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RESUMEN 

Los avances actuales de inteligencia artificial tienden a ser enfocados en técnicas 
especializadas de deep learning que son computacionalmente caras y requieren una 
infraestructura costosa. Estas técnicas han mostrado ser particularmente efectivas en ambientes 
altamente complejos como, procesamiento de imagen, procesamiento de lenguaje natural y la 
predicción del mercado. Por otra parte, pequeñas compañías están requiriendo más y más 
acceso a la inteligencia artificial para predecir el comportamiento del cliente y por lo tanto 
evitar verse afectado por la alta volatilidad y varianza del mercado. Desafortunadamente, la 
mayoría de estas compañías no son capaces de acceder al costo actual de los métodos 
avanzados de inteligencia artificial. Por lo tanto, en esta investigación estudiamos una conocida 
alternativa de bajo costo: árboles de decisión para clasificación. En particular, enfocamos 
nuestro análisis en los beneficios para analizar las predicciones del mercado con alta exactitud 
en tres bases de datos: Social Network Advertising Sells, Organic Purchased Indicator, and 
Online Shoppers Purchasing Intention. Los mejores modelos de árboles de decisiones 
obtenidos fueron aquellos que produjeron resultados de clasificación entre 93% a 99% de 
exactitud en predicción. Adicionalmente, se reviso el área bajo la curva y nuestros modelos 
obtuvieron resultados en el rango de 0.98 a 1.00.  Estos resultados muestran que simples 
modelos como los árboles de decisión son buenos para entender las fluctuaciones y tendencias 
de los datos del mercado, y dada su simplicidad es una alternativa para las pequeñas compañías 
dispuestas a utilizar inteligencia artificial. 

Palabras clave: Arboles de Decisión, Bases de Datos, Tendencias del Mercado, C4.5, CART. 
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ABSTRACT 

Present artificial intelligence advances tend to be focused on customized deep learning 
techniques which are computational expensive and require costly infrastructure. These 
techniques have shown to be particularly effective in highly com- plex environments such as 
image processing, natural language processing and market price predictions. On the other hand, 
small companies are requiring more and more access to artificial intelligence to predict 
customer behavior and hence to avoid to be affected by the highly volatility and variance of 
the market. Unfortunately, most of these companies may not be able to afford the costs of 
current artificial intelligence advanced methods. Hence, in this paper we study a low-cost 
known alternative: decision tree classifiers. In particular, we focus our analysis on the benefits 
to use them to analyze market predictions with high accuracy over three databases: Social 
Network Advertising Sells, Organic Purchased Indicator, and Online Shoppers Purchasing 
Intention. The best decision tree models obtained were those that produced a classification 
score from 93% to 99% of accurate predictions. In addition, we checked the area under the 
curve and our models provided results ranging from 0.98 to 1.00. These results show that 
simple models like decision trees are good to understand the fluctuation and trends from market 
data, and since its simplicity are an alternative for small businesses willing to try artificial 
intelligence predictions. 

Key words: Decision Tree, Market trend, Databases, C4.5, CART. 
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INTRODUCTION 

The uncertainty of the market conveys inherent risks for businesses, specially if those 

risks are not handled correctly. In fact, market fluctuations and price instability have a direct 

negative impact to business profits (Bloom, 2009), (Lyu, Cao, Wu & Li, 2020). Therefore, 

successful organizations prepare to handle risky scenarios based on accounting and optimizing 

for possible and expected out- comes, respectively (Nooteboom, 2019). In particular, the 

artificial intelligence (AI) field has contributed with several options that provide consistent 

results by looking into market features such as those of clients that are not easily affected by 

the fluctuation of the market (Balter & Pelsser, 2020). 

Many classic machine learning techniques have successfully been applied to predict 

market trends, to enumerate a few, artificial neural networks (ANNs), support vector machines 

(SVMs), and hybrid models. In particular, ANNs depend of several hyper-parameters to 

generate a model and the search space of optimal hyper-parameters tend to be a known 

combinatorial problem. Furthermore, ANNs depend on the quantity of datapoints in the dataset; 

hence, the bigger the dataset the more accurate the model (Menon, Singh & Parekh, 2019), 

which undoubtedly demand higher computational resources. SVMs, on the other hand, depend 

on solving a quadratic optimization problem which usually is computational expensive as the 

quantity of datapoints in the dataset increases (Duan, Zhu & Lu, 2013). In order to avoid 

excessive search of hyper-parameters or rely on an expensive optimization problem, other 

researchers have tried integrating different machine learning techniques with standard hyper- 

parameters and combining their results, in a majority-vote decision, to provide accurate market 

predictions (Usmani, Ebrahim, Adil & Raza, 2018). 

This work aims to determine the most appropriate decision tree-based classifiers in the 

classification of the buy-sell market context. Behind this approach, we explore three different 
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entropy indexes to expand the selected DT classifiers. The use of DT models instead of other 

machine learning classifiers (MLCs) is due to the fact of being faster, less complex, and easier 

to interpret [8]; which are necessary conditions to take into consideration when using buy-sell 

market databases. We report the best DT classifier and its best hyper-parameters for each of 

three market prediction databases. 

The remainder of this paper is organized as follows: materials and methods section, 

presents all experimental steps taken to generate optimum DT classifiers for our three 

databases. Results and discussion section describe the best models obtained. We use both 

accuracy and area under the receiver operating characteristic curve (AUC) to support the 

validity of our results. Finally, conclusions and future work are drawn in the last section. 
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MATERIALS AND METHODS 

This work follows a traditional data mining lifecycle, data collection, data cleaning, 

feature selection, model preparation, and testing. The following subsections detail 

particularities of such lifecycle. 

Experimental databases 

For this study, we collected three different databases based on market predictions. 

These databases consist of data from: social network advertising sells, organic purchases, and 

online shoppers purchasing intention. These three databases differ in terms of features and total 

data points. Nonetheless, they make a unique binary decision. Table I offers a snapshot of each 

database. Following subsections offer further detail of each database. 

Social network advertising sell 

This database has been taken from Kaggle (Kaggle, 2020). It contains 401 samples of 

information about purchased items and their related advertisement. The data was generated in 

2017 by Facebook API developers and each sample is composed by categorical features and a 

single output label. The database includes features such as gender which is of binary nature 

(male or female), age is a numerical value ranging from 18 to 58 and salary estimates vary 

from 15,000 to 150,000. Data points are quite sparse in the fourth-dimensional space. The 

output label represent whether or not the users ended up purchasing the item based on the social 

media advertisement. Data points that successfully purchased any item correspond to 257 

samples and the ones that did not purchased any item are 143. 
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Organic purchased indicator 

This database was also obtained from Kaggle (Kaggle, 2020). This database comes 

from a supermarket and the task at hand is to determine whether or not a client is likely to buy 

products based on each client features. This database contains 13 features such as gender, 

geographic region, loyalty status, affluence grade, among others. The total number of 

datapoints is 22,000. The output label reveals whether or not a client purchased organic 

products in the supermarket. There are 4,896 clients that ended up purchasing organic products. 

The dataset includes data points from January 13th 2019 until the end of that year. 

Online shoppers purchasing intention 

This database was obtained from UCI Machine Learning Repository (UCI, 2020). This 

database comes from Google Analytics data compilation over a year. The main objective in 

this dataset is to determine if a client purchased a product in that web session. This database 

contains 18 features: 10 numerical and 8 categorical values. There are 12,330 data points, each 

value represents a specific session. The output label reports if the user wants to buy or not a 

product in a web site. The database was published in August 13th 2018. 
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Database Features 
Data 

Point 
Summary 

Social Network 

Advertising Sells 
4 401 

This database contains client features and 

whether or not he/she purchased an item based 

on social media advertisement. 

Organic 

Purchased 

Indicator 

13 22,000 

This database contains supermarket client 

information and whether or not they bought 

organic products. 

Online Shoppers 

Purchasing 

Intention 

18 12330 

Online Shoppers Purchasing Intention database 

provides online user session’s attributes in a web 

shopping portal and the information of each 

client to make a purchase. 

Table 1Databases used into our model's training and testing 

Decision trees classifiers 

Decision trees (DT) are supervised machine learning methods used to classify data 

points according to attributes evaluated by a chosen metric. DTs are constructed from a set of 

instances following a divide and conquer strategy where if all instances belong to the same 

class, the tree collapses into a leaf with that specific class as label; otherwise, an attribute is 

selected to partition all data points according to the chosen metric (Quinlan, 1993). At the top 

of the tree, a root node is generated from the most general feature of the set, and along its path 

new nodes are created based on features that become more specific in classifying data points. 

In general terms, the creation of a DT is a greedy strategy where local optimal decisions 

are made while selecting features according to a metric (Esmeir & Markovitch, 2007). This 

construction demands low computational resources and provides a clear explanation of the 
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decisions made while traversing each node from top to bottom until reaching a leaf (Shamim, 

Hussain, & Shaikh, 2010). Since, there can be multiple strategies to build DTs and different 

metrics to select attributes, there exists multiple types of DT models. In this work, we focus on 

C4.5 and CART (Classification and Regression Trees) models. These DTs models are further 

analyzed in the following subsections. 

C4.5 decision trees 

The C4.5 is an algorithm used to create DTs. In particular, this algorithm is an 

enhancement of its predecessor ID3 (Iterative Dichotomiser 3) invented by Ross Quinlan 

(Quinlan & Rivest, 1989). As any DT, the construction of this tree depends on selecting the 

“best” attribute to split a dataset, 𝐷 into the 𝐷!"# partition, at a particular tree node. In fact, at 

any specificattribute A, C4.5 uses 

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐴) =
𝐺𝑎𝑖𝑛(𝐴)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝐴) 

as its attribute selection measure. This measure depends on two concepts, Gain and 

SplitInfo. Gain over an attribute 𝐴 is defined as 

𝐺𝑎𝑖𝑛(𝐴) = 𝐼𝑛𝑓𝑜(𝐷) − 𝐼𝑛𝑓𝑜$(𝐷) 

 

and it uses ID3 information measure, i.e., entropy, where 𝑝% is the probability of 

any data point in 𝐷 to belong to a category 𝐶%. In addition, 

𝐼𝑛𝑓𝑜(𝐷) =4𝑝%𝑙𝑜𝑔&(𝑝%)
'

%()

 

𝐼𝑛𝑓𝑜$(𝐷) =46
𝐷!
𝐷 𝐼𝑛𝑓𝑜7𝐷!89

'

%()

 

The term, SplitInfo is calculated by 
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𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜$(𝐷) = −4
:𝐷!:
|𝐷| × 𝑙𝑜𝑔& =

:𝐷!:
|𝐷|>

*

!()

 

In other words, C4.5 algorithm at every partition step selects an attribute A that provides 

the best classification based on the amount of information still required to finish the task 

(Xiaoliang, Hongcan, Jian & Shangzhuo, 2009). 

Classification and regression trees (CART) 

CART, as its name states, is a tree that can be used either for classification or regression 

purposes. CARTs are binary trees that use Gini Impurity as its attribute selection measure. The 

idea behind this measure is that at any node of the tree a decision is made according to the least 

impurity, i.e., the split, 𝐷!, possesses the best information about dividing categories of a data 

set 𝐷. This measure is calculated by 

𝐺(𝐷) = 1 −4𝑝%&
'

%()

 

where 𝑝% is the probability of any data point in 𝐷 to belong to a category 𝐶%. The CART 

algorithm at every candidate split considers all possible splits in the sequence of values for 

continuous valued attributes and all possible subset splits for categorical attributes (Sheng & 

Gengxin, 2010). 

Experimental setup 

In order to generate DT models, we followed a traditional data mining life-cycle. First, 

we gathered a set of databases based on our specific research topic, i.e., “market trends 

prediction”. In particular, we selected three databases as men- tioned in section of experimental 

databases. Then, we preprocessed each database to accommodate each to our model needs. We 

randomly split the database into a set for training and another for testing. We followed with 
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training different DT models based on several hyper-parameters, and finally, we tested each 

model for accuracy (ACC) and area under the receiver operating characteristic curve (AUC) in 

order to establish the validity of our results considering type I and type II classification errors. 

This work was implemented using Python 3.7 and its sklearn machine learning API. In 

order to perform data transformation Pandas library is used (User guide pandas, 2020). 

The following subsections explain particular details related to our experimental setup 

in terms of database preprocessing, splitting criteria for training and testing database 

partitioning, DT hyper-parameter configuration, and the selection criteria for our best models. 

Database preprocessing 

Databases usually include different type of attributes, in particular, text-based 

categorical ones need to be converted to numerical categories and continuous ones need 

standardization to avoid numerical aberrations and common scale of values while performing 

calculations. The transformations made on each database are described as follows: 

Social network advertising sells database 

As part of our preprocessing in this database, we processed the following attributes: 

gender, age and estimated salary. Gender is a text-based attribute and it was mapped to numeric 

values 0 and 1. Age and estimated salary, on the other hand, are continuous values and were 

scaled using standard score which transforms values based on the mean and standard deviation 

of the attribute set value distribution. 

Organic Purchased Indicator 

As in the previous database, we processed text-based and continuous values. For text-

based values we have the following attributes: gender, geographical region, loyalty status and 
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neighborhood level. Gender was mapped to numeric values in a range of 0 to 2. Geographical 

region was mapped in a range of 0 to 5. Loyalty status was mapped in a range of 0 to 4. 

Neighborhood level was mapped in range of 0 to 7. Finally, all other continuous attributes were 

scaled using standard score as previously explained. 

Online Shoppers Purchasing Intention 

In this database, we also mapped text-based attributes and scaled continuous ones. 

Month, visitor type, weekend and revenue are text-based categorical attributes. Month was 

mapped to numeric values in a range of 0 to 9. Visitor type was mapped in a range of 0 to 2. 

Weekend was mapped to numeric values 0 and 1. Revenue was mapped to numeric values 0 

and 1. Finally, all other continuous attributes were scaled using standard score as previously 

explained. 

Train and test partition 

We first split each database selecting data points uniformly random into two partitions: 

training (80%) and testing (20%). Training and testing partitions are then preprocessed as 

described in section of databases preprocessing. In order to avoid over fitting on our results, 

we applied 10-fold cross validation of the training and testing datasets. We used the produced 

training dataset to fit our DT models under disjoint conditions each time which in turn provides 

variability avoiding over fitting. 

Decision tree configuration 

We used a random search 10-fold cross validation algorithm to try out several training 

hyper-parameters to train our DT models. This method tries random hyper-parameters from a 

given set or sets of hyper-parameter options and at each step use a discrete subset of hyper-
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parameters to train a DT performing a 10-fold cross validation over the training set. We report 

ACC and AUC as an average of all folds for a specific subset of hyperparameter. A brief 

explanation of each hyper- parameter and its possible values follows: 

Criterion 

Refers to the attribute selection measure used to select attributes at each node in the DT. 

Since, we are exploring C4.5 DT and CART, we use entropy based measure as detailed in 

section of C4.5 decision tree and Gini impurity as detailed in section of classification and 

regression trees, respectively. 

Max depth 

Indicates the higher expansion of the tree until the last branch node, also with these we 

pre prune the tree to avoid over fitting. We tried different values for this hyper-parameter: no 

limitation of expansion (none), and odd numbers in the range of 3 to 15. 

Sample leaf 

Refers to minimum number of samples needed to split each internal node. We tried 

values ranging from 1 to 9. 

Splitter 

This is the strategy the DT training algorithm chooses an attribute to split the dataset. 

There are two options: random where at each split decision the algorithm picks the “best” 

random attribute to split and best the exhaustive best split. 
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Max features 

Indicates the number of features to consider at the split process. We explore three 

options: none: where the total number of features is considered, sqrt: where the squared root of 

the total number of features is considered, and log2 where the logarithm base two of the total 

number of features is considered. 

Selection criteria 

After hyper-parameter tunning for each database, we select the best classification model 

based on the best ACC and AUC obtained. 
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RESULTS AND DISCUSSION 

In agreement with our experimental setup (section train and test partitions), 30 different 

DT models were built and scored under distinct hyper-parameters. Each model is trained and 

evaluated under 10 different folds during its construction. And, 10 different models are built 

with respect to each of the databases selected for this study. We chose one model per each 

database which in turn provided the best average accuracy (ACC) and area under the receiver 

operating characteristic curve (AUC): 

Social network advertising sells 

Our best model is a CART using maximum depth of 3, all features as candidates for 

split, a minimum sample leaf of 8 and exhaustively looking for the best partition. It achieves 

an average ACC of 93.6% and a AUC of 0.98 over a 10-fold cross validation training scheme. 

Organic purchased indicator 

Our best model is a CART using maximum depth of 7, all features as candidates for 

split, a minimum sample leaf of 4 and exhaustively looking for the best partition. It achieves 

an average ACC of 99.5% and a AUC of 1.00 over a 10-fold cross validation training scheme. 

Online shoppers purchasing intention 

Our best model is a CART using maximum depth of 9, all features as candidates for 

split, a minimum sample leaf of 3 and exhaustively looking for the best partition. It achieves 

an average ACC of 99.8% and a AUC of 1.00 over a 10-fold cross validation training scheme. 

Table II summarizes our exploratory results and provides further details of the 

performance in terms of the selected scores ACC and AUC. 
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Performance 

Our results show that Gini impurity used in CART is a better attribute selection measure 

for our chosen databases. All of our best models report high ACC and AUC scores using all 

features as candidates to split the dataset and the strategy to select such split exhaustive “best”. 

This is not a surprise because these hyper-parameters force the DT training algorithm to 

perform exhaustive computer trials until finding the best possible classification. 

Nonetheless, it is interesting to mention that our second best models were trained under 

least exhaustive search strategies (lower maximum features, higher minimum sample leaf, 

random split selection) keeping a high ACC (less than 7% difference) and AUC (less than 0.04 

difference). Figure 1 and Figure 2 show the best and second-best models for the Organic 

Purchased Indicator. Figure 1 shows a CART and figure 2 shows a C4.5 that perform 

equivalently despite morphological and decision differences. 

Overall, the implemented hyper-parameter search strategy used in training DT models 

over our datasets is able to find good results that provide high ACC without lose of generality 

while classifying new unseen data. 
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Figure 1 CART for the organic purchased indicator database, configuration number 4 in Table II. 

 

 

Figure 2 C4.5 tree for the organic purchased indicator database, configuration number 1 in Table II 
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Databases Config. 
Number 

Tree 
Type Criteria Max 

Depth 
Max 

Features 

Min 
Samples 

Leaf 
Split ACC AUC 

Social 
Network 

Advertising 
Sells 

1 
C4.5 entropy 

5 𝑙𝑜𝑔& 6 best 0.889 0.94 
2 

3 
𝑁𝑜𝑛𝑒 2 random 0.836 0.86 

3 𝑙𝑜𝑔& 6 0.814 0.96 
4 CART gini 𝑵𝒐𝒏𝒆 8 

best 
0.936 0.98 

5 

C4.5 entropy 

None 𝑠𝑞𝑟𝑡 4 0.835 0.81 
6 5 1 0.863 0.88 
7 3 𝑙𝑜𝑔& 4 random 0.822 0.75 
8 5 5 

best 
0.827 0.74 

9 CART gini 5 𝑁𝑜𝑛𝑒 8 0.861 0.80 
10 3 𝑙𝑜𝑔& 5 0.847 0.68 

Organic 
Purchased 
Indicator 

1 C4.5 entropy 9 𝑁𝑜𝑛𝑒 8 
random 

0.993 1.0 
2 CART gini 5 𝑠𝑞𝑟𝑡 3 0.932 1.0 
3 C4.5 entropy 2 0.907 1.0 
4 

CART gini 
7 𝑵𝒐𝒏𝒆 

4 
best 0.996 1.0 

5 3 𝑙𝑜𝑔& random 0.949 1.0 
6 𝑠𝑞𝑟𝑡 0.923 1.0 
7 C4.5 entropy None 𝑁𝑜𝑛𝑒 3 best 0.987 1.0 
8 CART gini 𝑙𝑜𝑔& 8 0.992 1.0 
9 3 𝑠𝑞𝑟𝑡 3 random 0.927 1.0 
10 C4.5 entropy 7 best 0.951 1.0 

Online 
Shoppers 

Purchasing 
Intention 

1 C4.5 entropy 5 𝑠𝑞𝑟𝑡 3 

best 

0.920 1.0 
2 CART gini 7 𝑙𝑜𝑔& 8 0.958 1.0 
3 C4.5 entropy 12 𝑠𝑞𝑟𝑡 3 0.997 1.0 
4 CART gini 8 0.984 1.0 
5 C4.5 entropy 5 𝑙𝑜𝑔& 5 0.990 1.0 
6 

CART gini 

9 𝑵𝒐𝒏𝒆 3 0.998 1.0 
7 15 𝑙𝑜𝑔& 15 random 0.985 1.0 
8 7 𝑠𝑞𝑟𝑡 3 0.941 1.0 
9 5 4 best 0.960 1.0 
10 C4.5 entropy 4 𝑁𝑜𝑛𝑒7 7 random 0.990 1.0 

Table 2 10-Fold cross validation hyper-parameter evaluation over different DT Classifiers for each database in our study. 
In bold, we show the best set of hyper-parameters with respect to ACC and AUC. 
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CONCLUSION AND FUTURE WORK 

This work shows how to obtain appropriate decision tree-based classifiers in the context 

of buy-sell market predictions. We have described a sound methodology consisting of database 

preprocessing, database split, a search strategy to select optimal hyper-parameters and report 

over a k-fold training method to avoid over fitting. 

Data preprocessing is a key step in order to use DT classifiers. Text-based categorical 

data fields were transformed and mapped into numerical data to facilitate operating on them. 

In addition, continuous data fields were normalized using standard scaling to avoid numerical 

aberrations while performing calculations. 

Finally, as shown in Figure 1 and Figure 2, decision trees are powerful yet easy to 

understand machine learning methods. At each node of the tree, a decision is made based on 

an attribute of the dataset (in Figure 1, first node, parameter six, condition 𝑋[6] ≤ −0.297). 

That decision leads another decision in a subsequent node which in turn will lead into a 

conclusion about a data point (classification). 

In terms of our future work directions, we envision comparing our DT results against 

statistical machine learning algorithms such as SVMs and ANNs (deep learning models 

included) in terms of accuracy, training time and response time. In addition, we plan looking 

into regression trees to deal with prediction of continuous variables. 
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