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RESUMEN 

ARTICULO 1 

La Invasión de Rubus niveus en las Islas Galápagos 

La conservación de las Islas Galápagos es importante para Ecuador y otros países debido 
a la presencia de una gran biodiversidad de especies nativas y endémicas, incluidos 
animales y plantas terrestres y marinas, que están amenazados por la introducción de 
especies invasoras y actividades antropogénicas. Hay muchas plantas endémicas como 
Scalesia, Opuntia, tomatillo, etc., que se están perdiendo debido a su baja diversidad 
genética y polinizadores no específicos, lo que las hace más susceptibles a las plantas 
invasoras. El crecimiento fácil y rápido, las semillas con alta viabilidad en el suelo, los 
múltiples mecanismos de reproducción (sexual y asexual) y su adaptación a diversas 
condiciones son las características que hacen que una planta sea invasiva. Además, las 
características geológicas y climáticas presentes en el archipiélago favorecen el 
crecimiento de especies invasoras, debido a la humedad, temperatura y presencia de 
nutrientes en el suelo. Rubus niveus, conocido como mora, se considera la peor maleza 
presente en las Islas Galápagos, ya que está desplazando muchas especies endémicas, 
por lo que se buscan diferentes alternativas de control ya que el método químico y 
manual no son suficientes para la erradicación, por eso los objetivos de este manuscrito 
trata sobre hechos importantes sobre especies invasoras de plantas en entornos frágiles 
como las Islas Galápagos, en el contexto de las condiciones climáticas y geográficas del 
archipiélago, la distribución de plantas y la adaptación de plantas invasoras, 
especialmente la mora que es considerado el peor invasor. Además, se están revisando 
los métodos de control y las posibles alternativas que podrían lograr resultados 
favorables, como el control biológico. 
 
Palabras clave: Galápagos, especies invasoras, Rubus niveus, control biológico. 
 
 

ARTICULO 2 

Explorando patógenos fúngicos para controlar la mora invasiva (Rubus niveus) en las 
Islas Galápagos 

 
El ecosistema de Galápagos está amenazado por la introducción de especies invasoras 
que desplazan a especies nativas y endémicas. Rubus niveus (conocido como mora) se 
considera una planta invasora y es la peor amenaza porque tiene el potencial de dañar 
el ecosistema y el sistema económico del archipiélago. Se introdujo por primera vez en 
1960 en Santa Cruz y cubre aproximadamente 30,000 hectáreas en todo el archipiélago. 
Su rápida capacidad de crecimiento permite desplazar la vegetación nativa y su control 
no tiene éxito mediante la eliminación manual y la aplicación de herbicidas, lo que 
provoca cambios no deseados en el suelo. Por esta razón, es necesario encontrar una 
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alternativa para controlar la propagación de R. niveus, por lo que el control biológico 
clásico (CBC o biocontrol) se ha propuesto como un método para suprimir la población 
de especies invasoras no nativas, ampliamente distribuidas. En esta investigación, el 
objetivo fue aislar hongos de la mora enferma de San Cristóbal, encontrar un posible 
candidato como control biológico, reducir costos y evitar la introducción de especies 
exógenas en la Isla. Se obtuvieron 595 hongos aislados de los cuales se separó en 226 
grupos por fenotipo para evaluar la patogenicidad contra las hojas de mora. Seis posibles 
candidatos fueron encontrados e identificados por morfología y ADN usando los 
cebadores ITS, TUB, TEF1a, GAPDH y RPB2. Para confirmar la especie, se realizó un 
análisis filogenético utilizando inferencia bayesiana. Las especies encontradas fueron 
Bionectria pseudostriata, Lasiodiplodia theobromae, Colletotrichum gloesporoides, 
Fusarium concentricum, Phanerochaete chrysosporium y Penicillium rolfsii, que se 
consideran organismos cosmopolitas. 
 
Palabras clave: Galápagos, especies invasoras, Rubus niveus, control biológico, hongos, 
análisis filogenético.  



8 
 

 

ABSTRACT 

ARTICLE 1 

The invasion of Rubus niveus to the Galapagos Islands 

 
The conservation of the Galapagos Islands is important for Ecuador and other countries 
due to the presence of a large biodiversity of native and endemic species, including land 
and marine animals and plants, which are threatened by the introduction of invasive 
species and anthropogenic activities. There are many endemic plants such as Scalesia, 
Opuntia, tomatillo, etc., which are being lost due to their low genetic diversity and non-
specific pollinators, which makes them more susceptible to invasive plants. The easy and 
fast growth, seeds with high viability in the soil, multiple reproduction mechanisms 
(sexual and asexual) and their adaptation to various conditions are the characteristics 
that make a plant invasive. In addition, the geological and climatic characteristics 
present in the archipelago favor the growth of invasive species, due to the humidity, 
temperature and presence of nutrients in the soil. Rubus niveus, known as raspberry, is 
considered the worst weed present in the Galapagos Islands, because it is displacing 
many endemic species, so different control alternatives are sought since the chemical 
and manual method are not sufficient for eradication, that is why the objectives of this 
manuscript are to discuss important facts about invasive species of plants in fragile 
environments such as the Galapagos Islands, in the context of the climatic and 
geographical conditions of the archipelago, the distribution of plants and the adaptation 
of invasive plants, especially the raspberry which is considered the worst invader. In 
addition, control methods and possible alternatives that could achieve favorable results, 
such as biological control, are being reviewed. 
 
Key words: Galapagos, invasive species, Rubus niveus, biological control 
 
 

ARTICLE 2 

Exploring fungal pathogens to control invasive raspberry (Rubus niveus) in Galapagos 
Islands. 

 
The Galapagos ecosystem is threatened by the introduction of invasive species that 
displace native and endemic species. Rubus niveus (known as raspberry) is considered 
an invasive plant being the worst threat because it has the potential to damage the 
ecosystem and the economic system of the archipelago. It was first introduced in 1960 
to Santa Cruz and covers approximately 30,000 hectares throughout the archipelago. Its 
rapid growth capacity allows to displace native vegetation and its control is unsuccessful 
by manual removal and herbicide application, causing unwanted changes in the ground. 
For this reason, it is necessary to find an alternative to control the propagation of R. 



9 
 

 

niveus, which is why the classic biological control (CBC or biocontrol) has been proposed 
as a method to suppress population of non-native invasive species, widely distributed. 
In this investigation the objective was to isolate fungi from the sick raspberry of San 
Cristobal, to find a possible candidate as a biological control, reducing costs and avoiding 
the introduction of exogenous species to the Island. 595 isolated fungi were obtained 
from which it was separated in 226 groups per phenotype to test for pathogenicity 
against raspberry leaves. Six possible candidates were found and identified by 
morphology and DNA using the ITS, TUB, TEF1a, GAPDH and RPB2 primers. To confirm 
the species, a phylogenetic analysis was performed using Bayesian inference. The 
species found were Bionectria pseudostriata, Lasiodiplodia theobromae, Colletotrichum 
gloesporoides, Fusarium concentricum, Phanerochaete chrysosporium and Penicillium 
rolfsii, which are considered as cosmopolitan organisms. 
 
Key words: Galapagos, invasive species, Rubus niveus, biological control, fungi, 
phylogenetic analysis   
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ARTICULO 1 

The Invasion of Rubus niveus to the Galápagos Islands 

Noelia Barriga-Medina1,2, Antonio León-Reyes1,2 

1Laboratorio de Biotecnología Agrícola y de Alimentos, Ingeniería en Agronomía, Colegio de Ciencias e 

Ingenierías, Universidad San Francisco de Quito, Campus Cumbayá, Quito, Ecuador. 

2Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales COCIBA Universidad San 

Francisco de Quito USFQ, Campus Cumbayá, Quito, Ecuador. 

 

INTRODUCTION 

Galapagos Islands: a unique treasure for biodiversity.  

The Galapagos archipelago was discovered in 1535 by Bishop Tomás de Berlanga. 

Subsequently, the archipelago was annexed to Ecuador in 1832 and declared a province 

in 1973 (Consejo de Gobierno del Régimen Especial de Galápagos, 2016). 

This archipelago, located 972 kilometers south of the equatorial line in the Pacific Ocean, 

was formed by underwater volcanic eruptions. It  consists of 13 large islands (area 

greater than 10 km2), 5 medium islands (area from 1 km2 to 10 km2), and 216 small 

islands or islets (area less than 1 km2), respectively, covering a total area of 7985 km2  

(DPNG, 2014). The islands of San Cristobal and Española are considered the oldest, 

formed 2.8-5.6 million years ago, whereas the most recent islands, Fernandina and 

Isabela, emerged 60-300 thousand years ago (Geist, 1996). 

The isolation of the archipelago, together with the volcanic activity, facilitated the 

development and existence of a unique but fragile biodiversity. The secluded evolution  

of the islands’ flora and fauna, which has remained undisturbed for thousands to 

millions of years (PNG, 1998),  has resulted to be designated as Natural Patrimony of 
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Humanity (declared by UNESCO in 1979). To preserve this fragile ecosystem, both the 

Ecuadorian state and International Organizations are responsible for it protection (ABG, 

2015). 

In 1959, Ecuador decided to create the Galapagos National Park (PNG) with the aim to 

protect 97% of the land and marine areas, allowing solely the remaining 3% to be 

available for human activities (occupying the Santa Cruz, San Cristobal, Floreana, and 

Isabela Islands) (Black, 1973). Since then, several conventions have been designated to 

state the threat of invasive species and physical disturbances caused by human activity 

to the conservation of the biodiversity, one of which is the Convention on Biological 

Diversity (CBD; PNG, 1998). In addition, in 2008, rights of nature were settle down in the 

Constitution of the Republic of Ecuador where stipulates  that the National System of 

Protected Areas (SNAP) will conserve biodiversity and ecological functions at the 

Galapagos Islands (ABG, 2015). 

Thanks to the immense diversity of species present in the Galapagos Islands, this 

archipelago has become a research center of evolution, with a focus on emblematic 

species. Approximately seven thousand terrestrial, marine species are recorded, 

including introduced species with an endemism percentage of 28% (DPNG, 2014). 

 

Climatic and geological conditions 

The climate of Galapagos archipelago is influence by between the climate the western 

equatorial coast of South America and the dry zone of the Central Pacific (Palmer & Pyle, 

1982). This climate is characterized by its variation according to the height and direction 

of the winds, and sea currents (Segarra, 2012). The frequent occurrence of short drizzles 

is due to the cold Humboldt current as it allows the temperature of the tropical waters 



15 
 

 

to be lowered, thereby acting as a moisture condenser. This impact disappears when 

the “El Niño” hot current arrives in December, lasting until April. Under its influence, 

coastal temperature rise to 25 ° C, wind is reduced, and sporadic tropical rains are 

produced (Black, 1973). In the higher parts of the islands the temperature decreases 

whilst precipitations increase. Because of the temperature difference between coastal 

and higher areas, vegetation is more dense  inland whereas the coast hosts dryer 

vegetation (Quintanilla, 1983). However, in the higher areas, soils are rich in organic 

matter that absorb atmospheric moister very well and can reach a depth of 3 meters. 

These soils have evolved from basalt, giving rise to a smaller area that is very variable 

(Rodríguez, 1982). 

The pH of the soil varies from acidic to neutral with low amount of phosphorus and 

potassium. The island that has the best soil for cultivation is Floreana, followed by San 

Cristobal. Soils in Santa Cruz Island, on the other hand, do not support long-term 

cultivation. Finally, Isabela Island has a large wetland area but does not offer possibilities 

of agricultural activity (Consejo de Gobierno del Régimen Especial de Galápagos, 2016). 

Within the Galapagos ecosystems, four distinct major areas are identified which are 

characterized by the distribution of plant communities and precipitations: Coastal, Arid, 

Transition and Humid Zone (Figure 1). The biodiversity within each zone can be different 

between islands. The Humid zone consists of the Scalesia zone, Miconia zone, Brown 

zone, and Fern zone (Pampa) (Tye et al, 2012). The percentage of endemism and the 

state of conservation of flora and fauna is high in the Islands (Raven, 1973). 
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Figure 1: Galapagos ecosystems divided into zones according to the distribution of 
plant communities and precipitations (FCD & WWF, 2018). 
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Introduced and Invasive Species in the Galapagos Islands 

Due to its high interest in preserving the biodiversity in Galapagos, the presence of 

introduced species has become a problem for its negative impact over natives and 

endemics species. 

Introduced or exogenous species are difficult to identify at first since the populations 

are very small. However, once they are fully adapted it gets extremely difficult to control 

them (Consejo de Gobierno del Régimen Especial de Galápagos, 2016). 

Among the introduced species are invasive species, which could be animals, plants, fungi 

and microorganisms. Invasive species are defined as organisms that establish 

themselves outside of their natural habitat, thereby negatively impacting either social, 

environmental or economic factors in the adopted habitat (Denslow, 2007). These 

species can reproduce and spread rapidly by imposing on local species, outcompeting 

them for habitat characteristics such as food, water, nutrients and space (ABG, 2015). 

Besides, they can reduce the economic viability of the land and alter the ecosystems, 

eventually causing the extinction of native species (Vitousek et al. 1996; Mooney & 

Hobbs 2000). It is estimated that globally annual losses of agricultural and forestry area 

due to invasive species can rise up to 1.4 billion dollars (Pimentel, 2001). Hence, invasive 

species are considered  as the second major threat  to biodiversity (Vitousek et al. 1997). 

The extent of the threat depends mainly the nature of invaded ecosystems since the 

invasion potential of a species is related to their biographical origin and the potential 

interactions with the species native to the invaded habitat (Colautti & MacIsaac 2004). 

In general, the islands have dispersion limitations, which reduce the number of present 

species in archipelago and the competition between them. This facilitates the invasion 

of these ecosystems by new species (Vitousek et al. 1996). Therefore, a great threat that 
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affects the ecosystems present in the Galapagos Islands is invasion by non-native 

species. From a botanical perspective these invasive species are considered as weeds or 

aggressive plants which especially adapt to the humid zone (Segarra, 2012).  

Until 1993 there was no inspection or quarantine process in place to prevent the 

intentional or accidental entry of invasive species through any product, material or 

person that was transported to the Galapagos Islands by both sea and air. Being 

unaware of the risks, as a result, many exogenous species entered the Galapagos 

ecosystem (Whelan, 1995). 

As of this date, Ecuador has created some institutions and laws for the conservation of 

the biodiversity of the islands such as the Agency for Regulation and Control of Biosafety 

and Quarantine for Galapagos (ABG) (DPNG, 2014; ABG, 2015). 

Until 2008, more than 1488 introduced species have been reported, while the 1900 

record only reported 112 species. Among these introduced species are approximately 

888 plants, 490 insects and 53 invertebrates. However, recent data report the presence 

of more than 917 species of introduced plants, where most of these are found in 

agricultural areas from where they dispersed to the Galapagos National Park (ABG, 

2015). 

In response, the introduction of species has been banned in recent years due to its 

influence on the reorganization of the trophic and mutual networks of ecosystems. 

However, the eradication of most invasive species is impossible because these species 

are fulfilling an ecological role and the eradication can generate unwanted changes in 

other ecological components. For this reason, the principal objective is to control the 

disperse of these species. To this end, some criteria included in the “Total Control Plan 

for Introduced Species” are followed, being: (1) giving priority to the eradication of 
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species that can play an important role in the structure and functioning of the Galapagos 

ecosystems considering all of these ecosystems, (2) eradication of newly introduced 

species, (3) permanent control of introduced pests with a large distribution and (4) 

waterproofing of pristine and sensitive areas against invasive species (DPNG, 2014). 

Unfortunately, these efforts are opposed by the increase food and diverse supplies that 

are transported from the continent and that are necessary for survival of the growing 

population driven by tourism, one of the largest economic activities in the Galapagos 

(Ramírez et al¸ 2012). These human activities are at the base of intentional entry of  

exogenous species. This is considered to be the greatest threat for the biodiversity of 

the Islands since many disperse without control, thereby endangering the native and 

endemic species (ABG, 2015). 

Together with fishing, agricultural activity in the Galapagos Islands (Figure 2) was one of 

the first survival strategies of the local population. Agricultural activity has been 

decreasing due to the low profitability compared to other economic activities, such as 

tourism. Hence, agriculture does not meet the needs of the inhabitants (INGALA, 2003). 

Accordingly, there has been an abandonment of agricultural land which allowed the 

aggressive expansion of invasive species such as guava (Psidium guajava), elderberry 

(Sambucus mexicana), red cinchona (Cinchona pubescens), bay leaf (Laurus nobilis), 

passion fruit (Passiflora edulis), blackberry (Rubus niveus). These displace endemic 

species since agricultural areas are generally wet habitats, facilitating the rapid 

development of introduced species. In San Cristobal, 93% of the wet sectors are in 

agricultural areas. For Santa Cruz this is 74% (Bensted-Smith, 2002). 
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Figure 2: Agriculture Zone in the Galapagos Islands (DPNG, 2014) 

 

Introduced and invasive plants in the Galapagos Islands 

The flora present in the Galapagos Islands are particularly lush and varied. This is 

especially the case above 400 meters altitude as result of the previously described 

climate created by the Humboldt and El Nino current (Quintanilla, 1983). 

Botanical studies indicate that the islands were occupied with species that originate 

from the equatorial and tropical continent. These populations were able to spread 

through agents such as wind, birds and marine rafts. Besides,  each island has its 



21 
 

 

endemic flora. A large part of these plant species grows on a rough substrate of cracks 

and lava blocks, which occurs mainly in the lower areas near the coast (Quintanilla, 

1983). 

The flora on Galapagos is part of a complex ecosystem involving many marine and 

terrestrial animal that depend on it. The Nature Conservancy (TNC) carried out a 

classification of the vegetation: Natural Vegetation, Invasive Vegetation, Agricultural, 

Eriales, water bodies and cultural features (Segarra, 2012). 

The flora present in the Galapagos Islands is particularly lush and varied. This is especially 

the case above 400 meters of altitude as a result of the previously described climate 

created by the Humboldt and El Niño stream (Quintanilla, 1983). 

Botanical studies indicate that the islands were occupied with species that originate in 

the equatorial and tropical continent. These populations were able to spread through 

agents such as wind, birds and sea rafts. In addition, each island has its endemic flora. A 

large part of these plant species grows on a rough substrate of cracks and lava blocks, 

which occurs mainly in the lower areas near the coast (Quintanilla, 1983). 

The flora in Galapagos is part of a complex ecosystem that involves many marine and 

terrestrial animals that depend on it. The Nature Conservancy (TNC) carried out a 

classification of the vegetation: Natural vegetation, invasive vegetation, Agricultural, 

Eriales, bodies of water and cultural characteristics (Segarra, 2012). Within the endemic 

vegetation are plants such as Palo Santo, guayabillo, Scalesia, tomatillo, Opuntia, 

algodoncillo, cactus, etc., which are being lost due to their low genetic diversity and non-

specialized pollinators generating susceptibility to invasive species (Mooney & Cleland, 

2001). 
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Most of the introduced plants arrived in Galapagos at the initial time of anthropogenic 

activity such as vegetables, fruit trees, timber, medicinal and ornamental plants. 

Ornamental plants that grows in gardens are the largest group of introduced plants, 

which has adapted to the arid zone. Besides, there are unfavorable plants that cause 

habitat changes on the sites where they have adapted. An example of this is the red 

cinchona (Cinchona pubescens), which is a tree that invaded an area where initially no 

trees were growing. Others examples the crops are guava (Psidium guajava) and 

blackberry (Rubus niveus) that are considered to be the worst invaders of the Galapagos 

Islands (Consejo de Gobierno del Régimen Especial de Galápagos, 2016). 

Invasive plants are considered to be species that impact endemic and native species, 

and the main characteristics of an invasive species are the following (Segarra, 2012):  

 Reproduction in the first years of life cycle with generally a small seed, easy 

dispersion of seeds by animals, wind, water or man  

 Long duration of seed dormancy in the soil, and seeds without special conditions 

to germinate. 

 Multiple reproduction mechanisms (sexual or asexual by leaves, branches, roots, 

stems)  

 Long periods of flowering and fruiting  

 Easy adaptation to various climates and conditions. 

The main dispersers of these species are wind, birds, rodents, herbivores (including 

introduced animals), of which there is no control possible. Therefore, it is expected that 

they will be dispersed to pristine areas in the future (Consejo de Gobierno del Régimen 

Especial de Galápagos, 2016). The main dispersal factor for raspberry is bird such as the 
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Crotophaga ani (smooth-billed ani) while for guava and rose-apple  dispersal livestock 

animals are the most responsible (Soria, 2006). 

Sixteen percentage of introduced plant species are considered invasive and they mainly 

affect the wetlands of the islands (Trueman et al, 2010). The study by SIGTIERRAS (2010), 

indicates that 56% of San Cristobal is occupied by invasive species, of which Psidium 

guajava (guava), Syzygium jambos (rose apple) and Rubus niveus (blackberry) have a 

large range of distribution. On the other hand, in Floreana Island, the invading species 

occupy only 3%. However, here the area of the PNG is affected more since the 

agricultural zone is controlled. On Isabela Island, invasive species occupy 57% of 

agricultural areas and on Santa Cruz 22%, respectively, where Cinchona pubescens (red 

cinchona) and Cedrela odorata (cedar) stand out. 

The worst effects on the ecosystems of the Islands are caused by both woody species 

such as guava, cedar and husk, and bushes such as raspberry and Lantana that generate 

impenetrable thickets (Tye, 2001). 

 

Rubus niveus 

The genus Rubus is the Latin name of brambles (blackberries and raspberries) originating 

from the word “ruber” which means red (Wagner et al, 1999). This genus belongs to the 

Rosaceae family and is subdivided into 12 subgenera of which very few have been 

domesticated (Ballington et al. 1993). They are widely distributed, and their 

consumption is global due to their tasty flavor or since they are a source of natural 

pharmaceutical products (Kalkman, 2004; Rao & Snyder, 2010). 
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Part of this genus is the species Rubus niveus, commonly known as blackberry or Hill 

raspberry, which is native to India, Southeast Asia, the Philippines, and Indonesia. 

(Wagner et al, 1999). 

Due to its high nutritional interest, for being a sweet fruit and for ornamental use, its 

seeds were dispersed by the nursery trade. Therefore, these seeds were introduced to 

Kenya from India in the year 1930 with the purpose to be cultivated in the mountains. 

Subsequently, they were sent from Kenya to F.B. Harrington Natal, South Africa 1947, 

and from here to the Center for Agricultural Research and Education at the University 

of Florida, USA 1948. In Florida they were widely cultivated to meet the high demand. 

However, after a few years, the crops were abandoned due to the formation of 

impenetrable barriers, which made impossible the harvest of the fruits. From Florida, 

the seeds arrived at the University of Puerto Rico in 1955, and hereafter they also moved 

to Honduras, Ecuador, Hawaii and other parts of Central and South America and 

Australia (Morton, 1987; Quinton et al, 2011; FCD & DPNG 2009) 

In the Galapagos Islands, this species was introduced for agricultural purposes from the 

Ecuadorian mainland, first entering Santa Cruz Island at the end of the '60s and San 

Cristobal Island at the beginning of the '70s. One of the first uses of the raspberry was 

to form barriers (ISSG, 2014).  Later it was found on Isabela Island in 1995 (Sierra Negra), 

in 2000 (Cerro Azul), on Floreana Island in 2000 and Santiago Island in 2001 (Lawesson 

& Ortiz 1990; Atkinson et al, 2008), for its dispersion. Rubus niveus distribution within 

the Galapagos is shown in Figure 3. 
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Figure 3: Raspberry’s Distribution on the Galapagos Islands (PNG & WWF, 2018) 

 

The raspberry has an adaption to wide range of climatic niche from sea level to 3,000 

masl. Yet it is presumed that it is not resistant to drought or frost (Wagner et al, 1999). 

They are shrubs and have 200 centimeters long stems covered with strong 3-7 

millimeters long hook-shaped spines, and they are tomentose. Has pinnately compound 

leaves, with 5-9 leaflets, in the form of elliptical-ovate to elliptical. They are 2.5-6 cm 

long, 2-3 cm wide. The top-surface is glabrous, and the bottom is tomentose and white 

its margins are saw-shaped, its petioles or rachis have curved spines.  

As for its flowers, they are short, terminal, cymose panicles, have scattered spines, 

pedicels 6-12 mm long, 5 purple-pink petals, and finally, their fruit is dark red, black, 



26 
 

 

suggestive, 1 cm long and tomentose white and the clusters can have up to 20 fruits 

(Wagner et al. 1999). 

However, this plant can vary its shape, as is the case in Hawaii, where there is a form “a” 

and “b” of Rubus niveus, where the “a” form contains purple-pink petals, has 5 to 7 

leaflets, a terminal oval leaflet, young vertical stems and white glaucous, and its fruit is 

purple-black with a length of 1-1.5cm. The "b" form haslight pink petals, with 9-11 

leaflets and a terminal elliptical leaflet and its stems are arched from dark red to purple 

(Gerrish et al. 1992).  

Within the Galapagos archipelago, Rubus niveus displaces native species, causing 

farmland to become useless. It is estimated that it has a distribution of around 30,000 

hectares but it can up to 90,000 hectares (CDF 2009). Besides, it is difficult and expensive 

to control, making it one of the worst weeds (CDF 2009). It is highly invasive due to  

reproduction by both seeds and apomixis (asexual reproduction) (Rentería et al., 2012). 

Moreover, it can be propagated vegetatively using shoots (See figure 4b), seedlings are 

tolerant to shade, light, rain, waind and a wide range of temperatures (FCD & WWF, 

2008), it has a rapid growth (maturity at 6-8 months) (Atkinson et al. 2008), it can 

produce fruits from 6-month-old seedlings and each fruit can contain 180 seeds (Parmar 

& Kaushal, 1982), which are dispersed by rats, birds, wind and have 10 years of viability 

in the soil (FCD & WWF, 2008).  

Although in different areas around the world it usually blooms from June to July and the 

fruits ripen between August and September (Plants for a Future, 2014), in contrast in 

Galapagos it blooms and fruits all year long (Atkinson et al, 2008). Originally, it can reach 

a height of 2 meters, but when it occurs as an invasive plant it reaches up to 4.5 meters 
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high. It can grow in sandy soils, clay soils and well-drained soils (Plants for a Future, 

2014). 

a) b)  

Figure 4: a) Rubus niveus in Galapagos. b) Vegetative reproduction by shoots of Rubus 

niveus. 

Control mechanisms of invasive species in the Galapagos Islands 

The management of invasive species within the Galapagos Islands has become of great 

importance due to the great threat that these exogenous species have become for the 

unique biodiversity (Reaser et al. 2007). A first line of defence involves early detection 

of a potentially invasive species and eradication before it is given the chance to fully 

adapt and establish itself. In this way, irreparable modification of the ecosystem can be 

avoided. In general, economically, eradication of an invasive species is preferable 

because there is only one moment of investment. Less favorable are alternatives rely on 

consistent spending (Zavaleta 2000; Panetta & Timmins 2004). In the case of plants, 

applying the eradication of a species may not be feasible given the necessity that its 

distribution is limited and that its seed has a short lifespan. Since a rapid dispersal and 
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dormant seeds are contributing to the invasiveness of a plant, this is  difficult to achieve 

for an invasive plant (Panetta 2004, Buddenhagen 2006, Panetta 2009). 

As a second line of defence, several methods are used to control invasive species: 

chemical, mechanical and biological methods. 

Chemical control is the most commonly used and effective mechanism on the short term 

and based on the use of herbicides, such as glyphosate. However, this is accompanied 

by disadvantages such as high costs due to its continuous use and possible development 

of resistance. Also, intensive use of chemicals can alter soil quality which also affects 

endemic or native species (FCD & PNG, 2006) Mechanical control on the other hand, is 

very specific to the target, but is labor intensive because of the many spines attached to 

the plant. In this method, it is necessary for the plant to be  removed entirely (both 

above and below the ground) to prevent it from regenerating. This process is done 

before applying the chemical method. Finally, biological control is based on the use of 

living organisms that affect the target directly through pathogenesis or indirectly 

through competition with the target. When proven effective , it can be profitable, self-

sustainable, permanent and ecologically safe due to the high specificity of the organisms 

used. In Hawaii, several biological control agents have already been introduced, 

successfully combatting Rubus argutus (Starr et al, 2003; Wittenberg & Cock 2001; 

Hobbs & Humphries 1995). 

In Galapagos, the mechanic method is  the most commonly used, manually with a 

machete, followed by the chemical method using herbicides. However, this is not 

sufficient given the large number of seeds that are present in the soil as a seed bank 

(7000 - 22800 seeds / m2 germination rate  80%, equaling a cost of $ 500-2000 per ha). 

The chemical and manual method has been used together to obtain better results, 
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where the herbicide is used to burn the weeds and then the manual method is used to 

remove the remaining plants that were left in the soil (FCD & WWF, 2008). The most 

used herbicides in Galapagos are glyphosate and picloram, which are applied  in areas 

with high ecological value, areas with limited infestations, or areas with recently 

introduced species (Rentería, 2001). 

Studies have shown that the use of these two methods can be harmful, since it can 

change the composition of the soil, the structure of native species communities and 

even affect resident bird species. Therefore, biological control has been considered as 

an alternative and sustainable way (FCD & WWF, 2008) to create an effective strategy 

to eliminate the blackberry populations and reintroduce native species (Hansen, 2007; 

Denslow, 2007). 

Biological control has already been applied in Galapagos for different species. A 

successful example is an Australian ladybird (Rodalia cardinalis) that was introduced in 

2002 to the Islands for the control of cottony scale (Icerya purchasi) that affected 

endemic plants (Calderón et al, 2012). In 2011, an evaluation was carried out to see the 

effect of the ladybird on the aphid or cotton scale, and it was noted that, in a large 

percentage, this aphid was reduced without a negative impact on native species (PNG, 

2016).  

Phytopathogenic fungi have been used as biological control of invasive plants since 

1970, because they are the majority of pathogens that cause disease in plants, where 

fungi of greater interest as biological control are rust and smut (Evans 1987). An example 

of rust is Phragmidium violaceum that affects Rubus sp., released in Australia as a 

control of invasive raspberries (Evans et al. 2004). On the other hand, the white smut 
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Entyloma ageratinae that was used in Hawaii for the control of Aegeratina riparia 

(Trujillo, 1985). 

Thanks to these projects, it has been possible to register bases and experience to be able 

to achieve successes in the control of introduced species and ensure the conservation 

of the biodiversity of ecosystems. Many of the projects have not achieved the complete 

eradication of these species, but they manage to control them by reducing their impact 

and not damaging or endangering native or endemic species. Hence, biological control 

must be specific to an extent that it only attacks the invasive species targeted without 

having a negative effect on other non-target species (PNG, 2016). 

In the case of finding a biological control against raspberry, it is necessary to obtain 

facilities to provide evidence for containment before the agent being released into the 

environment. (PNG, 2016). 

In conclusion, Galapagos has climatic and geographical characteristics that allow 

agriculture to be applied, that is, plants can easily develop on these islands. However, 

this is a disadvantage since it allows invasive plants to adapt better to the ecosystem 

causing a negative impact on species diversity. Different control methods have been 

applied but they have not produced great results, so biological control is an alternative 

that is being considered to reach favorable results controlling invasive species, especially 

raspberry. 
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INTRODUCTION 

UNESCO declared the Galapagos Islands a World Heritage Site in 1979, due to the great 

and fragile biodiversity. This biodiversity was due to its volcanic eruptions and the 

isolation of this archipelago (Karez et al, 2006). This archipelago has become an 

evolutionary research center, with a focus on emblematic species, so Ecuador decided 

to create the Galapagos National Park (PNG) to protect 97% of land and marine areas, 

and allow 3% remaining to human activities (Black, 1973). The importance of the 

conservation of this ecosystem is of national and international interest, so there are 

many entities that are dedicated to conserve for this island (PNG, 1998). 
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This delicate biodiversity is mainly affected by the introduction of exogenous species, 

which enter to the islands due to human activities that occur within them. For many 

years, the first economic activity was agriculture (sugarcane production), but over time, 

agriculture decreased since the population began to devote itself to what is now the 

largest economic activity, tourism. Thanks to tourism, the population has increased, 

which also caused an increase in food and diverse supplies, which has to be transported 

from the continent for survival of Galapagos population (Ramírez et al., 2012). 

Since tourism is far more profitable than agriculture, agricultural areas have been 

abandoned, which has allowed the introduced plants to take advantage of these spaces 

and displace existing plant in that ecosystem. It is estimated that 16% of the introduced 

plants are invasive species (Trueman et al, 2010), which plays a role displacing plant 

endemic species. Examples of these invasive species are guava (Psidium guajava), red 

cinchona (Cinchona pubescens), bay leaf (Laurus nobilis), and raspberry (Rubus niveus) 

(Bensted-Smith, 2002). 

The introduction of exogenous species was due to anthropogenic activities, since they 

are considered useful as a source of food, wood, medicinal and ornamental, in addition 

to the need to enter supplies for the population (Consejo de Gobierno del Régimen 

Especial de Galápagos, 2016). 

To be considered as an invasive species, a plant must meet the following characteristics: 

1) have a negative impact over endemic and native species, 2) outcompete efficiently 

for nutrients, displace and extinguish endemic species, 3) have sexual and asexual 

reproduction, and have seeds of easy dispersal and long viability on the ground (Segarra, 

2012). The main factor for dispersal of these invasive plants are wind, birds, rodents, 

and herbivores (Consejo de Gobierno del Régimen Especial de Galápagos, 2016). 
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Invasive plants are known to settle down in the wetlands (200-700 masl) of the islands, 

for example, 3% of Floreana, 57% of Isabela, 22% of Santa Cruz, and 56% of San Cristóbal 

has been occupied (SIGTIERRA, 2010). Of these four inhabited islands, R. niveus, along 

with Syzygium jambos and P. guajava, has the highest range of distribution, especially 

in San Cristóbal, with R. niveus being the greatest threat (Pryet 2012; SIGTIERRA, 2010). 

The specie R. niveus, commonly known as "blackberry" or "Hill raspberry", is native to 

India, Southeast Asia, the Philippines and Indonesia (Wagner et al, 1999). It is a crop of 

high interest, since it contains a sweet fruit and ornamental use, which is why it has been 

distributed in different parts of the world. It could have arrived to Galapagos in the late 

60´s, where after it was dispersed through 5 Islands: Santa Cruz in the late '60s, San 

Cristóbal in the early '70s, Isabela in the late ‘90s, and Floreana and Santiago in the early 

2000’s (Lawesson & Ortiz 1990; Atkinson et al, 2008). 

Rubus niveus has the characteristics to be considered extremely invasive, such as its high 

distribution capacity, sexual and asexual reproduction,  and apomixis, rapid growth, 

large seed bank in the ground, and easy production of high scrublands. That is why its 

control has been considered difficult in other similar ecosystems such as Hawaii, Central 

America, Australia and South Africa (FCD & WWF, 2008, Rentería et al, 2012). It is 

estimated that in Galapagos it has distributed around 30,000 ha. but it can up to 90000 

hectares (CDF 2009). A few methods have been used to control the growth of the 

raspberry. First, mechanical methods are used to eliminate the plant above and below 

the ground. Second, chemical methods are used such the application of herbicides e.g. 

glyphosate, but these produce high economic and environmental expenses since it 

relays in constant application for its persistence of raspberry seeds and shouts in the 
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ground. The estimated cost per chemical application is $ 200 per ha (FCD & WWF, 2008 

& Rentería, 2011). 

Therefore, biological control methods have been taken into consideration as an effective 

option to target R. niveus (Cabrera & Briano, 2012). There are two types of biological 

control: the first is natural control, where antagonists limit the development or 

reproduction of the target without human intervention (Cock, 1996), or it can be 

introduced, where selected antagonists are manipulated and applied with scientific 

bases against the target. For the applied biological control, there are 3 types: the first is 

classic or inoculative, which permanently introduces an exotic enemy against an exotic 

plague, the second is flooding, which consists of massive breeding of the biocontrol 

organism to apply it in green houses, and lastly  conservation, which consists of 

conserving and increasing the antagonist through manipulation of the ecosystem, 

favoring its adaptation and establishment (Cabrera & Briano, 2012). 

Since the raspberry plant is a weed, a classical biological control strategy is needed in 

the Galapagos Islands, where an antagonistic agent has to be introduced to control this 

plant. In order to apply this type of biological control, the first step is to implement the  

“centrifugal phylogenetic testing method” designed by Anthony Wapshere in 1974, 

which consists of repeating biological control tests on the target species to determine 

its effect. Then, tests are done on plants of the same family as the target species, and 

then on related families, successively moving away phylogenetically from the target 

plant. These tests can last for years, since it is necessary to test them in many individuals 

and they must be carried out in confined spaces to avoid a leakage of the biological 

control to the environment (Cabrera & Briano, 2012 & PNG, 2016). 
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Insects, mites, nematodes, or other organisms are known to cause disease in plants, and 

to be used as biological control agents, but phytopathogenic fungi are considered the 

most important plant antagonists (Van Driesche et al. 2007; Evans 1987; Templeton, 

1982). 

Phytopathogenic fungi have been used as biological control of invasive plants since 

1970, where the two fungi of greatest interest were rusts and blights (Trujillo, 1985). 

Rusts (Order Uredinales) are obligate parasites and usually attack only one or a few 

species of plants, so they are candidates for classic biological control. An example of a 

rust is Phragmidium violaceum, that affects Rubus sp., which has been used in Australia 

to control invasive blackberries (Evans et al. 2004). On the other hand, smuts (Order 

Ustilaginales), similar to rusts, are obligate parasites of vascular plants that 

systematically affect the host, weakening it and possibly preventing seed production. An 

example is the white smut Entyloma ageratinae that it was introduced to Hawaii to 

control Ageratina riparia (the mistflower) (Trujillo, 1985). The PNG, along with the CABI 

and the CDF, are looking for an alternative to control the raspberry in Galapagos using 

the FEIG fund (Fondo para el control de las especies invasoras de Galápagos) that was 

created to handle problems of invasive species (CABI, 2019). 

As mentioned earlier, phytopathogenic fungi are the main cause of diseases in plants, 

and there are no cases of a fungus released as a biological control agent that has caused 

problems affecting non-target species (Anderson, 2009). Therefore, the objective of this 

research was to evaluate phytopathogenic fungi isolated from the raspberry (Rubus 

niveus) of San Cristóbal-Galapagos Island, so they can be used as biological control 

agents to control or diminish the population of this aggressive plant species from the 

Islands. 
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MATERIALS AND METHODS 

Sample collection 

The study was carried out in upper part (wet zone 200-700 masl) of San Cristobal Island. 

Leaves, stems, and fruits that presented disease symptoms were collected in plastic bags 

and further stored at 4 ˚C. In total, 80 sites were inspected for collection, maximum of 4 

samples were collected in each site (Figure 1). Samples were transferred to the 

Microbiology laboratory of the Galapagos Science Center (GSC), where fungal isolation 

was performed.  

 

Figure 1. a) Collection Map of Rubus niveus samples with disease symptoms (80 sites). 

b) Rubus niveus growing on the roadside of San Cristobal Island and covering other 

plant species.  

Fungal Isolation 

For fungal isolation, samples were surface sterilized following a modified version of the 

Dhingra and Sinclair protocol (1985). First, tissue of 2x2 cm in size was excised from 

samples of fruit, leaves and stems. Samples were immersed in a solution containing a 

solution of Sodium hypochlorite (1.5% for leaves and fruits and 2.5% for stems) for one 

minute with constant stirring, followed by a 70% alcohol wash for one minute with 

stirring and finally, 3 washes with sterile distilled water was performed. These tissues 
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were dried on sterile paper towels and cultivated in PDA medium (Potato Dextrose Agar 

– Difco) amended with gentamicin (antibiotic) and incubated at 28 °C for 7 days in the 

incubator (Shell Lab). The PDA medium was prepared following the provider 

instructions. 

After 7 days, each isolated fungus was passed to a new medium (PDA + antibiotic), until 

purified cultures (single cultures) were obtained. 

Pathogenicity tests (Bioassays) 

To identify potential pathogens of raspberry leaves, pathogenicity tests were 

performed. For this, the isolated fungus grown in PDA for 15 days and then conidia were 

scraped from the solid medium and suspended in PDB liquid medium (Potato Dextrose 

Broth), with a minimum concentration of 1x106 conidia per ml.  

Healthy raspberry leaves were collected in the upper part of San Cristóbal island and 

superficially sterilized with 70% alcohol and distilled water and placed on a tray with wet 

paper (humid chamber). On the leaf, 5 µl of the isolated fungus was placed on different 

points as shown in the Figure 4h, and 5 µl of PDB solution was used as negative control. 

Trays were covered with plastic wrap to simulate a humid chamber. The humid 

chambers were incubated at room temperature (± 25 ° C) for 7 days under 12/12h dark-

light cycle. Lesions from the inoculated area was evaluated every day and measured in 

centimeters. After bioassays were executed, the fungal isolate that caused damage to 

the leaves were isolated again to determine if the same isolate was recover, fulfilling  

Koch´s postulates. Each isolated was tested twice for its pathogenicity. Positive fungal 

isolates that cause disease symptoms or lesion were re-tested 3 times.   
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Morphological identification 

Each fungus was identified according to the mycelium, and the conidiophore shape and  

color, and conidia morphology (Fraire et al. 2002). A transparent adhesive tape was used 

to take a sample of each fungus, and subsequently placed on a glass slide (López et al. 

2014). The samples were observed in a Leica DM750 microscope, with magnifications of 

40X and 100X, and they were photographed and compared with the taxonomic key 

published by Obispo, 1974. 

Molecular identification 

Fungal DNA was extracted with the OMEGA E.Z.N.A. Fungal DNA Mini Kit following the 

manufacturer’s instructions. The ITS (Internal Transcribed Spacer) region was amplified 

using the primers ITS4 (5'-TCCTCCGCTTATTGATATGC-3') and ITS5 (5'-

GGAAGTAAAAGTCGTAACAAGG-3')(White et al 1990). The TEF1a region (Elongation 

factor 1 alpha) was amplified using the primers EF -1 (5'-ATGGGTAAGGARGACAAGAC-

3') and EF-2 (5'-GGARGTACCAGTSATCATGTT-3') (O'Donnell et al, 1998). The TUB region 

(beta-tubulin) was amplified using the primers T1-F (5'-AACATGCGTGAGATTGTAAGT-3') 

(O´Donnell & Cigelnik, 1997) and Bt2b-R (5'-ACCCCTCAGTGTAGTGACCCTTGGC-3') (Glass 

& Donaldson, 1995). The RPB2 region (RNA Polymerase II gene) was amplified using the 

primers fRPB2-5f (GAYGAYMGWGATCAYTTYGG-3') and fRPB2-7cR (5'-

CCCATRGCTTGYTTRCCCAT-3') (Liu et al, 1999). Lastly, the GAPDH region 

(Glyceraldehyde 3-phosphate dehydrogenase) was amplified using the primers GDF (5'-

GCCGTCAACGACCCCTTCATTGA-3') and GDR (5'-GGGTGGAGTCGTACTTGAGCATGT-3') 

(Templeton et al. 1992). These genes are generally used as reference genes for fungi 

because they are involved in basic cellular functions or constitutively expressing 
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themselves in different phases of the fungal life cycle. The genes used depend on each 

organism studied (Nailis et al, 2006; Bohle et al, 2007; Fang & Bidochka, 2006). 

The PCR reaction  was performed in a LABNET MULTIGENE thermocycler. ITS was 

amplified by the following parameters: initial denaturation at 94°C for 4 min, followed 

by 30 cycles of denaturation at 94°C for 45 s, annealing at 52°C for 30 s, extension at 

72°C for 45 s and a final extension at 72°C for 15 min. The amplified PCR program of 

TEF1a was an initial denaturation at 95°C for 5 min, followed by 35 cycles of 

denaturation at 94°C for 1 min, annealing at 55°C for 2 min, extension at 72°C for 2 min 

and a final extension at 72ºC for 10 min. For TUB marker an initial denaturation at 94ºC 

for 4 min, followed by 35 cycles of denaturation at 94ºC for 30 s, annealing at 59ºC for 

30 s, extension at 72ºC for 1 min and a final extension at 72°C for 7 min. The amplified 

program of RPB2 initial denaturation at 94°C for 4 min, followed by 35 cycles of 

denaturation at 94°C for 1 min, annealing at 60°C for 1 min, extension at 72°C for 90 s 

and a final extension at 72°C for 10 min. Finally, the amplified program of GAPDH initial 

denaturation at 95°C for 6  min, followed by 30 cycles of denaturation at 95°C for 1 min, 

annealing at 62°C for 1 min, extension at 72°C for 1 min and a final extension at 72°C for 

15 min. The PCR products obtained were sequenced by MACROGEN in Korea using 

Sanger method. The sequences obtained were compared using the NCBI BLAST tool 

(National Center for Biotechnology Information). 

Phylogenetic Analysis 

The sequences were built using ClustalW under MEGA 7.0 software, which was used to 

perform the phylogenetic analysis with Bayesian inference using the BEAST v1.8.4 

program (Drummond & Rambaut, 2007). The following substitution models were used 
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in the phylogenetic analysis: JC69 + G for Bionectria sp., HKY + G + I for Colletotrichum 

sp. and Penicillium sp., GTR + G + I for Lasiodiplodia sp., Fusarium sp. and Phanerochaete 

sp. MCMC were run for a total of 100,000,000 generations and sampled every 1,000 

generations. Ten percentage of the initial states were discarded. Phylogenetic trees 

were observed and edited using FigTree v1.4.3. 

RESULTS 

By looking in each collection site, it was found samples that had chlorosis, dark and dry 

spots, leaf blight, stem anthracnose and rot and presence of fungi in the fruits (Figure 

2). These samples were collected for further fungal isolation at the GSC.  

 

Figure 2. Samples collected from Rubus niveus with the presence of disease symptoms 

(San Cristóbal Island). a, g, f) fruit with the presence of mycelium; b, d, i) stem with 

anthracnose; c) leaf with anthracnose; e) presence of blight on the leaf; h, j) leaves 

with the presence of blight and chlorosis; k) leaf with presence of chlorosis and lesions. 

 

A total of 595 fungi were isolated from the collected samples that presented disease 

symptoms in the field. The fungi were classified by mycelial morphology, and one 



46 
 

 

representative of each group was taken to perform the pathogenicity tests. In total, 226 

groups with different characteristics were obtained (Figure 3). 

 

 

Figure 3. a) Fungi isolated from the Rubus niveus samples. b) The number of samples, 

isolated fungi and fungi with only morphology obtained from leaves, stems and fruits. 

 

Of the 226 pathogenicity tests, six fungi caused leaf damage greater than or equal to 7 

mm of radius in plants during the bioassays, and therefore, these were considered as 

potential candidates as biological control agent against raspberry (Figure 4). Positive 

reactions showing leaf lesion/damage were re-isolated to confirm identity of the 

inoculated fungus, demonstrating Koch's postulates. Control spots with no fungus, 

remained symptomless. 
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Figure 4. Pathogenicity tests inoculating 5 µl of the fungus with a concentration of 1x106 

conidia/ml. The tests were performed in a humid chamber at room temperature (25 °C) 

for 7 days: a) 57T3 - necrosis and chlorotic halo; b) 28.1a.1.2 - necrosis; c) 10.3n - 

necrosis and chlorotic halo; d) 4.3b - necrosis and mycelial growth; e) 52h3.2 - necrosis 

and chlorotic halo; f) 7.2a.1.2 - phytotoxicity and mycelial growth; g) Rubus niveus leaf 

containing the control with a drop of PDB without fungi; h) Fungi inoculation model. 

PDB: Liquid culture medium (Potato Dextrose Broth). Wound: wound done with a 

dissecting needle. 

 

The morphological identification using macroscopic and microscopic characteristics of 

each selected fungus (6 isolates, Figure 4, Table 1) were described based on the 

parameters established by Obispo (1974).   

The 57T3 isolate has the following characteristics: yellowish white and yellow reverse 

mycelium, has a dimorphic conidiophore, and the size of the conidia is 3 to 4.25 µm long 

and 1 to 2.5 µm wide, characteristics of the Bionectria genus.  

The 28.1a.1.2 isolate has the following characteristics: Gray-white mycelium and gray to 

brown reverse, hyaline cylindrical to oblong conidia with 14 to 17.6 µm long and 3 to 5.8 

µm wide, presence of appressoria, characteristics of Colletotrichum genus.  
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The 10.3n isolate has the following characteristics: pale-dark gray mycelium and reverse 

black pigment, mature ellipsoid conidia with dark brown pigment and a transverse 

septum, and pycnidia formed with paraphyses, characteristics of Lasiodiplodia genus. 

The 4.3b isolate has the following characteristics: White-pink or purple cotton mycelium 

with microconidia with 7 to 9µm long and 2 to 4µm wide and macroconidia needle-

shaped, characteristics of Fusarium genus. 

The 52H3.2 isolate has the following characteristics: White to cream thin mycelium and 

reverse cream color, Globose conidia, thin aerial hyphae and hyaline, little septated, 

without clamp connections, characteristics of Phanerochaete genus. 

Finally, the 7.2a.1.2 isolate has the following characteristics: Greenish white mycelium 

and reverse cream-orange color, presence of septate stipules, verticillate metulae, 

predominantly ellipsoidal conidia, located in columns, characteristics of Penicillium 

genus.  

In Table 2 the molecular characterization of each fungus can be observed, where the 

comparison with the BLAST of the sequence was detailed along with the percentage of 

identity, Query cover, e-value, and accession number. Most of the isolates have a 100% 

identity using the ITS region, which helps us to say that species could be, however, from 

two isolates it was not possible to obtain species information, only genus.  
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Table 1. Phenotypic and microscopic identification of fungi isolated from Rubus niveus samples (PDA culture medium). 

STRAIN TOP SIDE BOTTOM SIDE MICROSCOPY MORPHOLOGICAL 

DESCRIPTION 

57T3 

 

 

 

 

 

 

 

Macroscopic 

characteristics: 

Yellowish white 

mycelium, flat 

velutinous texture, 

aerial hyphae; yellow 

reverse, yellow 

pigment spreads 

throughout the culture 

medium 
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Microscopic 

characteristics: 

Dimorphic 

conidiophore, primary 

conidiophores in 2-3 

verticillate divergent 

phialides, penicillate 

secondary 

conidiophore, chain 

conidia, 3 to 4.25 µm 

long and 1 to 2.5 µm 

wide. 



51 
 

 

28-1A-1-

2 

  

 

Macroscopic 

characteristics: Gray-

white aerial mycelium 

with the dark gray 

center; gray to brown 

reverse. 

Microscopic 

characteristics: Hyaline 

cylindrical to oblong 

conidia, , with obtuse 

ends, nucleated,14 to 

17.6 µm long and 3 to 

5.8 µm wide, presence 

of appressoria. 
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10.3n 

 

 

 

Macroscopic 

characteristics: Woolly 

aerial mycelium, 

initially white turning 

pale-dark gray; reverse 

black pigment. 

Microscopic 

characteristics:  

Mature ellipsoid 

conidia with dark 

brown pigment and a 

transverse septum, 

longitudinally striated 

wall and thick. Picnidia 
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formed with 

paraphyses. 

4-3B 

 

 

 

Macroscopic 

characteristics:  

White-pink or purple 

cotton mycelium, 

absence of sclerotia, 

aerial hyphae; reverse 

pink with a purple 

center, in concentric 

rings. 

Microscopic 

characteristics: 

Microconidia: obovate 
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conidia with a rounded-

to-truncate base from 7 

to 9µm long and 2 to 

4µm wide and 

macroconidia: needle-

shaped with 3 septa, 

hooked or curved 

apical cell and basal 

cells foot-shaped. 
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52H3-2 

 

 

 

Macroscopic 

characteristics:  

White to cream thin 

mycelium; reverse 

cream color. 

Microscopic 

characteristics: 

Globose, nucleated, 

thick-walled and easily 

removable conidia, thin 

aerial hyphae and 

hyaline, little septated, 

without clamp 

connections. 
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Each branch forms a 

hyaline terminal 

blastoconidium. 

7-2a-1-2 

 

 

 

Macroscopic 

characteristics:  

Greenish white 

mycelium; reverse 

cream color – orange. 

Microscopic 

characteristics: 

abundant 

conidiogenesis 

Presence of septate 

stipules, 3-5 verticillate 
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metulae, 3-9 

ampulliform phialides, 

predominantly 

ellipsoidal conidia, 

located in irregular 

columns. 
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Table 2. Molecular identification using BLAST of the isolated fungi based on the 
sequence of the markers ITS, RPB2, TUB, GADPH region. 

Strain Scientific name Region Sequence 

length 

Query 

Cover  

E value  %Identity  Genbank 

accession number 

57T3 Bionectria sp. ITS 567bp 99% 0.0 99.82% MK204505.1 

TUB 630bp 94% 0.0 93.46% AF358171.1 

28-1a-1-

2 

Colletotrichum 

gloesporoides 

GADPH 286bp 100% 6.00E-133 99.62% KU743263.1 

ITS 538bp 100% 0.0 100.00% KT282778.1 

10.3n Lasiodiplodia 

theobromae 

ITS 540bp 
100% 0.0 100.00% MH793584.1 

4-3b Fusarium sp. ITS 559bp 99% 0.0 100.00% MK355727.1 

TEF1a 672bp 99% 0.0 99.55% MK414243.1 

TUB 788bp 72% 0.0 99.82% LT575099.1 

RPB2 1067bp 100% 0.0 96.72% LT841266.1 

52H3-2 Phanerochaete 

chrysosporium 

ITS 605bp 100% 0.0 98.68% HM171940.1 

RPB2 1322bp 75% 0.0 95.63% KP134954.1 

7-2a-1-2 Penicillium 

rolfsii 

ITS 585bp 99% 0.0 100.00% MH856397.1 

RPB2 1031bp 99% 0.0 99.51% KC346314.1 

 

Six phylogenetic trees were constructed with concatenated regions for each fungus, 

using sequences reported in other studies. For fungus 57T3 (Bionectria sp.), 69 reported 

sequences were used (Schroers, 2001). The phylogenetic tree indicates that this fungus 

was Bionectria pseudostriata since it forms a clade with other strains of this species, with 

a posterior probability of 1.00 (Figure 5). For isolate 28.1a.1.2, 53 reported sequences 

https://www.ncbi.nlm.nih.gov/nucleotide/MK204505.1?report=genbank&log$=nucltop&blast_rank=1&RID=X43FP6TC014
https://www.ncbi.nlm.nih.gov/nucleotide/AF358171.1?report=genbank&log$=nucltop&blast_rank=1&RID=X43UCMKH014
https://www.ncbi.nlm.nih.gov/nucleotide/KT282778.1?report=genbank&log$=nucltop&blast_rank=2&RID=X4379KTN015
https://www.ncbi.nlm.nih.gov/nucleotide/MH793584.1?report=genbank&log$=nucltop&blast_rank=1&RID=X3H4BAF0014
https://www.ncbi.nlm.nih.gov/nucleotide/MK355727.1?report=genbank&log$=nucltop&blast_rank=1&RID=X43XWG48014
https://www.ncbi.nlm.nih.gov/nucleotide/MK414243.1?report=genbank&log$=nucltop&blast_rank=1&RID=X441SFP7015
https://www.ncbi.nlm.nih.gov/nucleotide/LT575099.1?report=genbank&log$=nucltop&blast_rank=1&RID=X444YPDZ015
https://www.ncbi.nlm.nih.gov/nucleotide/LT841266.1?report=genbank&log$=nucltop&blast_rank=1&RID=X447BR2G014
https://www.ncbi.nlm.nih.gov/nucleotide/HM171940.1?report=genbank&log$=nucltop&blast_rank=1&RID=X3M061B001N
https://www.ncbi.nlm.nih.gov/nucleotide/KP134954.1?report=genbank&log$=nucltop&blast_rank=1&RID=X3NKXCT801N
https://www.ncbi.nlm.nih.gov/nucleotide/MH856397.1?report=genbank&log$=nucltop&blast_rank=1&RID=X449GJJ1015
https://www.ncbi.nlm.nih.gov/nucleotide/KC346314.1?report=genbank&log$=nucltop&blast_rank=1&RID=X44BJC9H014
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were used based on Weir et al, 2012, and this analysis confirmed that the fungus was 

Colletotrichum gloesporoides forming a clade with a posterior probability of 1.00 (Figure 

6). In the case of fungal isolate 10.3n, 100 reported sequences were used based on 

Bautista-Cruz et al. 2018, and this analysis indicates that this fungus forms a clade with 

other strains of Lasiodiplodia theobromae (Figure 7), however, the value of the posterior 

probability was 0.003. For fungus 4.3b, 82 reported  sequences by Sandoval et al, 2018  

were used, and the phylogenetic analysis indicates that our strain forms a clade with 

another strain of the species Fusarium concentricum, with a posterior probability of 1.00 

(Figure 8). For fungus 52h3-2, 48 reported sequences by Floudas & Hibbett, 2015 were 

used confirming that it belonged to the Phanerochaete chrysosporium species with a 

posterior probability of 1.00 (Figure 9), and finally for fungus 7.2.1.2, 57 reported 

sequences by Samson & Houbraken, 2011 were used confirming that the species was 

Penicillium rolfsii (Figure 10) with a posterior probability of 1.00. 



60 

 

 

Figure 5. Phylogenetic tree obtained from Bayesian analysis of the combined ITS and β-tubulin 

sequences of 69 strains belonging to the Bionectria genus based on Schroers 2001. The value 

in the nodes represents Bayesian posterior probability and the lengths. Bionectria levigata 

was used as an outgroup. The scale bar indicates the number of the expected changes per 

site. 
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Figure 6. Phylogenetic tree obtained from Bayesian analysis of the combined ITS and GAPDH 

sequences of 53 strains belonging to the Colletotrichum genus based on Weir et al, 2012. The 

value in the nodes represent Bayesian posterior probability. C. hippeastri and C. boninense 

were used as outgroups. The scale bar indicates the number of the expected changes per site. 
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Figure 7. Phylogenetic tree obtained from Bayesian analysis of the ITS sequences of 100 strains 

belonging to the Lasiodiplodia genus based on Bautista-Cruz et al, 2018. The value in the nodes 

represent Bayesian posterior. Scytalidium hyalinum was used as an outgroup. The scale bar 

indicates the number of the expected changes per site. 
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Figure 8. Phylogenetic tree obtained from Bayesian analysis of the TEF1a, TUB and RPB2 

sequences of 83 strains belonging to the Fusarium genus based on Sandoval et al, 2018. The 

value in the nodes represent Bayesian posterior probability. Fusarium oxysporum was used as 

an outgroup. The scale bar indicates the number of the expected changes per site. 
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Figure 9. Phylogenetic tree obtained from Bayesian analysis of the combined ITS and RPB2 

sequences of 48 strains belonging to the Phanerochaete genus based on Floudas & Hibbett, 

2015. The value in the nodes represent Bayesian posterior probability. Stereum hirsutum was 

used as an outgroup. The scale bar indicates the number of the expected changes per site. 
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Figure 10. Phylogenetic tree obtained from Bayesian analysis of the combined ITS and RPB2 

sequences of 57 strains belonging to the genera Penicillium based on Samson & Houbraken, 

2011. The value in the nodes represent Bayesian posterior probability. Talaromyces flavus was 

used as an outgroup. The scale bar indicates the number of the expected changes per site. 
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DISCUSSION 

Rubus niveus entered the Galapagos Islands due to anthropogenic activities for the need of 

food and for ornamental purposes, and in the past, no local agency attempted to control the 

entry of these species (Consejo de Gobierno del Régimen Especial de Galápagos, 2016). Now, 

this plant is considered one of the worst weeds that are affecting the agricultural area, as well 

as protected areas within the Galapagos National park. Characteristics of this plant make them 

an efficient competitor for nutrients, water and space (ABG, 2015). The raspberry are been 

dispersed in the high zone (wet zone) of the Islands since this area has high relative humidity, 

being a favorable habitat for its development. Also, it adapts to many types of soil, since it has 

been found in ravines, road edges, and grasslands (Starr et al, 2003). 

The present investigation was carried out in San Cristobal since 56% of this island is occupied 

by invasive plants, and also since this plant has a greater distribution range in San Cristobal in 

comparison to other islands (SIGTIERRAS, 2010). In addition, the largest number of reports of 

Rubus niveus by the Charles Darwin Foundation's collection database was shown on this 

island. Raspberry could be found in altitudes ranging from 193 to 605 masl on San Cristobal, 

compared to other places such as Hawaii, where it is also considered as weed, with reports 

that raspberry can be found from 152 m to an elevation of 1280 m (Starr et al, 2003). 

Within the Galapagos Islands, attempts have been made to control raspberry with mechanical 

methods (e.g. by hand, shovel or machete) and chemical methods (e.g. application of 

glyphosate) or fire, however, it has yielded in high cost without efficient results. This indicates 

that other alternatives, such as the biological control method could be useful, since it has 

proven to produce successful results in similar cases. For this reason, we proposed to find 
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phytopathogenic fungi from the Galapagos Islands as a biological control of Rubus niveus 

(Evans et al. 2004). 

It has been mentioned in other studies, such as performed by Anderson (2009), that fungi are 

the main phytopathogens to cause diseases in plants and that they are ideal candidates to be 

used as a biological control of weeds. It is also important to keep in mind that there has never 

been a case of a fungus released as a biological control that caused diseases in other species, 

since exhaustive studies has been done to find the best candidates. For this reason, in this 

study we decided to search for fungi that could be used as biocontrol agents, exclusively using 

fungi isolated from raspberry found on San Cristóbal Island to avoid the introduction of 

microorganisms that could interfere with established ecosystems. 

From a total of 412 samples collected, including leaves, stems, and fruits, 595 fungi were 

isolated, which were divided into 226 groups with different phenotypic characteristics. This 

shows that there was a great diversity of fungi on the islands since the all the isolates were 

associated to a single plant species (R. niveus) in a single island. Despite finding many fungi, 

only six were able to damage the raspberry leaves after performing the pathogenicity tests. 

In general, Rubus genus is attacked by fungi such as Botrytis sp., Alternaria sp., Arthuriomyces 

peckianus, Cercospora sp., anthracnose Colletotrichum gloeosporoides, Peronospora sparsa 

and Fusarium sp. (root rot) (Fernández-Pavía et al., 2012). However, due to the changing 

conditions that may occur, other fungi may appear (Contreras et al, 2019), so we have found 

four possible candidates of different genera that can cause tissue damage, specifically in the 

leaves. 

The first fungus identified was Bionectria pseudostriata (57T3) using morphological and ITS 

and TUB molecular markers. Although Moreira et al, (2016) indicate that the markers resolved 
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the speciation of the Bionectria genera were ATP citrate lyase (ACL1), TUB, TEF1a and RPB2, 

the markers used in this study managed to resolve the species of this fungus, yielding a clade 

formed by the species of Bionectria pseudostriata with the fungus 57T3 with a posterior 

probability of 1.00 which indicates the confidence of the formation of this clade, since it is 

considered a credible phylogeny if it has a posterior probability value > 50% (Drummond & 

Rambaut, 2007). 

In general, Clonastachys species can be found in the soil, such as endophytic fungi, 

saprophytes, and destructive mycoparasites (Schroers 2001), but Bionectria (Clonastachys 

teleomorph) was found in dead plants (barks) (Domsch et al, 2007), which coincides with the 

57T3 fungus that was found in the raspberry stem. Besides, it is not a pathogenic fungus, 

possibly the presence of lesion in the bioassay is due to the high number of inoculated spores, 

causing the balance between leaf and fungus to become unbalanced and a change from 

endophyte to pathogen, however, cannot be considered as a possible biological control for 

Rubus niveus (Stone et al, 2000) 

The second fungus identified was Colletotrichum gloesporoides (28.1a.1.2). These species 

were associated with 470 host genera (Cannon et al, 2008) and can cause anthracnose 

disease. Colletotrichum gloesporoides are considered a species complex where different 

species have varying degrees of pathogenicity, host specificity, etc. (Hyde et al, 2009). These 

species can cause disease in fruits and leaves of the different hosts, including the Rubus genus, 

which is why we found the isolate 28.1a.1.2 in raspberry leaves (Afanador et al, 2014). 

Although the markers necessary to separate the species from this complex are ACT (Actina), 

GAPDH, cal (calmodulin), chs1 (chitin synthase), and ITS (Sharma et al, 2017), for this fungus, 

the only markers used were GADPH and ITS. Here, we confirmed species with the phylogenetic 
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analysis, which gave a clade with a posterior probability of 1.00 among all strains of this 

species, so most taxa could be reliably distinguished (Weir et al, 2012). 

 

The third 10.3n isolate was identified as Lasiodiplodia theobromae, which belongs to the 

Botriosphaeriaceae family, which has 23 genera and 187 species with a cosmopolitan 

distribution. L. theobromae can be found mainly in woody hosts, where they can be found as 

endophytes, saprophytes and plant pathogens, causing gummosis, canker and internal tissue 

necrosis (Slippers & Wingfield 2007; Phillips et al. 2013; Slippers et al. 2013; Dissanayake et al. 

2016). In addition, there is a new report that indicates that it may be a pathogen of the Rubus 

genus (Contreras et al, 2019). On the other hand, it has been found that this fungus can also 

affect leaves, causing blight (Lopez et al, 2009). Bautista et al. 2018 mention that the markers 

necessary to solve the speciation of the Lasiodiplodia genera were TEF1a, TUB and ITS. 

However, in our phylogenetic analysis we found that, although our strain had a close 

relationship with other strains of Lasiodiplodia theobromae, the phylogenetic relation had a 

posterior probability of 0.003, indicating a very low confidence for this clade, since only one 

marker (ITS) was analyzed.  

The fourth 4.3b isolate identified was Fusarium concetricum. The species of the Fusarium 

genera are found in different substrates such as soil, air, water, and plant materials that are 

decomposing. They can also colonize living tissue of animals and plants (including in the Rubus 

genus), and can act as endophytes, secondary invaders and destructive pathogens (Nelson et 

al. 1994), which explains why we found it in raspberry leaves causing injury (Fernández-Pavía 

et al., 2012). Fusarium can be considered a cosmopolitan genus can be found in many hosts, 

including abiotic environments such as air and dust (Perlroth et al. 2007). Within this genus, it 
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can be found the Gibberella fujikuroi species complex (GFC) which is a monophyletic lineage 

composed of anamorphic species, where the species F. concentricum was found. This complex 

is characterized by having pathogenic species and producing fumonisins and moniliformin 

(Marasas et to 2001). For this fungus, the markers TEF1a, TUB and RPB2 were used in this 

research, which were mentioned along with the markers CAL1 and RPB1 in the study by 

Sandoval et al. 2018 to define the species of the Fusarium genus belonging to the GFC 

complex. The three markers used, defined that the species 4.3b had a close relationship to 

another CBS 450.97 strain of Fusarium concentricum, which was within the GFC complex, and 

with a posterior probability of 1.00, confirming the relationship with that clade formation. 

The fifth 52H3-2 isolate identified was Phanerochaete chrysosporium. The Phanerochaete 

genus is a group of saprophytes that is distributed globally and is related to wood rot and 

lignin degradation (Eriksson et al. 1978; Kersten & Cullen 2007). According to Floudas & 

Hibbett 2015, the markers used to define the speciation of the Phanerochaete genus are ITS, 

RPB1 and RPB2. For this study, ITS and RPB2 were used for phylogenetic analysis, confirming 

that it was closely related to three other strains of Phanerochaete chrysosporium (HHB-6251-

Sp, HHB-6612-Sp and HHB-11741-Sp), showing a posterior probability of 1.00, which indicates 

reliability in the formation of the clade. This fungus was found in raspberry lesions of leaves 

where it causes injury, possibly, since it has the property of lignin degradation, and lignin is 

important in the formation of the cell wall (Kellogg et al, 2011), a characteristic that makes it 

a cosmopolitan pathogen. There are studies of other species of this genus that have been 

found in the genus Rubus (Dueñas & Tellería, 1988) 
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Finally, the sixth 7.2a.1.2 fungus identified was Penicillium rolfsii. The markers that helped to 

define the species of the Penicillium genus were RPB1, RPB2, Tsr1 (putative ribosome 

biogenesis protein) and Cct8 (putative chaperonin complex component TCP-1).  

Although we only used the ITS and RPB2 markers in this study, the phylogenetic analysis 

showed that fungus 7.2a.1.2 was closely related to strain CBS_368.48 Penicillium rolfsii, 

obtaining high reliability of the formation of clades (subsequent probability of 1) . 

In the Penicillium genus there is a section called Lanata-divaricata, where the species that 

inhabit the soil, leaves and plant and they are active after decomposition. Penicillium rolfsii 

belongs to this section (Samson & Houbraken 2011). 

The anamorphic Penicillium genus (Berbee 1995) belongs to the Trichomaceae family, where 

the species are considered saprophytic, also they can secrete mycotoxins such as aflatoxins, 

ocratins, patulins and others that are used as pharmaceutical products such as penicillin 

(Geiser et al, 2006). There are some species of the Penicillium genus that are considered as 

phytopathogens of fruits and can affect all Rubus plantations. This can be seen as powdery 

fungal growth in fruits and softening of the infected tissue (George & Fox, 2014). As for the 

Penicillium rolfsii species, it is a potential lignocellulolytic fungus capable of hydrolyzing oil 

palm residues to generate biofuel (Chang et al, 2012). However, in this study, it can cause 

toxicity to the raspberry leaves along with mycelium growth. 

Although these six fungi have been isolated from raspberry, the results observed in the 

bioassays indicate that almost all fungi do not completely colonize the leaf, which could be 

seen where the fungi produce a hypersensitive response (HR), which means that the plant 

induce localized defenses to prevent the pathogen to continue its infection process 

(Gassmann and Bhattacharjee, 2012). This can be seen in the fungi Bionectria pseudostriata, 
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Fusarium concentricum and Lasiodiplodia theobromae, since initially they present a necrosis 

followed by a chlorotic halo. In the case of Colletotrichum gloesporoides, Phanerochaete 

chrysosporium and Penicillium rolfsii, a greater injury was seen, however all fungi affect the 

leaves only at the points where a wound was previously made, indicating that they do not yet 

have the sufficient infective capacity to become a pathogen and used as a biological control. 

CONCLUSION 

Rubus niveus is considered the worst grass in the Galapagos since it has characteristics of an 

invasive plant 

595 fungi were isolated from 412 samples collected from necrotic tissue of Rubus niveus, of 

which they are divided into 226 groups by phenotype, indicating that Galapagos is also diverse 

in relation to fungal biodiversity. 

Of the 226 bioassays performed, only 6 fungi were considered as potential candidates for 

biological control agents, since the lesions caused were greater than 7 mm on leaves during 

pathogenicity test. Here, Bionectria pseudostriata, Fusarium concentricum, Penicillium rolfsii, 

Phanerochaete chrysosporium, Lasiodiplodia theobromae and Colletotrichum gloesporoides 

are found.  

The fungus Bionectria pseudostriata cannot be considered as a candidate to control blackberry 

because it is endophyte and saprophyte.  

Fusarium concentricum, Lasiodiplodia theobromae and Colletotrichum gloesporoides fungi 

cannot be considered biological drivers for raspberry as they are cosmopolitan and can cause 

disease in many species, including endemic species of Galapagos.  
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Although Penicillium rolfsii and Phanerochaete chrysosporium are not specific to raspberries, 

more research should be carried out for possible application as a biological control. Multiple 

subsequent inoculation trials could be done to increase the infection capacity of these fungi 

against raspberry to potentiate plant-pathogen evolution.  
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