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RESUMEN	  

Existe un progreso considerable con hidrogeles para aplicaciones de liberación de fármacos 
en años recientes, pero todavía existen retos substanciales. La síntesis y caracterización de un 
hidrogel fue formado utilizando PVA y almidón o almidón oxidado (con 5% cloro activo) 
con el método de freezing-thawing. Los hidrogeles de almidón nativo u oxidado/PVA fueron 
evaluados químicamente con espectroscopia infrarroja con transformada de Fourier (FTIR), y 
físicamente vía ensayos de absorción de agua y erosión, conjunto con análisis termo 
gravimétricos. La caracterización morfológica se realizó con microscopía electrónica de 
barrido (SEM), la cual reveló que los hidrogeles que contenían almidón nativo tenían una 
estructura organizada; por el otro lado, los ensayos de erosión revelaron que las 
formulaciones de hidrogeles que contenían almidón oxidado tenían una menor degradación. 
Los hidrogeles fueron evaluados como transporte para liberación de ibuprofeno y resultaron 
efectivos para liberación con un modo sostenible, con una cinética de liberación dependiente 
de cada formulación de hidrogel. La combinación de hidrogel propuesta representa un 
material adecuado para potenciales aplicaciones biomédicas, particularmente para liberación 
controlada de fármacos, y por lo tanto puede ser posteriormente probada para cyto- y 
biocompatibilidad. 
 

Palabras clave: Liberación controlada de fármacos; almidón modificado; PVA; ibuprofeno. 
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ABSTRACT	  

There has been considerable progress in recent years in hydrogels for drug delivery 
applications but substantial challenges remain. Synthesis and characterization of a hydrogel 
were formed using PVA and starch or oxidized starch (with 5% active chlorine) with a 
freezing-thawing method. The native and oxidized starch/PVA hydrogels were evaluated 
chemically through Fourier transformed infrared spectroscopy (FTIR), and physically via 
water absorption and erosion assays, along with thermogravimetric analyses. Morphological 
characterization was carried out with scanning electron microscopy (SEM), which revealed 
that native starch hydrogels had an organized structure; on the other hand, erosion assays 
revealed formulations containing oxidized starch represented lower retrogradation of the 
hydrogels. The hydrogels were evaluated as carriers for ibuprofen release and resulted 
effective when delivering ibuprofen in a sustained fashion, with the release kinetics 
dependent on hydrogel formulation. The proposed hydrogel represent suitable materials for 
potential biomedical applications, particularly for controlled drug delivery, and could thereby 
be further tested for cyto- and biocompatibility, 
 

Key words: controlled drug delivery; modified starch; PVA; ibuprofen.	  
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Abstract: 

 There has been considerable progress in recent years in hydrogels for drug 

delivery applications but substantial challenges remain. Synthesis and characterization 

of a hydrogel were formed using PVA and starch or oxidized starch (with 5% active 

chlorine) with a freezing-thawing method. The native and oxidized starch/PVA 

hydrogels were evaluated chemically through Fourier transformed infrared spectroscopy 

(FTIR), and physically via water absorption and erosion assays, along with 

thermogravimetric analyses. Morphological characterization was carried out with 

scanning electron microscopy (SEM), which revealed that native starch hydrogels had 

an organized structure; on the other hand, erosion assays revealed formulations 

containing oxidized starch represented lower retrogradation of the hydrogels. The 

hydrogels were evaluated as carriers for ibuprofen release and resulted effective when 

delivering ibuprofen in a sustained fashion, with the release kinetics dependent on 

hydrogel formulation. The proposed hydrogel represent suitable materials for potential 

biomedical applications, particularly for controlled drug delivery, and could thereby be 

further tested for cyto- and biocompatibility,  

 

Keywords: controlled drug delivery; modified starch; PVA; ibuprofen.  
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1. Introduction 

 Hydrogels are polymeric materials that are non-soluble in water but have a great 

capacity of its absorption. While absorbing water, hydrogels grow considerably by 

volume, while maintain their shape and elastic characteristics (Aristizábal	  &	  Sánchez,	  

2007). Hydrogels can be formulated from virtually any water-soluble polymer in a 

variety of physical forms, including, micro particles, nanoparticles, coatings and films 

(Hoare & Kohane, 2007). There structures are commonly used in experimental 

medicine for a wide range of applications including tissue engineering, regenerative 

medicine, cellular immobilization and as barrier materials (Hoare & Kohane, 2007; 

Rosillo, 2015) The unique physical properties of these materials have sparked particular 

interest in their use in drug delivery applications. The chemical structure of hydrogels 

containing groups such as: -OH, -COOH, -CONH2 and –SO2H make them highly 

hydrophilic (Escobar et al., 2002). As drug delivery carriers, they offer the possibility to 

control physiological and biochemical processes once introduced in the organism (Sáez 

et al., 2003). Some models propose a system of a hydrophilic/hydrophobic solute, drug 

and an orientation group incorporated in the bio stable polymeric matrix (Escobar et al., 

2002).  

 Poly(vinyl alcohol) (PVA) is a biopolymer that has been widely used in 

biomedical applications (Zhang, Xia and Zhao, 2012). PVA hydrogels have been 

extensively studied and considered as one of the most suitable hydrogels, via chemical 

or physical crosslinking, for biomedical applications due to its biocompatibility and 

non-toxicity (Zhang, Xia and Zhao, 2012). In the last decades, however, the need of 

physically cross-linked hydrogels has been potentially increased to avoid the use of 

chemical reagents (crosslinkers and initiators) that can be toxic or that can affect the 

nature of the entrapped substances (e.g. proteins, drugs, and cells) (Kamoun et al., 
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2015). The crosslinking process of PVA by the freezing-thawing method has been used 

since 1975. The crosslinked polymeric matrix is obtained by exposing a PVA aqueous 

solution to repetitive freezing-thawing cycles which induce crystallization and result in 

a networked hydrogel structure (Kenawy, et al., 2014). However, to obtain structures 

that can have important mechanical characteristics, and can be easily manipulated, the 

concentrations of PVA used are usually high, and, considering that a clinical grade is 

needed, this would make any potential product economically unfeasible. Thus, it would 

be advantageous to find a material that could reinforce hydrogels made with lower PVA 

concentrations. Modified starches represent an example of these materials. 

 Starch is a natural polysaccharide composed of two structural components: 

amylose and amylopectin (Reis et al., 2007). This biopolymer is widely used for 

medical and pharmaceutical applications as its native and derivative forms are 

biocompatible and biodegradable (Kamoun et al., 2015). Nevertheless, the biggest 

technological problems and applications that hinder their use are high water vapor 

permeability and low mechanical resistance; thus, to improve their properties, starches 

can be chemically modified (Hu, Chen, & Gao, 2009). Starch oxidation allows the 

formation of carbonyl and carboxyl groups in the glucan chain by a hydroxyl group 

substitution, which increases the stability in water and film forming capacity (Fonseca 

et al., 2014). Starch has a poor hydrophilicity and it cannot form a stable hydrogel 

alone; thus, an effective method is adding natural and synthetic polymers to meet the 

advantages of each other (Kaetsu, 1996). Limited studies have been reported on 

synthetic PVA/starch hydrogels and their derivatives, and these two materials could 

potentially be combined in order to decrease the amount of PVA, and, at the same time, 

improve starch’s properties. Therefore, the present study proposes the use of a freezing-

thawing method to synthesize a stable hydrogel, based on PVA and oxidized cassava 
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starch, which can be used as a potential carrier for Ibuprofen controlled release, in order 

to obtain a medium with high response, minimum side effects and a prolonged 

efficiency in the organism. 

 

2. Materials and methods 

2.1. Chemical and biological materials 

 Cassava was obtained from local stores (Ecuador) for starch extraction. Sodium 

hypochlorite solution containing 5% active chlorine was used for starch oxidation. 

Sodium Hydroxide (S318-1000, Fisher Scientific), Hydrochloric acid (A466-500, 

Fisher Scientific), Hydroxylamine hydrochloride (ACS Reagent Grade, 5470-11, 

ACROS Organics), Poly vinyl alcohol (Mowiol 28-99, ALDRICH), Sodium chloride 

(99,5% AR/ACS, LOBA CHEMIE PVT. LTD.), Sodium Phosphate, Dibasic, 

Anhydrous (3828-01, J.T.Baker), Potassium chloride (6858, Mallinckrodt), di-

Potassium hydrogen phosphate, anhydrous GR for analysis (1.05104.1000, MERCK), 

Ibuprofen (≥98% GC, I4883-10G, SIGMA-ALDRICH) were used as received. 

 

2.2. Starch extraction 

 Cassava starch was obtained according to the method described by Liu, weber, 

Currie and Yada (2003), with some modifications. Cassava tubers were washed, peeled 

and sliced. The samples were soaked in distilled water by a 1:2 proportion and blended 

for 5 minutes. The pulp was filtered and allowed to sediment for 12 h. The starch then 

was washed three times with distilled water and finally dried at  40°𝐶. 
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2.3. Starch Oxidation 

 Starch oxidation was performed according to the method described by Dias et al. 

(2011). A starch solution was prepared suspending 200 g of dry starch in 500 mL of 

distilled water and heated at 40°𝐶 under continuous stirring. The pH was adjusted to 7.0 

with 0,5 M NaOH and 0,5 M HCl while sodium hypochlorite was added in an interval 

of 20 min, using a chlorine active concentration of 1 g/100 g. After the addition of 

sodium hypochlorite, the pH value was maintained at 7,0 for 60 min. The starch slurry 

was then vacuum filtered, washed thoroughly with distilled water and dried at 40°𝐶. 

 

2.4. Carbonyl & Carboxyl content 

 Carbonyl and carboxyl content was determined as described by Guerra et al. 

(2011). For Carbonyl quantification, 4 g of dry basis (d.b.) starch were suspended in 

100 mL of distilled water, and gelatinized at 80°𝐶, with continuous stirring in a heating 

plate, and then stored at 40°𝐶. The pH was adjusted to 3,2 with 0,1 M HCl, and 15 mL 

of hydroxylamine chlorine was added (the hydroxylamine solution was prepared by 

dissolving 25 g of reagent grade hydroxylamine chloride in water, adding 100 mL of 0,5 

M NaOH in 500 mL distilled water). The samples were covered with parafilm, stored 4 

h in an oven at 38°𝐶, and titrated to pH 3,2 with 0,1 M HCl. The carbonyl content is 

calculated by Eq. (1), expressed as the quantity of carbonyl groups per 100 glucose 

units (CO/100GU): 

 

!"
!""!"

= !"!!" ×!×!,!"#×!""
!

  (1) 

 



12 
 

Where, 𝑉𝑏 is the volume of HCl used for the blank (mL), 𝑉𝑠 is the volume of HCl 

required for the sample (mL), 𝑀 is de molarity of HCl and 𝑊 is the sample weight 

(d.b.). 

 To determine the carboxyl content, 5 g d.b. starch were suspended in 25 mL 

distilled water, stirred for 30 min and centrifuged for 10 min at 5000 rpm. The starch 

was washed with distilled water, resuspended in 300 mL of distilled water, and 

gelatinized in a heating plate with continuous stirring for 30 min. The heated samples 

were titrated to pH 8,2 with 0,01 M NaOH. The carboxyl content was expressed as the 

quantity of carboxyl groups per 100 glucose units (COOH/100GU), calculates by Eq. 

(2): 

 

!""#
!""!"

= !"!!" ×!×!,!"#×!""
!

  (2) 

 

Where, 𝑉𝑠 is the volume of NaOH required for the sample (mL), 𝑉𝑏 is the volume of 

NaOH used to test the blank (mL), 𝑀 is the molarity of NaOH and 𝑊 is the sample 

weight (d.b.). 

 

2.5. Hydrogel preparation 

 A cross-linked PVA and starch hydrogel was prepared using the 

freezing/thawing method described by Zhang, Xia and Zhao (2012), with some 

modifications given that the method was developed for PVA only. Starch, modified or 

native, was dissolved in distilled water in a boiling bath until complete gelatinization. 

PVA (Mowiol 28-99, ALDRICH) was then added under vigorous stirring at ~95°𝐶; the 

mixture was maintained at constant homogenization for 120 min. After complete 

homogenization, formulations were poured in 2-inch diameter petri-dishes. The mold 
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was frozen at −20°𝐶 for 3h, followed by thawing at room temperature for 12 h. The 

different formulations were prepared as presented in table 1. At this stage, the idea was 

to characterize different formulations to assess which of them would be suitable for 

subsequent ibuprofen encapsulation. 

 

Table 1. Hydrogel formulations based on PVA and starch (native or modified) 

 

Hydrogel 
Formulation 

PVA 
concentration    
(% 𝑤/𝑣) 

Native Starch 
concentration    
(% 𝑤/𝑣) 

Oxidized Starch 
concentration    
(% 𝑤/𝑣) 

Ibuprofen 
concentration 
(mg/mL) 

PVA10 10 0 0 10 
PN10 10 10 0 10 
PO10 10 0 10 10 
PN15 10 5 0 10 
PO15 10 0 5 10 
PN5 5 5 0 10 
PO5 5 0 5 10 
PN51 5 10 0 10 
PO51 5 0 10 10 
 

2.6. FTIR Analysis 

 Analyses were conducted in a Fourier transformed infrared spectrometer; model 

Cary 630 FTIR (Agilent Technologies) for the native and oxidized starches, as well as 

for the different hydrogel formulations. Spectra were acquired in the region of 4000-500 

cm-1. 

 

2.7. Thermal Analysis 

 Thermogravimetric Analyses were performed using a thermogravimetric 

analyzer TGA Q500, from 25 to 500 C with samples with 4x4x4 mm measurements. 
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2.8. Scanning Electron Microscopy (SEM) 

 Film morphological analyses were carried out in a JEOL JSM-IT300 Scanning 

Electron Microscope (Tokyo, Japan). Samples were placed on metallic stubs with 

carbon tape. Images were obtained at a potential of 5 kV and 30 Pa. Film samples of the 

different hydrogels were previously lyophilized.  

 

2.9. Water-uptake, water absorption mechanism and erosion 

 Water absorption, water-uptake and erosion assays were carried out by the 

methods described by Castro et al. (2017), slightly modified. Water-uptake, also known 

as swelling degree, was determined by placing the fresh hydrogels in contact with 3 mL 

of a phosphate buffered saline (PBS) solution (the solution was prepared by adding 

79,99 g NaCl, 2,005 g KCl, 14,394 g Na2HPO4 and 2,4008 g KH2PO4 to 1 L distilled 

water and the pH was adjusted to 7,2-7,4). Weight changes were registered at 5, 15, 30, 

60 min, 2, 3, 4, 5, 24, 48, 72 h at room temperature and at 37°𝐶. Water-uptake was 

calculated according to Eq. (3).  

 

𝑊𝐴𝑀\𝑊𝑎𝑡𝑒𝑟 − 𝑢𝑝𝑡𝑎𝑘𝑒 % = (!"!!!)
!!

×100  (3) 

 

Where 𝑊1 is initial weight of the hydrogel and 𝑊𝑡 is the weight of the hydrogel after 

contact with PBS at 𝑡 time. 

Water absorption mechanism was determined with the same process as water-

uptake but starting with completely dry hydrogels (xerogels). Water absorption was 

calculated according to Eq. (3). After the samples were hydrated, they were introduced 

in an oven at 40°𝐶 for 24 h and weight variations were recorded in order to determine 

erosion, percentage through Eq. (4). 
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𝐸𝑟𝑜𝑠𝑖𝑜𝑛 % = (!!!!!)
!!

×100  (4) 

Where 𝑊1 is initial weight of the hydrogel and 𝑊3 is the weight of dry hydrogels after 

erosion. 

 

2.10. Ibuprofen encapsulation and release 

 Ibuprofen was incorporated into the hydrogels at a concentration specified in 

table 1. The same process as the hydrogel preparation and the ibuprofen was added 

before the freezing stage at 40°𝐶 hydrogel temperature. The Ibuprofen release was 

performed according to a modification of the process described by Castro et al. (2017). 

The hydrogels with ibuprofen were cut into 5 mm diameter circles, placed at 37°𝐶 in 

1mL of PBS. The supernatant was collected and replaced with fresh PBS at 15, 30, 60, 

120, 180, 240, 300, 360 min, 24 and 72 h. Four samples of each hydrogel formulations 

were tested for Ibuprofen release. The supernatant was placed, with 2mL PBS, in a 

cuvette, and the optical density was determined at 222 nm in a CECIL CE 2041 UV-

VIS spectrophotometer. A calibration curve was built with solutions of known 

concentrations of ibuprofen in PBS. The amount released at each time point was then 

calculated, and its kinetics was expressed as the cumulative release of ibuprofen in time. 

 

2.11. Statistical analysis 

All assays were performed with three samples of each formulation, and four in 

the case of ibuprofen release. The results are expressed as the average ± standard 

deviation. An analysis of variance (ANOVA) was also applied, and multiple pairwise 
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comparisons were carried out using the Turkey-HSD method with a 95% confidence 

level (p<0.05). 
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3. Results and Discussion 

3.1 Oxidized Starch Characterization 

 The carbonyl and carboxyl contents of native and oxidized starch are shown in 

table 2.  

 

Table 2. Carbonyl and carboxyl content of native and oxidized cassava starch 

Starch Carbonyl content 
(CO/100 GU) 

Carboxyl content (COOH/100 
GU) 

Native 0,0330 ± 0,0321 - 
Oxidized 0,0959 ± 0,0456 0,0463 ± 0,0445 
GU: glucose units.  

 

The presence of carbonyl and carboxyl groups in oxidized starches is due to 

oxidation of starch molecules, particularly amylose, in carbonyl groups and then the 

carboxyl groups (Fonseca et al., 2014). There have been reports that there is a gradual 

increase in the carbonyl and carboxyl contents in starch with the increasing oxidation 

(Spier et al., 2013). The results obtained in this assay are similar to those reported by 

Fonseca et al. (2011) results for the oxidation of potato starch with the 1g/100 g 

concentration of active chlorine. However, differences persist as oxidized starches 

depend on various factors such as the starch source, oxidant type and concentration, 

time, pH and temperature of reaction. 

 

 SEM micrographs of native and oxidized starch granules are shown in Fig. 1, 

displaying both granules with a semispherical form. The oxidation process affected 

neither the morphology nor the size of the granules. However, there are other studies 

that have shown that oxidation can affect the surface in the granule with the presence of 

pores, holes, or a very smooth surface (Kuakpetoon & Wang, 2008; Fonseca et al., 
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2014). It is believed that this is because, in those studies, stronger oxidation agents, such 

as sodium periodate, are used, or physical processes as gelatinization are used. 

 

Fig. 1. Scanning electron micrographs of cassava starches: (a) native starch and (b) oxidized starch with 

1g/100 g of active chlorine.  

 

3.2. Hydrogel structural analyses 

 Fresh hydrogels from different formulations are presented in Fig. 2. The 

physical macromolecular structure varies in hydrogels containing oxidized starch and 

the ones containing native starch, such as texture, strength, color and opacity as shown 

in Fig. 2. Hydrogels containing oxidized starch presented a higher opacity and a whited 

color, these also had higher strength characteristics and a more stable structure when 

compared to the same formulations containing native starch.  

 

(a)	   (b)	  

(a)	   (b)	  

(c)	   (d)	  
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Fig. 2. Hydrogel synthesis: (a) PO10 (PVA 10% oxidized starch 10%), (b) PN10 (PVA 10% native starch 

10%), (c) PO5 (PVA 5% oxidized starch 5%) and (d) PN5 (PVA 5% native starch 5%).  

Morphological analysis of lyophilized hydrogels with different formulations was 

performed by SEM, as presented in Fig. 3. 

 

Fig. 3. Scanning electron micrographs of lyophilized hydrogels porosity (shown by the arrows): (a) PN5 

(PVA 5% native starch 5%) at 2 kx,  (b) PN51 (PVA 5% native starch 10%) at 2 kx, (c) PO5 (PVA 5% 

oxidized starch 5%) at 2 kx  and (d) PO51 (PVA 5% oxidized starch 10%) at 2 kx.  

 

For the lyophilized hydrogels, there are different structures for the different 

formulations. Hydrogels in Fig. 3 present different types of porosity that vary in size 

and structure. In Fig. 3 (a) the lyophilized hydrogel containing 5 % native starch looked 

more organized with an external and internal porosity that present different pore sizes, 

while, in Fig. 3 (b) (which contained 10% native starch) smoother area with some 

porosity in the hydrogel matrix can be seen, though there is a nano-porosity within its 

(a)	   (b)	  

(c)	   (d)	  
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structure and an internal porosity. Samples using oxidized starch Fig. 3 (c) and (d) 

presented a higher porosity in both cases but with a less organized structure, with (d) 

containing a larger pore size; the hydrogel matrix presented in these samples had a 

different plastic structure which can be ascribed on a different interaction between PVA 

and oxidized starch when comparing to PVA and native starch as shown in Fig. 3. The 

porosity arrange has similarities with a hybrid N-Siccinyl chitosan-dialdehyde starch 

hydrogel presented by Kamoun (2016) for that it can be seen that the structure will be 

subjected to changes in their porosity arrange and characteristics due to the starch 

content and its modification. 

 

3.3. FTIR analysis 

 Fig. 4 shows the infrared absorption spectra for different hydrogel formulations. 

The main absorption bands were observed at 3650-3590 cm-1 that correspond to –OH 

stretching, 2880-2900 cm-1 that correspond to a C-H stretching, 1200-1000 cm-1 from a 

C-O stretching. The development of small peaks at 1710 cm-1 and at 1630 cm-1 is 

attributed to C=O and C=C stretching frequency groups that are present in starch (Reis 

et al., 2007; Da Róz et al., 2010). There is little variation among the spectra for the 

samples of each composition. In this case the percentage of PVA was maintained at 

10% while starch was varied according to the samples described in table 1. Although 

the variation is little there are still signals from more or less stretching between the main 

absorption bands, as expected the spectra from the different samples were to assimilate 

to a Freeze-thawed PVA spectra; as explained it can be easily observed a C-H broad 

alkyl stretching band at 2850 cm-1 the strong-OH group band for free unreacted alcohol 

and hydrogen bonded bands at 3600-3200 cm-1 which are associated with freeze-thawed 

PVA (Kenawy et. al, 2014). 
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Fig. 4. Wavenumber vs absorbance; FTIR analysis. (a) PN10 (PVA10%AN10%), (b) PN15 

(PVA10%AN5%,) (c) PO10 (PVA10%AO10%), (d) PO15 (PVA10%AO5%). 
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(b)	  

(c)	  

(d)	  
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3.4. Thermal analysis 

 Thermal stability is one of the important properties of a material that determines 

its usability at high temperature applications, but it also gives an insight into the 

stability of the hydrogels overall (Agustin et al., 2014). Results from the 

thermogravimetric analyses are presented in Fig. 5 for different formulations.  

 

 

Fig. 5. TGA thermographs of PVA/starch films; Temperature vs Weight. PN51 (PVA 5% native starch 

10%); PN5 (PVA 5% native starch 5%); PO51 (PVA 5% oxidized starch 10%); PO5 (PVA 5% oxidized 

starch 5%). 

 

The first degradation step at 25− 110°𝐶 can correspond the removal of traces of water 

of solvent vapor. The second degradation step at 220− 400°𝐶 results in the highest 

residual weight loss due to decomposition and volatilization of organic components of 

the polymer. The loss in weight of the hydrogels varied depending of the composition 

of each film. After that range the third decomposition occurs where the curves become 

flat and mainly the organic residues are completely volatilized (Kenawy et al., 2014). 

Fig. 5 represents the different degradation profiles as percent of weight loss; at the 

second degradation step the sample containing 5% PVA and 5% oxidized starch had the 
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highest weight-loss rate while he curves that contain 5%PVA with 5% native starch had 

a notorious similarity with the ones from 5%PVA with 10% oxidized starch. The 

degradation profiles are similar to the degradation curve for pure PVA reported by 

Minhas et al. (2013), where the second degradation step was at 225− 325°𝐶 where it 

showed a 20% weight at 325°𝐶. 

When compared to cassava starch film degradation profile presented by Perotti 

et al (2014) the curves showed a great difference as the pure starch presented one more 

degradation step and a second degradation rate at 275− 320°𝐶 where it showed a 40% 

weight at 320°𝐶. It seems that the formulation with 5% oxidized starch had a high 

degradation, but it leaves a higher residue as shown in the third step from the curve; 

when adding a higher percentage of oxidized starch it shows a lower degradation over 

temperature and also leaves less residue. The opposite occurred in the formulations 

containing native starch, as the formulation containing 5% native starch presented a 

lower degradation over time and a lower residue than the composition with 10% native 

cassava starch. Fig. 5 showed that the formed hydrogels could be processed at 

reasonably higher temperature than the PVA component presenting PO51 and PN5 

formulations with a higher temperature stability. 
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3.5. Water-uptake, water absorption and erosion 

The water-uptake (%) capacity is indicated in Fig. 6 and 7 for assays at 37°𝐶 in 

PBS solution. Fig. 6 indicates a significantly different water-uptake capacity between 

formulations containing native starch; the highest water-uptake profile between these 

formulations is the one with the PVA 10% and native starch 10% followed by the PVA 

5% and native starch 10%. The hydrogel formulation PVA 10% and native starch 5% 

showed that a lower composition of native starch results in a lower water-uptake 

capacity; furthermore this formulation had a very similar water-uptake capacity as the 

PVA 10% pure hydrogel (without starch), and the other formulations have a higher 

capacity when compared to the PVA 10%. 

 

Fig. 6. Water uptake percentage for the hydrogel formulations:  PVA10: PVA10%, PN10: PVA 10% 

Native starch 10%, PN15: PVA10% Native starch 5%, PN51: PVA 5% Native starch 10%. 

 

 Fig. 7 shows the water uptake capacity for formulations containing oxidized 

starch. For both formulations containing PVA 10% and PVA 5% the water-uptake 
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capacity increase as the amount of oxidized starch increase in the composition of the 

hydrogel. The hydrogel with PVA 5% and oxidized starch 10% was the profile, which 

resembles the most to the pure PVA 10% hydrogel. 

 

Fig. 7. Water uptake percentage for the hydrogel formulations:  PVA10: PVA10%, PO10: PVA 10% 

Oxidized starch 10%, PO15: PVA10% Oxidized starch 5%, PO5: PVA 5% Oxidized starch 5%, PO51: 

PVA 5% Oxidized starch 10%. 

 

 Water-uptake capacity in both formulations containing native and oxidized 

starch presented the highest water-uptake the first 5 hours, a pattern similar to that 

reported by Reis et al. (2007) on films of corn starch modified with glycidyl 

methacrylate. After this period, most of the formulations reached equilibrium until 72 h. 

When compared both Fig. 7 and 8 it is shown that the formulations containing native 

starch had higher water uptake than the ones containing oxidized starch; nevertheless, 

hydrogels with oxidized starch seemed to be more stable as the standard deviations are 

clearly lower, this result was suspected as the structural analysis for the formulations 

correlated the content of oxidized starch with a higher stability, as observed in SEM. 
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Water absorption capacity is presented in Fig. 8. Unlike the water-uptake the 

hydrogel that presented the least capacity of water absorption was the one with the 

formulation of PVA 10% and native starch 10%, while formulations containing PVA 

5% presented a relation with the quantity of starch and its water absorption capacity: 

when the content of the starch was higher the capacity was lower. Nonetheless the 

hydrogel containing native starch 5% had an unstable water absorption capacity as its 

curve shows a decrease over time. The water absorption for the hydrogels formulations 

containing oxidized starch presented in Fig. 8 (b) presented a similar profile form. The 

water absorption capacity in this case revealed that when a higher percentage of starch 

the water absorption capacity decrease as shown in Fig. 8 (b) for hydrogels containing 

PVA 5%. 

As in the case of water-uptake capacity, the water absorption assay showed that 

the hydrogels formulations containing native starch had a higher water absorption 

capacity; however, while in the assay, the native starch hydrogels were not stable and 

seem to start dissolving in the PBS. The assay also showed that the formulations with 

oxidized starch presented a clearly higher stability over time, and presented lower 

standard deviations as shown in Fig. 8. The reduction in water solubility of the films of 

oxidized cassava starch can be attributed to the strong intermolecular bond promoted by 

the oxidation of the starch, which results in a reduce of the capacity to absorb water of 

the film (Zavareze et al., 2012). This assay showed that the higher water absorption 

occurs in the first 3 hours and then it stabilizes at 5 hours in most of the cases.  The 

hydrogels presented a great capacity of water-uptake and water absorption as expected, 

thereby making all the formulations good candidates as a carrier for a drug delivery 

system.  
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Fig. 8. Water absorption percentage for the hydrogel formulations. (a) Formulations containing native 

starch PN10: PVA 10% Native starch 10%, PN5: PVA5% Native starch 5%, PN51: PVA 5% Native 

starch 10%. (b) Formulations containing oxidized starch: PVA10: PVA10%, PO10: PVA 10% Oxidized 

starch 10%, PO15: PVA10% Oxidized starch 5%, PO5: PVA 5% Oxidized starch 5%, PO51: PVA 5% 

Oxidized starch 10%. 
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Erosion revealed to be less pronounced for all formulations that contained 

oxidized starch, as shown in table 3. There is a correlation between the starch content 

and the % of erosion; in compositions containing PVA 5% in both cases for native and 

oxidized starch the erosion decreases as the percentage of starch increases in the 

hydrogel composition. Oxidized starch has an increased quantity of carbonyl and 

carboxyl groups, as shown in table 2, which result in lower retrogradation of the 

hydrogel (Fonseca et al., 2014); hence they resulted in stronger and more stable 

hydrogel structures; this can also be seen as the standard deviation of the materials with 

oxidized starch are relatively low when compared to the ones containing native starch. 

The oxidation with active chlorine affects differently the characteristics of starches, it 

present a lower water solubility, which enables the use of the hydrogels in product with 

higher water activity as compared to the native starch hydrogels, thus the erosion will be 

lower in the hydrogels with oxidized starch. 

 

Table 3. Erosion of hydrogels after water absorption analyses  

Hydrogel Composition Erosion (%) 
PN10 PVA 10% native 

starch 10% 
65,78 ± 21,23 
 

PO10 PVA 10% oxidized 
starch 10% 

30,07 ± 3,87 

PN5 PVA 5% native 
starch 5% 

58 ±  19,59 

PO5 PVA 5% oxidized 
starch 5% 

22,82 ± 8,48 

PN51 PVA 5% native 
starch 10% 

30,48 ± 17,12 

PO51 PVA 5% oxidized 
starch 10% 

22,64 ± 5,40 
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3.6. Ibuprofen release assay 

 Release assay analyses provided a preliminary approach for ibuprofen release as 

illustrated in Fig. 9 and 10, for which a calibration curve for ibuprofen in PBS was 

made. Release assay revealed a similar ibuprofen profile in every hydrogel formulation. 

The high water content of most hydrogels typically results in relative rapid release of 

drugs from the gel matrix (Hoare & Kohane, 2007). Fig. 9 and 10 shows an increasing 

drug release in 72 hours, the drug in every composition keeps a constant dissolution rate 

over time leading to an order 0 kinetic release (Sáez, 2003). Thus making all the 

hydrogel formulations viable as carriers for a controlled drug release.   

 

 

Fig. 9. Ibuprofen cumulative release profile for the hydrogel formulations:  PVA10 (PVA10%), PN10 

(PVA 10% Native starch 10%), PN15 (PVA10% Native starch 5%), PN5 (PVA 5% Native starch 5%), 

PN51 (PVA 5% Native starch 10%). 
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Fig. 10. Ibuprofen cumulative release profile for the hydrogel formulations:  PVA10 (PVA10%), PO10 

(PVA 10% Oxidized starch 10%), PO15 (PVA10% Oxidized starch 5%), PO5 (PVA 5% Oxidized starch 

5%), PO51 (PVA 5% Oxidized starch 10%). 

 

 Ibuprofen release assays revealed that hydrogels containing native starch and 

oxidized starch in most of the cases presented that in when the formulations increased 

the percentage of starch, the ibuprofen cumulative release profile also increase; this 

result may be due to its dependence to the water-uptake capacity of each of the 

formulations so its relation will be similar. Similar to water-uptake, the release of 

ibuprofen also presented the higher release the first 6 hours and then an almost linear 

increase as expected (in this case is a cumulative release profile, in the case of the 

water-uptake this would represent the stability or equilibrium profile). The release 

profile is similar to those reported by Apopei et al. (2016) where the cumulative release 

presented an increasing rate over time in an oxidized starch/poly(N,N-

dimethylaminoethyl methacrylate) cryogels in a controlled release evaluation. The 

ibuprofen release profiles resemble the ones from PVA-hydroxyethyl starch presented 
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in Kenawy et al. (2014). The relation with the pure PVA release and the rest of the 

curves had also a similar pattern than the swelling capacity profiles presented in Fig. 6 

and 7 as the curves with native starch represented a higher cumulative release profiles, 

while the oxidized starch hydrogels had lower cumulative release profiles. The higher 

water-uptake and water released could be correlated to the internal and external porosity 

on each hydrogel formulations. As seen in Fig. 3 native starch formulations contained a 

higher porosity and a more organized structure in the polymeric matrix, which could 

lead to a higher capacity of water-uptake, hence a higher drug release rate. 

Nevertheless, as shown in the water uptake, water absorption and erosion assays the 

formulations with oxidized starch provide more stable hydrogels with lower dissolution 

in PBS.  

 

4. Conclusions 

 The oxidation with active chlorine affects the characteristics of cassava starch, 

which seem to have high implications in the evaluated physical and chemical hydrogel 

characteristics. All hydrogels formulations presented an optimal kinetic release profile 

for ibuprofen, extending the duration of release. Slight variations in the release profile 

could be of benefit for applications varying doses of a drug over time and could widen 

the range of applications of these hydrogels. Notably, PVA hydrogels containing 

oxidized starch presented a lower water solubility while in PBS solution at 37°𝐶 when 

compared to native starch/PVA hydrogels, demonstrating, a potential for improved 

stability in a physiological environment. Hydrogels with vary degradation may help to 

address different kinetic issues. Additionally, these hydrogels could expand their 

usefulness in medical applications, such as drug release and tissue-engineering-based 

applications, depending on the success of future biocompatibility tests. 
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