UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

El efecto de la flexibilidad de las columnas con base embebida en el desempeño de edificios altos.

•

Daniela Marisol González Quilumbango

Ingeniería Civil

Trabajo de integración curricular presentado como requisito para la obtención del título de Ingeniera Civil

Quito, 18 de diciembre de 2019

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ COLEGIO CIENCIA E INGENIERÍAS

HOJA DE CALIFICACIÓN DE TRABAJO DE INTEGRACIÓN CURRICULAR

El efecto de la flexibilidad de columnas con base embebida en el desempeño de edificios altos.

Daniela Marisol González Quilumbango

Calificación:

Nombre del profesor, Título académico

Pablo Torres, Ph.D.

Firma del profesor:

Quito, 18 de diciembre de 2019

Derechos de Autor

Por medio del presente documento certifico que he leído todas las Políticas y Manuales de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este trabajo en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior.

RESUMEN

Las conexiones de base de columna embebida se componen de una columna de acero embebida en un pedestal de concreto. Este tipo de conexiones son comunes en marcos de acero resistentes a momentos de edificios de altura media y alta. Típicamente, los edificios se modelas con condiciones de base ideales. En edificios de mediana o gran altura, las bases se modelan como empotradas, mientras que en edificios pequeños se considera articuladas. Esto se debe, en parte a la falta de modelos validados para estimar la rigidez rotacional de las bases. Sin embargo, en los últimos años se han desarrollado métodos que permiten estimar la rigidez rotacional de la base, mediante la determinación de las deformaciones de cada componente dentro de la conexión. Otros estudios indican que incluso las conexiones embebidas poseen una flexibilidad que contribuye en un incremento de las derivas de entrepiso. En consecuencia, la subestimación de la flexibilidad en la base de las columnas puede conllevar a subvalorar la respuesta sísmica. En base a esta problemática en el presente trabajo se ha desarrollado un modelo de un edificio de 12 pisos con marco de acero resistente a momento, en el cual se analiza el incremento de las derivas máximas de piso debido al efecto de la flexibilidad real de la base. Para ello, se comparan dos modelos estructurales, el primero con marcos resistente a momentos con bases empotradas, y el otro, un modelo con bases flexibles. Los modelos se someten a un análisis dinámico tiempo-historia de 44 registros sísmicos, correspondientes a una base de datos de sismos subductivos, que se escalan al espectro de diseño de la Norma Ecuatoriana de la Construcción, de tal manera que se ajusta la demanda de forma realista para el tipo de estructura en las condiciones de nuestro país. Como resultado se predice que existe un incremento del 14.5% entre las medianas de las derivas máximas de piso.

Palabras clave: conexión embebida, marco resistente a momento, rigidez rotacional, respuesta sísmica, edificios de mediana y gran altura.

ABSTRACT

Embedded column-base connections consist of a steel column embedded in a concrete foundation. This type of connection is common in steel moment-resisting frames (SMFs) of mid and high-rise buildings. Typically, SMFs are modeled assuming idealized boundary conditions. Mid- and high-rise buildings are modeled assuming fixed-bases whereas low-rise buildings, as pinned-bases. This may be attributed to the lack of validated methods to characterize the rotational stiffness of base connections. However, during the last years several methods to estimate the stiffness of these connections have been proposed. Base flexibility is estimated by aggregating the deformations within the components of the connection. Besides, other studies indicate that even embedded base connections pose a flexibility that may lead to an increase in the inter-story drift ratios. Consequently, underestimation of base flexibility may imply an underestimate of the seismic response of the buildings. Based on this problem, a 12story SMF has been developed, in which the increase of the maximum inter-story drift ratios due to base flexibility is analyzed. For this purpose, two structural models are compared. The first model is idealized with fixed-bases whereas the second one, includes base flexibility. The models are subjected to 44 ground motions (from subductive seismic areas) and scaled to design seismic hazard level of shaking (i.e. 10/50 years) representing the expected seismicity of Ecuador. Results indicate an increase of 14.5% in the medians of the maximum inter-story drift ratios for the model with flexible bases compared with the one with fixed-bases.

Key words: embedded connection, moment-resistant frame, rotational stiffness, base flexibility, seismic response, mid- and high-rise buildings.

TABLA DE CONTENIDO

I. IN	NTRODUCCIÓN	11
I.1.	Antecedentes	11
I.2.	Propósito y significado del estudio	12
II. FU	UNDAMENTO TEÓRICO	14
II.1.	Diseño edificio	14
II.	1.1. Diseño y descripción de marco o pórtico resistente a momento	14
II.	1.2. Sistema de gravedad	17
	II.1.2.1. Diseño de columnas	
	II.1.2.2. Diseño de vigas	
II.2.	Espectro elástico de diseño de aceleraciones	24
II.3.	Factor de escalamiento	26
II.4.	Momento transferido a la base	27
II.5.	Rotación de la base	29
II.6.	Rigidez Rotacional de la base	34
II.7.	Deriva de entrepisos	35
III. M	IETODOLOGÍA	36
III.1	. Diseño de edificio	
III	I.1.1. Diseño y descripción del marco o pórtico resistente a momento	
III	I.1.2. Diseño de columnas	
III	I.1.3. Diseño de vigas	41
III.2	. Espectro elástico de diseño de aceleraciones	
III.3	. Factor de escalamiento.	45
III.4	. Momento transferido a la base y rigidez rotacional de la base	
III.5	. Deriva de entrepisos	50

IV.	RESULTADOS	53
V.	ANÁLISIS DE RESULTADOS	55
VI.	CONCLUSIONES	56
VII.	REFERENCIAS BIBLIOGRÁFICAS	57
VIII	ANEXO A: Código de diseño de columnas	58
IX.	ANEXO B: Código de diseño de vigas	58
X.	ANEXO C: Espectro de diseño	59
XI.	ANEXO D: Factor de escalamiento	63
XII.	ANEXO E: Código del momento que se trnasfiere a la base y la rigidez rotacional	70
XIII	ANEXO F: Derivas de piso para cada registro sísmico	71

ÍNDICE DE TABLAS

Tabla 1. Comprobación de esbeltez y determinación de área efectiva.	.18
Tabla 2. Cálculo de momento nominal en base al patín.	.21
Tabla 3. Momento nominal en base a los casos con el alma.	.22
Tabla 4.Datos para el espectro elástico de diseño de aceleración	.43
Tabla 5. Factor de escalamiento de los registros sísmicos	.46
Tabla 6. Derivas de piso para base empotrada	.51
Tabla 7. Deriva de piso para base con rigidez rotacional.	.52
Tabla 8. Derivas máximas correspondientes a los registros sísmicos	.53

ÍNDICE DE FIGURAS

Figura 1.Comportamiento de un pórtico o marco resistente a momento sometido a cargas
sísmicas (Ministerio de Desarrollo Urbano y Vivienda, 2016)14
Figura 2. Vista en planta y elevación del sistema a porticado (Zareian, F., & Kanvinde, A.,
2013)
Figura 3. Espectro de diseño NEC-Se-DS (Norma Ecuatoriana de la Construcción, 2015)25
Figura 4. Diagrama de cuerpo libre (Grilli, D. A., & Kanvinde, A. M., 2017)27
Figura 5. Condición crítica para la falla horizontal, se muestra que <i>defectiva = dembebida</i>
(Grilli, D. A., & Kanvinde, A. M., 2017)
Figura 6. Caso I cargas y momentos en la sección (Rodas, P. T., Zareian, F., & Kanvinde, A.,
2017)
Figura 7. Caso II cargas y momentos (Rodas, P. T., Zareian, F., & Kanvinde, A., 2017)33
Figura 8. Ilustración genérica de deformaciones a cortante y flexión (Rodas, P. T., Zareian,
F., & Kanvinde, A., 2017)
Figura 9. Rigidez rotacional de la base (Rodas, P. T., Zareian, F., & Kanvinde, A., 2017)35
Figura 10. Estructura diseñada en SAP200036
Figura 11. Modelado del marco o pórtico resistente a momento en SAP200, a) vista en
elevación xz, b) vista en elevación yz
Figura 12. Vista en planta de marco o pórtico resistente a momento
Figura 13. Columna pórtico 2B
Figura 14. Carga axial de la columna del pórtico 2B
Figura 15. Detalle de la sección I
Figura 16. Datos de la sección I40
Figura 17. Diseño columna del pórtico 2B40

Figura 19. Parámetros de la sección para la viga de la primera planta del pórtico 1A42
Figura 20. Diseño de la viga de la primera planta del pórtico 1A42
Figura 21. Espectro elástico de diseño de aceleraciones
Figura 22. Max(a)/PGA del registro sísmico CH_1985_1 para el periodo 1.645
Figura 23. Reacciones en el nodo externo del marco o pórtico resistente a momento47
Figura 24. Cálculo de la rigidez rotacional para el marco resistente a momento nodo exterior.
Figura 25.Reacciones en el nodo interno del marco o pórtico resistente a momento48
Figura 26.Cálculo de la rigidez rotacional para el marco resistente a momento nodo interior.
Figura 27. Comportamiento de resorte en la base de nodos externos de los marcos resistentes
a momentos
Figura 28.Comportamiento de resorte en la base de nodos internos de los marcos resistentes a
momentos
Figura 29. Marco o pórtico resistente a momento considerando sus bases empotradas50
Figura 30. Marco o pórtico resistente a momento considerando la base con rigidez rotacional.

I. INTRODUCCIÓN

I.1. Antecedentes.

En las últimas décadas el sector de la construcción se ha visto afectado por el desarrollo socio económico del país, lo que ha permitido el avance de nuevos métodos constructivos como es el sistema constructivo en acero estructural. Para ello, el Ecuador ha implementado códigos y normativas cuyo propósito se centra en un factor importante que es la seguridad, el cual se relaciona estrechamente con la capacidad de una estructura para resistir solicitaciones de cargas máximas probables durante su vida útil, de tal manera que no existan ni daños excesivos ni el colapso de la estructura.

Tradicionalmente los edificios en acero estructural se diseñan de manera tal que se la divide en dos sistemas: ciertas partes de la estructura diseñadas para resistir cargas sísmicas, mientras que el resto de las partes de los elementos se dimensionan para resistir sólo cargas verticales. En cuanto al diseño sismorresistente, las bases de columna se idealizan como empotradas. Sin embargo, esta idealización genera errores al estimar la respuesta estructural de una edificación según lo ha demostrado varios estudios como (Aviram, A., Stojadinovic, B., and Kiureghian, A., 2010) y (Zareian, F., & Kanvinde, A., 2013) . Una de las posibles razones para esta idealización quizá radique en la falta de modelos que permitan caracterizar la flexibilidad en la misma. En vista de esta problemática se han realizado estudios para desarrollar métodos que caracterizan dicha rigidez rotacional encontrando que incluso las conexiones embebidas son significativamente flexibles, por lo que se puede establecer que contribuye con un incremento de la deriva de entrepiso hasta 0.005 radianes, es decir incrementa en un 0.5% debido al movimiento de la tierra (Gomez, I. R., Kanvinde, A. M., and Deierlein, G. G., 2010). (Rodas, P. T., Zareian, F., & Kanvinde, A., 2017) (Torres Rodas, P., Zareian, F., & Kanvinde, A., 2018) (Torres P., 2019). Partiendo de esto se puede mencionar

varios efectos relacionados directamente con la flexibilidad en la conexión de la base y la respuesta del pórtico que incluye:

- La distribución interna de las fuerzas y deformaciones de la estructura.
- Propiedades dinámicas fundamentales, como periodos modales y formas.
- Redistribución de fuerzas dentro de la estructura
- Formación de mecanismos que controlan los estados límites extremo como el colapso.

Por otro lado, también es importante resaltar que la flexibilidad que ocurre en la base reduce la ubicación del punto de inflexión con la columna del primer entrepiso, lo que aumenta las demandas de flexión en el parte superior de la columna, esto podría tender a generar un mecanismo de piso blando, lo que afecta severamente el desempeño estructural.

I.2. Propósito y significado del estudio.

Estudios previos e.g. (Zareian, F., & Kanvinde, A., 2013) (Falborski T., et.al., 2019) indican que la probabilidad de colapso en edificios construidos con marcos resistentes a momento aumenta a medida que incrementa la flexibilidad de las bases de columna. También, se determinó que la reducción en la rigidez de la base genera la concentración de rotaciones en las vigas del primer piso y los posteriores se convierten en pisos blandos. Esto motivó al presenta trabajo, en el cual se modela un edifico de 12 pisos en SAP2000. Dicho modelo se lo somete a un análisis dinámico de 44 registros correspondientes a sismos subductivos de larga duración. Se propone el desarrollo de dos modelos, el primero en el que el edificio se simula con bases empotradas, mientras que el segundo, simula bases flexibles mediante el empleo de resortes elásticos rotacionales. Este criterio de simulación se puede considerar aceptable debido a que la conexión de la base se dimensiona de acuerdo al criterio de diseño por capacidad, de tal manera que se pueda soportar momentos correspondientes a la capacidad plástica de la columna. Una vez establecidos los modelos de análisis, se obtiene las derivas de entrepiso para

cada registro sísmico lo que permite compara entre el modelo rígido y flexible. Finalmente, se establece el incremento de la deriva de entrepisos debido a la flexibilidad en la conexión columna-base.

En base a lo anteriormente mencionado, se considera importante calcular la flexibilidad en la conexión de la base embebida de edificios altos, ajustando todos los parámetros, diseño y análisis a la realidad de diseño del Ecuador.

II. FUNDAMENTO TEÓRICO

II.1.Diseño edificio.

El diseño del edifico se fundamenta en un marco de acero resistente a momento en el perímetro, el cual se modela en función del diseño planteado por (Zareian, F., & Kanvinde, A., 2013). Mientras que, las vigas y columnas del resto de la estructura se diseñan con base en el ACI (2010). Estos elementos son diseñados como elásticos, y se espera que la plastificación se concentre en los extremos de las vigas, dado que se modela como conexiones tipo RBS (reduced beam section) para transmisión de momentos.

II.1.1. Diseño y descripción de marco o pórtico resistente a momento.

En un pórtico o marco resistente a momento la conexión entre vigas y columnas es establecida como rígida. La resistencia a cargas laterales se debe al comportamiento a flexión y cortante de las vigas y columnas que conforman el marco resistente momento, dado que la ductilidad se da cuando se forma nudos plásticos en las vigas, mientras que las columnas se mantienen elásticas (Ministerio de Desarrollo Urbano y Vivienda, 2016).

Figura 1.Comportamiento de un pórtico o marco resistente a momento sometido a cargas sísmicas (Ministerio de Desarrollo Urbano y Vivienda, 2016).

El comportamiento que se espera de la estructura es que exista nudos plásticos en las vigas, dado que, si se forman en la base del edificio, la estructura se convierte en un sistema inestable. La manera de asegurar la formación de nudos plásticos en las vigas es obtiene cuando

el patín se corta con un radio de dimensiones controladas con el propósito de reducir la capacidad de resistir flexión en la zona de la viga como se observa en la Figura 1.

Existen tres parámetros que se deben cumplir para que el pórtico resistente a momento tenga un comportamiento adecuado, entre ellos:

- Se escoge elementos que permitan la disipación de energía sísmica por deformaciones plásticas.
- Se diseña y detalla la ubicación donde se formarán las rótulas plásticas para que se generen deformaciones considerables sin que ocurra una falla por fractura del elemento por inestabilidad.
- Se diseña el resto de los elementos del marco para que tengan mayor resistencia que las regiones establecidas para que funcionen como fusibles.

Una de las mayores limitaciones de este sistema a porticado es su baja rigidez lateral, por lo que aumenta las derivas de pisos en comparación a otros sistemas.

El diseño del marco resistente a momento se fundamenta en lo establecido por los autores Zareian, F., & Kanvinde, A (2013), en el cual se detalla los elementos que lo conforman como se puede observar en la Figura 2. Los marcos resistentes reciben toda la carga sísmica y también reciben cargas de gravedad tributarias como se observa en la parte sombreada de la vista en planta (Zareian, F., & Kanvinde, A., 2013).

Figura 2. Vista en planta y elevación del sistema a porticado (Zareian, F., & Kanvinde, A., 2013).

Las características del marco se disponen como:

- El ancho de vano del marco resistente es igual a 6 m.
- La altura del primer piso es de 4.572 m, mientras que la altura del resto de pisos es de 3.962 m.
- Se aplica una carga muerta uniforme de 4.788 kN/m2 sobre cada piso y una carga perimetral de 1.197 kN/m2 que representa la mampostería.
- Se coloca una carga viva no reducida de 2.394 kN/m2en todos los pisos, sin embargo, en el techo se aplica una carga viva de 0.957 kN/m2.
- En base a American Institute of Steel Construction de acuerdo con diseño sísmico todas las conexiones de viga a columna están diseñadas como una sección de viga reducida, dado que afecta el tamaño de la columna debido a los requerimientos columna fuerte viga débil.

Se diseña de tal manera que todos los marcos internos se encuentran con base fija, dado que se intenta equilibrar los costos de conexión con los costos de control de deriva debido al aumento de tamaño de los miembros.

II.1.2. Sistema de gravedad

II.1.2.1. Diseño de columnas.

El diseño de columnas se apoya en la norma de construcción en acero AISC (2010). En el diseño de miembros en compresión, se verifica el pandeo por flexión, pandeo torsional y flexo-torsional:

El diseño de elementos se inicia determinado la esbeltez más crítica lo cual se plantea que:

$$\frac{L_{cx}}{r_x} > \frac{L_{cy}}{r_y}$$

Donde se define que $L_{cx} = L_{cy} = kL$ donde k es el factor que considera la longitud efectiva al ser la columna doblemente articulada, L la longitud entrepiso no arriostrada, mientras que r_x es el radio de giro de la sección bruta alrededor del eje x y r_y representa el radio giro de la sección bruta alrededor del eje y.

Una vez comprobada la esbeltez se determina el esfuerzo pandeo elástico denominado como Fe:

$$Fe = \frac{\pi^2 E}{\left(\frac{L_c}{r}\right)^2}$$

Donde E representa el módulo de elasticidad del acero que se considera para este diseño como $2x10^6$ kg/cm2 y L_c/r es el mayor valor entre L_{cy}/r_y y L_{cy}/r_y .

Seguidamente, se realiza la comprobación del pandeo inelástico, en el cual se establece que:

$$\frac{L_c}{r} \le 4.71 \sqrt{\frac{E}{f_y}}$$

Entonces es pandeo inelástico se define como:

$$Fcr = (0.658\frac{fy}{Fe}) * fy$$

Donde L_c/r es el mayor valor entre L_{cy}/r_y y L_{cy}/r_y , E es el módulo de elasticidad del acero y f_y es el esfuerzo de fluencia del acero utilizado en kg/cm2.

Caso de no cumplir la inecuación del pandeo inelástico, es decir ocurre que:

$$\frac{L_r}{r} > 4.71 \sqrt{\frac{E}{f_y}}$$

Se puede establecer que existe pandeo elástico definiéndolo como:

$$Fcr = 0.877 Fe$$

Donde Fe es el esfuerzo de pandeo elástico.

Seguidamente se determina el área efectiva de la sección la cual se define que:

Tabla 1. Comprobación de esbeltez y determinación de área efectiva.

Patín	Alma
	Esbeltez
$\lambda_{f} = \frac{b_{f}}{2t_{f}}$	$\lambda_{\mathbf{w}} = \frac{\mathbf{h}}{\mathbf{t}_{\mathbf{w}}}$
$\lambda_r = 0.56 \sqrt{\frac{E}{f_y}}$	$\lambda_r = 1.49 \sqrt{\frac{E}{f_y}}$
$\lambda_f < \lambda_r$	$\lambda_w < \lambda_r$
$b = b_f - (3t_f) * 0.93$	$b2 = h - (3t_w) * 0.93$
$\overline{F_{cl}} = \left(c_e - \frac{\lambda_r}{\lambda_f}\right)^2 f_y$	$F_{\rm cl} = \left(c_{\rm e} - \frac{\lambda_{\rm r}}{\lambda_{\rm w}}\right)^2 f_{\rm y}$

$$be = b \left(1 - \left(c1 \sqrt{\frac{F_{cl}}{F_{cr}}} \right) \right) \sqrt{\frac{F_{cl}}{F_{cr}}} \qquad be2 = b2 \left(1 - \left(c1 \sqrt{\frac{F_{cl}}{F_{cr}}} \right) \right) \sqrt{\frac{F_{cl}}{F_{cr}}}$$
$$A_{efectiva-patin} \qquad A_{efectiva-alma}$$
$$= 2(b - be)t_{f} * 0.93 \qquad = 2(b - be2)t_{w} * 0.93$$

Donde: E módulo de elasticidad, f_y es el esfuerzo de fluencia, c_e es un factor que toma el valor de 1.37 y c_1 es igual a 0.18, b_f es el ancho del patín, t_f espesor del patín, t_w espesor del alma y *h* es el alto del perfil,

Una vez verificado la esbeltez del perfil se determina el ancho del patín b_f , descontando el espesor del patín t_f , se conoce el ancho efectivo correspondiente y finalmente se obtiene las áreas efectivas. Se determina el área total que se define como:

$$A_e = A_{gruesa} - A_{efectiva-patin} - A_{efectiva-alma}$$

Finalmente se determina la resistencia nominal como:

$$P_n = Fcr - A_e$$

El cálculo muestra que el elemento soporta las cargas de servicio cuando:

$$P_u \le \varphi P_n$$

Donde P_u es la resistencia requerida, P_n es la resistencia del elemento y φ es igual a 0.9.

II.1.2.2. Diseño de vigas.

En el caso de las vigas, de igual manera se diseña en base a las disposiciones del AISC (2010), en el cual se verifica la plastificación de la sección transversal, dado que puede existir secciones compactas, no compactas y esbeltas. También se verifica pandeo lateral-torsional, pandeo local del alma, pandeo local de patín y la resistencia a cortante.

II.1.2.2.1. Resistencia a flexión.

Se inicia estableciendo el pandeo local del torsional, para el patín se establece las siguientes fórmulas:

$$\lambda_p < \lambda < \lambda_r$$

Para ello se establece $\lambda_p = 0.38 \sqrt{\frac{E}{f_y}}$ y $\lambda_r = 1.0 \sqrt{\frac{E}{f_y}}$ donde E es el módulo de elasticidad del acero y f_y es el módulo de fluencia del acero. $\lambda = \frac{b_f}{2t_f}$ donde b_f es el ancho del

patín y t_f es el espesor del patín.

Se calcula el pandeo local del alma, con las siguientes fórmulas:

$$\lambda_a < \lambda < \lambda_r$$

Para ello se establece $\lambda_a = 3.76 \sqrt{\frac{E}{f_y}}$ y $\lambda_r = 5.70 \sqrt{\frac{E}{f_y}}$ donde E es el módulo de

elasticidad del acero y f_y es el módulo de fluencia del acero. $\lambda = \frac{h}{t_w}$ donde $h = d - 2t_w$ y d es el alto de la sección y t_w es el espesor del alma.

El pandeo lateral torsional se puede conocer mediante:

$$L_p < L_b < L_r$$

Para ello se establece a L_b como la distancia no arriostrada,

$$\begin{split} L_{p} &= 1.76r_{y}\sqrt{\frac{E}{f_{y}}}\\ L_{r} &= 1.95r_{ts}\frac{E}{0.7f_{y}}\sqrt{\frac{J}{S_{x}h_{o}} + \sqrt{\left(\frac{J}{S_{x}h_{o}}\right)^{2} + 6.76\left(\frac{0.7f_{y}}{E}\right)^{2}}} \end{split}$$

donde, r_y es el radio de giro de la sección bruta alrededor del eje y, S_x es el módulo de la sección sobre x, E es el módulo de elasticidad del acero, f_y es el módulo de fluencia, y $h_o =$ $d - t_f$ donde d es la altura de la sección, t_f el espesor del patín, J se define como la constante torsional y $r_{ts} = \frac{\sqrt{I_y c_w}}{S_x}$ donde I_Y es el momento de inercia en el eje y y $c_w = \frac{I_y (d-t_f)^2}{4}$. Se plantea

Fcr el esfuerzo pandeo lateral torsional que se calcula como:

$$Fcr = \frac{E\pi^2}{\left(\frac{L_b}{r_{ts}}\right)^2} \sqrt{1 + 0.078 \frac{J}{S_x h_o} \left(\frac{L_b}{r_{ts}}\right)^2}$$

Tabla 2. Cálculo de momento nominal en base al patín.

Sección compacta	Sección no compacta	Sección esbelta
	debido al patín	debido al patín
$λ < λ_p$ y $λ < λ_a$	$\lambda < \lambda_a \neq \lambda_p < \lambda \neq$	$\lambda < \lambda_r \text{ y } \lambda < \lambda_a$
	$\lambda < \lambda_r$	
$\mathbf{L}_b \leq \mathbf{L}_p$	$\mathbf{L}_b \leq \mathbf{L}_p$	$\mathbf{L}_b \leq \mathbf{L}_p$
$M_n = Z_x f_y$	Mínimo entre:	Mínimo entre:
	$M_{\rm n}=Z_{\rm x}f_{\rm y}$	$M_{\rm n}=Z_{\rm x}f_{\rm y}$
	M _n	$M_n = \frac{0.9 E k_c S_x}{2}$
	$= Z_x f_y - (Z_x f_y)$	λ-
	$- \ 0.7 f_y S_x) \left(\frac{\lambda - \lambda_p}{\lambda_r - \lambda_p} \right)$	
$\mathbf{L}_p < \mathbf{L}_b < \mathbf{L}_r$	$\mathbf{L}_p < \mathbf{L}_b < \mathbf{L}_r$	$\mathbf{L}_p < \mathbf{L}_b < \mathbf{L}_r$
M_n	Mínimo entre:	
$= Z_x f_y - (Z_x f_y)$	M _n	Mínimo entre:
$(-0.7f_yS_y)\left(\frac{L_b-L_p}{L_b-L_p}\right)$	$= Z_x f_y - (Z_x f_y)$	M _n
$\sum_{r=L_p} J$	$(-0.7 f_v S_v) \left(\frac{\lambda - \lambda_p}{\lambda_p} \right)$	$= Z_x f_y - (Z_x f_y)$
	$\lambda_r - \lambda_p /$	$-0.7 f_y S_x) \left(rac{L_b - L_p}{L_r - L_p} ight)$

$$\begin{array}{|c|c|c|c|c|} \hline M_n & M_n & M_n = \frac{0.9 \text{Ek}_c S_x}{\lambda^2} \\ & = Z_x f_y - (Z_x f_y & & \\ & -0.7 f_y S_x) \left(\frac{L_b - L_p}{L_r - L_p}\right) & & \\ \hline L_b > L_r & & L_b > L_r & & \\ M_n = F_{cr} S_x & M_{1} \text{ mino entre:} & M_{1} \text{ mino entre:} & \\ & M_n = F_{cr} S_x & & \\ & M_n & & \\ & = Z_x f_y - (Z_x f_y & & \\ & -0.7 f_y S_x) \left(\frac{\lambda - \lambda_p}{\lambda_r - L_p}\right) & & \\ \end{array}$$

Tabla 3. Momento nominal en base a los casos con el alma.

Sección no compacta debido al alma	Sección esbelta debido al alma
$\lambda < \lambda_p \ \mathrm{y} \ \lambda_a < \lambda \ \mathrm{y} \ \ \lambda < \lambda_r$	$\lambda < \lambda_p$ y $\lambda < \lambda_r$
$\frac{I_{yc}}{I_y} > 0.23$	$\frac{I_{yc}}{I_y} > 0.23$
$\lambda \leq \lambda_a$	$\lambda \leq \lambda_a$
$R_{pt} = \frac{Z_{x}f_{y}}{f_{y}S_{x}}$	$R_{pt} = \frac{Z_{x}f_{y}}{f_{y}S_{x}}$
$\lambda > \lambda_a$	$\lambda > \lambda_a$
$R_{pt} = \frac{Z_{x}f_{y}}{f_{y}S_{x}} - \left(\frac{Z_{x}f_{y}}{f_{y}S_{x}} - 1\right)\left(\frac{\lambda - \lambda_{a}}{\lambda_{r} - \lambda_{a}}\right)$	$R_{pt} = \frac{Z_{x}f_{y}}{f_{y}S_{x}} - \left(\frac{Z_{x}f_{y}}{f_{y}S_{x}} - 1\right)\left(\frac{\lambda - \lambda_{a}}{\lambda_{r} - \lambda_{a}}\right)$
$\frac{I_{yc}}{I_y} = 0.23$	$\frac{I_{yc}}{I_y} = 0.23$
$R_{pt} = 1$	$R_{pt} = 1$

$\mathbf{L}_b \leq \mathbf{L}_p$	$\mathbf{L}_b \leq \mathbf{L}_p$
Mínimo entre:	Mínimo entre:
$M_n = Z_x f_y$	$M_n = Z_x f_y$
$M_n = R_{pt} f_y S_x$	$M_n = R_{pt} f_y S_x$
M _n	$M_n = \frac{0.9Ek_c S_x}{2}$
$= (R_{pt}f_yS_x)$	λ
$-\left(R_{pt}f_{y}S_{x}-(0.7f_{y}S_{x})\right)\left(\frac{\lambda-\lambda_{p}}{\lambda_{r}-\lambda_{p}}\right)$	
$\mathbf{L}_p < \mathbf{L}_b < \mathbf{L}_r$	$\mathbf{L}_p < \mathbf{L}_b < \mathbf{L}_r$
Mínimo entre:	Mínimo entre:
$M_n = Z_x f_y - (Z_x f_y - 0.7 f_y S_x) \left(\frac{\mathbf{L}_b - \mathbf{L}_p}{\mathbf{L}_r - \mathbf{L}_n}\right)$	M _n
$M_n = R_{pt} f_y S_x$	$= Z_{x}f_{y} - (Z_{x}f_{y} - 0.7f_{y}S_{x})\left(\frac{\mathbf{L}_{b} - \mathbf{L}_{p}}{\mathbf{L}_{r} - \mathbf{L}_{p}}\right)$
M _n	$M_n = R_{pt} f_y S_x$
$= (R_{pt}f_yS_x)$	$M_n = \frac{0.9Ek_c S_x}{\lambda^2}$
$-\left(R_{pt}f_{y}S_{x}-(0.7f_{y}S_{x})\right)\left(\frac{\lambda-\lambda_{p}}{\lambda_{r}-\lambda_{p}}\right)$	
$L_b > L_r$	Mínimo entre:
Mínimo entre:	$M_n = F_{cr}S_x$
$M_n = F_{cr} S_x$	$M_n = R_{pt} f_y S_x$
$M_n = R_{pt} f_y S_x$	$M_n = \frac{0.9Ek_c S_x}{2}$
M _n	λ^2
$= (R_{pt} \mathbf{f}_{\mathbf{y}} S_{\mathbf{x}})$	
$-\left(R_{pt}f_{y}S_{x}-(0.7f_{y}S_{x})\right)\left(\frac{\lambda-\lambda_{p}}{\lambda_{r}-\lambda_{p}}\right)$	

Donde se sabe que Z_x es el módulo plástico en el eje x, $k_c = \frac{4}{\sqrt{\frac{h}{t_w}}} y S_x$ es el módulo de

Se determina el momento nominal dependiendo del caso, se compara con la solicitación y se establece si cumple por flexión.

$$M_u < \varphi M_n$$

Donde M_u es la solicitación, M_n es la capacidad del elemento y φ es 0.9 para flexión.

II.1.2.2.2. Resistencia por cortante.

El cortante depende de las siguientes ecuaciones en las que se establece que:

$$\frac{h}{t_w} \le 2.24 \sqrt{\frac{E}{f_y}} \qquad y \qquad \frac{h}{t_w} \le 1.1 \sqrt{\frac{5.34E}{f_y}}$$

Definiendo que se usa $C_v=1$ que es la relación entre la tensión crítica en el alma, con respecto a la teoría elástica de pandeo, con la relación a la tensión cortante cedente.

En el caso de que

$$\frac{h}{t_w} > 1.1 \sqrt{\frac{5.34E}{f_y}}$$

El valor de C_v = $\frac{1.1\sqrt{\frac{5.34E}{f_y}}}{\frac{h}{t_w}}$ el cual se asocia con el pandeo del alma por cortante debido

a la esbeltez.

Finalmente, se calcula el cortante el cual se define como:

$$V_u < 0.6 f_v t_w dC_v$$

II.2. Espectro elástico de diseño de aceleraciones.

El espectro elástico de diseño de aceleraciones expresado como fracción de la aceleración de la gravedad, este permite determinar la respuesta de la estructura a las acciones que se induce desde el exterior. La NEC – Se – DS, establece que el espectro de diseño se

fundamenta en el factor de la zona sísmica Z, el tipo de suelo del sitio de emplazamiento de la estructura y menciona los coeficientes de amplificación de suelo Fa, Fd y Fs.

Figura 3. Espectro de diseño NEC-Se-DS (Norma Ecuatoriana de la Construcción, 2015).

En el cual η es la razón entre la aceleración espectral $S_a(T = 0.1s)$ y el PGA para el periodo de retorno seleccionado, F_a es el coeficiente de amplificación de suelo en zona de periodo corto, amplifica las ordenadas del espectro de diseño de respuesta de aceleraciones para diseño en roca, F_d amplifica las ordenadas del espectro elástico de diseño de respuesta de desplazamientos para diseño en roca, F_s considera el comportamiento no lineal de los suelos. T es el periodo fundamental de vibración de la estructural, T_o y T_c son periodos límites de vibración en el espectro sísmico elástico de aceleraciones que representa el sismo de diseño, Z es la aceleración máxima en roca para el sismo de diseño, expresada como fracción de la aceleración de la gravedad g, r es el factor usado cuyos valores dependen de la ubicación geográfica del proyecto y S_a es el espectro de respuesta elástico de aceleraciones expresado en función de la aceleración de la gravedad. Es importante resaltar que el espectro de diseño obedece una fracción de amortiguamiento del 5% (Norma Ecuatoriana de la Construcción, 2015).

El periodo de vibración fundamental de la estructura se realiza en referencia al método 1 de la NEC – Se – DS la cual establece que el periodo fundamental es:

$$T = C_t h_n^{\alpha}$$

Donde: C_t es el coeficiente que depende del tipo de edificación y h_n^a es la altura máxima de la edificación (Norma Ecuatoriana de la Construcción, 2015).

El cortante basal se enfoca en determinar la fuerza lateral aplicada en la base de la estructura, como consecuencia de la acción del sismo de diseño, se usa la ecuación defina por la NEC – Se – DS:

$$V = \frac{I S_a(T_a)}{R \varphi_p \varphi_e} * W$$

Donde: $S_a(T_a)$ es el espectro de diseño en aceleración, $\varphi_p \varphi_E$ son los coeficientes de configuración en planta y elevación, I es el coeficiente de importancia de la estructura, R es el factor de reducción de resistencia sísmica, V representa el cortante basal total de diseño, W es la carga sísmica reactiva y T_a es el periodo de vibración (Norma Ecuatoriana de la Construcción, 2015).

II.3.Factor de escalamiento.

El análisis dinámico se propone mediante 44 registros subductivos de larga duración y cada uno se escala de tal manera que se obtiene un espectro de aceleración correspondiente al periodo fundamental de la estructura lo que puede dar una idea del riesgo de colapso a lo largo de la vida de la estructura. El escalamiento proporciona el mejor ajuste con el espectro de diseño de la NEC -Se-DS.

El facto de escalamiento se define como:

$$F.S = \frac{S_a(T_{diseño})}{S_a(T)}$$

Donde: $S_a(T_{diseno})$ es el valor del espectro de respuesta elástico de aceleraciones expresado en función de la aceleración de la gravedad para el periodo de diseño de la estructura y $S_a(T)$ es el $PGA * \frac{S_a(T_{diseno})}{PGA}$, en el cual el PGA es el máximo valor absoluto del acelerograma del sismo analizado y $\frac{S_a(T_{diseno})}{PGA}$ es el valor obtenido del espectro de aceleraciones del sismo analizado para el periodo de diseño de la estructura que se encuentra en razón con el PGA.

II.4.Momento transferido a la base.

La estimación de la capacidad del momento base, se establece que es resistido por esfuerzos de soporte horizontales y verticales (Grilli, D. A., & Kanvinde, A. M., 2017). Los autores proponen un diagrama de cuerpo libre que permite establecer ecuaciones para momentos $M_{HB}^{soporte}$.

Figura 4. Diagrama de cuerpo libre (Grilli, D. A., & Kanvinde, A. M., 2017).

En referencia a la Figura 4, se establece que V_j es la fuerza de corte vertical en el nodo del panel, h es la altura del alma de la columna, β y β_1 son factores que consideran el confinamiento del concreto, f'c es el esfuerzo de compresión del concreto, b_j = $\frac{(b_f+B)}{2}$,donde b_f es el ancho del patín y B es el ancho de la placa de la base y d_L y d_u son las profundidades correspondientes a los bloques de tensión inferior y superior respectivamente (Grilli, D. A., & Kanvinde, A. M., 2017).

 $M_{HB}^{soporte}$ corresponde al momento a la falla del soporte, dado que este valor debe ser determinado a partir de los bloques de esfuerzo d_U y d_L, esto se debe a que los bloques de esfuerzos alcanzan el estado crítico cuando se incrementa el valor del momento aplicado (Grilli, D. A., & Kanvinde, A. M., 2017).

$$M_{HB}^{soporte} = V_{j} * h = \beta * \beta_{1} * f'c * b_{j} * \left[d_{L} * d_{effectivo} - \frac{(d_{L}^{2} + d_{U}^{2})}{2} \right]$$

Depende de β = 2 el cual simula el efecto de confinamiento, β_1 = 0.85 establece una equivalencia entre el bloque de esfuerzos. Por otro lado, esta idealización tomo como fundamento que el efecto de transferir fuerzas horizontales se debe a que longitud embebida se genera para un valor límite de $d_{effectivo}$, estableciendo así que

$$d_{effectivo} = d_{ref} \le d_{embebido}$$

Donde $d_{ref} = \frac{c}{\rho}$, C = 1.77 es una constante experimental que considera la interacción

entre columna-base y $\rho_0 = \left(\frac{b_f * \lambda}{4 * E_{acero} * I_{columna}}\right)^{\frac{1}{4}}$, en la cual se identifica que $b_f * \lambda$ es la resistencia rígida del hormigón por unidad de área en la dirección horizontal.

Se puede determinar un análisis rápido que depende de d_{ref} , dado que una columna es flexible si es una baja d_{ref} , en el caso que exista un aumento en d_{ref} muestra una columna rígida. Por otro lado, se genera un valor máximo de $d_{embebido}$, cuando $d_{embebido} = d_{ref}$.

Se puede establecer que el momento base es $M_{base} = V_{columna} * z$, donde $V_{columna} = \beta * \beta_1 * f'c * (d_U - d_L) * b_j$. Es importante determinar que los efectos de transferir las fuerzas horizontales, se debe a la suposición en el cual la longitud efectiva embebida solo se da para un límite definido de $d_{efectivo}$, dado que se establece que $d_L = 0.6 * (d_{efectivo} - c) y d_U = 0.6 * c$, esto quiere decir que el estado crítico se alcanza cuando los bloques de tensión superior e inferior alcanzan el 60% de la profundidad total del empotramiento denominado como c ver Figura 5 (Grilli, D. A., & Kanvinde, A. M., 2017).

Figura 5. Condición crítica para la falla horizontal, se muestra que $d_{efectiva} = d_{embebida}$ (Grilli, D. A., & Kanvinde, A. M. , 2017)

Existe la relación α la cual considera la contribución relativa de los mecanismos de esfuerzos verticales y horizontales, supuesto que mientras más embebida se encuentre la conexión la contribución de los esfuerzos verticales disminuyen porque los esfuerzos horizontales se lleva gran fracción del momento (Grilli, D. A., & Kanvinde, A. M. , 2017), debido a este comportamiento se puede plantear que:

$$\alpha = 1 - \left(\frac{d_{embebida}}{d_{ref}}\right)$$

Al cumplir los parámetros anteriormente mencionado se puede determinar que:

$$M_{capacidadbase} = \frac{M_{HB}^{soporte}}{(1-\alpha)}$$

II.5.Rotación de la base.

El primer modo del momento de resistencia en las conexiones es soportado por el patín de la columna, las cuales son complementadas por la resistencia al levantamiento vertical de la placa base. La rigidez rotacional de las conexiones embebidas se realiza al someter a carga axial y flexión, lo que permite calcular y representarla como un equivalente de resorte flexible en la base. La rigidez secante se establece con el 70% del momento de la capacidad de la base máxima, la rigidez es esencialmente la razón entre $\beta_{\text{base}} = 0.7 \frac{M_{\text{capacidadbase}}}{\theta_{\text{base}}}$ donde θ_{base} es la rotación de la conexión sujeto a ese momento aplicado. Se considera la resistencia a flexión, debido a que la conexión está diseñada para permanecer elástica mientras que la columna fluye en flexión, lo que implica que el momento de la base es consistente con el momento plástico de la columna. (Rodas, P. T., Zareian, F., & Kanvinde, A., 2017)

El cálculo de la rigidez rotacional de la conexión embebida se puede simplificar en cuatro:

- i) Se identifica la deformación dentro de la conexión.
- ii) Se estima los esfuerzos y fuerzas para el momento aplicado.
- iii) Estimar las deformaciones en cada componente basado en las fuerzas internas determinadas en el paso ii.

Agregar deformaciones determinadas en el paso iii considerando los parámetros del paso i para determinar la conexión en general, rotación y por último la rigidez de la conexión con relación al momento aplicado (Rodas, P. T., Zareian, F., & Kanvinde, A., 2017).

La asunción considera que una porción de la base embebida hace referencia a la rotación de ese cuerpo rígido, en el cual se puede ubicar los centros de los bloques de esfuerzos inferior y superior, mediante esta asunción se logra ejemplificar una superposición de los modos de deformación, de tal manera que se plantea los desplazamientos horizontales al centro del bloque:

$$\delta_{U,L} = \frac{\mathbf{q} * \mathbf{d}_{U,L}}{E_{concreto}}$$

El resultado de la siguiente expresión $q = \beta * \beta_1 * f'c * b_j$ representa el nivel de tensión de los bloques rectangulares equivalentes al 70% del momento de la capacidad de la base, también es importante resaltar que se considera la rigidez neta del hormigón en la parte superior e inferior de los bloques de esfuerzo. Una vez establecido este parámetro se especifica que el desplazamiento de la rotación del cuerpo rígido de la sección embebida es:

$$\theta_{base}^{RBM} = \frac{\delta_U - \delta_L}{e}$$

La relación representa la distancia entre los centros de los bloques de esfuerzos y se la especifica como: $e = d_{embebida} - \frac{d_U - d_L}{2}$.

Las deformaciones de flexión y corte de la conexión embebida, la cual se fundamenta en la teoría de (Timoshenko, 1921), en el cual se incorpora efectos de deformaciones por corte, dado que existe una baja relación de la conexión embebida, en el cual existe desplazamiento lateral, momento flector y carga trasversal por unidad de tiempo. También considera el área efectiva de corte A_s , área del alma de la columna y la relación G que considera $\frac{E_{acero}}{2*(1+v)}$ siendo conocido como módulo de cortante del acero, donde el módulo de elasticidad del acero E_{acero} y la relación de Poisson v. Finalmente, es necesario definir la rigidez a la flexión efectiva de sección como: $(E * I)_{efectivo} = E_{acero} * I_{columna} + C_1 * E_{concreto} * I_{concreto}$ donde C_1 considera el concreto en la acción compuesta, es decir el A_{acero} área de la columna de acero y el área del concreto A_c , por lo tanto $C_1 = 0.1 + 2 * \left(\frac{A_{acero}}{A_{acero}+A_c}\right)$ si este calculo resulta mayor que 0.3, C_1 toma el valor de 0.3. (Rodas, P. T., Zareian, F., & Kanvinde, A., 2017).

Existen dos casos de análisis de la conexión embebida, la primera que considera las deformaciones bajo cargas finales concentradas, es decir momento de transferencia a la base, cortante de la columna y αM_{base} actúan en la sección ver Figura 6.

Figura 6. Caso I cargas y momentos en la sección (Rodas, P. T., Zareian, F., & Kanvinde, A., 2017).

Para este caso la rigidez rotacional de la conexión se determina mediante la siguiente ecuación:

$$K_{caso I} = \left[\frac{-\alpha * M_{base}}{2 * e} * \left(\frac{d_L}{2}\right)^2 + \frac{-\alpha * M_{base}}{2 * e} * \left(e - \frac{d_L}{2}\right)^2 + \frac{R_1 * e^2}{6} - \frac{R_1 * (E * I)_{efectivo}}{A_s * G}\right]$$

La rotación de la sección transversal de la columna en la parte superior de la parte embebida se puede conocer mediante:

$$\theta_{caso I}$$

$$=\frac{1}{(E*I)_{efectivo}}\left[\frac{R_2}{2}*\left(\frac{d_U}{2}\right)^2-\frac{R_1}{2}*\left(d_{embebido}-\frac{d_L}{2}\right)^2-\alpha*M_{base}*d_{embebido}-K_{caso I}\right]$$

El segundo caso se centra en cargas distribuidas, por lo tanto, las deformaciones de la conexión embebida se producen por el comportamiento mostrado en la Figura 7.

Figura 7. Caso II cargas y momentos (Rodas, P. T., Zareian, F., & Kanvinde, A., 2017).

La rigidez rotacional de la conexión embebida se define como:

K_{caso II}

$$= \frac{(E * I)_{efectivo}}{A_s * G * e} \left[\frac{q}{2} * \left(\frac{d_L}{2}\right)^2 - \frac{q * A_s * G * d_L}{12 * (E * I)_{efectivo}} * \left(\frac{d_L}{2}\right)^3 + R_1 * e - \frac{q}{2} \left(e + \frac{d_L}{2}\right)^2 \right]$$
$$+ \frac{q}{2} \left(e - \left(d_{embebida} - d_U - d_L\right) - \frac{d_L}{2}\right)^2 + \frac{q}{2} * \left(e - \frac{d_L}{2}\right)^2 - \frac{A_s * G}{(E * I)_{efectivo}} * \left(e + \frac{d_L}{2}\right)^2 \right]$$
$$* \left[\frac{R_1 * e^2}{2} - \frac{q}{6} \left(e + \frac{d_L}{2}\right)^3 + \frac{q}{6} \left(e - \left(d_{embebida} - d_U - d_L\right) - \frac{d_L}{2}\right)^3 + \frac{q}{6} \left(e - \left(d_{embebida} - d_U - d_L\right) - \frac{d_L}{2}\right)^3 + \frac{q}{6} \left(e - \frac{d_L}{2}\right)^3 \right] \right]$$

La rotación de la sección transversal de la columna en la parte superior de la parte embebida se puede conocer mediante:

 $\theta_{caso II}$ $= \frac{1}{(E * I)_{efectivo}} \left[\frac{R_1}{2} * \left(d_{embebida} - \frac{d_L}{2} \right)^2 - \frac{q * d_{embebida}^3}{6} - \frac{R_2}{2} * \left(\frac{d_U}{2} \right)^2 + \frac{q}{6} * d_U^3 + \frac{q}{6} * (d_{embebida} - d_L)^3 + K_{caso II} \right]$

Se establece que la rotación de la base se da como la suma de:

$$\theta_{base} = \theta_{base}^{RBM} + \theta_{caso I} + \theta_{caso II}$$

Figura 8. Ilustración genérica de deformaciones a cortante y flexión (Rodas, P. T., Zareian, F., & Kanvinde, A., 2017).

II.6.Rigidez Rotacional de la base.

La conexión está diseñada de tal manera que se mantiene elástica mientras la columna fluye a flexión. Po lo cual se plantea que la rigidez rotacional de la base se calcula con respecto al 70% de la capacidad a momento de la base. Esto se debe a que (Grilli, D. A., & Kanvinde, A. M. , 2017), establece que la resistencia a la fluencia de la conexión, es decir el momento base que no genera una respuesta no lineal es aproximadamente la resistencia máxima de capacidad de la base. Es por ello por lo que se define a la rigidez secante como la relación entre 0.7 de la capacidad a momento de la base y la rotación que le corresponde a ese momento.

Figura 9. Rigidez rotacional de la base (Rodas, P. T., Zareian, F., & Kanvinde, A., 2017).

II.7.Deriva de entrepisos.

La NEC-SE-DS (2015) define a la deriva de piso como "desplazamiento lateral relativo de un piso en particular por la acción de una fuerza horizontal con respecto al piso consecutivo, medido en dos puntos ubicados en la misma línea vertical de la estructura. Se calcula restando del desplazamiento del extremo superior el desplazamiento del extremo inferior del piso" (p.9). Es decir, se puede representar como:

$$\Delta_{\rm Mi} = \frac{\Delta 2 - \Delta 1}{h_{\rm entrepisos}}$$

La deriva máxima para cualquier piso no debe exceder los límites de deriva inelástica, es decir debe ser igual o menor a 0.02 para hormigón armado, estructuras metálicas y de madera.

La mediana de las derivas máximas de entre piso representa el valor de la deriva máxima intermedia en el grupo de datos, esto muestra que la mitad de las derivas máximas son superiores a la mediana, mientras que la otra mitad son derivas máximas son menores a la mediana. La mediana calcula el promedio de los números centrales, dado que el grupo de las derivas máximas es par.

III. METODOLOGÍA

III.1. Diseño de edificio.

El edificio tiene doce pisos, el primer piso tiene una altura de entre piso de 4.572m, mientras que el resto tiene una altura de 3.972m. La altura total del edificio medida desde el nivel de la conexión es de 48.158 m.

Figura 10. Estructura diseñada en SAP2000.

El diseño del edificio se puede observar esquemáticamente en la Figura 10. El cuál consta de cuatro marcos resistentes a momentos de tres vanos.

III.1.1.Diseño y descripción del marco o pórtico resistente a momento.

En referencia al diseño y descripción del marco o pórtico resistente a momentos realizada en la sección II.1.1 basado en el diseño de Zareian, F., & Kanvinde, A (2013) se modela en SAP2000 considerando la norma ASCE (2006), de la siguiente manera:

Figura 11. Modelado del marco o pórtico resistente a momento en SAP200, a) vista en elevación xz, b) vista en elevación yz.

Figura 12. Vista en planta de marco o pórtico resistente a <u>m</u>omento.

III.1.2.Diseño de columnas.

El diseño de las columnas se realiza mediante el desarrollo de un programa en Matlab que permite realizar todos los chequeos que establece es AISC (2010) de la sección II.1.2.

El método de diseño se realiza mediante SAP 2000 en el cual para un pórtico xz, ejemplo la columna del pórtico 2B ver Figura 13, se diseña mediante la obtención de la carga axial que recibe debido a la combinación de carga 1.2D+0.5L+0.3E, donde D es la carga muerta, L es la carga viva y E carga de sismo aditiva a la carga muerta, es decir Pu ver Figura 14.

Figura 13. Columna pórtico 2B.

Case Items	1.2D+1.6L Axial (P and T) V Single value	v d v	End Length Offset (Location) Jt: 701 0. cm (0. cm) Jt: 702 0. cm (457.2 cm)	Display Options Scroll for Values Show Max
Equivaler 9280	It Loads - Free Body Diagram (Conce	ntrated Fi	9056.43	Dist Load (1-dir) Dist Load (1-dir) 0.4 Kgf/cm at 457.2 cm Positive in -1 direction Axial -9280.07 Kgf at 0. cm
Resultan	t Torsion			Torsion 0. Kgf-cm at 457.2 cm

Figura 14. Carga axial de la columna del pórtico 2B.

Sabiendo la carga axial que debe soportar la columna se escoge una sección I de tal manera que su resistencia nominal sea mayor a la solicitud de carga.

Section Name	W200X22.5	Display Color
Section Notes	Modify/Show Notes	
Extract Data from Section Propert	y File	
Open File c:\program	files\computers and structures\sap2000	0 20\aisc14m.pro Import
Dimensions		Section
Outside height (t3)	20.6	2
Top flange width (t2)	10.2	
Top flange thickness (tf)	0.8	3
Web thickness (tw)	0.622	
Bottom flance width (t2b)	10.2	
Bottom flange thickness (tfh)	0.8	
bottom nange thekness (thb)		Properties
Material	Property Modifiers	Section Properties
+ A992Fy50	✓ Set Modifiers	Time Dependent Properties

Figura 15. Detalle de la sección I.

Section Name			
roperties			
Cross-section (axial) area	28.6	Section modulus about 3 axis	194.1748
Moment of Inertia about 3 axis	2000.	Section modulus about 2 axis	27.8431
Moment of Inertia about 2 axis	142.	Plastic modulus about 3 axis	223.
Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	43.8
Shear area in 2 direction	12.8132	Radius of Gyration about 3 axis	8.3624
Shear area in 3 direction	13.6	Radius of Gyration about 2 axis	2.2282
Torsional constant	5.7	Shear Center Eccentricity (x3)	0.

Figura 16. Datos de la sección I.

En este caso se escoge la sección W200x22.5, el detalle de la sección permite determinar que:

🗼 mdisenocolumna	as			- 0	>
		Diseño Colu	mnas		
Datos			Datos sección I		
Pu [kgf]	9280.07		h (cm)	20.6	
Tipo sección	1		bf [cm]	20.0	
Lx [cm]	457.2		bi [chi]	10.2	
Ly [cm]	457.2		tf [cm]	0.8	
k	451.2		tw [cm]	0.622	
, in the second s	1		Ag [cm2]	28.6	
fy [kg/cm2]	3515		rx [cm3]	8.3624	
c1	0.18		ry [cm3]	2.2282	
c2	1.31				
Booultado					
Nesultado	Pn	[kgf]	Pu [kgf]		
	105	83.6 >	9280.07		
	El element	to sí soporta las	cargas de servicio		
		Calcul	ar		

Figura 17. Diseño columna del pórtico 2B.

En la Figura 17 se puede observar claramente que la sección sí soporta las cargas de servicio, por ende, en el diseño se considera esta sección como óptima debido a que no existe un sobredimensionamiento mayor al 20%.

El diseño de cada columna que compone el edificio se realiza siguiendo el mismo principio mencionado.

III.1.3.Diseño de vigas.

El diseño de vigas se realiza verificando flexión y cortante de la sección escogida, para ello en base a la sección II.1.3 que hace referencia al código AISC (2010). Mediante el modelado en SAP2000 se obtiene los momentos y cortantes que actúan sobre las vigas, es así que para un pórtico xz, la viga de la primera planta correspondiente al pórtico 1A ver Figura 18.

Figura 18. Momentos y cortante que actúan en la viga de la primera planta del pórtico 1A.

Section Name	W200X59	 Display Color
Section Notes	Modify/Show Notes	
xtract Data from Section Prope	rty File	
Open File c:\program	files\computers and structures\sap2000 2	0\aisc14m.pro Import
imensions		Section
Outside height (t3)	21.	
Top flange width (t2)	20.5	
Top flange thickness (tf)	1.42	3 🧹
Web thickness (tw)	0.914	
Bottom flange width (t2b)	20.5	
Bottom flange thickness (tfb)	1.42	Descedies
		Section Properties
aterial	Property Modifiers	Section Properties
+ A992Fy50	✓ Set Modifiers	Time Dependent Properties

Figura 19. Parámetros de la sección para la viga de la primera planta del pórtico 1A.

En referencia a las dimensiones de la sección I para la viga se puede verificar si cumple por flexión y por cortante, este análisis se realiza mediante el programa diseño de vigas desarrollado en Matlab, el cual se puede ver en la Figura 20Figura 19.

		Diseño Vigas	
S			
Vmax [kgf]	32028.32	Mmax [kgf*m]	12830.37
atos sección l			
fy [kg/cm2]	3515	zx [cm3]	569
d (cm)	20.6	ly [cm4]	1770
bf [cm]	20.4	ry [cm3]	5.1591
tf [cm]	1.26	J [cm4]	32
tw [cm]	0.787	lb	0
sx [cm3]	523.5922		
ultado			
	S	Seccion Compacta	
Vu [kgf]	Vmax [kg	f] Mu [kgf*m]	Mmax [kgf*m
34191.5	> 32028.3	18000.3	> 12830.4
Si cumpl	e a cortante	Si cu	mple a flexión

Figura 20. Diseño de la viga de la primera planta del pórtico 1A.

Finalmente, se puede constatar que la sección I escogida cumple con los parámetros establecidos por el AISC (2010). El diseño de cada una de las vigas que componen el edificio sigue el mismo principio de diseño.

III.2. Espectro elástico de diseño de aceleraciones.

Se calcula el espectro elástico de diseño de aceleraciones a partir de los siguientes datos, dado que es para el caso Ecuador, se estima que el suelo en el cual se ubica la edificación es tipo D y a partir de este valor se considera los factores de ubicación, tipo de suelo y el tipo de edificación, para ello con una aceleración máxima en roca expresada como fracción de la aceleración de la gravedad, tomando el valor de Z= 0.4 y un η que representa la razón entre la aceleración espectral $S_a(T = 0.1s)$ y el PGA para el periodo de retorno seleccionado, en este caso el valor corresponde a 2.48 dado que es valor correspondiente para provincias de la Sierra, Esmeraldas y Galápagos(NEC). En base a estos datos se obtiene el espectro elástico de diseño de aceleraciones observar Figura 21.

	Datos de entrada				
Tipo de suelo	D				
Z	0.4				
η	Sierra, Esmeraldas o Galápagos				
Datos de salida					
η	2.48				
r	1				
Fa	1.2				
Fd	1.19				
Fs	1.28				
То	0.127				
Тс	0.698				
TL	2.856				

Tabla 4.Datos para el espectro elástico de diseño de aceleración.

Los datos de entrada hacen referencia a la Norma Ecuatoriana de la Construcción 2015, en los cuales los factores r, la razón entre la aceleración espectral y el PGA ŋ y Fa, Fd, Fs se pueden verificar en el Anexo C. R=8 dado que es un sistema de pórtico especial sismorresistente de acero laminado con elementos armados de placas en referencia al Anexo C. Los parámetros anteriormente mencionados generan el espectro de diseño elástico de aceleraciones Sa(g) y el espectro inelástico de aceleraciones para el tipo de estructura considerando el factor de reducción R Sa(g)/R, el cual es definido en SAP2000.

Figura 21. Espectro elástico de diseño de aceleraciones.

El periodo de vibración fundamental se calcula sabiendo que C_t = 0.072 y α =0.8, dado que es una estructura sin arriostramientos como lo establece en el Anexo C y la altura máxima de la edificación es de 48.158m. El periodo de vibración fundamental de la edificación es *T* = 0.0072 * 48.158^{0.8} = 1.6*s*

El cortante basal de la estructura se obtiene sabiendo que el $S_a(1.6) = 0.5208$ para el periodo de 1.6. Los factores $\varphi_p = 1$ ver Anexo C, dado que no hay irregularidades tipo irregularidad torsional, retrocesos excesivos en las esquinas, discontinuidades en el sistema de piso, así como también no existen ejes estructurales no paralelos, $\varphi_E = 1$ ver Anexo C en el señala que no hay irregularidades tipo piso flexible, así como también no hay distribución de masa e irregularidad geométrica. Al ser una estructura no esencial ni de ocupación especial por

lo tanto el factor de importancia es 1 ver Anexo C. Finalmente, se obtiene que el cortante basal es V = 0.0651 * W. El coeficiente del cortante basal se define en SAP 2000, dado que este coeficiente lo multiplica por el peso reactivo de la estructura y lo carga con fuerzas estáticas que se aplican en cada piso o niveles que tenemos participación de masa, siendo estas fuerzas equivalentes a una reacción en la base.

Se debe realizar la verificación en la que se establece que:

$$V_{dinámico\ x} \ge V_{estático}$$

572.35Ton > 311.128Ton cumple

La NEC-SE-DS establece que el cortante basal dinámico debe ser mayor al 80 % del cortante basal estático para el caso de estructuras regulares, en este caso cumple con el 100%.

III.3. Factor de escalamiento.

El factor de escalamiento se realiza para los 44 registros sísmicos, para ello para cada registro se obtiene el PGA, es decir el máximo valor absoluto del acelerograma respectivamente.

Por otro lado, es necesario establecer el Max(a)/PGA, para ello mediante el programa Response Spectra considerando que Tdiseño es 1.6s se obtiene el valor respectivo a este periodo. Este análisis se realiza para cada registro sísmico los valores se encuentran en el Anexo D.

Figura 22. Max(a)/PGA del registro sísmico CH_1985_1 para el periodo 1.6.

En referencia al Tdiseño y Sa (Tdiseño) de 0.5208 se calcula el factor de escalamiento y una vez calculado este valor se multiplica por 9.81m/s2, dado que los registros sísmicos están

en función de g, al igual que el espectro inelástico de diseño de las aceleraciones ver Tabla 5.

Se define en SAP2000 este F.S para cada registro sísmico.

			So(T')	Factor Fecalamiento	FS
		So(T')/PCA	DCA*So(T')	Sa(Tdiseña) / Sa(T')	n/s?
N. Sismo	PGA	5a(1)/1 GA	1 GA · Sa(1)	Sa(Tuiseno) / Sa(T)	111/52
CH 1095 1	0.692	0.270	0.005	2 822	27 686
CH_1965_1	0.085	0.270	0.185	2.822	27.080
CII_1905_2	0.313	0.304	0.167	2.780	27.334
CII 1005_4	0.704	0.214	0.130	2.025	29 506
CH_1965_4	0.098	0.190	0.155	5.925	38.300
TA_1999_5	0.273	1.372	0.374	1.393	13.668
TA_1999_6	0.204	1.145	0.233	2.233	21.904
TA_1999_7	0.303	0.365	0.111	4.707	46.179
TA_1999_8	0.639	0.136	0.087	5.995	58.813
CH_2001_9	0.263	0.703	0.185	2.820	27.661
CH_2001_10	0.309	0.451	0.139	3.740	36.685
CH_2001_11	0.339	0.424	0.144	3.623	35.542
CH_2001_12	0.280	0.475	0.133	3.913	38.384
JA_2003_13	0.508	0.344	0.175	2.984	29.268
JA_2003_14	0.425	0.351	0.149	3.491	34.251
			0.01		
JA_2003_15	0.375	0.602	0.226	2.307	22.629
JA_2003_16	0.381	1.000	0.381	1.366	13.405
			0.005		
CH_2007_17	0.534	0.164	0.087	5.957	58.443
CH 2007 18	0.663	0.208	0.138	3.779	37.070
CH 2007 19	0.410	0.503	0.206	2.527	24,789
CH 2007 20	0.452	0.400	0.181	2.876	28.210
			0.01		
CH 2010 21	0.536	0.551	0.295	1.764	17.305
CH 2010 22	0.527	0.334	0.176	2 963	29.071
CH 2010 23	0.951	0.094	0.089	5.857	57.455
CH 2010_20	0.728	0.317	0.231	2 257	22 137
IA 2011 25	0.575	0.11	0.062	8 459	82.978
IA 2011_26	0.892	0.188	0.167	3 114	30.546
IA 2011_20	0.491	0.184	0.090	5 761	56 513
IA 2011_27	0.580	0.174	0.101	5.174	50.759
CH 2011_20	0.574	0.226	0.130	4.011	30.759
CH_2014_2)	0.374	0.420	0.130	2 299	22 422
CII_2014_30	0.497	0.439	0.218	2.300	23.423
CH 2014 21	0.667	0.20	0.124	2 007	28 120
CH_2014_31	0.667	0.20	0.134	3.887	38.129
CH_2014_32	0.739	0.15	0.110	4.755	40.049
CH_2014_33	0.539	0.23	0.122	4.200	41.847
CH_2014_34	0.579	0.26	0.152	3.425	33.576
CH_2014_35	0.343	0.15	0.050	10.484	102.849
CH_2014_36	0.357	0.20	0.072	7.244	71.059
			0.01		
CH_2015_37	0.249	0.724	0.181	2.885	28.300
CH_2015_38	0.351	0.517	0.182	2.865	28.108
			0.005		
CH_2015_39	0.707	0.175	0.124	4.204	41.241
CH_2015_40	0.814	0.120	0.098	5.333	52.315
			0.01		
EC_2016_41	0.300	2.87	0.860	0.605	5.938
EC_2016_42	0.368	2.67	0.982	0.530	5.201
EC_2016_43	1.341	0.40	0.538	0.969	9.504
EC 2016 44	0.826	0.295	0.243	2 141	21.005

Tabla 5. Factor de escalamiento de los registros sísmicos.

III.4. Momento transferido a la base y rigidez rotacional de la base.

En este caso se une el cálculo del momento transferido a la base con la rigidez rotacional dado que el cálculo correspondiente se realizó mediante la programación de un código en Matlab en el cual considera todos los parámetros establecidos en las secciones II.4 Momento transferido a la base y II.5 el cual describe la rigidez rotacional de la base. El código desarrollado toma como referencia el catálogo de del AISC (2010) y se diseña de la siguiente manera:

Con ayuda de SAP2000 se obtiene las reacciones en la base en el marco resistente a momento xz, para ello diferenciamos el nodo externo definido como:

Figura 23. Reacciones en el nodo externo del marco o pórtico resistente a momento.

Se utiliza el código desarrollado, para obtener la rigidez rotacional externa, en el cual se compara el momento 2376.854 kip*ft con el momento de capacidad de la conexión que es de 2381kip*ft con una longitud embebida de 30 cm y una placa de72.5cmx72.5cm perpendicular al plano lateral de las cargas. El resultado de la rigidez rotacional es de 174658 kip*ft/rad.

Capacity of the connection is 2382 Kip.ft Rotational Stiffness of the connection is 174658 Kip.ft

Figura 24. Cálculo de la rigidez rotacional para el marco resistente a momento nodo exterior.

El mismo procedimiento se realiza para el nodo interno de la base del marco resistente a momento, el cual se obtiene

Figura 25. Reacciones en el nodo interno del marco o pórtico resistente a momento.

El programa determina que para una longitud embebida de 35 cm y un ancho de placa de la base de 72.5cm x 72.5cm, el momento de capacidad de la conexión 2683 kip*ft es mayor al momento que se transfiere a la base que es de 2672.634 kip*ft. Dando así una rigidez rotacional de 179974 kip*ft/rad.

Capacity of the connection is 2683 Kip.ft Rotational Stiffness of the connection is 179974 Kip.ft

Figura 26.Cálculo de la rigidez rotacional para el marco resistente a momento nodo interior.

Los valores de la rigidez externa e interna son los mismos para los marcos o pórticos resistentes a momentos del plano yz, dado que los momentos respectivos son menores a los del plano xz.

Una vez determinado los valores de rigidez rotacional se coloca en la base de los marcos o pórticos resistentes a momento como el comportamiento de un resorte, de esta manera se define:

🕻 Assign Joint S	prings		
Spring Type			
 Simple 			
O Advanced	I - Coupled 6x6 S	pring	
M	lodify/Show Adv	anced Spring Stiffnes	S
Spring Coordina	ate System		
Direction	GLOBAL	Ŷ	
Simple Spring S	tiffness		
Translation Glo	obal X	0	kip/ft
Translation Glo	obal Y	0	kip/ft
Rotation about	t Global X	0	kip/ft
Rotation abou	t Global Y	174658	kip-ft/rad
Rotation about	t Global Z	0	kip-ft/rad
Options			
 Add to Ex 	isting Springs		
Replace E	xisting Springs		
O Delete Exi	isting Springs		
	Reset Form	to Default Values	1
	e r		_
	OK	Close Appl	У

Figura 27. Comportamiento de resorte en la base de nodos externos de los marcos resistentes a momentos.

Spring Type				8	*	Ж	X
Simple				Ŷ	Ψ	Ŷ	Ψ
Advanced	- Coupled 6x6	Spring		1267	1268	1288	1289
М	odify/Show Adv	anced Spring Stiff	ness	1331	1265	1283	1295
Spring Coordina	te System						
Direction	GLOBAL		*	1330	1264	1282	1294
Simple Spring S	tiffness			1329	1263	1281	1293
Translation Glo	bal X	0	kip/ft	1328	1282	1280	1292
Translation Glo	bal Y	0	kip/ft				
Translation Glo	bal Z	0	kip/ft	1327	1281	1279	1291
Rotation about	t Global X	0	kip-ft/rad		_	_	_
Rotation about	t Global Y	179974	kip-ft/rad	1328	1260	1278	1290
Rotation about	t Global Z	0	kip-ft/rad	1325	1259	1277	1289
Options					_	_	_
O Add to Exit	isting Springs			1324	1258	1278	1288
Replace Ex	kisting Springs			1323	1257	1275	1287
O Delete Exi	sting Springs						
			_	1322	1258	1274	1288
	Reset Form	to Default Values		1321	1255	1273	1285
	ОК	Close A	oply	1.016.1	12.00	Z	12.00

Ŧ

Figura 28. Comportamiento de resorte en la base de nodos internos de los marcos resistentes a momentos.

El mismo procedimiento se realiza para los marcos resistentes a momentos del plano yz respectivamente.

III.5. Deriva de entrepisos.

La deriva de piso se calcula para el caso en el que el marco o pórtico resistente a momento se encuentra con empotramiento y para el caso en el que se aplica el resorte en la base, para ello se realiza un análisis para todos los registros sísmicos y en base a los desplazamientos entrepisos se establece la deriva como se establece en la sección II.6. Para este caso, es la altura entrepiso de la primera planta es de 4.572m, mientras que el resto de las plantas tiene una altura de entrepiso de 3.962m En el caso del sismo 1 correspondiente al registro CH_1985_1 se observa que para el marco resistente a momento con base empotrada los desplazamientos de los nodos son:

Figura 29. Marco o pórtico resistente a momento considerando sus bases empotradas.

Con ayuda de SAP2000 se obtiene los siguientes desplazamientos ver Tabla 6 y al realizar el cálculo se obtiene que la deriva de piso máxima es de 2.22%

		Desplazamiento	Deriva	Max Deriva
	P12	-893.498	1.24%	
	P11	-844.247	1.75%	
	P10	-774.976	1.84%	
	P9	-702.138	1.98%	
	P8	-623.676	2.07%	
	P7	-541.610	1.88%	
S1	P6	-467.150	1.76%	2.22%
	P5	-397.372	1.92%	
	P4	-321.254	2.04%	
	P3	-240.422	2.22%	
	P2	-152.611	2.10%	
	P1	-69.347	1.52%	
	PO	0.000		

Tabla 6. Derivas de piso para base empotrada.

En el caso de la base del marco resistente a momento sujeto a rigidez rotacional se obtiene los siguientes datos:

Figura 30. Marco o pórtico resistente a momento considerando la base con rigidez rotacional.

En base a los desplazamientos se puede calcular la deriva de piso, en el cual se observa

claramente que existe un incremento de la deriva máxima a 2.34%.

		Desplazamiento	Deriva	Max Deriva
	P12	-919.648	1.13%	
	P11	-874.742	1.60%	
	P10	-811.438	1.74%	
	P9	-742.401	1.95%	
	P8	-665.320	2.10%	
	P7	-582.104	2.14%	
S1	P6	-497.275	1.74%	2.34%
	P5	-428.240	1.86%	
	P4	-354.518	1.95%	
	P3	-277.374	2.12%	
	P2	-193.223	2.17%	
	P1	-107.158	2.34%	
	P0	0.000		

Tabla 7. Deriva de piso para base con rigidez rotacional.

Este análisis se realiza para cada registro sísmico determinando la deriva máxima para cada caso se puede ver en el Anexo F, el color verde muestra valores iguales o menores a la deriva establecida por la norma del 2%, el color rojo muestra las derivas mayores a 2% y el color amarillo ubica la deriva máxima.

Se calcula la mediana de las derivas máximas de pisos como se establece en la sección II.6 Deriva de piso.

IV. RESULTADOS

Este estudio se enfoca en el diseño de base embebida y análisis de la respuesta símica de la estructura. El propósito es determinar el cálculo de las derivas de piso que permite obtener las derivas máximas de cada registro sísmico ordenadas de menor a mayor como se observa en la Tabla 8:

Base Empotrada	Base con rigidez rotacional
0.0107	0.0118
0.0115	0.0139
0.0115	0.0156
0.0123	0.0171
0.0129	0.0174
0.0130	0.0187
0.0143	0.0195
0.0148	0.0211
0.0152	0.0211
0.0156	0.0213
0.0165	0.0214
0.0166	0.0216
0.0168	0.0217
0.0175	0.0219
0.0184	0.0222
0.0188	0.0225
0.0191	0.0227
0.0200	0.0230
0.0201	0.0235
0.0206	0.0248
0.0217	0.0254
0.0222	0.0260
0.0225	0.0261
0.0226	0.0264
0.0230	0.0280
0.0234	0.0280
0.0242	0.0287
0.0243	0.0290
0.0245	0.0294
0.0267	0.0301
0.0272	0.0310
0.0273	0.0319
0.0276	0.0325
0.0281	0.0330
0.0284	0.0344
0.0290	0.0359
0.0292	0.0360
0.0294	0.0368
0.0315	0.0392
0.0334	0.0397
0.0340	0.0409
0.0396	0.0433
0.0412	0.0576
0.0567	0.0616

Tabla 8. Derivas máximas correspondientes a los registros sísmicos.

Se obtiene la mediana para el caso de base embebida, así como también para la rigidez rotacional, en base a estas derivas máximas se puede plantear que la mediana para el caso de base empotrada es de 0.0237 y 0.0260 para rigidez rotacional.

V. ANÁLISIS DE RESULTADOS

El diseño de la conexión embebida considera como variables la longitud embebida, la fuerza axial, las dimensiones de la columna y de la placa inferior y superior. Lo que muestra que para el diseño del edificio de 12 pisos la longitud embebida es de 30cm y para las columnas externas del pórtico, mientras que para las columnas internas la longitud embebida de 35 cm, con una placa inferior de 72.5cm x 72.5cm. La función de la placa inferior es proporcionar estabilidad durante el montaje y resistir el levantamiento de la conexión debido a la tensión de la columna, mientras que la placa superior debe generar una ruta de carga para la compresión de la columna.

La rigidez rotacional se determina como la relación entre el 70% del momento máximo de la capacidad de la base y la rotación que le corresponde a ese momento (Torres-Rodas, et al 2017). En el cual la conexión está diseñada de tal manera que se mantenga estática mientras la columna se plastifique. El cálculo muestra que la rigidez rotacional debido al momento a la capacidad de la base y la rotación que le corresponde afecta en la respuesta de la estructura, dado que existe mayor desplazamiento de los pórticos.

Al comparar el periodo fundamental del modelo con bases empotradas y el modelo con bases flexibles se observan que los periodos se incrementan de 2.88s (bases rígidas) a 3.28s para el caso en que las bases son flexibles.

Finalmente, para cada registro sísmico se obtiene la deriva de entre piso, lo que permite identificar la deriva máxima de cada registro sísmico y se calcula la mediana de las derivas máximas para el caso de los pórticos resistentes a momentos con base empotrada, en el cual se obtiene una mediana de 0.0237. Por otro lado, en el caso de la base sujeta a la rigidez rotacional se obtiene la mediana de 0.0260. En referencia a esos datos se puede establecer que existe un incremento de la deriva máxima de piso del 14.5%. Estos resultados muestran que la deriva máxima se encuentra relacionada directamente con la rigidez rotacional de la base.

VI. CONCLUSIONES

Las conexiones embebidas son usualmente usadas para marcos o pórticos resistentes a momentos de altura mediana y alta, dado que es un sistema que resiste a la carga lateral. Una de las limitaciones que existe en el diseño de estructuras de acero con marcos resistentes a momentos es la caracterización de la flexibilidad real de la base. Esto resulta en que este tipo de estructuras se modelen en condiciones ideales, es decir, se considera la base completamente empotrada. Varios estudios plantean que este criterio conlleva a una subestimación de la respuesta sísmica del edificio.

En respuesta a esta problemática, en este trabajo se plantean dos modelos para analizarse y comparar las diferencias. El primer modelo se analiza asumiendo bases empotradas, mientras que el segundo, con bases flexibles. Ambos modelos se someten a un análisis tiempo-historia bajo la acción de 44 registros sísmicos escalados al nivel de diseño especificado en la NEC. En los resultados, se observa claramente la influencia de la flexibilidad en la base, dado que existe un aumento en la deriva de máxima de piso, ya que se generan mayores deformaciones en los entrepisos. Estos resultados son consistentes a los reportados en estudios conducidos por Zareian y Kanvinde (2012) o Tomasz et. al (2016).

En base a una comparación de las medianas de las derivas de piso se puede esclarecer que existe una relación con la rigidez rotacional en la base, dado que las derivas máximas de piso aumentan en un 14.5% en relación con la media de las derivas máximas de entrepiso con la base completamente empotrada. Esto nos hace pensar que es importante caracterizar la flexibilidad de las bases en los diseños de estructuras de acero con marcos resistente a momento.

VII. REFERENCIAS BIBLIOGRÁFICAS

- AISC. (2010). Seismic provisions for structural steel buildings. Chicago: AISC 341-10.
- ASCE. (1998). Guidelines for design of joints between steel beams and reinforced concrete columns. J. Struct. Eng, 10.1061/(ASCE) 0733-9445(1994)120:8(2330), 2330–2357.
- Aviram, A., Stojadinovic, B., and Kiureghian, A. (2010). Performance and reliability of exposed column base plate connections for steel. Berkeley, CA: PEER Rep. 2010/107, Pacific Earthquake Engineering Research Cente.
- Falborski T., e. (2019). The Effect of Base Connection Strength and Ductility on the Seismic Performance of Steel Moment Resisting Frames. . *Journal of Structural Engineering*, DOI: 10.1061/(ASCE)ST.1943-541X.0002544.
- Gomez, I. R., Kanvinde, A. M., and Deierlein, G. G. (2010). "Exposed column base connections subjected to axial compression and flexure.". Chicago: Final Rep., AISC.
- Grilli, D. A., & Kanvinde, A. M. (2017). Embedded column base connections subjected to seismic loads: Strength model. Journal of Constructional Steel Research, 129, 240-249.
- Ministerio de Desarrollo Urbano y Vivienda. (2016). *Guía práctica para el diseño de estructuras de acero*. Quito: Código NEC-SE-DS.
- Norma Ecuatoriana de la Construcción. (2015). Quito: Dirección de Comunicación Social, MIDUVI.
- Rodas, P. T., Zareian, F., & Kanvinde, A. (2017). Rotational stiffness of deeply embedded column–base connections. *Journal of Structural Engineering*, 143(8), 04017064.
- Timoshenko, S. (1921). On the correction factor for shear of the differential equation for transverse vibrations of bars of uniform cross-section. *Philos. Mag.*, 41(245), 744–746.
- Torres P., Z. F. (2019). Seismic Demands in Column Base Connections of Steel Moment Frames. Earthquake Spectra. Vol 34.
- Torres Rodas, P. Z. (2018). A hysteretic model for rotational response of embedded column base connections. *Soil Dynamics and Earthquake Engineering.*, 115 (2018), 55-65.
- Zareian, F., & Kanvinde, A. (2013). Effect of Column-Base Flexibility on the Seismic Response and Safety of Steel Moment-Resisting Frames. Earthquake Spectra, 29(4), 1537-1559.

-				
Deter	Dise	ño Vigas		
Uatos Vmax [kgf]		Mmax [kgf*m]		
Datos sección I				
fy [kg/cm2]		zx [cm3]		
d (cm)		ly [cm4]		
bf [cm]		ry [cm3]		
tf [cm]		J [cm4]		
tw [cm]		lb		
sx [cm3]				
Resultado				
Vu [kgf]	Vmax [kgf]	Mu [kgf*m]	Mmax	[kgf*m]
	>		>	

VIII. ANEXO A: CÓDIGO DE DISEÑO DE COLUMNAS

IX. ANEXO B: CÓDIGO DE DISEÑO DE VIGAS

	Diseŕ	io Vigas			
atos					
Vmax [kgf]		Mmax [kgf*m]]
Datos sección I					
fy [kg/cm2]		zx [cm3]			
d (cm)		ly [cm4]			
bf [cm]		ry [cm3]			
tf [cm]		J [cm4]			
tw [cm]		lb			
sx [cm3]					
esultado					
Vu [kgf]	Vmax [kgf]	Mu [kgf*m]		Mmax [kgf*m]
	>		>		

X. ANEXO C: ESPECTRO DE DISEÑO

Aceleración máxima en roca esperada para el sismo de diseño

Factores de amplificación del suelo

	Zona sísmica v factor Z						
The state of the state	Lond Sionnod y Notor L						
subsuelo	I	II	111	IV	V	VI	
	0.15	0.25	0.30	0.35	0.40	≥0.5	
A	0.9	0.9	0.9	0.9	0.9	0.9	
В	1	1	1	1	1	1	
q	1.4	1.3	1.25	1.23	1.2	1.18	
D	1.6	1.4	1.3	1.25	1.2	1.12	
E	1.8	1.4	1.25	1.1	1.0	0.85	
F	Véase <u>Ta</u>	<u>bla 2</u> : Clas	ificación de <u>10</u>	los perfiles	de suelo y	la sección	

Tabla 3: Tipo de suelo y Factores de sitio F_a

	Zona sísmica y factor Z					
Tipo de perfil del subsuelo	I	II	III	IV	V	VI
	0.15	0.25	0.30	0.35	0.40	≥0.5
A	0.9	0.9	0.9	0.9	0.9	0.9
В	1	1	1	1	1	1
С	1.36	1.28	1.19	1.15	1.11	1.06
D	1.62	1.45	1.36	1.28	1.19	1.11
E	2.1	1.75	1.7	1.65	1.6	1.5
F	Véase Tabla 2 : Clasificación de los perfiles de suelo y 10.6.4					

Tabla 4 : Tipo de suelo y Factores de sitio F_d

Tipo de perfil del	Zona sismica y factor Z						
subsuelo	1	Ш	ш	IV	V	VI	
	0.15	0.25	0.30	0.35	0.40	≥0.5	
A	0.75	0.75	0.75	0.75	0.75	0.75	
В	0.75	0.75	0.75	0.75	0.75	0.75	
С	0.85	0.94	1.02	1.06	1.11	1.23	
D	1.02	1.06	1.11	1.19	1.28	1.40	
E	1.5	1.6	1.7	1.8	1.9	2	
F	Véase Tabla 2 : Clasificación de los perfiles de suelo y 10						

Tabla 5 : Tipo de suelo y Factores del comportamiento inelástico del subsuelo F₅

Factor r

- Factor usado en el espectro de diseño elástico, cuyos valores dependen de la ubicación geográfica del proyecto
 - r = 1 para todos los suelos, con excepción del suelo tipo E
 - r = 1.5 para tipo de suelo E.

Razón entre la aceleración espectral y el PGA.

- η= 1.80 : Provincias de la Costa (excepto Esmeraldas),
- η= 2.48 : Provincias de la Sierra, Esmeraldas y Galápagos
- η= 2.60 : Provincias del Oriente

Sistemas Estructurales Dúctiles	R
Sistemas Duales	
Pórticos especiales sismo resistentes, de hormigón armado con vigas descolgadas y con muros estructurales de hormigón armado o con diagonales rigidizadoras (sistemas duales).	8
Pórticos especiales sismo resistentes de acero laminado en caliente, sea con diagonales rigidizadoras (excéntricas o concéntricas) o con muros estructurales de hormigón armado.	8
Pórticos con columnas de hormigón armado y vigas de acero laminado en caliente con diagonales rigidizadoras (excéntricas o concéntricas).	8

Sistemas Estructurales Dúctiles	R
Pórticos especiales sismo resistentes, de hormigón armado con vigas banda, con muros estructurales de hormigón armado o con diagonales rigidizadoras.	7
Pórticos resistentes a momentos	
Pórticos especiales sismo resistentes, de hormigón armado con vigas descolgadas.	8
Pórticos especiales sismo resistentes, de acero laminado en caliente o con elementos armados de placas.	8
Pórticos con columnas de hormigón armado y vigas de acero laminado en caliente.	8
Otros sistemas estructurales para edificaciones	
Sistemas de muros estructurales dúctiles de hormigón armado.	5
Pórticos especiales sismo resistentes de hormigón armado con vigas banda.	5

Tabla 15: Coeficiente R para sistemas estructurales dúctiles

Tipo de estructura	C,	α
Estructuras de acero	-	
Sin arriostramientos	0.072	0.8
Con arriostramientos	0.073	0.75
Pórticos especiales de hormigón armado	<u> </u>	
Sin muros estructurales ni diagonales rigidizadoras	0.055	0.9
Con muros estructurales o diagonales rigidizadoras y para otras estructuras basadas en muros estructurales y mampostería estructural	0.055	0.75

Tipo 1 - Piso flexible	F	
$\varphi_{Ei} = 0.5$ Rigidez K _c < 0.70 Rigidez K _D	E B B B B B B B B B B B B B B B B B B B	1
$Rigidez < 0.80 \frac{(K_p + K_g + K_F)}{3}$	▕▕▕ ▎	-
La estructura se considera irregular cuando la rigidez lateral	▏▝ႃ <mark>╞─╋─╋</mark>	-
de un piso es menor que el 70% de la rigidez lateral del piso superior o menor que el 80 % del promedio de la rigidez lateral	с	
de los tres pisos superiores.	в	٦.
	^	1
Tipo 2 - Distribución de masa	F	Ť.
$\phi_{ei}=0.9$	▏┇┣╋╋╋	
$m_{\rm D} > 1.50 m_{\rm c}$		
La estructura se considera irregular cuando la masa de cualquier	D	4
piso es mayor que 1,5 veces la masa de uno de los pisos	с	
adyacentes, con excepción del piso de cubierta que sea más liviano que el piso inferior.	в	٦.
aviale que el plos menor.		- 1
		1
Tipo 3 - Irregularidad geometrica ϕ_{ei} =0.9	F	
a>1.3b	ε	
La estructura de considera irregular quando la dimensión en	D	٦.
planta del sistema resistente en cualquier piso es mayor que	c	1
1,3 veces la misma dimensión en un piso adyacente,		1
enceptadado en caso de tos atilitos de di soro piso.	▏▁ਁ┣╋╋╋	- 1
		1
Nota: La descripción de estas irregularidades no faculta al calculista o dis normales, por lo tanto la presencia de estas irregularidades requiere revisio que garanticen el buen comportamiento local y global de la edificación.	señador a considerarla: ones estructurales adic	s como ionales

Categoría	Tipo de uso, destino e importancia	Coeficiente I
Edificaciones esenciales	Hospitales, clínicas, Centros de salud o de emergencia sanitaria. Instalaciones militares, de policía, bomberos, defensa civil. Garajes o estacionamientos para vehículos y aviones que atienden emergencias. Torres de control aéreo. Estructuras de centros de telecomunicaciones u otros centros de atención de emergencias. Estructuras que albergan equipos de generación y distribución eléctrica. Tanques u otras estructuras utilizadas para depósito de agua u otras substancias anti-incendio. Estructuras que albergan depósitos tóxicos, explosivos, químicos u otras substancias peligrosas.	1.5
Estructuras de ocupación especial	Museos, iglesias, escuelas y centros de educación o deportivos que albergan más de trescientas personas. Todas las estructuras que albergan más de cinco mil personas. Edificios públicos que requieren operar continuamente	1.3
Otras estructuras	Todas las estructuras de edificación y otras que no clasifican dentro de las categorías anteriores	1.0

Tabla 6: Tipo de uso, destino e importancia de la estructura

XI. ANEXO D: FACTOR DE ESCALAMIENTO

response spectra TRIPARTITE SPECTRUM SPECTRUMS HOME SETTINGS ABOU 0.552-Add Record CH_2010_21 PD 0.551 0 (e) Wax(a) 0.549 1.6005 T (sec) 1.599 1.5995 1.6015 1.602 1.6025 1.6 1.601 1.5985

1.612

1.614

1.616

1.618

1.62

1.622

1.61 T (sec)

1.608

1.598

1.596

1.6

1.602

1.604

1.606

XII. ANEXO E: CÓDIGO DEL MOMENTO QUE SE TRNASFIERE A LA BASE Y LA RIGIDEZ ROTACIONAL

+3	ſ	Em	beddedBaseConnection.m 🗙 mdisenovigas.m 🔀 mdisenocolumnas.m	×	-
28	-		Ashear=d*tw;		~
29					
30					
31	-		fc=4.2;		
32	-		dembed=40;		
33	-		B=30;		
34	-		Esteel=29000;		
35	-		Econcrete=1820*sqrt(fc);		
36	-		Icolumn=Ix;		
37	-		z=112;%relacion entre momento y cortante		
38	-		depth=d;		
39					
40	-		B0=2;		
41	-		B1=0.85;		
42	-		p=(((Econcrete)/(4*Esteel*Icolumn))^(1/4));		
43	-		c=1.77;		
44 <	-		dref=c/n·	>	~
_					

Command Window

```
Capacity of the connection is 2382 Kip.ft
Rotational Stiffness of the connection is 174658 Kip.ft
Elapsed time is 151.441344 seconds.
fx >>
```

```
🔁 EmbeddedBaseConnection.m 💥 mdisenovigas.m 💥 mdisenocolumnas.m
                                                               X
                                                                  Н
        Ashear=d*tw;
 28 -
                                                                 \wedge
 29
 30
        fc=4.2;
 31 -
 32 -
        dembed=45;
 33 -
        B=30;
 34 -
        Esteel=29000;
      Econcrete=1820*sqrt(fc);
 35 -
 36 -
        Icolumn=Ix;
 37 -
        z=112;%relacion entre momento y cortante
 38 -
        depth=d;
 39
      B0=2;
 40 -
        B1=0.85;
 41 -
        p=(((Econcrete)/(4*Esteel*Icolumn))^(1/4));
 42 -
 43 -
        c=1.77;
 44 -
        dref=c/n·
<
                                                               >
Command Window
   Capacity of the connection is 2683 Kip.ft
   Rotational Stiffness of the connection is 179974 Kip.ft
```

```
Elapsed time is 198.382080 seconds.
```

fx >>

XIII. ANEXO F: DERIVAS DE PISO PARA CADA REGISTRO SÍSMICO.

	Base Empot	rada			Base con rigidez rotacional				
	Desplazamiento	Deriva	Max Deriva			Desplazamiento	Deriva	Max Deriva	
P12	-720.490	1.41%			P12	-705.316	1.28%		
P11	-664.790	2.01%			P11	-654.529	1.85%		
P10	-585.340	2.01%			P10	-581.152	1.86%		
P9	-505.630	1.68%			P9	-507.290	1.64%		
P8	-438.958	1.21%			P8	-442.273	0.85%		
P7	-391.010	0.63%			P7	-408.481	0.45%		
S2 P6	-365.900	1.06%	2.01%	S2	P6	-390.766	0.95%	2.17%	
~_ P5	-323.776	1.37%		~ -	P5	-353.245	1.25%	,	
P4	-269.520	1.58%			P4	-303.790	1.47%		
P3	-206.913	1.83%			P3	-245.530	1.76%		
P2	-134.290	1.82%			P2	-175.749	1.93%		
P1	-62.050	1.36%			P1	-99.339	2.17%		
P0	0.000				P0	0.000			

		Base Empot	rada			Base con rigidez rotacional				
		Desplazamiento	Deriva	Max Deriva			Desplazamiento	Deriva	Max Deriva	
	P12	911.837	0.82%			P12	924.056	0.96%		
	P11	879.306	1.08%			P11	885.965	3.83%		
	P10	836.355	1.20%			P10	734.342	1.32%		
	P9	788.621	1.28%			P9	786.511	6.16%		
	P8	737.830	1.21%			P8	542.289	0.99%		
	P7	689.898	1.18%			P7	502.868	3.50%		
S 3	P6	643.192	3.71%	5.67%	S3	P6	364.041	1.03%	6.16%	
	P5	496.324	5.67%		~ -	P5	323.134	1.04%		
	P4	271.700	1.53%			P4	282.042	1.13%		
	P3	210.910	1.75%			P3	237.197	1.58%		
	P2	141.689	1.89%			P2	174.623	1.88%		
	P1	66.630	1.46%			P1	100.029	2.19%		
	P0	0.000				P0	0.000			

		Base Empot	rada			Base con rigidez rotacional				
		Desplazamiento	Deriva	Max Deriva			Desplazamiento	Deriva	Max Deriva	
	P12	706.850	0.65%			P12	716.469	1.17%		
	P11	681.210	0.89%			P11	670.020	1.10%		
	P10	645.767	1.20%			P10	626.255	1.05%		
	P9	598.080	1.62%			P9	584.503	1.40%		
	P8	533.760	1.93%			P8	528.908	1.63%		
	P7	457.390	0.42%			P7	464.215	0.72%		
S4	P6	440.580	0.30%	2.90%	S4	P6	435.725	0.95%	3.97%	
~ -	P5	428.570	0.94%		~ -	P5	397.950	0.88%		
	P4	391.320	1.76%			P4	363.159	1.38%		
	P3	321.500	2.61%			P3	308.318	2.01%		
	P2	218.150	2.90%			P2	228.484	1.19%		
	P1	103.180	2.26%			P1	181.368	3.97%		
	PO	0.000				P0	0.000			

	Base Empot	rada			Base con rigidez rotacional				
	Desplazamiento	Deriva	Max Deriva			Desplazamiento	Deriva	Max Deriva	
P12	398.170	0.53%			P12	463.619	0.58%		
P11	377.270	0.76%			P11	440.785	0.83%		
P10	347.270	0.81%			P10	407.820	0.88%		
P9	315.370	0.87%			P9	372.927	0.92%		
P8	281.000	0.89%			P8	336.566	0.79%		
P7	245.622	0.39%			P7	305.329	0.89%		
S5 P6	230.090	0.42%	1.30%	S 5	P6	270.181	0.99%	2.80%	
P5	213.350	0.72%		~ -	P5	230.757	0.73%		
P4	185.006	0.99%			P4	201.725	0.90%		
P3	145.830	1.26%			P3	166.102	1.16%		
P2	96.030	1.30%			P2	120.064	0.20%		
P1	44.650	0.98%			P1	128.062	2.80%		
PO	0.000				P0	0.000			

	Base Empot	rada				Base con rigidez rota	cional		
	Desplazamiento	Deriva	Max Deriva			Desplazamiento	Deriva	Max Deriva	
P12	2 -991.881	0.97%			P12	-1096.345	1.28%		
P1	1 -953.304	1.38%			P11	-1045.676	1.89%		
P10	0 -898.439	1.54%			P10	-970.624	2.12%		
P9	-837.476	1.75%			P9	-886.745	2.35%		
P8	-767.940	1.97%			P8	-793.711	2.22%		
P7	-689.840	2.28%			P7	-705.752	2.20%		
S6 P6	-599.687	2.48%	2.76%	S6	P6	-618.750	2.39%	2.87%	
P5	-501.445	2.64%		~	P5	-523.931	2.53%		
P4	-396.697	2.67%			P4	-423.771	2.52%		
P3	-290.905	2.76%			P3	-323.958	2.59%		
P2	-181.560	2.52%			P2	-221.188	2.27%		
P1	-81.625	1.79%			P1	-131.142	2.87%		
P0	0.000				P0	0.000			
		Base Empot	rada				Base con rigidez rota	cional	
-----------	-----	----------------	--------	------------	-----------	-----	-----------------------	--------	------------
		Desplazamiento	Deriva	Max Deriva			Desplazamiento	Deriva	Max Deriva
	P12	-693.660	1.32%			P12	-680.804	1.30%	
	P11	-641.511	1.26%			P11	-629.315	1.33%	
	P10	-591.588	0.75%			P10	-576.558	0.43%	
	P9	-562.067	0.87%			P9	-559.682	0.71%	
	P8	-527.600	1.22%			P8	-531.616	1.18%	
	P7	-479.312	1.57%			P7	-484.852	1.64%	
S7	P6	-417.213	1.72%	1.88%	S7	P6	-419.763	1.87%	2.14%
	P5	-349.210	1.77%			P5	-345.472	1.83%	
	P4	-279.233	1.77%			P4	-272.765	1.44%	
	P3	-209.158	1.88%			P3	-215.852	1.26%	
	P2	-134.503	1.76%			P2	-165.760	1.71%	
	P1	-64.608	1.41%			P1	-97.928	2.14%	
	P0	0.000				P0	0.000		

	Base Empot	rada				Base con rigidez rota	cional	
	Desplazamiento	Deriva	Max Deriva			Desplazamiento	Deriva	Max Deriva
P12	-689.417	1.27%			P12	-743.714	1.02%	
P11	-639.290	1.61%			P11	-703.450	1.45%	
P10	-575.549	0.76%			P10	-646.083	1.07%	
P9	-545.546	0.77%			P9	-603.523	0.86%	
P8	-515.191	1.17%			P8	-569.613	1.22%	
P7	-468.835	1.57%			P7	-521.462	1.59%	
S8 P6	-406.439	1.81%	2.30%	S	8 P6	-458.610	1.81%	3.44%
P5	-334.892	1.88%			P5	-386.747	1.94%	
P4	-260.410	0.51%			P4	-310.022	0.69%	
P3	-240.230	1.34%			P3	-282.520	1.09%	
P2	-186.953	2.30%			P2	-239.183	2.07%	
P1	-95.699	2.09%			P1	-157.155	3.44%	
P0	0.000				P0	0.000		

	Base Empot	rada				Base con rigidez rota	cional	
	Desplazamiento	Deriva	Max Deriva			Desplazamiento	Deriva	Max Deriva
P12	-765.570	1.70%			P12	-767.894	1.81%	
P11	-698.148	2.44%			P11	-695.982	2.64%	
P10	-601.302	2.45%			P10	-591.300	0.97%	
P9	-504.121	0.20%			P9	-552.904	0.40%	
P8	-496.125	0.33%			P8	-536.862	0.72%	
P7	-483.018	0.99%			P7	-508.395	1.18%	
S9 P6	-443.925	1.52%	2.45%	S 9	P6	-461.769	1.56%	2.64%
P5	-383.880	1.88%		~ -	P5	-400.153	1.82%	
P4	-309.307	2.02%			P4	-328.032	1.89%	
P3	-229.400	2.14%			P3	-253.108	1.82%	
P2	-144.724	1.99%			P2	-181.084	2.00%	
P1	-65.679	1.44%			P1	-101.981	2.23%	
P0	0.000				P0	0.000		

	Base Empot	rada			Base con rigidez rota	cional	
	Desplazamiento	Deriva	Max Deriva		Desplazamiento	Deriva	Max Deriva
P12	-1258.924	2.00%		P12	-1322.302	1.83%	-
P11	-1179.676	2.83%		P11	-1249.720	2.69%	
P10	-1067.458	2.94%		P10	-1143.027	2.95%	
P9	-950.988	3.12%		P9	-1026.288	3.19%	
P8	-827.527	3.15%		P8	-900.002	3.14%	
P7	-702.710	3.12%		P7	-775.533	3.02%	
S10 P6	-578.940	2.79%	3.15%	S10 P6	-655.986	2.34%	3.59%
P5	-468.290	1.91%		P5	-563.179	1.84%	
P4	-392.415	2.22%		P4	-490.261	2.24%	
P3	-304.370	2.66%		P3	-401.471	2.81%	
P2	-198.887	2.70%		P2	-289.965	3.17%	
P1	-92.050	2.01%		P1	-164.338	3.59%	
PO	0.000			PO	0.000		

		Base Empot	rada				Base con rigidez rota	cional	
		Desplazamiento	Deriva	Max Deriva			Desplazamiento	Deriva	Max Deriva
	P12	-973.947	1.34%			P12	-1138.565	1.68%	
	P11	-920.840	1.86%			P11	-1071.843	2.39%	
	P10	-847.270	1.84%			P10	-977.022	2.43%	
	P9	-774.251	1.85%			P9	-880.768	2.45%	
	P8	-700.818	1.81%			P8	-783.663	2.35%	
	P7	-629.048	1.91%			P7	-690.517	2.36%	
S11	P6	-553.541	2.03%	2.81%	S11	P6	-597.016	2.00%	3.30%
	P5	-472.912	1.86%			P5	-517.874	1.66%	
	P4	-399.110	2.11%			P4	-452.076	2.08%	
	P3	-315.323	2.70%			P3	-369.829	2.60%	
	P2	-208.346	2.81%			P2	-266.636	2.92%	
	P1	-97.021	2.12%			P1	-150.914	3.30%	
	P0	0.000				P0	0.000		

	Base Empote	rada			Base con rigidez rota	cional	
	Desplazamiento	Deriva	Max Deriva		Desplazamiento	Deriva	Max Deriva
P12	880.429	1.60%		P12	884.080	1.50%	
P11	817.203	2.26%		P11	824.537	2.08%	
P10	727.835	2.22%		P10	741.987	1.31%	
P9	639.713	0.81%		P9	690.228	0.38%	
P8	607.538	0.55%		P8	675.223	0.73%	
P7	585.777	1.10%		P7	646.385	1.18%	
S12 P6	542.174	1.62%	2.72%	S12 P6	599.756	1.62%	3.10%
P5	477.856	2.10%		P5	535.630	2.05%	
P4	394.790	2.41%		P4	454.591	2.35%	
P3	299.120	2.72%		P3	361.309	2.70%	
P2	191.167	2.62%		P2	254.129	2.84%	
P1	87.255	1.91%		P1	141.722	3.10%	
PO	0.000			PO	0.000		

	Base Empote	rada			Base con rigidez rota	cional	
	Desplazamiento	Deriva	Max Deriva		Desplazamiento	Deriva	Max Deriva
P12	1113.331	2.00%		P12	1313.803	1.85%	
P11	1034.155	2.77%		P11	1240.484	2.59%	
P10	924.236	2.28%		P10	1137.719	2.65%	
P9	833.880	1.54%		P9	1032.707	2.72%	
P8	772.910	1.75%		P8	925.043	2.43%	
P7	703.552	2.09%		P7	828.578	2.24%	
S13 P6	620.702	2.35%	2.94%	S13 P6	739.638	2.36%	3.68%
P5	527.408	2.61%		P5	646.083	2.62%	
P4	424.169	2.74%		P4	542.194	2.85%	
P3	315.571	2.94%		P3	429.230	3.22%	
P2	199.211	2.75%		P2	301.777	3.37%	
P1	90.234	1.97%		P1	168.292	3.68%	
PO	0.000			PO	0.000		

	Base Empoti	ada			Base con rigidez rota	cional	
	Desplazamiento	Deriva	Max Deriva		Desplazamiento	Deriva	Max Deriva
P12	-465.939	0.38%		P12	-484.941	0.58%	
P11	-450.944	0.63%		P11	-461.975	0.79%	
P10	-426.170	0.85%		P10	-430.538	0.68%	
P9	-392.550	1.09%		P9	-403.692	0.89%	
P8	-349.336	1.29%		P8	-368.598	1.03%	
P7	-298.300	1.23%		P7	-327.970	1.28%	
S14 P6	-249.749	1.20%	1.29%	S14 P6	-277.359	1.37%	2.11%
P5	-202.390	0.88%		P5	-222.982	0.78%	/
P4	-167.560	0.85%		P4	-192.092	0.82%	
P3	-133.971	1.10%		P3	-159.548	0.83%	
P2	-90.499	1.23%		P2	-126.496	0.76%	
P1	-41.679	0.91%		P1	-96.422	2.11%	
PO	0.000			PO	0.000		

	Base Empotr	ada		Base con rigidez rotacional				
	Desplazamiento	Deriva	Max Deriva		Desplazamiento	Deriva	Max Deriva	
P12	-1173.636	2.69%		P12	-1133.944	1.82%		
P11	-1067.031	1.64%		P11	-1061.968	0.80%		
P10	-1002.224	0.47%		P10	-1030.431	0.28%		
P9	-983.770	1.25%		P9	-1019.164	1.21%		
P8	-934.332	2.35%		P8	-971.187	2.22%		
P7	-841.165	3.22%		P7	-883.296	3.13%		
S15 P6	-713.605	3.34%	3.34%	S15 P6	-759.337	3.16%	3.92%	
P5	-581.095	2.97%		P5	-634.047	2.32%		
P4	-463.486	2.78%		P4	-542.236	2.57%		
P3	-353.400	3.11%		P3	-440.573	3.12%		
P2	-230.057	3.12%		P2	-316.963	3.47%		
P1	-106.404	2.33%		P1	-179.300	3.92%		
P0	0.000			P0	0.000			

	Base Empotr	ada			Base con rigidez rota	cional	
	Desplazamiento	Deriva	Max Deriva		Desplazamiento	Deriva	Max Deriva
P12	616.135	0.87%		P12	689.530	0.95%	
P11	581.731	1.14%		P11	651.734	1.29%	
P10	536.485	1.10%		P10	600.800	1.26%	
P9	493.069	1.16%		P9	550.805	1.34%	
P8	447.151	1.28%		P8	497.891	1.45%	
P7	396.406	1.45%		P7	440.430	2.11%	
S16 P6	339.084	1.50%	1.52%	S16 P6	356.762	1.12%	2.11%
P5	279.698	1.52%	,.	P5	312.201	1.58%	/
P4	219.517	1.49%		P4	249.537	1.50%	
P3	160.483	1.52%		P3	190.296	1.52%	
P2	100.140	1.39%		P2	130.171	1.48%	
P1	45.021	0.98%		P1	71.413	1.56%	
PO	0.000			PO	0.000		

	Base Empot	rada			Base con rigidez rota	cional	
	Desplazamiento	Deriva	Max Deriva		Desplazamiento	Deriva	Max Deriva
P12	1022.303	1.55%		P12	1094.880	1.13%	
P11	960.822	1.47%		P11	1050.106	1.58%	
P10	902.534	1.41%		P10	987.506	1.68%	
P9	846.796	1.62%		P9	920.827	1.86%	
P8	782.457	1.90%		P8	847.258	2.01%	
P7	707.160	2.28%		P7	767.494	2.42%	
S17 P6	616.978	2.53%	2.84%	S17 P6	671.650	2.66%	2.90%
P5	516.629	2.73%		P5	566.165	2.73%	
P4	408.578	2.76%		P4	457.896	2.68%	
P3	299.296	2.84%		P3	351.723	2.79%	
P2	186.586	2.59%		P2	241.280	2.74%	
P1	83.817	1.83%		P1	132.573	2.90%	
PO	0.000			P0	0.000		

	Base Empot	rada			Base con rigidez rota	cional	
	Desplazamiento	Deriva	Max Deriva		Desplazamiento	Deriva	Max Deriva
P12	415.671	0.57%		P12	402.446	0.46%	
P11	393.220	0.76%		P11	384.225	0.67%	
P10	363.010	0.84%		P10	357.685	0.79%	
P9	329.714	1.00%		P9	326.432	0.94%	
P8	290.090	1.07%		P8	289.014	1.04%	
P7	247.881	1.03%		P7	247.725	0.86%	
S18 P6	207.246	0.71%	1.07%	S18 P6	213.503	0.46%	2.13%
P5	178.935	0.70%		P5	195.400	0.62%	
P4	151.222	0.84%		P4	170.774	0.78%	
P3	117.748	1.03%		P3	139.882	0.48%	
P2	76.906	1.04%		P2	121.040	0.60%	
P1	35.592	0.78%		P1	97.279	2.13%	
PO	0.000			PO	0.000		

	Base	Empotrada			Base con rigidez rotacional				
	Desplazami	ento Deriva	Max Deriva		Desplazamiento	Deriva	Max Deriva		
P1	-803.068	0.89%		P12	-728.736	0.70%			
P1	-767.998	1.11%		P11	-701.010	1.08%			
P1	-723.852	1.21%		P10	-658.191	1.32%			
P9	-675.841	1.48%		P9	-605.761	1.26%			
P8	-617.160	1.79%		P8	-555.712	1.39%			
P7	-546.291	2.12%		P7	-500.752	0.74%			
S19 P6	-462.184	2.26%	2.26%	S19 P6	-471.402	2.94%	2.94%		
P5	5 -372.524	1.87%		P5	-354.789	1.98%			
P4	-298.457	1.85%		P4	-276.265	1.38%			
P3	-225.166	2.05%		P3	-221.514	1.62%			
P2	-143.768	1.97%		P2	-157.379	1.74%			
P1	-65.610	1.44%		P1	-88.346	1.93%			
P0	0.000			P0	0.000				

	Base Empotr	ada			Base con rigidez rotacional				
	Desplazamiento	Deriva	Max Deriva		Desplazamiento	Deriva	Max Deriva		
P12	562.029	0.90%		P12	589.444	0.93%			
P11	526.285	1.14%		P11	552.683	1.32%			
P10	481.056	1.05%		P10	500.197	1.36%			
P9	439.301	1.08%		P9	446.354	1.36%			
P8	396.570	1.09%		P8	392.292	1.30%			
P7	353.385	1.18%		P7	340.631	1.34%			
S20 P6	306.700	1.27%	1.48%	S20 P6	287.645	1.32%	1.87%		
P5	256.520	1.22%		P5	235.271	1.05%			
P4	208.268	1.13%		P4	193.595	0.62%			
P3	163.403	1.29%		P3	169.042	1.01%			
P2	112.183	1.48%		P2	128.970	1.10%			
P1	53.700	1.17%		P1	85.503	1.87%			
PO	0.000			P0	0.000				

		Base Empoti	rada			Base con rigidez rotacional				
		Desplazamiento	Deriva	Max Deriva			Desplazamiento	Deriva	Max Deriva	
	P12	-565.000	1.43%			P12	-529.437	0.50%		
	P11	-508.178	0.18%			P11	-509.435	0.02%		
	P10	-500.851	0.44%			P10	-508.730	1.00%		
	P9	-483.454	0.81%			P9	-469.293	0.04%		
	P8	-451.454	1.19%			P8	-467.599	1.16%		
	P7	-404.281	1.53%			P7	-421.741	1.52%		
S21	P6	-343.669	1.66%	1.66%	S21	P6	-361.343	1.64%	2.16%	
	P5	-277.811	1.66%			P5	-296.182	1.61%		
	P4	-212.140	1.27%			P4	-232.311	1.46%		
	P3	-161.676	1.21%			P3	-174.459	1.31%		
	P2	-113.559	1.48%			P2	-122.478	0.60%		
	P1	-54.785	1.20%			P1	-98.669	2.16%		
	P0	0.000				P0	0.000			

		Base Empotr	ada			Base con rigidez rotacional				
		Desplazamiento	Deriva	Max Deriva			Desplazamiento	Deriva	Max Deriva	
	P12	-661.526	1.06%			P12	-626.062	0.92%		
	P11	-619.676	1.51%			P11	-589.624	1.32%		
	P10	-559.656	1.53%			P10	-537.376	0.97%		
	P9	-498.850	1.19%			P9	-498.762	0.77%		
	P8	-451.690	0.99%			P8	-468.330	0.86%		
	P7	-412.447	1.06%			P7	-434.173	0.91%		
S22	P6	-370.642	1.02%	1.91%	S22	P6	-397.930	0.99%	2.25%	
	P5	-330.350	1.25%		~	P5	-358.781	1.20%		
	P4	-280.737	1.56%			P4	-311.416	1.46%		
	P3	-219.077	1.87%			P3	-253.646	1.80%		
	P2	-144.852	1.91%			P2	-182.349	2.00%		
	P1	-69.302	1.52%			P1	-103.013	2.25%		
	P0	0.000				P0	0.000			

		Base Empotr	ada		Base con rigidez rotacional				
		Desplazamiento	Deriva	Max Deriva			Desplazamiento	Deriva	Max Deriva
	P12	727.386	1.53%			P12	655.585	1.23%	
	P11	666.746	1.82%			P11	606.933	1.25%	
	P10	594.630	1.34%			P10	557.596	0.32%	
	P9	541.513	0.90%			P9	544.920	1.06%	
	P8	505.783	1.00%			P8	502.761	0.99%	
	P7	466.156	1.24%			P7	463.495	1.23%	
S23	P6	416.964	1.29%	2.34%	S23	P6	414.579	1.42%	2.60%
	P5	365.685	1.05%			P5	358.489	0.86%	
	P4	324.096	1.59%			P4	324.270	1.18%	
	P3	261.158	2.18%			P3	277.317	1.79%	
	P2	174.608	2.34%			P2	206.219	2.21%	
	P1	81.860	1.79%			P1	118.757	2.60%	
	P0	0.000				P0	0.000		

	Base Empoti	rada			Base con rigidez rotacional				
	Desplazamiento	Deriva	Max Deriva		Desplazamiento	Deriva	Max Deriva		
P12	585.548	0.73%		P12	525.715	0.78%			
P11	556.757	1.09%		P11	494.937	1.01%			
P10	513.527	1.24%		P10	454.995	0.95%			
P9	464.443	1.10%		P9	417.299	0.16%			
P8	420.862	0.98%		P8	410.948	0.47%			
P7	381.954	1.05%		P7	392.236	0.89%			
S24 P6	340.244	1.18%	1.65%	S24 P6	356.981	1.20%	2.30%		
P5	293.507	1.35%		P5	309.339	1.41%			
P4	239.990	1.49%		P4	253.312	1.48%			
P3	181.024	1.65%		P3	194.733	1.50%			
P2	115.496	1.57%		P2	135.406	0.76%			
P1	53.134	1.16%		P1	105.340	2.30%			
PO	0.000			P0	0.000				

	Base Empote	rada			Base con rigidez rotacional				
	Desplazamiento	Deriva	Max Deriva		Desplazamiento	Deriva	Max Deriva		
P12	633.421	1.37%		P12	652.375	0.94%			
P11	579.208	0.66%		P11	615.254	0.31%			
P10	552.862	0.52%		P10	602.866	0.41%			
P9	532.265	0.53%		P9	586.818	0.59%			
P8	511.245	0.53%		P8	563.314	0.88%			
P7	490.161	0.91%		P7	528.632	1.25%			
S25 P6	454.164	1.31%	2.73%	S25 P6	479.160	1.52%	2.80%		
P5	402.217	1.36%		P5	418.846	1.80%			
P4	348.469	1.27%		P4	347.693	1.31%			
P3	298.210	2.28%		P3	295.689	1.88%			
P2	207.895	2.73%		P2	221.365	2.36%			
P1	99.769	2.18%		P1	127.942	2.80%			
P0	0.000			P0	0.000				

	Base Empoti	rada			Base con rigidez rotacional				
	Desplazamiento	Deriva	Max Deriva		Desplazamiento	Deriva	Max Deriva		
P12	433.156	2.67%		P12	536.736	2.42%	-		
P11	327.527	0.88%		P11	440.779	3.19%			
P10	292.624	0.39%		P10	314.181	1.71%			
P9	277.311	0.29%		P9	246.385	0.52%			
P8	288.754	0.25%		P8	267.049	0.03%			
P7	278.916	0.29%		P7	265.893	0.35%			
S26 P6	267.558	0.09%	2.67%	S26 P6	252.140	0.01%	3.19%		
P5	264.070	0.54%		P5	251.799	0.25%			
P4	242.868	0.84%		P4	242.056	0.66%			
P3	209.586	1.43%		P3	216.065	1.10%			
P2	152.769	1.96%		P2	172.362	1.75%			
P1	75.041	1.64%		P1	102.953	2.25%			
PO	0.000			PO	0.000				

		Base Empotr	ada		Base con rigidez rotacional				
		Desplazamiento	Deriva	Max Deriva			Desplazamiento	Deriva	Max Deriva
	P12	-879.556	1.65%			P12	-902.591	1.23%	
	P11	-813.979	1.71%			P11	-854.035	1.45%	
	P10	-746.095	0.93%			P10	-796.596	0.80%	
	P9	-709.203	1.32%			P9	-764.996	1.07%	
	P8	-656.928	1.65%			P8	-722.637	1.65%	
	P7	-591.616	0.11%			P7	-657.439	2.22%	
S27	P6	-596.100	4.12%	4.12%	S27	P6	-569.522	2.46%	4.33%
	P5	-433.034	1.99%			P5	-471.901	2.06%	
	P4	-354.053	2.17%			P4	-390.331	1.97%	
	P3	-268.028	2.26%			P3	-312.290	2.28%	
	P2	-178.348	2.39%			P2	-221.824	0.61%	
	P1	-83.725	1.83%			P1	-197.830	4.33%	
	P0	0.000				P0	0.000		

		Base Empotr	ada			Base con rigidez rotacional				
		Desplazamiento	Deriva	Max Deriva			Desplazamiento	Deriva	Max Deriva	
	P12	-773.044	1.10%			P12	-764.183	0.80%		
	P11	-729.464	1.17%			P11	-732.470	1.16%		
	P10	-683.221	1.23%			P10	-686.349	1.32%		
	P9	-634.388	1.42%			P9	-634.129	1.52%		
	P8	-578.178	1.64%			P8	-573.717	1.70%		
	P7	-513.104	1.91%			P7	-506.406	1.52%		
S28	P6	-437.573	1.76%	2.06%	S28	P6	-446.330	1.20%	2.22%	
~ ~ ~	P5	-368.024	1.82%		~	P5	-398.899	1.87%		
	P4	-295.916	1.93%			P4	-324.760	1.78%		
	P3	-219.551	2.06%			P3	-254.425	1.95%		
	P2	-138.109	1.89%			P2	-177.053	1.90%		
	P1	-63.120	1.38%			P1	-101.711	2.22%		
	P0	0.000				P0	0.000			

	Base Empot	rada			Base con rigidez rotacional				
	Desplazamiento	Deriva	Max Deriva		Desplazamiento	Deriva	Max Deriva		
P1	2 376.786	0.90%		P12	376.249	0.82%			
P1	1 341.012	1.15%		P11	343.842	1.39%			
P1	0 295.485	0.48%		P10	288.725	0.28%			
P9	276.516	0.19%		P9	277.568	0.38%			
P8	269.152	0.76%		P8	262.477	0.60%			
P7	239.028	0.90%		P7	238.802	0.76%			
S29 P6	203.215	0.87%	1.15%	S29 P6	208.741	0.81%	1.39%		
P5	168.922	0.86%		P5	176.608	0.83%			
P4	134.932	0.86%		P4	143.736	0.82%			
P3	100.840	0.89%		P3	111.428	0.85%			
P2	65.655	0.88%		P2	77.845	0.85%			
P1	30.622	0.67%		P1	44.304	0.97%			
P0	0.000			P0	0.000				

		Base Empotr	ada				Base con rigidez rota	cional	
		Desplazamiento	Deriva	Max Deriva			Desplazamiento	Deriva	Max Deriva
	P12	-492.940	0.65%			P12	-471.622	0.59%	
	P11	-467.295	0.94%			P11	-448.345	0.83%	
	P10	-430.187	0.96%			P10	-415.338	0.86%	
	P9	-391.986	0.93%			P9	-381.130	0.89%	
	P8	-355.242	1.03%			P8	-345.677	0.93%	
	P7	-314.468	1.16%			P7	-308.872	1.02%	
S30	P6	-268.482	1.21%	1.23%	S30	P6	-268.363	1.07%	1.56%
	P5	-220.419	1.23%			P5	-225.810	1.11%	
	P4	-171.526	1.19%			P4	-181.948	1.09%	
	P3	-124.207	1.20%			P3	-138.884	1.11%	
	P2	-76.816	1.07%			P2	-94.805	0.59%	
	P1	-34.351	0.75%			P1	-71.240	1.56%	
	P0	0.000				P0	0.000		

		Base Empotr	ada			Base con rigidez rotacional				
		Desplazamiento	Deriva	Max Deriva			Desplazamiento	Deriva	Max Deriva	
	P12	-506.984	2.28%			P12	-524.423	2.06%		
	P11	-416.801	0.80%			P11	-442.800	1.72%		
	P10	-384.953	0.25%			P10	-374.619	0.40%		
	P9	-394.918	0.06%	P9 P8	P9	-390.583	0.17%			
	P8	-397.321	0.26%		P8	-397.288	0.17%			
	P7	-407.532	0.42%		S 31	P7	-403.947	0.30%		
S31	P6	-424.047	0.00%	2.92%		P6	-415.748	0.05%	3.25%	
	P5	-423.898	0.80%		P5	-417.868	0.56%			
	P4	-392.047	1.72%			P4	-395.782	1.33%		
	P3	-323.731	2.62%			P3	-343.036	2.17%		
	P2	-219.972	2.92%			P2	-257.127	2.73%		
	P1	-104.132	2.28%			P1	-148.771	3.25%		
	P0	0.000				P0	0.000			

	Base Empoti	rada			Base con rigidez rota	cional	
	Desplazamiento	Deriva	Max Deriva		Desplazamiento	Deriva	Max Deriva
P12	671.508	1.78%		P12	575.164	1.62%	
P11	600.857	2.51%		P11	511.060	2.23%	
P10	501.488	2.39%		P10	422.808	1.47%	
P9	406.897	1.77%		P9	364.647	0.81%	
P8	336.692	0.37%		P8	332.469	0.01%	
P7	351.157	2.05%		P7	332.094	1.70%	
S32 P6	432.384	1.43%	3.96%	S32 P6	399.540	1.18%	4.09%
P5	489.179	0.10%		P5	446.255	0.20%	
P4	493.281	1.59%		P4	454.043	1.06%	
P3	430.297	3.21%		P3	411.957	2.37%	
P2	302.978	3.96%		P2	318.010	3.31%	
P1	146.178	3.20%		P1	186.809	4.09%	
PO	0.000			PO	0.000		

	Base Empote	rada			Base con rigidez rotacional				
	Desplazamiento	Deriva	Max Deriva		Desplazamiento	Deriva	Max Deriva		
P12	-461.096	2.17%		P12	-469.600	2.02%			
P11	-375.021	2.01%		P11	-389.736	2.12%			
P10	-295.192	0.38%		P10	-305.790	0.74%			
P9	-280.096	0.24%	P9 P8	P9	-276.367	0.20%			
P8	-289.658	0.19%		P8	-268.392	0.32%			
P7	-282.048	0.67%		P7	-255.748	0.66%			
S33 P6	-255.413	1.01%	2.17%	S33 P6	-229.539	0.76%	2.19%		
P5	-215.497	0.68%		P5	-199.606	0.06%			
P4	-188.680	0.09%		P4	-197.149	0.02%			
P3	-184.955	1.15%		P3	-196.529	0.90%			
P2	-139.222	1.76%		P2	-160.843	1.53%			
P1	-69.530	1.52%		P1	-100.350	2.19%			
P0	0.000			PO	0.000				

	Base Empotr	rada			Base con rigidez rotacional				
	Desplazamiento	Deriva	Max Deriva		Desplazamiento	Deriva	Max Deriva		
P12	500.607	1.22%		P12	489.186	1.18%			
P11	452.425	0.57%		P11	442.528	0.70%			
P10	429.744	0.04%		P10	414.903	0.17%			
P9	428.009	0.76%		P9	408.357	0.73%			
P8	397.884	1.56%		P8	379.480	1.42%			
P7	336.067	1.53%		P7	323.340	0.83%			
S34 P6	275.595	0.86%	1.56%	S34 P6	290.630	0.85%	1.95%		
P5	241.516	1.06%		P5	256.794	1.02%			
P4	199.506	1.02%		P4	216.547	0.62%			
P3	159.049	1.13%		P3	192.175	1.05%			
P2	114.100	1.48%		P2	150.420	1.55%			
P1	55.593	1.22%		P1	89.100	1.95%			
PO	0.000			PO	0.000				

		Base Empotr	ada		Base con rigidez rotacional				
		Desplazamiento	Deriva	Max Deriva			Desplazamiento	Deriva	Max Deriva
	P12	-479.315	1.70%			P12	-460.406	1.52%	
	P11	-411.769	1.84%			P11	-400.201	1.86%	
	P10	-338.923	0.60%			P10	-326.506	0.22%	
	P9	-315.320	0.23%	P9	P9	-317.840	0.22%		
	P8	-324.497	0.23%			P8	-326.607	0.23%	
	P7	-315.202	0.70%			P7	-317.375	0.68%	
S35	P6	-287.572	1.03%	1.84%	S35	P6	-290.418	0.70%	5.76%
	P5	-246.630	0.81%			P5	-262.787	0.30%	
	P4	-214.397	1.15%			P4	-251.059	5.76%	
	P3	-168.780	1.20%			P3	-22.779	3.76%	
	P2	-121.147	1.53%			P2	-171.682	1.78%	
	P1	-60.597	1.33%			P1	-101.076	2.21%	
	P0	0.000				P0	0.000		

	Base Empotr	rada			Base con rigidez rotacional				
	Desplazamiento	Deriva	Max Deriva		Desplazamiento	Deriva	Max Deriva		
P12	-958.019	2.47%		P12	-986.660	1.77%			
P11	-860.047	1.32%		P11	-916.543	1.90%			
P10	-807.744	0.70%		P10	-841.287	0.39%			
P9	-780.198	0.94%		P9	-825.820	0.74%			
P8	-742.856	1.51%		P8	-796.364	1.32%			
P7	-683.152	2.01%		P7	-743.901	1.96%			
S36 P6	-603.502	2.32%	3.40%	S36 P6	-666.149	2.42%	3.60%		
P5	-511.453	1.35%		P5	-570.069	2.72%			
P4	-458.128	2.06%		P4	-462.213	2.09%			
P3	-376.605	3.04%		P3	-379.485	2.40%			
P2	-256.283	3.40%		P2	-284.270	3.02%			
P1	-121.456	2.66%		P1	-164.470	3.60%			
PO	0.000			PO	0.000				

	Base Empote	rada			Base con rigidez rotacional				
	Desplazamiento	Deriva	Max Deriva		Desplazamiento	Deriva	Max Deriva		
P12	-695.309	2.06%		P12	-727.982	1.86%			
P11	-613.746	0.89%		P11	-654.438	1.90%			
P10	-578.294	0.67%		P10	-579.162	0.62%			
P9	-551.719	0.56%		P9	-554.571	0.42%			
P8	-529.585	0.76%		P8	-538.122	0.69%			
P7	-499.313	1.12%		P7	-510.888	1.10%			
S37 P6	-455.025	1.46%	2.25%	S37 P6	-467.254	1.44%	2.27%		
P5	-397.168	1.80%		P5	-410.057	1.71%			
P4	-325.796	2.02%		P4	-342.138	1.86%			
P3	-245.784	2.25%		P3	-268.370	2.05%			
P2	-156.607	2.15%		P2	-186.974	2.10%			
P1	-71.371	1.56%		P1	-103.750	2.27%			
PO	0.000			PO	0.000				

		Base Empotr	ada				Base con rigidez rota	cional	
		Desplazamiento	Deriva	Max Deriva			Desplazamiento	Deriva	Max Deriva
	P12	491.281	1.47%			P12	488.227	0.89%	
	P11	433.029	1.20%			P11	452.780	0.45%	
	P10	480.700	1.08%			P10	470.796	0.97%	
	P9	523.400	0.33%			P9	509.172	0.30%	
	P8	536.420	0.59%	P8	P8	521.187	0.47%		
	P7	513.010	1.35%		P7	P7	502.623	1.10%	
S38	P6	459.568	1.77%	2.42%	S38	P6	459.026	1.45%	2.54%
~~~~	P5	389.466	1.25%			P5	401.639	1.61%	
	P4	339.770	1.73%	I	P4	337.669	1.51%		
	P3	271.385	2.30%			P3	278.005	1.88%	
	P2	180.330	2.42%		1	P2	203.370	2.20%	
	P1	84.357	1.85%			P1	116.022	2.54%	
	P0	0.000				P0	0.000		

		Base Empotr	ada				Base con rigidez rota	cional	
		Desplazamiento	Deriva	Max Deriva			Desplazamiento	Deriva	Max Deriva
	P12	477.964	0.49%			P12	584.055	0.78%	
	P11	458.491	0.70%			P11	553.278	1.07%	
	P10	430.700	0.76%			P10	510.831	1.17%	
	P9	400.654	0.81%	6 P9	P9	464.550	1.31%	1.31% 1.20%	
	P8	368.516	0.85%		P8 P7 1.43% <b>S39</b> P6	P8	412.459	1.20%	
	P7	335.006	0.95%			P7	364.850	0.87%	
<b>S39</b>	P6	297.396	1.06%	1.43%		P6	330.506	0.97%	1.71%
	P5	255.322	1.20%	P: P2	P5	292.233	1.12%		
	P4	207.641	1.30%		P4	247.724	1.27%		
	P3	155.979	1.43%			P3	197.528	1.46%	
	P2	99.200	1.36%			P2	139.486	1.55%	
	P1	45.130	0.99%			P1	78.014	1.71%	
	P0	0.000				P0	0.000		

	Base Empotr	rada			Base con rigidez rota	cional	
	Desplazamiento	Deriva	Max Deriva		Desplazamiento	Deriva	Max Deriva
P12	-766.444	0.83%		P12	-794.703	0.34%	
P11	-733.493	0.37%		P11	-781.385	0.76%	
P10	-718.745	1.14%		P10	-751.129	1.42%	
P9	-673.759	1.94%		P9	-694.894	2.11%	
P8	-596.943	2.33%		P8	-611.095	2.28%	
P7	-504.513	2.10%		P7	-520.706	1.94%	
S40 P6	-421.258	1.20%	2.43% \$40	S40 P6	-443.960	0.86%	3.01%
P5	-373.872	1.04%		P5	-409.779	0.83%	
P4	-332.853	1.59%		P4	-376.921	1.40%	
P3	-269.693	2.22%		P3	-321.405	2.08%	
P2	-181.568	2.43%		P2	-238.860	2.56%	
P1	-85.479	1.87%		P1	-137.530	3.01%	
PO	0.000			PO	0.000		

		Base Empotr	ada			Base con rigidez rota	cional	
		Desplazamiento	Deriva	Max Deriva		Desplazamiento	Deriva	Max Deriva
	P12	-668.335	0.77%		P12	-629.890	0.71%	
	P11	-637.866	1.13%		P11	-601.887	1.04%	
	P10	-592.997	1.26%		P10	-560.810	1.15%	
	P9	-543.122	1.40%		P9	-515.425	1.26%	
	P8	-487.590	1.50%		P8	-465.310	1.34%	
	P7	-428.214	1.63%		P7	-412.183	1.20%	
S41	P6	-363.455	1.68%	1.68%	S41 P6	-364.560	1.74%	1.74%
	P5	-296.825	1.65%		P5	-295.498	1.49%	
	P4	-231.346	1.61%		P4	-236.390	1.44%	
	P3	-167.643	1.61%		P3	-179.214	1.45%	
	P2	-103.671	1.45%		P2	-121.603	1.39%	
	P1	-46.330	1.01%		P1	-66.337	1.45%	
	P0	0.000			P0	0.000		
	P12	460.014	0.55%		P12	496.660	0.57%	
	P11	438.237	0.81%		P11	474.161	0.84%	
	P10	406.324	0.89%		P10	) 441.058	0.92%	
	P9	371.034	0.98%		P9	404.435	1.02%	
	P8	332.120	1.04%		P8	364.013	1.08%	
	P7	290.917	1.13%		P7	321.253	1.16%	
S42	P6	246.312	1.15%	1.15%	S42 P6	275.153	1.18%	1.18%
	P5	200.743	1.15%		P5	228.259	1.18%	
	P4	155.016	1.10%		P4	181.433	1.13%	
	P3	111.407	1.08%		P3	136.818	1.12%	
	P2	68.440	0.96%	6 6	P2	92.460	1.06%	
1	P1	30.450	0.67%		P1	50.311	1.10%	
	P0	0.000			P0	0.000		

		Base Empotr	ada			Base con rigidez rotacional				
		Desplazamiento	Deriva	Max Deriva			Desplazamiento	Deriva	Max Deriva	
	P12	481.770	1.19%			P12	463.103	1.08%		
	P11	434.546	1.29%			P11	420.430	0.65%		
	P10	383.236	0.66%			P10	394.700	0.89%		
	P9	357.055	0.23%			P9	359.350	0.35%		
	P8	347.944	0.27%	P8	P8	345.504	0.59%			
	P7	337.135	0.24%		<b>6 S43</b>	P7	322.088	1.01%		
S43	P6	327.538	0.69%	1.75%		P6	282.037	0.68%	2.61%	
	P5	300.323	1.12%	P	P5	254.970	0.65%			
	P4	256.023	1.45%		P4	229.406	0.97%			
	P3	198.416	1.74%			P3	191.056	1.31%		
	P2	129.483	1.75%	% P2 % P1	P2	139.184	0.50%			
	P1	60.069	1.31%			P1	119.220	2.61%		
	P0	0.000				P0	0.000			

Base Empotrada						Base con rigidez rotacional			
		Desplazamiento	Deriva	Max Deriva			Desplazamiento	Deriva	Max Deriva
S44	P12	-608.765	0.51%			P12	-725.599	0.85%	
	P11	-588.605	0.35%			P11	-691.910	0.77%	
	P10	-574.830	0.57%		S44	P10	-661.575	0.93%	
	P9	-552.227	0.84%			P9	-624.900	1.33%	
	P8	-518.966	1.10%			P8	-572.110	1.41%	
	P7	-475.197	1.37%			P7	-516.290	1.40%	
	P6	-420.886	1.55%	2.00%		P6	-460.920	1.58%	2.48%
	P5	-359.282	1.73%			P5	-398.500	1.75%	
	P4	-290.741	1.84%			P4	-329.250	1.85%	
	P3	-217.905	2.00%			P3	-256.040	1.94%	
	P2	-138.583	1.84%			P2	-179.150	1.66%	
	P1	-65.644	1.44%			P1	-113.536	2.48%	
	P0	0.000				P0	0.000		