted to the semiconductor particle surface as it is a 

negatively charged dye in H2O. 

   

Figure 26. Photocatalytic activity of GdxBi1-xFeO3 (x=0.05, 0.10, 0.15) synthesized 

using 0-07g of P123 

3.4.1.2. GdxBi1-xFeO3 (x=0.05, 0.10) synthesized by the experiment 2 of the complexation 

technique 

Considering the plots of Figure 27, it is clear an efficient RhB degradation achieved by 

the 5% and 10% Gd- BiFeO3 before NaOH leaching, in which the rate and degree of 

degradation of RhB are slightly higher in the sample of 10%Gd- BiFeO3 synthesized 

using half of the solvents. However, once the 5%Gd-BiFeO3 sample was leached with 

NaOH, the degree of degradation decrease, which suggests that SBA-15 is contributing 

to the removal of RhB from the sample. 
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This result goes according to the findings of Srinivasan and collaborators (2015), whereby 

using SnO2 nanoparticles embedded in SBA-15, it was maximized the photocatalytic 

activity during the degradation of RhB; which is attributed to the shorter diffusion path-

length of RhB molecules inside SBA-15.  

 

Figure 27. Photocatalytic activity of GdxBi1-xFeO3 (x=0.05, 0.10) synthesized by the 

second experiment of a complexation technique 

3.4.1.3. BiFeO3 and GdxBi1-xFeO3 (x=0.05, 0.10, 0.15) synthesized by the experiment 1 

of the one-step impregnation technique 

According to the plots presented by Figure 28, it is clear that RhB degradation starts 

during darkness, since the first moment that the dye was in contact with the catalyst. This 

suggests that due to the small size of the particles, efficiently ⋅OH radicals are produced 

and degrade the dye. However, it calls the attention that there is an imperceptible 

difference in degradation between samples synthesized with 0.075, 0.15 or 1.5g of SBA-

15, implying that SBA-15 does not influence the degree or rate of degradation performed 

by 5% and 10%Gd-BiFeO3 samples. 
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Figure 28. Photocatalytic activity of GdxBi1-xFeO3 (x=0.05, 0.10) synthesized by the 

first experiment of the one-step impregnation technique 

Regarding the analyzed samples, 5%Gd-BiFeO3 synthesized using 0.3g of SBA-15 have 

a greater 49% degradation achieved at 2,16E-03 min-1, which suggests by the one-step 

impregnation technique, doping of Gd with 5% and using 0.3g of SBA-15 is ideal. 

Additionally, as it is presented in Figure 29, BiFeO3 samples synthesized by this 

technique exhibit similar 19-34% of degradation that is independent of the 0.075-0.3g of 

SBA-15; confirming that the variation does not influence the photocatalytic activity. 

  

Figure 29. Photocatalytic activity of BiFeO3 synthesized varying the SBA-15 from 

0.075-0.3g 
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3.4.1.4. BiFeO3 synthesized by experiment 2 of the one-step impregnation technique 

Considering Figure 30, it is clear that the variation of the ratios between SBA-15 and 

BiFeO3 does not have a negative impact on the degree of degradation, as 10 SBA-15: 1 

BiFeO3 and 3 SBA-15: 1 BiFeO3 achieved an average 80% degradation at a rate of 1.4E-

03 min-1. 

 

Figure 30. Photocatalytic activity of BiFeO3 synthesized using different ratios of SBA-

15 and BiFeO3 

Similar to previously described samples that were synthesized by the complexation 

technique, these samples also display a high removal of RhB since the first moment that 

the catalyst was in contact with the dye. 

Specifically, in order to know if there is degradation and not only absorption, from the 

final material SBA-15 can be released and in that way, it will be identified how much of 

the synthesized material is on it; but it is difficult without decomposing. However, only 

considering the current results, apart from the fact that SBA-15 can absorb RhB much 

better because it is negatively charged in comparison with RhB that is positively charged; 

it must be considered that BiFeO3 has a porous surface area which theoretically also 

absorbs some quantity of the dye, but most likely it just degrades it. 



58 

 

3.4.2. Degrees and rates of RhB degradation of the overall synthesized samples 

By Table 12, where it is presented the percentage and rate of degradation per synthesized 

samples, with or without leaching depending on the specific requirements, it is clear that 

samples synthesized by hard templating techniques where SBA-15 was used, degrade 

more quickly and in a higher degree RhB. Which as previously was described, is 

attributed to the presence of the complex SBA-15-catalyst, in which the dye respectively 

is absorbed and degraded.  

However, regarding samples synthesized by the soft templating technique using P123, it 

was noticeable that 5%Gd-BiFeO3 is the one that achieves an efficient degradation in time 

and amount, when it is compared with the synthesized samples doped with 10% and 15% 

of Gd. And as it was seen in XRD analysis, it is confirmed that the amount of P123 used 

during the synthesis, does not impact the catalysts, as negligible variations of the rate and 

degree of degradation were observed. 

Table 12. Summary of the photocatalytic degradations of RhB 

ID Sample 

Chemical 

used for 

leaching 

k (min-1) % Degradation 

5L 5%Gd- BiFeO3 - 2,98E-03 80% 

10LA 
10%Gd- BiFeO3 (1/2 of 

solvents) 
- 2,69E-03 74% 

10LB 10%Gd- BiFeO3 - 1,59E-03 74% 

2L 
5%Gd- BiFeO3 (Bismuth 

excess) 
CH3COOH 5,37E-04 18% 

R 10 SBA-15: 1 BiFeO3 - 1,40E-03 75% 

3R 3 SBA-15: 1 BiFeO3 - 1,41E-03 93% 

UPS ~ 2 SBA-15: 3 BiFeO3 NaOH 2,84E-04 9% 

A BiFeO3; 0.075g SBA-15 NaOH 4,99E-04 19% 

B BiFeO3; 0.15g SBA-15 NaOH 1,53E-03 34% 

C BiFeO3; 0.3g SBA-15 NaOH 8,04E-04 34% 

E 
10%Gd- BiFeO3; 0.15g 

SBA-15 
NaOH 6,80E-04 28% 
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F 
10%Gd- BiFeO3; 1.5g 

SBA-15 
- 1,06E-03 26% 

Y 
5%Gd- BiFeO3; 0.075g 

SBA-15 
- 1,61E-03 38% 

Z 
5%Gd- BiFeO3; 0.3g 

SBA-15 
- 2,16E-03 49% 

P1 BiFeO3; 0.76g SBA-15 - 8,71E-04 17% 

P2 
5%Gd- BiFeO3; 0.76g 

SBA-15 
- 3,24E-04 53% 

P3 BiFeO3; 1.14g SBA-15 - 3,84E-03 65% 

D1 
10%Gd- BiFeO3; 0.07g 

P123 
- 6,49E-04 21% 

D1 
10%Gd- BiFeO3; 0.07g 

P123 
CH3COOH 1,48E-03 30% 

D2 
10%Gd- BiFeO3; 0.07g 

P123 
- 5,04E-04 18% 

15P 
15%Gd- BiFeO3; 0.07g 

P123 
- 2,17E-04 17% 

G 
5%Gd- BiFeO3; 0.14g 

P123 
- 2,99E-03 53% 

H 
5%Gd- BiFeO3; 0.28g 

P123 
- 2,74E-03 60% 

X 
5%Gd- BiFeO3; 0.07g 

P123 
- 4,46E-03 73% 

4. Conclusions 

Synthetic procedures of soft and hard templating were successfully developed that 

improve the formation of crystalline nanostructured BiFeO3 and GdxBi1-xFeO3 (x=0.05, 

0.10, 0.15), which show enhanced photocatalytic activity for the degradation of dyes, like 

RhB. 

The synthesized materials possess a rhombohedral structure that changes to an 

orthorhombic structure when doping with 5,10 and 15% of Gd. However, the purity of 

some of the samples was diminished by the presence of Bi2O3 that was intended to be 

removed by the leaching process with nitric acid, but it was discovered that once glacial 

acetic acid was in contact with the material, it efficiently can remove the undesirable 

bismuth oxides.  



60 

 

Specifically, the nanomaterials obtained from the soft templating technique, suggests that 

P123 is inert, as the results give the excess to highly porous BiFeO3 particles or even 

BiFeO3 hollow spheres. In addition, Gd doping does not alter the band gaps that go from 

2.48-2.54 eV, but it is needed for the stabilization of the excited electrons. Finally, it was 

observed that 5%Gd-BiFeO3 has higher photocatalytic activity, achieving a 73% of RhB 

degradation at 4,46E-03 min-1. 

Regarding the samples obtained from the hard templating techniques, it was found that 

SBA-15 is inert, as phase purity of BiFeO3 and GdxBi1-xFeO3 (x=0.05, 0.10, 0.15) is 

obtained even under excess of this silica template. In addition, nanoparticles of around 

8nm and 24nm were obtained, respectively by the synthesis of 10%Gd- BiFeO3 (without 

NaOH leaching) using 1.5g of SBA-15 and BiFeO3 with a ratio of 2 SBA-15: 3 BiFeO3. 

This is positive considering that in smaller catalysts, more atoms accumulate in the 

surface, leading to an increase in the surface to volume ratio for the degradation of dyes. 

Another discovery was about the synthesis procedures that imply the use of 2-

methoxyethanol, by which no negative impact was observed on the rhombohedral 

structure of the material, implying that the solvent can be reduced by a half or even less. 

However, it must be used for the formation of Bi/Fe complexes under the presence of TA 

and nitric acid.  

Finally, it was seen that SBA-15 and BiFeO3 can form a composite material with largely 

enhanced photocatalytic activities for RhB degradation. SBA-15 acts like a sponge that 

absorbs the dye while the pure or doped BiFeO3 generates ⋅OH that degrades the dye. 

Therefore, this opens the possibility of a new research project in which experiments can 

be done to find the best technique to synthesized composite materials that can enhance 

even more the photocatalysis activity for the degradation of dyes. 
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