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RESUMEN 

El ambiente universitario, tanto a escala global y ecuatoriana, presenta una situación de alto 

estrés psicológico que causa abuso de substancias en estudiantes. Una posible solución es usar 

algoritmos de predicción de minería de datos para detectar este abuso. Multilayer Perceptron 

son usualmente usados para estas predicciones, pero reentrenarlos es usualmente costoso. Se 

propone los Random Forest como una alternativa, y su desempeño es evaluado y comparado 

al desempeño de un MLP en un problema multiclase de clasificación de consumo de alcohol 

usando indicadores psicológicos y metadatos. El set de datos usados pasó por un proceso de 

selección de atributos para descartar los altamente correlacionados. Pasó también por un 

proceso de re-muestreo para compensar desbalance de clases. Para optimizar el MLP, 100 

configuraciones aleatorias se generaron y entrenaron en el set de datos y aquella con la accuracy 

más alta fue usado en el problema de clasificación. Dos métodos fueron usados para optimizar 

el RF. El primero exploró todas las configuraciones posibles exhaustivamente, el segundo lo 

hizo parcialmente. Ambos métodos llegaron a la misma configuración óptima, que fue usado 

en el problema de clasificación. Para ambos modelos, el accuracy, precision, y recall 

promedios fueron calculados. El tiempo de experimentación, clasificación, y calificación fue 

contado. Las curvas de Precision-Recall y Receiver Operator Characteristics fueron 

dibujadas. En desempeño, ambos modelos fueron iguales y exitosos. En tiempo, ambos 

métodos de experimentación del RF fueron más rápidos el del MLP. El método de exploración 

parcial fue un orden de magnitud más rápido que cualquier otro método. Por lo tanto, se puede 

concluir que los RF pueden ser un modelo alternativo viable en problemas de predicción de 

uso de substancias en base a indicadores psicológicos 

Palabras clave: Foresta Aleatoria, Perceptrón Multicapa, desempeño, multiclase, indicadores 

psicológicos, consumo de substancias  



6 
 

 

ABSTRACT 

The university environment, both on a global and Ecuadorian scale, presents a high-stress 

psychological situation that causes substance abuse in students. A possible solution is using 

data mining prediction algorithms for early detection of such consumption. Usually, Multilayer 

Perceptron models are used for such prediction but retraining them is usually costly. Random 

Forests are proposed as an alternative, and their performance is evaluated and compared to the 

performance of an MLP in an alcohol consumption multi-class classification problem using 

psychological indicators and metadata. The used dataset underwent a feature selection process 

to discard those highly correlated. It also underwent a resampling process to account for class 

imbalance. To optimize the MLP, 100 random configurations were generated and trained on 

the dataset and the one with the highest accuracy was used in the classification problem. Two 

methods were used to optimize the RF. The first one explored all possible configurations 

exhaustively, the second one did so partially. Both methods arrived at the same optimal 

configuration, which was used in the classification problem. For both models, the average 

accuracy, precision, and recall scores were calculated. The runtime of the experimentation, 

classification, and scoring stages was tallied. Precision-Recall and Receiver Operator 

Characteristics curves were plotted. Performance wise, both models were equal and successful. 

Timewise, both experimentation methods of the RF were faster than the MLP experimentation. 

The partial exploration method was an order of magnitude faster than any other method. As 

such, it can be concluded that RF may be a viable alternative model for substance use prediction 

problems based on psychological indicators. 

Key words: Random Forest, Multilayer Perceptron, performance, multi-class, psychological 

indicators, substance consumption 
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INTRODUCTION 

A recent study has linked psychological stress in all its forms with 75% to 90% of all human 

diseases (Liu, Wang & Jiang, 2017). These problems are more common on teenagers and 

young adults; between 13% and 17% of this age group presents symptoms, which is higher 

than the 10% of adult population worldwide (Kashani & Orvaschel, 1990). In this regard, 

university and college students are particularly at risks. Studies have revealed that University 

students exhibit more mental health afflictions than any other social group of the same age, 

surpassing even working young adults (Saleh, Camart & Romo, 2017) (Blanco et al, 2008). It 

has been discovered that traditional evaluation methods, such as midterms, final exams, and 

tests, incurs in a severe rise of stress level in students (Ávila-Toscano, Hoyos Pacheco, 

González, & Cabrales Polo, 2011). This stress, in turn, can lead to emotional pathologies 

such as depression and anxiety, which have an adverse effect in academic performance, since 

patients exhibit decreases in memory, attention, and concentration (Borges & Angeli Dos 

Santos, 2016). The traditional university social and academic environment, paired with these 

additional psychological stressors, has adverse effects in the well-being of students, pushing 

them towards the consumption of dangerous substances such as alcohol, tobacco, and other 

detrimental drugs (Ortiz et al, 2008). In Ecuador, in 2012, the rate of young adults that 

attended public or private Universities was around 39.6% of the population, with an expected 

attendance ratio of 50% on 2017 (Secretaría nacional de planificación y Desarrollo, 2016). 

Many of the psychological investigations carried out in Ecuadorian universities have sought 

to validate a series of psychological tools in this context, including the PSS (Ruisoto, López-

Guerra, Paladines, Vaca & Cacho, 2020)., the CAPS (Vicent et al, 2020), and the GADS 

(Reivan-Ortiz, Pineda-Garcia, & León Parias, 2019), with successful results. These studies 

show that most common psychological tools are valid in an Ecuadorian context, which also 
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implies that most psychological problems are also prevalent in the Ecuadorian context 

(Torres et al, 2017). The growth in Ecuador’s university student population, as well as the 

similarities this context shows with other contexts worldwide, means that Ecuadorian 

students also face the stressors and situations that may push them towards the use of 

dangerous substances. 

Simultaneously, data mining has had successful applications in psychology. It was used to 

successfully develop an alternative treatment for the long-term effects of depression with 

better results than orthodox methods (Li & Ding, 2019). On the development of 

psychological tools that employ data mining, a three-layered model (data and data mining 

layer, prediction layer, and user interface layer) has been proposed with adequate 

performance (Ratnaparkhi, Katore & Umale, 2015). Additionally, SVM machines have been 

successful at predicting certain disorders with therapy-collected data (Correia, Trancoso & 

Raj, 2016). On data mining at the university environment, unsupervised clustering techniques 

were successful in identifying common social issues in freshmen students (Yuan, 2014), 

which are the ones most at risk of substance abuse (Ortiz et al, 2007). On a more 

psychological application, a study combined a priori algorithms with association rules to try 

to uncover possible relationships between psychological parameters and positive academic 

results (Burman, Som, Hossain & Sharma, 2019). A study on supervised models used an 

MLP network and the three-layered model with adequate results on the prediction of a binary 

well-unwell well-being scale (Qinghua, 2016). Another study used complex data gathering 

surveys and MLP variations to predict well-being on a 1 to 4 scale with great results, but with 

a very resource intensive data gathering method (a long and complex survey) and prediction 

model (Tyulyupo, Andrakhanov, Dashieva& Tyryshkin, 2018). It should be noted that the 

study was successful in verifying that the data gathering method could be simplified, but said 
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survey is still not publicly well known nor available, which makes it both difficult to replicate 

the study and to apply it practically. In general, these studies show the possibility to employ 

data mining in prediction models based on psychological data. One such model, for example 

could attempt to address the substance abuse issue, previously discussed, in universities by 

gathering psychological data from students in order to predict frequency of substance use. 

This, in turn, would allow competent professionals and authorities to help students that 

struggle with these problems in a timely manner. 

Yet, the nature of this kind of work raises a complication. Psychological datasets used in 

these data mining applications are on a state of constant growth by nature, as more data is 

gathered from new students or events. This, in turn, means that the prediction models used in 

the applications must be periodically retrained to stay updated to the available data. Most of 

these studies use artificial neural networks, which have a high training complexity. As such, 

periodically retraining these models could become costly both in time and computational 

resources. It is then necessary to evaluate alternative prediction models with lesser training 

time and resource costs, in order to determine if their results could be comparable to those 

obtained by these more complex models. One such prediction model are random forests, 

which are very simple to implement and have low training times and costs. This project will, 

then, compare the performance of an MLP neural network prediction model (the most 

commonly used model in the studies) with that of a random forest prediction model, when 

applied to a multi-class classification problem using psychological indicators in the 

prediction of frequency of use of detrimental substances. First, the data will be treated to 

properly fit the models and minimize external error sources. Then, random MLP 

configurations will be trained in the data, and the most accurate one will be chosen as a 

baseline for the best possible prediction results of the problem. Later, an unoptimized random 
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forest classifier will be trained on the data and evaluated. The configuration of the random 

forest model will then be deterministically optimized to maximize accuracy. Finally, using 

both the best found MLP artificial network configuration and random forest configuration, 

performance metrics will be calculated independently. A final comparison will be carried out 

between the results of both training models, and conclusions about their comparative 

performance will be drawn.  
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MATERIALS AND METHODS 

Dataset used 

For investigative purposes, this project uses a dataset donated by investigators at Cornell 

University after a study, that is maintained and publicly made available through the UCI 

(University of California Irvine) Machine Learning Repository, at the following url: 

https://archive.ics.uci.edu/ml/datasets/Drug+consumption+%28quantified%29. The dataset 

counts with 1885 instances and 32 attributes per instance. The attributes are made up of 

metadata of the patient such as age, gender, country of residence, and ethnicity, psychological 

indicators for personality factors, impulsivity, and sensation seeking, and nineteen label 

attributes that specified the last time the participant had consumed a series of legal and illegal 

drugs. A detailed description of the attributes of the dataset is shown in Table 1. 

Table 1: Description of the attributes found in the instances of the experimental dataset. 

Attribute Column numbers Description 

Identifier 1 
Unique sequential identifier number, assigned 
incrementally to participants as the data was 

gathered. 

Metadata 2-6 

General data about the participants of the 
study. This included, in order, age, gender, 
education level, country of residence, and 

ethnicity. These values are numerically 
encoded. 

Personality 
indicators 

8-11 

Personality indicators following the Big Five 
personality traits, gathered through the NEO-
FFI-R personality inventory. These traits are, 

in the order they appear in the dataset, 
neuroticism, extraversion, openness to 

experience, agreeableness, and 
conscientiousness. 

Impulsive 
indicator 

12 
A measure of the participant’s impulsivity as 
determined by the Baratt Impulsiveness Scale 

11 (BIS-11). 
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Sensation 
seeking indicator 

13 

A measure of the participant’s drive to seek 
new and novel experiences, as determined by 

the Impulsive Sensation Seeking scale 
(ImpSS) 

Drug 
consumption 

label 
14-32 

A series of attributes that specify the last time 
the participant consumed a certain drug. Both 
legal and illegal drugs are included. The drugs 

recorded are as following: alcohol, 
amphetamines, amyl nitrite, benzodiazepine, 
caffeine, cannabis, chocolate, cocaine, crack, 
ecstasy, heroin, ketamine, legal highs, LSD, 

methadone, magic mushrooms, nicotine, 
semeron (fictional drug), and volatile 

substances. 

Every attribute except the drug consumption labels was numerically encoded by the original 

dataset owners before it was donated. The drug consumption labels listed one of seven 

possible classes for the last time the drug was consumed. These clases were non-numeric and 

followed the legend of Table 2. 

Table 2: Class label legend for the drug consumption label attributes 

Class label Last time the drug was used 
CL0 Never used 
CL1 Used over a decade ago 
CL2 Used in the last decade 
CL3 Used in the last year 
CL4 Used in the last month 
CL5 Used in the last week 
CL6 Used in the last day 

Multilayer Perceptron 

Multi-layer perceptrons, often referred to as MLP are the most well-known and widely used 

type of artificial intelligence neural network structure. It is a fully connected feed-forward 

model that uses back propagation for training purposes. The MLP consists of an entry layer, 

which has a number of nodes equal to the number of features in each feature vector in the 

input data, an output layer, which consists of a single neuron in binary classification 
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problems or as many neurons as possible classes in multi-class classification problems, and 

an arbitrary number of hidden layers, which in turn can have an arbitrary number of neurons 

per layer. Figure 1 diagrams the general architecture of an MLP. Multi-layer perceptrons 

have been widely used and documented in data mining due to their simplicity and 

effectiveness and are particularly well suited for the classification of tabular data. 

Figure 1: General diagram of an MLP  

 

Image taken from Zainal-Mokhtar & Mohamad-Saleh, 2013 

In this project, MLP classification models are used as the control group, in order to determine 

a baseline performance in the prediction problem at hand.  

Random Forest 

Random Forests are supervised learning algorithms that may be used to create both 

classification and regression models. For prediction, Random forests randomly select a series 

of attributes from the attribute vector of a dataset, and proceeds to build a decision tree with 

said attributes. The process is repeated until a determined number of trees are built. After 

this, the Random Forest utilizes a sampling through bagging method to generate a random 

subset of instances from the original dataset for each tree, and each tree is given a vote. 
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Figure 2 diagrams the general architecture of a Random Forest. The Random Forest predicts 

the category that has the most votes from its trees. Random forests are widely used due to the 

simplicity and reliability, as well as the low number of hyper-parameters that require tuning. 

They are also highly resistant to overfitting. A Random Forest’s computational cost is 

entirely dependent on its number of member trees, and as such can vary greatly from case to 

case.  

Figure 2: General diagram of a Random Forest  

 

Image taken from Great Learning team, 2020. 

In this project, Random Forest classifiers are considered the experimental group. 

Experimental setup 

 Data processing. 

Due to its prevalence and frequency of use in the University environment, Alcohol was 

chosen as the target column for the project and, as such, all other drug labels were ignored. 
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Additionally, all non-label attributes were normalized into the [𝟎, 𝟏] numeric range. The 

dataset then underwent a feature selection process in order to facilitate the training of the 

prediction models before their use. First, the total information gain ratio of every attribute 

against the classification label was calculated, and the attributes were sorted from highest 

information gain ratio to lowest. This was done to prioritize attributes with high information 

gain ratio in the selection of features. After this, the Pearson correlation index between every 

two attributes was calculated. Attributes with a high correlation index were considered 

undesirable. As such, any features found to have a Pearson correlation index 𝑷 > 𝟎. 𝟑 with a 

previously evaluated feature were considered undesirable and discarded. The value of 0.3 

was determined empirically to maximize the models’ accuracy. The features that were found 

to be undesirable, as well as the feature they were found to be highly correlated with and the 

Pearson correlation index between the two, is shown on Table 3. The columns listed refer to 

the original dataset, not the filtered dataset.  

Table 3: Features filtered out of the dataset. 

Discarded 
feature 
column 

Discarded 
feature attribute 

Highly 
correlated 

feature 
column 

Highly 
correlated 

feature 
attribute 

Pearson 
correlation 

index 

11 
Personality 
Indicator: 

conscientiousness 
8 

Personality 
Indicator: 

neuroticism 
0.308 

2 Metadata: age 5 
Metadata: 
country of 
residence 

0.354 

13 
Sensation 

seeking indicator 
9 

Personality: 
extraversion 

0.421 

 

The resulting dataset was highly unbalanced. An unbalanced classification problem is defined 

as a classification problem where the number of instances of each class is vastly different 
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from one another. This may introduce errors in the training process. As such, the dataset was 

resampled. The resampling technique used was the SMOTEEN algorithm, which combines 

oversampling and undersampling (Batista, Bazzan, & Monard, 2003) (Batista, Prati, & 

Monard, 2004). Through oversampling and undersampling, the resulting dataset is much 

more balanced, and likely to produce more accurate prediction results. The number of 

instances of each class before and after resampling is presented in table 4. 

Table 4: Number of member instances per class before and after SMOTEEN resampling 

 CL0 CL1 CL2 CL3 CL4 CL5 CL6 
Before 

resampling 
34 34 68 198 287 759 505 

After 
resampling 

697 689 637 524 362 36 122 

 Training and test partitions. 

Throughout the project, the dataset must be used both for training and testing purposes for the 

prediction models being evaluated. This is achieved by partitioning the data through stratified 

k-fold method, utilizing ten folds. Through the use of the stratified k-fold method instead of 

the traditional k-fold method (Hargreaves, 2021), it is guaranteed that each group will have a 

percentage division between classes that is somewhat similar to that of the original dataset. 

Additionally, a static seed of 0 is used throughout the project, to ensure that the partitions are 

always the same. This is done to ensure stability and replicability throughout the 

experimentation. 

 Model configuration. 

A hundred MLP models were randomly generated by the variation of the parameters shown 

in table 5. Table 5, additionally, displays the possible values that each of the parameters 
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could take, as well as a short explanation of the parameter in question. All MLP random 

models generated utilized stochastic gradient descent as the solver for weight optimization in 

training, and a batch size of 200 instances. For a complete list of each of the models 

generated, as well as their accuracy achieved over the problem, refer to Appendix A. 

Table 5: Possible values in the generation of random MLP configurations 

Variable Possible Values Description 

Number of hidden layers 1, 2, 3 
The number of hidden layers 

present in the MLP 
configuration 

Number of neurons 
10, 20, 30, 40, 50, 60, 70, 

80, 90, 100 

The number of neurons 
present in every single 

hidden layer in the 
configuration 

Activation function identity, logistic, tanh, relu 

Whether the MLP uses, in 
respective order, the identity 

function, the logistic 
sigmoid function, the 

hyperbolic tangent function, 
or the rectified linear unit 
function as the activation 
function for its neurons 

Learning rate 0.1, 0.3, 0.5 

The constant learning rate 
used in the stochastic 

gradient descent training of 
the configuration 

For the Random Forest classifier, two configuration methods were proposed. The first 

method, referred to as the exhaustive method, explored every possible permutation of the 

available parameters, and calculated their corresponding accuracy. This guaranteed the 

highest accuracy model in the possible permutation space. For a complete list of the accuracy 

achieved by every possible combination, refer to Appendix B. The second method, referred 

to as the partial method, started with a fixed 100 trees in the forest, which is usually 

considered the default, and the number of features with the highest accuracy for said number 

of trees was found. Next, the number of features was fixed at the previously found best, and 
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the number of trees with the highest accuracy was found. This method did not guarantee the 

highest accuracy model but was more time efficient. Table 7 describes the possible 

parameters explored for the Random Forest classifier, as well as the possible values it could 

take, and a short description of the parameter itself. 

Table 6: Parameters of the Random Forest classifier and their possible values 

Parameter Possible values Description 

Number of features 1, 2, 3, 4, 5, 6, 7, 8, 9 

Number of randomly 
selected features from the 
original dataset used in the 

construction of each 
individual tree in the random 

forest 

Number of trees 
100, 200, 300, 400, 500, 
600, 700, 800, 900, 1000 

Number of trees in the 
Random Forest classifier 

Additionally, an unoptimized model that used the values considered standard (the square root 

of the total number of features as the number of features and 100 trees in the forest) was also 

trained in the data, and its metrics recorded. 

 Assessment metrics. 

The following metrics were calculated, tallied, or traced in order to compare the models 

between each other. To compare the two models, an independent-sample T-Test assuming 

unequal variance was used (Welch’s t-test). Additionally, the null hypothesis chosen was that 

the average accuracy of both models was the same, with 95% certainty. 

 Global Accuracy. 

Global accuracy refers to average of the total accuracy obtained in each fold of the dataset. 

Total accuracy refers to the sum of all correctly classified instances divided by the total of 
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instances in the fold. Global accuracy is described simply as accuracy throughout the 

investigation. 

 Average accuracy across classes. 

 Average accuracy across classes refers to the average of the seven class accuracies obtained 

from the combined results across the ten folds of the dataset. Class accuracy refers to the 

number of correct predictions of a particular class, both positive and negative, divided by the 

total number of instances in the dataset. 

 Average precision. 

Average precision refers to the average of the seven class precisions obtained from the 

combined results across the ten folds of the dataset. Class precision refers to the number of 

correctly classified instances of a particular class (true positives), divided by the sum of the 

number of correctly classified instances of said class (true positives) and the number of 

instances incorrectly classified as said class (false positives). 

 Average recall. 

Average recall refers to the average of the seven class recalls obtained from the combined 

results across the then folds of the dataset. Class recall refers to the number of correctly 

classified instances of a particular class (true positives), divided by the total number of said 

class in the dataset (true positives plus false negatives). 

 Experimentation time. 
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Experimentation time refers to the total runtime in the experimentation of each 

experimentation method. As such, three values were recorded: MLP experimentation, 

Random Forest exhaustive method experimentation, and Random Forest partial method 

experimentation. 

 Classification time. 

Classification time refers to the total runtime of each selected model configuration in its 

training and testing process across the ten folds of the dataset. 

 Precision-Recall curve. 

The precision recall curve traces the relationship across all their possible values. As such, 

both axes in this graph range from 0 to 1. 

 Receiving operator characteristics (ROC) curve. 

The ROC curve traces the relationship between the true positive rate and the false positive 

rate of a binary classification problem. Once again, the axes range from 0 to 1. 

Selection model. 

The model selection in this investigation was carried out in two stages. First, the model 

configuration (both for the MLP as well as for the two experimentation methods of the 

Random Forest) with the highest accuracy was selected. Second, both architectures were 

compared and the one with the highest accuracy was selected. In case of a tie, the model with 

the shortest experimentation runtime was selected. 
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RESULTS AND DISCUSSIONS 

Model configuration selection 

For the MLP configurations, the average classification accuracy across the 100 models was 

0.67615, with a standard deviation of 0.22687. The worst configuration found had three 

hidden layers, sixty neurons per layer, used the hyperbolic tangent function, and had a 

learning rate of 0.5. It achieved an accuracy of 0.1809499. The best configuration found also 

had three hidden layers, sixty neurons per layer, and used the hyperbolic tangent function as 

well, but had a learning rate of 0.3 instead of 0.5. It achieved an accuracy of 0.9549978. The 

best configuration, ((60, 60, 60), 'tanh', 0.3) was selected to compare with the Random Forest. 

Table 7 describes the accuracy obtained for said configuration across each fold. 

Table 7: Accuracy of the best MLP configuration across every fold of the dataset 

Fold Accuracy score Accuracy percentage 
1 0.9543974 95.44% 
2 0.9348534 93.49% 
3 0.9641694 96.42% 
4 0.9641694 96.42% 
5 0.9478827 94.79% 
6 0.9609121 96.09% 
7 0.9804560 98.05% 
8 0.9673203 96.73% 
9 0.9346405 93.46% 
10 0.9411765 94.12% 

Average 0.9549978 95.50% 

For the Random Forest configurations, both the exhaustive method and the partial method 

reached the same conclusion. The permutation with the highest accuracy found was 1 feature 

and 900 trees. This configuration achieved an accuracy of 0.9504450. As such, it was 



25 
 

 

selected to be compared against the best MLP configuration found. Table 8 describes the 

accuracy obtained for this configuration across each fold. 

Table 8: Accuracy of the best Random Forest configuration across every fold of the dataset 

Fold Accuracy score Accuracy percentage 
1 0.9511401 95.11% 
2 0.9315961 93.16% 
3 0.9446254 94.46% 
4 0.9413681 94.14% 
5 0.9413681 94.14% 
6 0.9543974 95.44% 
7 0.9739414 97.39% 
8 0.9673203 96.73% 
9 0.9542484 95.42% 
10 0.9444444 94.44% 

Average 0.9504450 95.04% 

 

Multi-class metrics 

Table 9 details the multi-class metrics calculated on the global classification problem for the 

best MLP classifier configuration found, the optimized Random Forest, and the unoptimized 

Random Forest. 

Table 9: Multi-class metrics for best MLP and Random forest configuration, and unoptimized 

Random Forest. 

Model 
Global 

accuracy 

Average 
accuracy 

across 
classes 

Average 
precision 

Average 
recall 

Multilayer 
Perceptron 

0.9550048 0.8693319 0.9350511 0.8693318 

Random 
Forest 

0.9504401 0.8311933 0.9525095 0.8311933 
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Unoptimized 
Random 
Forest 

0.9396805 0.8231180 0.9239716 0.8231180 

Noticeably, the experimental Random Forest outperformed the unoptimized Random Forest 

at every metric, on the second negative order of magnitude. This indicates that the 

optimization process carried out in the Random Forest model does have a marked 

improvement in performance against classifiers of the same type that use the standard values. 

It is important to remember that said optimization process, incurs in a time cost, while using 

the default hyperparameters does not. Even though the second order of magnitude is 

considered of enough significance to justify the time cost that the optimization process 

requires. 

The MLP outperforms the optimized Random Forest in global accuracy, average accuracy, 

and average recall, but noticeably the Random Forest outperforms the MLP on average 

precision. Even if precision shows an advantage on the second negative order of magnitude, 

which may be considered significance, the fact that every other metric was greater in the 

MLP model indicates that said advantage may be a case-dependent fluke. More interestingly, 

global accuracy only differs starting on the third negative order of magnitude, which can be 

considered small enough to assume equal performance. Backing this, the Welch’s t-test value 

obtained in the comparison between the models with the values in tables 7 and 8 gave a value 

𝑡 = 0.727708624, and T value at α = 0.05 and Welch’s 17 degrees of freedom is 𝑇 =

2.109815578. Since 𝑡 < 𝑇, the null hypothesis (which was that the means differed) cannot 

be rejected. As such, it can be affirmed with 95% certainty that the models are equivalent in 

global accuracy. 
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Model runtime 

As the models were equivalent in accuracy, the one with the shortest runtime will be chosen 

instead. Table 10 details the runtime of each model’s total experimentation time, and their 

chosen model configuration classification time. As both the exhaustive and partial 

experimentation methods reached the same configuration, the runtime for their classification 

stage is the same. The scoring stage consists of the calculation of the model’s multi-class 

metrics and the plotting of the appropriate curves. 

Table 10: Runtimes for MLP, exhaustive method Random Forest, and partial method 

Random Forest 

Metric 
Best MLP 

configuration 

Random Forest 
(Exhaustive 

method) 

Random Forest 
(Partial method) 

Experimentation 
time 

5938.79 seconds 3454.59 seconds 231.96 seconds 

Classification time 69.20 seconds 28.36 seconds 28.36 seconds 
Scoring stage 0.87 seconds 0.81 seconds 0.81 seconds 

On total experimentation runtime, the lowest runtime was achieved by the Random Forest 

using the partial optimization method, which is an order of magnitude smaller than the other 

two models. In comparison to the Random Forest that used the exhaustive experimentation 

method, runtime for the partial method is 14.9 times smaller than exhaustive method. It 

should be noted, though, that the partial optimization method does not guarantee the best 

possible tuning for the Random Forest model, while the exhaustive method does. Comparing 

the Random Forest using partial optimization method and the MLP, the experimentation time 

is 25.6 times smaller than the latter. Comparing Random Forest using exhaustive 

optimization and MLP, the former is 1.72 times smaller than the latter. Still, the random 

forest is definitely superior. On the classification stage, the runtime for both Random Forests 
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is 2.44 times smaller than that of the MLP. The scoring stage runtime for all models was so 

similar, it may be considered the same. Nonetheless, there was no statistical test to determine 

significance, so no superiority beyond this numbers can be affirmed. As such, it is simply 

concluded that the partial experimentation method’s runtime is 14.9 times smaller than the 

exhaustive experimentation method in the Random Forest classifier, and 25.6 times smaller 

than the MLP’s experimentation method. 

Precision-Recall and ROC curves 

Figure 3 to Figure 6 display the Precision-Recall and ROC curves plotted from the 

predictions for the chosen MLP and Random forest configurations, respectively, over the 

dataset. Additionally, the AUC values are also displayed. The dotted line represents the 

average of the plot of each class, which is shown with different colors. 

Figure 3: Multi-class Precision-Recall curve for the MLP classifier 
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Figure 4: Multi-class Receiver Operating Characteristics curve for the MLP classifier 

 
Figure 5: Multi-class Precision-Recall curve for the Random Forest classifier 
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Figure 6: Multi-class Receiver Operating Characteristics for the Random Forest Classifier 

 

In all scenarios, the average area under the curve value for the problem was over 0.98. From 

this, it can be concluded that the classification problem at hand was solved successfully with 

great results. Additionally, it should be noted that the curves for CL5 and CL6 classification 

across all diagrams are significantly lower than the rest. This may be due that, after 

resampling, there were significantly less instances of these classes in the dataset, which may 

have biased the models against them. Even though, all other classes have extremely positive 

curves and high AUC values, reaching an AUC of 1 across many instances. From this, it can 

be concluded that both of the chosen MLP and Random Forest configurations were 

successful in classifying frequency of alcohol consumption based on metadata and 

personality indicators.  
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CONCLUSIONS 

Through the analysis of the multi-class metrics calculated and the curves plotted, it can be 

concluded that both the MLP classifier and the Random Forest classifier were highly 

successful in predicting frequency of alcohol use using psychological indicators and metadata 

in this particular problem, reaching values of average AUC of either 0.99 or 0.98 on all 

graphs. In terms of metrics performance, it was determined that the models had an equal 

average performance, with a 95% certainty. In terms of runtime, it was numerically 

determined that the partial method of experimentation was 14.9 times faster than the 

exhaustive experimentation method in Random Forest, and 25.6 times faster than the 

experimentation method for the MLP. Even if said time advantage is numeric and not 

statistical, this leads to the conclusion that Random Forests classifiers may be able to be used 

in the Ecuadorian University context to predict substance abuse with similar results to MLP 

and shorter training times. Even so, due to the numerical nature of this result, further 

investigation is required to ascertain this. 

The following limitations of the study must be considered. The optimization process for the 

MLP is done through random generation and testing and, as such, offers no certainty in the 

maximum capabilities of MLP classification in the problem. Additionally, the possible 

configurations exploration spaces chosen for the optimization of the model were determined 

arbitrarily, and differently sized exploration spaces may yield different results both in metric 

scoring and in optimization time. Finally, it must be considered that these results are highly 

dependent on the dataset used, and different datasets and classification problems may yield 
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different results. On the same topic, the dataset itself was not built in Ecuador, so its results 

may not be applicable to the Ecuadorian social and psychological context.  

There are possible future research options that could be used for the expansion of this 

investigation. First, a genetic optimization method may be proposed for the optimization of 

the MLP. This method would use genetic algorithms to sequentially improve the accuracy of 

the configurations generated and may yield a configuration with considerably better 

performance at the cost of a larger optimization time. Second, different feature selection 

methods may be used in the dataset. This could vary the overall performance of the models or 

favor one model over the other according to what the feature selection process prioritizes. 

Finally, the research may be replicated with a dataset built in either the Ecuadorian context or 

the Latin American context. This would validate that the results found were not specific to a 

certain social or cultural context. Unfortunately, as building such dataset would imply dealing 

with human subjects, doing would have ethical implications and, as such, a legal and ethical 

process would have to be started to obtain an authorization to gather the data.  
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APPENDIX A: AVERAGE ACCURACY OBTAINED ACROSS 100 RANDOM MLP 
CONFIGURATIONS 

Iteration 

Configuration 

Average 
accuracy 

Number of 
hidden 
layers 

Number of 
neurons in 

each hidden 
layer 

Activation 
function 

Learning 
rate 

1 2 50 identity 0.3 0.4029997 
2 3 60 relu 0.5 0.3776500 
3 3 70 relu 0.1 0.8288689 
4 2 50 Identity 0.1 0.4000724 
5 3 80 Tanh 0.3 0.5060037 
6 1 30 Relu 0.5 0.5696398 
7 2 50 Relu 0.3 0.7589523 
8 1 60 Logistic 0.5 0.8239137 
9 2 50 Tanh 0.1 0.9465255 

10 1 100 Logistic 0.1 0.8167731 
11 1 30 Tanh 0.1 0.8020736 
12 1 80 Relu 0.1 0.7222254 
13 3 20 Logistic 0.5 0.8780663 
14 1 70 Logistic 0.5 0.8252368 
15 1 60 Tanh 0.3 0.7864235 
16 1 40 Identity 0.5 0.3840902 
17 1 40 Tanh 0.1 0.7691895 
18 2 90 Tanh 0.1 0.9484810 
19 3 40 Identity 0.1 0.3919248 
20 2 70 Logistic 0.1 0.9386994 
21 2 80 Logistic 0.1 0.9449054 
22 1 70 Relu 0.3 0.7222063 
23 1 60 Logistic 0.1 0.8040653 
24 1 20 Identity 0.1 0.3850855 
25 2 90 Relu 0.5 0.6549233 
26 3 20 Tanh 0.5 0.7176811 
27 3 60 Relu 0.3 0.6625982 
28 3 40 Logistic 0.3 0.2305135 
29 1 30 Tanh 0.1 0.8020736 
30 1 40 Logistic 0.3 0.8210140 
31 3 50 Tanh 0.1 0.9533680 
32 1 50 Identity 0.5 0.3847289 
33 2 70 Relu 0.1 0.9308839 
34 3 80 Logistic 0.5 0.2223542 
35 2 30 Relu 0.1 0.8516468 
36 1 30 Identity 0.3 0.4036448 
37 1 70 Relu 0.5 0.7127068 
38 1 90 Logistic 0.3 0.8128462 
39 2 100 Relu 0.1 0.9197281 
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40 2 30 Identity 0.1 0.4072449 
41 2 10 Identity 0.1 0.3941890 
42 2 10 Identity 0.3 0.3997530 
43 2 40 Tanh 0.1 0.9367493 
44 2 50 Logistic 0.3 0.9452173 
45 1 90 Relu 0.5 0.7545049 
46 3 50 Tanh 0.5 0.2041291 
47 2 50 Relu 0.1 0.8774137 
48 2 60 Identity 0.3 0.3974548 
49 1 60 Logistic 0.5 0.8239137 
50 1 50 Logistic 0.5 0.8193449 
51 1 80 Tanh 0.3 0.7981638 
52 3 30 Relu 0.3 0.6227619 
53 3 60 Relu 0.3 0.6625982 
54 3 70 Relu 0.5 0.4209576 
55 1 50 Logistic 0.1 0.8229631 
56 3 50 Identity 0.1 0.3925805 
57 3 80 Logistic 0.3 0.2272562 
58 3 40 Logistic 0.3 0.2305135 
59 2 10 Tanh 0.1 0.7065487 
60 3 40 Logistic 0.3 0.2305135 
61 1 30 Logistic 0.5 0.7574408 
62 1 40 Identity 0.3 0.3915895 
63 1 80 Relu 0.5 0.9449011 
64 2 50 Tanh 0.3 0.7896936 
65 1 40 Tanh 0.3 0.7896936 
66 1 40 Relu 0.1 0.6853633 
67 2 10 Logistic 0.5 0.7039461 
68 2 10 Tanh 0.5 0.6306189 
69 2 100 Tanh 0.1 0.9510858 
70 2 70 Logistic 0.5 0.9373954 
71 1 90 Tanh 0.1 0.8092951 
72 2 50 Tanh 0.1 0.9465255 
73 2 90 Relu 0.5 0.6549233 
74 1 100 Relu 0.1 0.7469928 
75 1 10 Relu 0.1 0.4717996 
76 1 10 Tanh 0.3 0.5634083 
77 2 10 Tanh 0.5 0.6306189 
78 1 20 Tanh 0.3 0.7124343 
79 3 60 Tanh 0.3 0.9549978 
80 1 10 Logistic 0.1 0.5862479 
81 3 60 Tanh 0.5 0.1809499 
82 2 30 Tanh 0.3 0.9109898 
83 3 40 Tanh 0.3 0.9367354 
84 2 60 Tanh 0.1 0.9465276 
85 1 50 Relu 0.1 0.6645292 
86 3 60 Tanh 0.1 0.9533787 
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87 1 70 Tanh 0.3 0.8030540 
88 2 90 Tanh 0.3 0.9481606 
89 3 80 Relu 0.5 0.4889581 
90 1 40 Tanh 0.1 0.8340572 
91 2 10 Relu 0.5 0.3472717 
92 1 90 Relu 0.5 0.7545049 
93 3 30 Tanh 0.1 0.9364203 
94 3 20 Relu 0.5 0.3041291 
95 1 30 Relu 0.1 0.6142726 
96 1 100 Tanh 0.5 0.7333152 
97 1 50 Identity 0.3 0.3902929 
98 1 60 Tanh 0.1 0.8457655 
99 1 40 Tanh 0.3 0.7896936 
100 1 90 Relu 0.5 0.7545049 

 

APPENDIX B: AVERAGE ACCURACY OBTAINED ACROSS EVERY 
PERMUTATION OF THE HYPERPARAMETERS FOR THE RANDOM FOREST 

CLASSIFIERS 

Number of random 
features selected 

Number of decision trees 
in the Random Forest 

Average Accuracy 

1 100 0.9445712 
1 200 0.9475057 
1 300 0.9494620 
1 400 0.9484839 
1 500 0.9491360 
1 600 0.9491360 
1 700 0.9488099 
1 800 0.9488099 
1 900 0.9504402 
1 1000 0.9497881 
2 100 0.9426149 
2 200 0.9448973 
2 300 0.9471797 
2 400 0.9468536 
2 500 0.9462015 
2 600 0.9462015 
2 700 0.9471797 
2 800 0.9484839 
2 900 0.9475057 
2 1000 0.9478318 
3 100 0.9432670 
3 200 0.9416368 
3 300 0.9445712 
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3 400 0.9458754 
3 500 0.9452233 
3 600 0.9455494 
3 700 0.9458754 
3 800 0.9452233 
3 900 0.9455494 
3 1000 0.9448973 
4 100 0.9377242 
4 200 0.9400065 
4 300 0.9409847 
4 400 0.9429410 
4 500 0.9442452 
4 600 0.9432670 
4 700 0.9426149 
4 800 0.9426149 
4 900 0.9419628 
4 1000 0.9413107 
5 100 0.9347897 
5 200 0.9383763 
5 300 0.9373981 
5 400 0.9377242 
5 500 0.9380502 
5 600 0.9367460 
5 700 0.9367460 
5 800 0.9380502 
5 900 0.9377242 
5 1000 0.9380502 
6 100 0.9325073 
6 200 0.9338115 
6 300 0.9354418 
6 400 0.9357679 
6 500 0.9347897 
6 600 0.9354418 
6 700 0.9357679 
6 800 0.9357679 
6 900 0.9360939 
6 1000 0.9360939 
7 100 0.9305510 
7 200 0.9308771 
7 300 0.9312031 
7 400 0.9328334 
7 500 0.9325073 
7 600 0.9315292 
7 700 0.9321813 
7 800 0.9308771 
7 900 0.9315292 
7 1000 0.9321813 
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8 100 0.9282687 
8 200 0.9289208 
8 300 0.9285947 
8 400 0.9279426 
8 500 0.9282687 
8 600 0.9282687 
8 700 0.9279426 
8 800 0.9289208 
8 900 0.9282687 
8 1000 0.9276166 
9 100 0.9253342 
9 200 0.9263124 
9 300 0.9266384 
9 400 0.9256603 
9 500 0.9282687 
9 600 0.9272905 
9 700 0.9276166 
9 800 0.9272905 
9 900 0.9259863 
9 1000 0.9259863 

 

 

 

 

 
 


