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RESUMEN 

Ocho genes máster han sido identificados como piezas ortogonales que involucran las 

vías de señalización de los pilares del cáncer. Entre estas incluyen proliferación, 

modificaciones metabólicas, resistencia a la muerte celular y otros más específicos de cada 

enfermedad. Los genes selectos tienen diferentes patrones de expresión, es decir, expresados 

al alta o a la baja en células cancerosas en comparación con las sanas. Los genes que se 

encuentran regulados a la baja son WNT1 inducible signaling pathway protein 1 (WISP1, 

NM_003882), Aldehyde Dehydrogenase 4 Family Member A1 (ALDH4A1A, NM_003748) y 

el Transforming Growth Factor-β3 (TGF-β3). Mientras que los genes que se encuentran 

regulados al alta son Small EDRK-rich factor 1A (SERF1A, AF073519), TSPYL5 

(AL080059), Matrix Metalloproteinase 9 (MMP9, NM_004994), H-RAS-Like Suppressor 

(HRASLS, NM_020386) y el Small Integral Membrane Protein 5 (SMIM5, 

Contig24252_RC). Estos genes son decisivos para la predicción de la prognosis en el cáncer 

de mama. 

 

Palabras clave: Cáncer de mama, transcriptoma, expresión genética, firma genética, 

prognosis, metástasis, aprendizaje automatizado, análisis de agrupamiento, selección de 

características, WEKA. 
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ABSTRACT 

Eight master genes were identified at the head of the signaling pathways 

involving various hallmarks of cancer such as proliferation, metabolic modifications, 

resistance to cell death and others affected by the disease. The selected genes have 

different expression patterns predicted to be up-regulated or down-regulated in 

aggressive cancers. Down-regulated genes are WNT1 inducible signaling pathway 

protein 1 (WISP1, NM_003882), Aldehyde Dehydrogenase 4 Family Member A1 

(ALDH4A1A, NM_003748) and the Transforming Growth Factor-β3 (TGF-β3). The 

up-regulated genes are Small EDRK-rich factor 1A (SERF1A, AF073519), TSPYL5 

(AL080059), Matrix Metalloproteinase 9 (MMP9, NM_004994), H-RAS-Like 

Suppressor (HRASLS, NM_020386) and the Small Integral Membrane Protein 5 

(SMIM5, Contig24252_RC). These genes are key features for predicting the prognosis 

in breast cancer. 

 

Key words: Breast cancer, Transcriptome, gene expression, gene signature, prognosis, 

metastasis, machine learning, cluster analysis, feature selection, WEKA. 
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INTRODUCTION 

Breast cancer (BC) is the most frequent tumor in women from developed and 

developing countries (Nandy, Gangopadhyay, & Mukhopadhyay, 2014). The risk factors at 

the origin of the disease are widely known, however anticipating cancer behavior to achieve 

an effective diagnosis, prognosis and treatment is hard. The difficultness is due to the tumor’s 

genetic heterogeneity after the natural selection during its growth and pharmacotherapy. 

Furthermore, the ethnic profile of a tumor varies in its association to cancer susceptibility and 

evolution (Foulkes, Knoppers, & Turnbull, 2015). BC development can also be influenced by 

the life style of the patient as dietary habits, work and perturbation of circadian rhythm 

triggering and supporting the disease (Gilbertson, 2011; Gupta, Mutebi, & Bardia, 2015; 

Harris et al., 2016). The develop of a prognosis tool that groups tumor variation plus been 

able to simplify cancer complexity could mean a better diagnostic tool to foresee its 

aggressiveness, which is fundamental to apply a preventive, curative or palliative treatment 

(Nandy et al., 2014).  

BC sub-types have helped to predict its evolution or responsiveness to different 

therapies (I. J. Beumer et al., 2016; Naoi & Noguchi, 2016). Sub-type classification is based 

on age, size, presence compromised lymph nodes, evidence of metastasis, biomarkers such as 

ERα (Estrogen Receptor-α), PR (Progesterone Receptor), HER2 (Human Epidermal Growth 

Factor Receptor 2), markers of cell division like Ki67, and immunohistochemistry (IHC) to 

distinguish between basal and luminal types (Sims, Howell, Howell, & Clarke, 2007). This 

basic classification of BC sub-type is informative regarding the aggressiveness, observing 

generally that woman younger than 35-40 years diagnosed with the disease have a poorer 

prognosis. The presence of hormone receptors could also determine the type of treatment 

being endocrine or chemotherapy sensitive (Bundred, 2001). For example, the luminal type 

positive for hormone receptors and negative for HER, show low levels of Ki67, present a 
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better prognosis and could be treated only with surgery or with adjuvant endocrine therapy. 

Moreover, this pattern shows lesser sensitivity to chemotherapy which generally works in 

highly proliferative cells (Győrffy et al., 2015; Sims et al., 2007). On the other side, basal 

type of tumors lacks the expression of ERα and PR and are HER2-positive. They are 

genetically instable, and are associated with poor prognosis (Sims et al., 2007). If the cancer 

by histological analysis shows greater tissue dissemination and high proliferation, the 

evidence show association with poor prognosis, but at the same time indicates a good 

sensitiveness for chemotherapy (Győrffy et al., 2015). At the end, using a multiple sub-type 

classification, results in a variable prognosis to each patient. Therefore, affecting the decision 

of the doctor at the time of choosing the treatment to be employed. 

These days, advanced molecular diagnostics based on the analysis of gene expression 

from the patient’s breast biopsies, have emerged to help standard prognostic criteria in an 

early stage BC, when predicting recurrence (Fayanju, Park, & Lucci, 2018; Győrffy et al., 

2015; Kwa, Makris, & Esteva, 2017). Gene expression signatures currently recommended in 

clinical guidelines are: i) Mammaprint™ by Agendia, a 70-gene test recommended for 

patients with stage II or node-negative plus ER-positive or negative BC with less than 5cm in 

diameter. Mammaprint™ was the first genomic test approved by the FDA in 2007. ii) The 

FDA approved Prosigna (Prediction Analysis of Microarrays 50, PAM50) in 2013 for the 

analysis of tumors positive for hormone receptors with or without lymph-node presence. iii) 

Even if not yet approved by the FDA, Oncotype DX a 21-gene test, for the possibility of 

recurrence after receiving chemotherapy, was one of the earliest molecular tests clinically 

analyzed (Kwa et al., 2017). Other multi-gene signatures such as EndoPredict, 

Immunohistochemistry 4 (IHC4), the Genomic Grade Index, among others are currently 

under development and testing, waiting for its analytical and clinical validation (Harris et al., 

2016; Kwa et al., 2017; Naoi & Noguchi, 2016). The American Society of Clinical Oncology 
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(ASCO) recommend on its guidelines the use of Oncotype DX and Prosigna in patients with 

HR-positive, HER2-negative and node-negative BC. This is based on their capability to 

accurately and reliably measure the genotype of interest, in order to identify and predict the 

patient survival at an end-point of 5 – 10 years after surgery (Kwa et al., 2017). The ACSO’s 

guidelines in 2016 made a moderate recommendation for Mammaprint as it should not be 

used to guide medical decision when using adjuvant chemotherapy, regarding patients with 

early stage BC, either ER-positive or ER-negative and lymph node status (Kwa et al., 2017). 

In 2017 the American Joint Committee for Cancer (AJCC) recommend the use of Oncotype 

DX™, Mammaprint™, EndoPredict™, Prosigna™ and Breast Cancer Index™, when 

approachable for patients with hormone receptor-positive, HER2-negative and Lymph node-

negative tumors (Giuliano et al., 2017). The usage of genetic test has brought a better 

stratification for ER-positive, HER2-negative, lymph-node negative tumors. Nevertheless, a 

strong in silico analysis validating the strength, reproducibility and clinical impact of the 

genes considered on each signature, is necessary to apply in a multi-gene prognostic tools for 

an everyday clinical practice (Kwa et al., 2017). 

Even if these genetic signatures show great prognosis efficacy, having a massive 

number of genes composing the signature brings incertitude due a lack of accuracy at a 

patient level. This could provide in many cases different risk categorizations and misleading 

tendencies (Dai et al., 2015; Sotiriou & Lambertini, 2017). Additionally, a huge number of 

genes in the signature to be analyze, implies a higher cost for the patients (Y. Li et al., 2017). 

This creates a need to find a reduce number of genes that makes the test more affordable and 

precise for each patient. A multiple effective estimation with a congruent analysis of the 

databases for the development of these signatures is crucial to lower the number of genes. 

Refining the amount of the genes will improve the precision of patient’s prognosis, helping 

the physician to take the most important decisions such as the administration of adjuvant 
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chemotherapy and selecting the most appropriate drug according to the characteristics of the 

patient and the tumor.  

This report focuses on the development of a new genetic signature that predicts the 

prognosis of BC using a comprehensive computational analysis of the distinct patterns of 

cancer gene expression and its validation in vitro. We analyze sets of genes already used for 

diagnosis and prognosis of BC in Mammaprint by means of machine learning and artificial 

intelligence analysis. 
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TOPIC DEVELOPMENT 

Material and methods 

Dry experiment. 

Samples and clinical data. 

78 (Learning Series, LS) and 19 (Test Series, TS) patients with lymph-node negative 

(pN0 or LN-) BC, 55-years old or younger, not having received adjuvant therapy and that 

were part of MP studies (van 't Veer et al., 2002) were used as training and prediction groups, 

respectively. These datasets contained the 70-gene prognosis profile. The expression pattern 

of the 70 genes in the 78 and 19 samples is shown as supporting information 1 (SI1) A and B, 

respectively.  

The LS78 was used to identify a reduce groups of genes whose expression allowed 

distinguishing clinical outcomes. Of the 78 patients, 34 developed distant metastases within 5 

years (bad-prognosis or poor prognosis group, designed here as Positive, and mean time to 

metastases 2.5 years). Patients (44) that remained free of disease after initial diagnosis for a 

period of at least 5 years were assigned to the good prognosis group (i.e. 'good outcome 

group' designed here as Negative, and mean follow-up of 8.7 years). TS19 was used to 

evaluate the predictive power of obtained models. This group consisted of 7 (Negative) 

patients who remained metastasis free for at least five years, and 12 patients (Positive) who 

developed distant metastases within five years. 

Finally, to make a deep validation of the prognosis classifiers, an additional 

independent set of primary tumors from 295 young, LN- and LN+ BC patients was selected. 

These External Prediction Test (EPT295, see also SI1-C/B/D) (van de Vijver et al., 2002). 

Among the 295 patients, 180 had a poor-prognosis signature (positive label) and 115 had a 

good-prognosis signature (Negative label). All patients had stage I or II BC and were younger 

than 53 years old; 151 had LN- disease (EPT151), and 144 had LN+ disease (EPT144). 
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Data processing and feature selection. 

Firstly, beginning from MP LS we carried out the following workflow for data 

reduction: 1) the MDs with NaN (Not-a-Number) values were dropped; and 2) a supervised 

feature selection with regard to the XXX values was performed using an in-house program. 

This program retains the best genes according to the Correlation Subset (Hall, 1999) and 

Relief-F (Robnik-Šikonja & Kononenko, 2003) methods available in the Waikato 

Environment for Knowledge Analysis (WEKA) software (v3.8). This supervised selection 

was repeated until obtaining an only matrix of until 50 genes. 

Once the previous workflow concluded, the two selection methods aforementioned 

and a Shannon Entropy (SE)-based unsupervised method (Godden, Stahura, & Bajorath, 

2000) were applied on the gene’s matrix obtained. Thus, three subsets with the most suitable 

variables were obtained, so that: i) with the Correlation Subset method(Hall, 1999) a subset 

of features highly correlated with the prognosis and lowly correlated among them was 

retained; ii) with the Relief-F method(Robnik-Šikonja & Kononenko, 2003) the features that 

best distinguish among patients that are near each other were retained; and iii) with the SE-

based method(Godden et al., 2000) the features that best yield distinct genes for structurally 

different patients were retained. The SE-based selection was performed with the IMMAN 

software, (Urias et al., 2015) following a discretization scheme equal to 78 bins. These three 

subsets were also shuffled among themselves (ensemble feature selection (Kuncheva, 2014)), 

obtaining four additional subsets. A wrapper-type selection (Kohavi & John, 1997) was also 

applied on all the previous subsets, by using the Best-First method as search strategy, the 

accuracy (Q%) as evaluation measure, and the k-Nearest Neighbor (k-NN),(Altman, 1992) 

Multilayer Perceptron (MLP),(Murtagh, 1991) Random Forest (RF) (Breiman, 2001) and 

Support Vector Machine (SVM), (Shevade, Keerthi, Bhattacharyya, & Murthy, 2000) 
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Logistic regression (LR)(Le Cessie & van Houwelingen, 1992), Linear Discriminant 

Analysis (LDA) learning methods. 

Machine Learning Modelling. 

Initially Exploration with LDA. To obtain the binary predictions with statistical 

models developed using prognosis classes for the LS, we followed the criterion that patient 

with experimental xxx were classified as poor prognosis (i.e., Positive), while patients with 

xxx were classified as good prognosis (i.e., Positive). The dependent variable was then 

assigned a value of 1 or -1 when the patient had XXX greater than or lower than the threshold 

of 5 years, respectively. Statistical analysis was carried out with STATISTICA package 

("STATISTICA (data analysis software system)," 2001). The LDA was used to find the 

classifier functions (van de Waterbeemd, 1995) by using the forward stepwise and best subset 

methods for the attribute selection. The tolerance parameter was set to 0.01. By using the 

models, one patient can be classified as either positive, if ∆P% > 0, being ∆P% = [P (+) - P (-

)] × 100, or Negative otherwise. P (+) and P (-) are the probabilities with which the equations 

classify a patient as positive and negative, respectively.  

The quality of the models was determined according to Wilks’ λ, the square of the 

Mahalanobis distance D2, Fisher ratio (F), significance level (p) and the percentage of good 

classification (accuracy, Q). Therefore, parameters like sensitivity ‘hit rate’ (SE), specificity 

(SP), false positive rate (fprate) (also called false alarm rate) and Matthews’ correlation 

coefficient (MCC) were taken into account (Baldi, Brunak, Chauvin, Andersen, & Nielsen, 

2000). Also, the principle of parsimony (Occam’s razor) was considered, in that models with 

high statistical significance but having as few parameters as possible were preferred. 

However, the main criterion to select the best model is based on the prediction statistics for a 

Test Set that were never used in the process of model development (Tropsha, 2010). 
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Individual (base) Models. Subsequently, several individual classification models were 

built using the learning methods aforementioned, which are available in the Weka software 

(v3.8). In detail, the k-NN method was configured with k-values (number of neighbors) 

between 3 and 6 (determined by cross-validation), and the ratio 1/distance was used as 

distance weighting scheme. Moreover, the Puk function (Üstün, Melssen, & Buydens, 2006) 

was used as kernel in the SVM. The remaining learning methods were utilized with the 

respective default configurations. These configurations were also employed in the wrapper-

type selection explained above. It is important to highlight that on the subsets of MDs 

obtained from the wrapper-type selection, only the learning method used in the wrapper was 

employed to build the model. The training assessment was performed through 10-fold cross-

validation. The best and less redundant base (individual) models were retained to build 

ensemble (consensus) models. 

Ensemble (Multi-classification models). The ensemble models were built using the 

Bagging, (Breiman, 1996) Additive Regression(Friedman, 2002) and Stacking(Wolpert, 

1992) procedures; while the consensus models were developed using the Maximum (Max), 

Minimum (Min), Average (AVE) and Weighted Average (WA) aggregation functions. The 

weightings for the WA function were calculated according to Equation 9 described in ref. 

(García-Jacas et al., 2018) whit the ensemble models with a training performance better than 

the one achieved by the best individual model, as well as all the consensus models built, were 

assessed on the TS and ETS sets. In this way, the best models based on the LS were selected 

according to their training and test results. 
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Figure 1: Workflow analysis of the 70 genes towards the ensemble models. 

Applicability domain. 

 

An applicability domain (AD) analysis was carried out to know the behavior of the 

models to perform reliable predictions.(Dragos, Gilles, & Alexandre, 2009; Roy, Kar, & 

Ambure, 2015; Sahigara et al., 2012) This analysis is often performed using only one method 

to determine the structures that fall within the AD of a model (e.g., Liew et al.(Liew, Lim, & 

Yap, 2011) only used an approach based on range, and Aranda et al.(Aranda, Garro Martinez, 

Castro, & Duchowicz, 2016) only used the leverage method). However, there are several AD 

methods that characterize of distinct way the interpolation space stated by the MDs 

used.(Sahigara et al., 2012) So, inspired on the idea of consensus-based decision, five 

approaches (i.e., City-block, Euclidean, Mahalanobis, Range and Density – see refs.(J, N, & 

T, 2005; Netzeva et al., 2005) for a detailed description) were considered in a recent study to 

determine the reliability of the predictions.(García-Jacas, Martinez-Mayorga, Marrero-Ponce, 

& Medina-Franco, 2017) More specifically, if the prediction for a molecule lies outside of the 

bounds in at least two AD methods, then it is considered as unreliable. This approach will be 
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the one used in this report. These AD methods are available in the Ambit Discovery software 

(2008) and they were used with their respective default configurations. 

Clustering analysis.  

Clustering analysis (CAs) are simple and extremely useful non-supervised data mining 

methods to explore relationships that exist among objects and allocate to the same classes the 

similar ones, on the basis of predefined similarity (or dissimilarity) measures (Barnard & 

Downs, 1992; Brown & Martin, 1996). First k-nearest neighbours cluster analysis (k-NNCA), 

also known as hierarchical agglomerative clustering, was performed by using Ward’s 

Linkage and the Euclidean distance as amalgamation rule and proximity function, 

respectively, to have preliminary insight on the ‘‘possible’’ number of clusters that naturally 

exist in the examined data, to be later used in the k-Means Cluster Analysis (k-MCAs). 

To evaluate the statistical quality of data partitions in the clusters a standard analysis of 

variance (ANOVA) for each dimension (variable) was performed. The values of the standard 

deviation (SS) between and within clusters, of the respective Fisher’s ratio and their p level 

of significance, were examined (Johnson & Wichern, 1988; Mc Farland & Gans, 1995). 

Statistical analysis was carried out with STATISTICA package ("STATISTICA (data 

analysis software system)," 2001).  

WET experiment. 

Cell culture.  

The expression profile of the 8 genes analyzed were tested in 3 different cell lines: 

Fibroblasts, MCF-7 and MDA-MB-231. Dr. Patricia Luz from “Los Andes University” in 

Chile donated the primary Fibroblasts obtained from the cell culture of human early birth 

foreskin with informed consent; MDA-MB-231 and MCF-7 are ATCC cell lines. All cells 

were cultured with Dulbecco’s Modified Eagle Medium (DMEM 10%) High Glucose 

(11965; Gibco by Life Technologies, ThermoFisher Scientific, MA, U.S) supplemented with 



18 
 

10% Fetal Bovine Serum (FCS), and Penicillin- Streptomycin (10,000 U/mL) according to 

the manufacturer recommendations. Cells were incubated at 37°C with 5% CO2. The Cells 

passage was performed when cells achieved 80% confluence in a T75 flask with Filter 

(Corning, U.S.) to prevent overgrowth and changes in their gene expression profile. 

Fibroblasts were maintained in culture for 45 days till 6 passages during this time.  

RNA extraction. 

The total RNA was isolated from 2 million cells using PureLink™ RNA Mini Kit 

(12183025; Ambion by Life Technologies, ThermoFisher Scientific, MA, U.S), according to 

the manufacturer’s instructions. RNA quantification was assessed using the Epoch 

Microplate Spectrophotometer (BioTek Instrument, Winooski, VT, USA). RNA was diluted 

with RNase-free H2O to reach a final concentration of 35ng/ l. A dilution of the RNA was 

performed to obtain aliquots and preserve its integrity with a 75 l sample stored at -20ºC and 

a 25 l sample backup stored -80ºC, assays were not repeated more than three times from a 

single aliquot to assure mRNA quality. 

Expression profiles of the 8 genes quantified by RT-qPCR. 

 Real Time quantitative PCR was performed in a StepOne Real-Time PCR System 

(Marca). The SuperScript® III Platinum® SYBER ® Green One-Step qRT-PCR Kit with 

Rox was used in the quantification reaction (11745500; Invitrogen by Life Technologies, 

ThermoFisher Scientific, MA, U.S) in a final 10µl volume. The analyzed genes and primer 

sequence are listed in the SI2. As a standard to the primers, a housekeeping gene was used: 

PUM1 (F:5’AGTGGGGGACTAGGCGTTAG3’; 

R:5’GTTTTCATCACTGTCTGCATCC3’), a positive control was also used with ZNF154 

(F:5’-GGTTTTTATTTTAGGTTTGA–3’; R:5’- 

AAATCTATAAAAACTACATTACCTAAAATACTCTA–3’). The qPCR reaction followed 

the beneath conditions: pre-incubation at 95 °C for 5’; denaturation at 95 °C for 15’’; 
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annealing and extension at 60’ °C for 30’’ (45 cycles for denaturation and extension stages); 

a holding stage at 40ºC for 1’; melting at 95 °C for 15’’; 60 °C for 1’; and 95 °C for 15’’. The 

expression profiles of the 8 genes were obtained estimating the 2-ΔCT and its geometric 

means, duplicates were performed for each gene and cell line. 

Statistical analysis.  

Data was analyzed using GraphPad Prism 6. We performed an un-paired, non-parametric t 

test with Mann-Whitney to analyze the differences among conditions regarding the gene 

expression of the panel, using an alpha-value of 0.05 (*p < 0.05, **p < 0.01, ***p < 0.001, 

****p < 0.0001). 

Results 

 All essays outcomes were divided in two groups. The first group compares each gene 

expression within the three cell lines: Fibroblasts, MCF-7, MDA-MB-231. The second one, 

relates the expression of all genes within one cell line secluded. Figure 1 represents the first 

group of essays with the geometric means distribution of neat cyclin times (CT) of PUM1 

expression in each cell line with no difference within them; it also shows geometric means 

distribution of 2-ΔCT of 8 genes. 
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Figure 2: Individual gene expression of the Master-Gene gene panel tested in normal 

(fibroblasts) and phenotypically different breast cancer cells (MCF-7 and MDA-MB-231). 

Assays were performed 7 times for each gene in the three different cell lines (● fibroblast, ■ 

MDF-7 and ▲MDA-MB-231). The 2-ΔCT fold by qPCR was performed with PUM1 as the 

housekeeping. a. PUM1, CTs of expression are plotted for the three cell lines analyzed. The 

geometric mean of the 2-ΔCT fold for each gene and assay is shown in the scatter plot b. 

ZNF154, c. SERF1A, d. MMP9, e. HRASLS, f. TSPYL5, g. SMIM5, h. TGFβ3, i. ALDH41 

and j. WISP1. Statistical analysis for all conditions: Mean SD; un-paired, non-parametric t 

test with Mann-Whitney (*p < 0.05, **p < 0.01, ***p < 0.001). 

  

Positive control ZNF-154 gene expression is superior in Fibroblasts than in MCF-7 

and MDA-MB-231 (p < 0.001). SERF1A shows no significant difference comparing the three 

cell lines. MMP9 is up-regulated in Fibroblasts in contrast to MCF-7 and MDA-MB-231 

(p < 0.01). HRASLS is up-regulated in MDA-MB-231 match up to Fibroblasts and MCF-7 

(p < 0.001); there is also a significant difference between the last two cells (p < 0.01). 

TSPYL5 is down-regulated in MDA-MB-231 judged against to Fibroblasts (p < 0.01) and 

MCF-7 (p < 0.001); there is a significant difference flanked by Fibroblasts and MCF-7 

(p < 0.01). SMIM5’s MCF-7 expression is higher compared to both Fibroblasts and MDA-

MB-231(p < 0.01). In addition, there is statistical difference in MDA-MB-231 and 
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Fibroblasts (p < 0.001). TGF-β3 shows a pronounced expression in MCF-7 related to the 

remaining cell lines, with statistical difference among the three of them. ALDH4A1 is down-

regulated in MDA-MB-231 and MCF-7 associated to Fibroblasts, however the only proper 

difference is between MDA-MB-231 and Fibroblasts (p < 0.05). WISP1 shows elevated 

expression in Fibroblasts weight against MCF-7 and MDA-MB-231 (p < 0.01). 

 
Figure 3: The Master-Gene gene panel tested in normal (fibroblasts) and phenotypically 

different breast cancer cells (MCF-7 and MDA-MB-231). Assays were performed 3 times for 

each cell lines (● fibroblast, ■ MDF-7 and ▲MDA-MB-231). The 2-ΔCT fold by qPCR was 

performed with PUM1 as the housekeeping. a. The Scatter Plot of the Geometric Mean for 

each gene of the three assays by cell line is shown. Individual analysis of the gene expression 

by assay for each cell line is presented in the following graphs b. MMP9, c. HRASLS, d. 

TSPYL5, e. SMIM5, f. WISP1, g. ALDH4A1 and j. TGFβ3. Statistical analysis for all 

conditions: Mean SD; un-paired, non-parametric t test with Mann-Whitney (*p < 0.05, 

**p < 0.01, ***p < 0.001). 

 

Figure 3 exemplifies the second group of essays with the geometrical mean of 2-ΔCT 

summary plot of all gene’s expression in each cell line. The genes expression pattern of 

MCF-7 compared to Fibroblasts shows up-regulation of HRASLS, WISP1 and down-

regulation of MMP9, TSPYL5, SMIM5, ALDH4A1, and TGF-β3. While MDA-MB-231 

contrasted to Fibroblasts illustrates up-regulation of MMP9, HRASLS, WISP1 and down-

regulation of TSPYL5, SMIM5, ALDH4A1, and TGF-β3. 
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CONCLUSIONS  

After the identification of the seven Master-Genes, we analyzed their 

expression in human BC cell lines MCF-7 and MDA-MB-231 together with non-

cancerous foreskin Fibroblasts as a control. Mammaprint™ is principally 

recommended for ER/PR positive, HER2-negative tumors. We choose as an ideal 

hormone sensitive BC model, the MCF-7 cell line for being ER+, PR+ HER-, Ki67 

low, endocrine and chemotherapy responsive cell line (Holliday & Speirs, 2011). 

Then, we also choose MDA-MB-231 as a highly aggressive Caludin-low ER-, PR-, 

HER-, positive to Ki67 with an intermediate response to chemotherapy as a contrast 

to the MCF-7 phenotype (Dai, Cheng, Bai, & Li, 2017).  

PUM1 was chosen as a housekeeping gene, it encodes the RNA-binding 

protein known as PUF, which is characterized by a highly conserved C-terminal 

RNA-binging domain, composed of eight tandem repeats. The protein binds to related 

sequence motifs in the 3’ untranslated region (3’UTR) of specific target mRNAs and 

repress their translation. PUM1 constitutive transcription has a role in cell 

development, specification and differentiation of tissues in a large scale of organisms, 

varying from yeast to humans and plants (Spassov & Jurecic, 2003). PUM1 is the 

most stable gene for the normalization of expression in invasive breast tumor studies, 

shown in the calculations made with both NormFinder and BestKeeper (Kılıç, 

Çelebiler, & Sakızlı, 2014). Moreover, ZNF154 was used as a positive control thanks 

to the evidence of highly methylated promoters across a wide spectrum of human 

solid epithelial tumors, including BC (Margolin et al., 2016; Sanchez-Vega et al., 

2013). 

Small EDRK-rich Factor 1A gene, (SERF1A, AF073519), has a role 

associated to autophagy activation and avoid the accumulation of dysfunctional 
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proteins, however, it’s role in oncological diseases is disconcerted (Tian, Roepman, 

van't Veer, et al., 2010; Veltman et al., 2005). Experimentally, we can mention that 

there is not significant difference between the expression in the three cell lines. This 

means that even though a gene signature could include a gene like this, it not possible 

to know why it behaves like this on the cell cultures, because of its unknown function. 

Aldehyde Dehydrogenase 4 Family Member A1, (ALDH4A1, NM_003748), 

encodes a mitochondrial-matrix NAD+-dependent enzyme that catalyzes the second 

step of the proline degradation pathway, which is done by the oxidation of L-

glutamate-γ-semialdehyde (GSA) to L-glutamate (Srivastava et al., 2012; Yoon, 

Nakamura, & Arakawa, 2004). In BC, down-regulation of this gene is associated with 

the sustained angiogenesis by alternating the metabolism under hypoxia in the 

microenvironment (Tian, Roepman, van’t Veer, et al., 2010; van 't Veer et al., 2002). 

We found a lower expression in MDA-MB-231 versus Fibroblasts. It is interesting to 

know that this gene cannot be differentiated in both Fibroblasts and MDA-MB-231 

from MCF7. This could be due to its role on the expression of p53 generating a 

protective factor against oxidative stress seen with higher levels of expression (Pors & 

Moreb, 2014). Meaning that depending of the cell phenotype this gene could have 

different function that correlates to the level of expression in different type of tumors. 

Testis-specific Y-encoded-like protein 5, (TSPYL5, AL080059), can override 

senescence-like proliferation arrest, oncogene-induced senescence and contribute to 

cell transformation. This is given by its role as a negative regulator of p53 function 

and modulator of cell growth. (Shen et al., 2015). P53 binds to the N-terminal domain 

of USP7, however TSPYL5 binds to the same domain to reduce the stability of P53 

by competing with it. There is evidence of this interaction with USP7 in MCF7 cells 

from BC and primary human fibroblasts (Cheng, Niu, Yang, Wang, & Lu, 2013; 
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Epping et al., 2011; Gao et al., 2013). More fascinating, TSPYL5 is been known to 

work as a tumor suppressor in various tissues. Therefore, when hyper-methylated it 

helps to development gastric and colon cancer, hepatocarcinoma, and glioma. Our 

results suggest a similar mechanism of action on BC MDA-MB-231 cells even though 

there is no evidence of the epigenetic state of the gene in this situation. There is 

evidence of a cell type such as MDA-MB-231 on gastric cancer with low expression 

of TSPYL5 (Jung, Park, Bang, & Kim, 2007; Qiu et al., 2016; Shen et al., 2015). 

WNT1 inducible signaling pathway protein 1 (WISP1, NM_003882), is a 

cysteine rich secreted matricellular protein that can modulate cellular responses, such 

as cell growth, differentiation and survival (Berschneider B, 2010). It has been 

associated with different types of cancer including breast, lung, and colon, gastric, 

brain, pancreatic, sarcoma, ovarian, esophageal, head and neck (Davies, Watkins, 

Mansel, & Jiang, 2007; Gurbuz & Chiquet-Ehrismann, 2015). It works as an 

oncogene regulated by the Wnt-1-β-catenin pathway, in which the mutations on Wnt-

1 produce accumulation of β-catenin in the cytoplasm. Then, the CREB-binding site 

in the WISP1 gene is activated by PKA because of the increase of cAMP by β-

catenin. In this context, the transcriptions of WISP1 is elevated promoting an excess 

in cell proliferation (Chiang et al., 2015). There is a mechanism suggesting that 

WISP1 can activate the antiapoptotic Akt/PKB signaling pathway. Which works by 

inhibition of the mitochondrial release of cytochrome c and up-regulation of the 

antiapoptotic Bcl-XL, and so blocking p53 dependent cell death through sequestering 

p53-mediated BH3 domain-only molecules such as PUMA or Noxa (Su, Overholtzer, 

Besser, & Levine, 2002). Besides, all oncogenic characteristics liked to elevated 

levels of expression, in 2007 was published evidence that the levels of WISP1 are 

down-regulated when the tumor has poor prognosis, presence of nodal involvement, 
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bad clinical outcome, advanced TNM scores, and a more advance grade in tumor 

differentiation (Davies et al., 2007). After, in 2017 it is first described that Wnt-

derived BC tumors have an aberrant re-activation post Wnt-inhibition. Making the 

reactivation process the driver of BC recurrence and progression (Pohl et al., 2017). 

This mechanism could explain the down regulation in cancer cells seen in our results 

compared to Fibroblasts. 

H-RAS-Like Suppressor (HRASLS, NM_020386), family of enzymes consist 

in three members in humans with a phospholipase A/acyltransferase (PLA/AT) 

activity regulating the function of RAS family of GTPases specially K-RAS. HRASLS 

could be implicated in the regulation of multiple cellular processes, among them 

growth, proliferation, cell death, invasiveness and angiogenesis (Han, Jeong, & Jang, 

2017). It also reduces the palmitoylation of H-RAS which induces its deactivation. 

Additionally, the gene has an important role in fat metabolism in adipocytes through 

the PGE2/cAMP pathway and lipid degradation (Han et al., 2017; Tsai, Chen, Wang, 

& Lee, 2015). Even if the role of HRASLS has been linked to the regulation of RAS 

family members, its complete molecular interactions with other mechanism in cancer 

has not been completely elucidated. Interestingly, the expression of HRASLS in BC 

has been related to a bad prognosis through our and others bioinformatic analysis, 

which opens the field to deeper investigation (Beumer et al., 2016; van 't Veer et al., 

2002). In correlation with our results, HRASLS is one of the most frequently genes 

overexpressed in BC (Di Benedetto et al., 2015). 

The Transforming Growth Factor-β (TGF-β) superfamily are cytokines 

composed by three described isoforms from the genes of TGF-β1, -β2, and -β3. They 

function as ligands that bind to a heteromeric complex of transmembrane TGF-β 

serine/threonine kinase type I and II receptors. Consequently, this activates the Smad 
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pathway involving receptor-regulated Smads 2 and -3 and its mediator Smad 4 to 

form heteromeric complexes. The final response is evoked in the nucleus as 

transcriptional responses (de Kruijf et al., 2013). In breast cancer, all isoforms of 

TGF-β have a dual role raging from a tumor suppressor function to an oncogenic role. 

Specifically, TGF-β3 has a role in the maturation of myoepithelium, suppression of 

milk and epithelial–mesenchymal transition (EMT). More important, there is 

increased expression in breast cancer cells with positive hormone receptors, compared 

to normal tissues (Hachim, Hachim, Dai, Ali, & Lebrun, 2018). We validated this 

with evidence of increased expression of the gene in MCF7 cells. The down-

regulation of the gene is only seen on MDA-MB-231 cells and is associated with bad 

prognosis (Tian, Roepman, van’t Veer, et al., 2010). 

Matrix Metalloproteinase 9 (MMP9, NM_004994) comes from a family of 

endopeptidases that has a gelatin-binding structural class which is composed by a 

domain called minimal-domain (Egeblad & Werb, 2002). It is secreted as a zymogen, 

but when activated is capable of digesting different types of collagen and other 

elements of the extracellular matrix for example elastin, fibrillin, laminin, gelatin. 

This allows the protein to participate in different processes both physiological an 

pathologic, such as neurite growth, embryonic development, angiogenesis, ovulation, 

mammary gland involution, wound healing, osteoblastic bone formation, and 

osteoclastic bone resorption (Perrotta, Sciangula, Aquila, & Mazzulla, 2016; Visse & 

Nagase, 2003). More important, MMP9 participates in different hallmarks of cancer. 

It promotes cellular growth signals, regulates apoptosis, increases angiogenesis, 

facilitates metastasis and intravasation, suppresses the immune system (Bergers et al., 

2000; Coussens, Tinkle, Hanahan, & Werb, 2000; Egeblad & Werb, 2002; Fang et al., 

2000; Kim, Yu, Kovalski, & Ossowski; Sheu et al., 2001; Vu et al., 1998). All this 
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supports the idea of up-regulation in BC and its close relation with lymph node 

metastasis and tumor staging. Thus, making it to become an indicator of bad 

prognosis (Li, Qiu, Li, & Wang, 2017). 

Small Integral Membrane Protein 5 (SMIM5, Contig24252_RC) encodes a transmembrane 

protein with unknown functions, but related to bad prognosis in MammaPrint’s BC signature 

(Marchionni L, 2008; Tian, Roepman, van’t Veer, et al., 2010). In our results, we can infer 

the high expression of this gene is associated with both cancer cell phenotypes.  

This study provides insights with repercussions for the future BC population, as well as for 

the study of its prognosis and treatment techniques according to the cell’s hostility of the 

tumor. We have shown the expression of 8 genes in different cell lines in vitro, which 

corroborate the explanation of the Hallmarks of cancer and are up regulated or down 

regulated according to its function. Our analysis also shows that gene expression is related to 

specific phenotypes of the cell that could determine the prognosis of the patient. This leaves 

us to deliberate about the importance of an appropriate survival prediction for the near future, 

not only in BC, but in other neoplastic diseases in order to make personalized cancer therapy 

more feasible (Pukazhendhi & Glück, 2014). Nowadays there are gene signatures that help to 

determine BC prognosis using a massive number of genes and redundancy on its information 

at the time of predicting the prognosis. Such situation is unfortunate for any patient due to its 

cost and precision. We determined that it is possible to generate a gene signature with minor 

number of genes that achieve the same force of prediction as others existing. We also, proved 

the strength of it with an in vitro cell culture essay, that is comparable to a trial with BC 

biopsy samples. All this as background explains the reason why these seven genes are a 

practical signature for BC prognosis. 
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