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RESUMEN 

Los testores, y en particular los testores típicos, se han utilizado en la selección de 

características y problemas de clasificación supervisada. Un objetivo al elegir qué 

características seleccionar es preservar la precisión. Esto también permite que un modelo 

mantenga su capacidad para discriminar entre clases. En consecuencia, proponemos el 

algoritmo de construcción del discriminador como una estrategia para lograr un subconjunto 

de características que preserven la precisión en la clasificación. Algunos algoritmos, en la 

literatura, solo se enfocan en encontrar el conjunto completo de testores típicos o en construir 

los de longitud mínima sin considerar la precisión en la predicción sobre los clasificadores. En 

este artículo, proponemos un algoritmo que utiliza los conceptos de testor típico y la precisión 

en la predicción sobre redes neuronales como funciones objetivo para la estrategia evolutiva 

con la cual construir un subconjunto de características que preserven la precisión; en el mismo 

rango que si usáramos todo el conjunto de características para entrenar y probar el modelo. El 

artículo presenta algunos resultados experimentales obtenidos mediante el uso de un 

discriminador construido sobre el conjunto de datos NMIST con las cuales se discute sobre 

métricas de evaluación a un modelo entrenado  con el conjunto reducido de características. 

También contrastamos con la tasa de error de otros clasificadores informados sobre el mismo 

conjunto de datos con la tasa de error del nuevo discriminador. 

Palabras clave: clasificación numérica manuscrita, testores típicos, red neuronal multicapa, 

algoritmos genéticos, precisión, estrategia evolutiva, función objetivo. 
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ABSTRACT 

Testors, and particularly typical testors, have been used in feature selection and supervised 

classification problems. An objective on choosing what features select is to preserve accuracy. 

This also allows a model to keep its capacity to discriminate between classes. Consequently, 

we propose the discriminator construction algorithm as an strategy to achieve a subset of 

features that preserves accuracy. Some algorithms, in literature, only focus on finding the 

whole set of typical testors or building minimum length ones which do not consider accuracy 

on prediction over classifiers. In this paper, we propose an algorithm that uses typical testors 

concepts and accuracy on prediction over neural networks as fitness functions for evolutionary 

strategy to build a subset of features that preserves the accuracy; in the same range as if we use 

the whole set of features to train and test the model. The paper presents some experimental 

results obtained by using a discriminator constructed over NMIST data set to discuss 

assessment metrics of the model with the reduced set of features. We also contrast with other 

reported classifiers error rate over the same data set with the error rate of the new discriminator. 

Key words: handwritten number classification, typical testors, multi-layer neural network, 

genetic algorithms, accuracy, evolutionary strategy, fitness function. 
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I. INTRODUCTION 

The concept of testor has been adapted to different applications over the years, one of 

them has been using testors to determine how much relevant information a set of features 

stores to describe a group of objects.  This information is helpful to classify and recognize 

those objects (Alba-Cabrera et al, 2016). Being able to determine which features are relevant 

and which are redundant is an important task in the field of supervised classification, as well 

as in pattern recognition problems (Liu et al, 2007). This is known as feature selection and it 

is the process of selecting a subset of features to reduce future search, training over data for 

classification or prediction spaces that go according to certain evaluation criteria for each of 

their fields (Alba-Cabrera et al, 2016).   

The objective of reducing the dimensionality of the feature space is to find a 

minimum set of them that preserves the essential information and allow to distinguish and 

identify the compared classes, facilitating the training of models for areas of pattern 

recognition or data mining (Mafarja et al, 2019), (Saxena et al, 2019), (Wang et al, 2019), 

(Zhou et al, 2019). 

A testor has the same ability to differentiate between objects that belong to different 

classes as the entire set of features does. This is why it has been used in supervised pattern 

recognition as in (Carrasco et al, 2004), (Pons-Porrata et al, 2007), (Lopez-Perez et al, 1997), 

(Valev et al, 1991). The subspace where to find the testors and the cardinality of the set of all 

testors is enormous since they are searched among all possible subsets of the columns of the 

matrix where every column is a feature (Alba-Cabrera et al, 2016), (Lazo-Cortez et al, 2001), 

(Valev et al, 2003).  

Some state-of-the-art algorithms include: LEX (Alganza et al, 2003), YYC (Alba-

Cabrera et al, 2014), all-NRD (Asaithambi et al, 2004), CUDA based hill-climbing (Piza-
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Davila et al, 2017), Fast-BR (Lias-Rodriguez et al, 2013), FAST-CT-EXT (Sanchez-Diaz et 

al, 2014) which focus on returning the whole set of typical testors; it could be possible to 

compare the accuracy of prediction over all testors on these algorithms if it guarantees to find 

the whole set of typical testors, nevertheless in most real cases the exponential complexity 

does not allow it. It is also reported an algorithm to find minimum length typical testors 

(Piza-Davila et al, 2020). However, heuristic algorithms as UMDA (Diaz-Sanchez et al, 

2011), PHC (Piza-Davila et al, 2015), HC (Sanchez-Diaz et al, 2014) have a better 

performance over large data sets returning a subset of the of typical testors. The output of all 

types of algorithms focus on trying to reach the highest cardinality of the returned subset of 

typical testor or minimum-length subset of them. Therefore, we propose focusing on how 

effective can we build a testor so that we can use its properties of classification properly, 

since there are problems where the entire set or either a big subset is required and reducing 

the amount of features with no loss of accuracy will speed up the prediction process 

(Sanchez-Diaz et al, 2014). Like in (Gallegos et al, 2016) where testors are used to improve 

the diagnosis of breast cancer cells. Furthermore, there are several problems in which there is 

a necessity to find an optimal discriminator (or close to it), that allows maximizing the 

performance of the classification by reducing the number of features used; specially in the 

fields of diagnostic diseases as in previous example and in (Ortiz-Posadas et al, 1996), 

feature selection for text classification (Carrasco-Ochoa et al, 2004) and categorization 

(Pons-Porrata et al, 2007). Unlike other techniques developed for feature selection, testors 

have focused on this purpose, especially a certain type of them known as irreducible or 

typical (Betch et al, 2019), (Fernandez et al, 2019), (Lazo-Cortes et al, 2015), (Sayed et al, 

2019), (Singh et al, 2019).  

The time complexity increases as the number of features grow. Finding testors with 

previous algorithms do not give metrics over how useful will be one testor over another or 
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even the whole set when using it for discrimination. Furthermore, considering how a testor 

can be used in practice, is why we propose to build one. In fact, (Diaz-Sanchez et al, 2011) 

considers that each typical testor can be recognized as a local optimum for discrimination. To 

achieve it we start from evolutionary strategy to reach typicality as near as possible. The 

objective function is also defined in terms of accuracy on testing, over a trained only with 

selected features multi-layer feed-forward back-propagation neural network. Thus, each 

result can be compared in terms of its efficiency in a reasonable computer time under given 

conditions of structure of the testor like the number of features desired in it. In this sense, 

prediction accuracy plays the roll of fitness function over the evolution strategy; it selects not 

only the typical features but also the ones that increases the prediction accuracy of the model.   

In this work we propose by using previous evolutionary techniques and neural 

networks an approach to build an accuracy enough over prediction testor. As first we 

formally introduce the concept of an typical testor for a boolean matrix, we describe the 

multi-layer feed-forward neural networks, and also genetic algorithm strategy previously 

used to achieve an equal or closed enough typical testor with UMDA fitness function (Alba-

Cabrera et al, 2000) as theoretical background; we detail our proposed method. After we 

present results and analysis of the study. Finally, some conclusions and future work is 

presented. 
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II. MATERIALS AND METHODS 

A. Typical Testor 

Let U be a collection of objects, these objects are described by a set of n features 

and are grouped into l classes. By comparing feature to feature each pair of objects 

belonging to different classes, we obtain a matrix M = [mij]pxn where mij ∈ {0,1}. mij = 0 

and mij = 1 means that the objects of pair denoted by i are similar or  different 

respectively, in the feature j. Let I = {i1,...,ip} be the set of the rows of M and Let J = 

{j1,...,jn} the set of labels of its columns.  

Let a and b two rows of M. 

Definition 1: We say that a<b  if ∀  i ai ≤ bi, and ∃ j such that aj ≠ bj (Ruiz-

Shulcloper et al, 1980). 

Definition 2: a is a basic row of M  if there is no other row less than a in M  

(Ruiz-Shulcloper et al, 1980). 

Definition 3: The basic matrix of M is the matrix B only containing all different 

basic rows of M. 

Let T ⊆ J, BT  be a subset of features obtained from B eliminating all columns not 

belonging to the set T. 

Definition 4: Let p be a row of BT; we say that p is a zero row if it contains only 

zeros (Piza-Davila et al, 2017).  

Definition 5: A set T = {jk1,...,jks} ⊆ J is a testor of M if no zero row in BT exists 

(Piza-Davila et al, 2017). 
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Definition 6: The feature xi ∈ T is called a non-removable feature of T if there 

exists a row p in BT such that if we eliminate from BT the column corresponding to xi, the 

remaining row p is a zero row of BT-{xi}. Otherwise, xi is called a removable feature (Piza-

Davila et al, 2017). 

Definition 7: A set T = {jk1,...,jks} ⊆ J is called typical with respect to the M 

matrix and of the collection U if it is a testor and each feature xi ∈ T is a non-removable 

feature of T (Lazo-Cortes et al, 2001). 

Proposition 1: The set of all typical testors of $M$ is equal to the set of all typical 

testors from the basic matrix B (Lazo-Cortes et al, 2001).  

Let 𝜓*(M) be the set of all typical testors of the matrix M. 

According to proposition 1, to search over the set 𝜓*(M) it is very convenient to 

find the matrix B. Taking into account that B has equal or less number of rows than M, 

the efficiency of the algorithms should improve with B than with M (Lazo-Cortes et al, 

2001).  

B. Multi-layer feed-fordward back-propagation Neural Networks (FFBP) 

FFBP neural networks have been positioned as the most used type of neural 

networks (Haykin et al, 2004). They have been applied in several fields like prediction as 

in (Weytjens et al, 2019), image recognition as in (Dosovitskiy et al, 2020), chemistry 

problems as in (Abdi-Khanghah et al, 2018) among others (Ghorbani et al, 2018), (Orrù 

et al, 2020), (Jia et al, 2020), (Auer et al, 2020). A FFBP is built by neurons, which are 

ordered by layers. The first layer is the input layer and the last one is known as the output 

layer. All the layers in between are called hidden layers. 



15 
 

 

Let Γ be the mapping function that relates for each neuron i a subset  Γ(i) ⊆ V 

which consists of all ancestors of the given neuron. 

The subset Γ-1 (i) ⊆ V consists of all predecessors of the ith neuron. Each neuron 

in a specific layer is connected with all the neurons of the next layer. The connection 

between the ith and jth neuron is characterised by the weight coefficient wij and the ith 

neuron by the bias coefficient 𝜃i. 

The weight coefficient measures the degree of significance of the given 

connection in the neural network. The output value also called as activity of the ith 

neuron xi holds that: 

𝑥𝑖 = ℎ(𝜉𝑖) 

𝜉𝑖 = 𝜃𝑖 +  ∑ 𝑤𝑖𝑗𝑥𝑗

𝑗∈Γ−1(𝑖)

 

where 𝜉𝑖 is the potential of the ith neuron and function ℎ(𝜉𝑖) is the transfer 

function or activation function. The supervised adaptation process varies the threshold 

coefficients  𝜃i and weight coefficients wij to minimize the objective function which 

relates computed and required output values. The back-propagation algorithm disperses 

the output error from the output layer through the hidden layers to the input layers so that 

the connection between the neurons can be recurrently calculated on training looking 

forward to minimize the loss function in each training iteration (Svozil et al, 1997). 

C. Genetic Algorithms (GA) 

Genetic Algorithms are heuristic based search approaches, specially applicable to 

optimization problems. The main reason that make them useful in practice is their 

flexibility over a wide range of problems (Kramer, 2017).  
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GAs begin with an initial population -set of initial points- and select a set of 

potential points to generate a new population. This operation is repeated until a stop 

criteria is reached. So it works by creating new populations of points (usually called 

chromosomes or individuals) by applying a set of genetic operators to the previous 

population of selected points (Diaz-Sanchez et al, 2011).  

Classical genetic operators are selection, crossover and mutation.  Crossover 

recombines the genetic information contained in the parents of two individuals picked 

from the selection set, and mutation applies modifications to certain values (alleles) of 

variables (genes) in the points (Mühlenbein, 199). 

D. Database MNIST 

The MNIST is a database of handwritten numbers. It is a widely used data set in 

machine learning. Handwriting recognition is a difficult problem and a good test for 

learning algorithms. The MNIST database has become a standard test. It collects 60,000 

training images and 10,000 test images, taken from a previous database, simply called 

NIST1. These are black and white, normalized images centered at 28 pixels per side 

(LeCun et al, 1998a). 

E. Proposed method 

This section introduces an algorithm that searches for an optimal solution as a 

subset of features, in terms of efficiency over discrimination between classes of a 

collection U, based on a desired reduction of the total number of features. Depending on 

the density of the elements of each class l of the collection U we choose up to n objects of 

each class, this is for practical calculation purposes; we call this sub-collection U'. The 

first step is to obtain the basic matrix B over the collection U' ⊆ U. If needed, previous 

image prepossessing is recommended to reduce noise. 
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The second step is to remove all the columns of B where all the rows are 0. We do 

this because this features do not help to discriminate. If a testor contains any of them, we 

can remove the feature or features since it will not generate a zero row by removing it. 

Furthermore, removing all this columns reduces the complexity on searching over the 

subspace of all possible combination of features. 

Before introducing the Discriminator Construction Algorithm, we present its 

components. For this purpose we will divide them in two parts. 

Let P be a set of N randomly chosen subsets of features of B of size nxm such that 

xk = {xk1,... ,xkm} ∈ P with xki ∈ {0,1}, k = 1,...,N and i =1,...,m. xk is called a chromosome. 

1) Genetic Components  

As in (Alba-Cabrera, 2000) we use Univariate Marginal Distribution Algorithm 

(UMDA). The fitness function is defined as: 

𝑓(𝑥𝑘) = 𝛼
𝑡(𝑥𝑘)

𝑛
+ (1 − 𝛼)

𝑝(𝑥𝑘)

∑ 𝑥𝑘𝑣
𝑚
𝑣=1

 

We define T ⊆ xk by eliminating all columns in xk where xki = 0. Where, t(xk) is 

the number of non-zero rows in BT, p(xk) is the number of typical features of BT and 𝛼 is a 

weighting coefficient. Recall that for any chromosome xk, 0 ≤ f(xk) ≤1 where xk is a 

typical testor if f(xk) =1. For initial and next generations we used a population size of 20 

chromosomes. 

2) FFBP Components 

The components for FFBP selected for modeling testor performance during evolution has 

one input layer, two hidden layers and one output layer. Let m' be the total number of test 

cases we explicit define accuracy of a chromosome as 𝑔(𝑥𝑘) =  
𝛿(𝑥𝑘)

𝑚′ . 
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Where 𝛿(𝑥𝑘) is the number of correct predictions of the trained neural network 

over a common test set. Recall that for any chromosome xk, 0 ≤ g(xk) ≤ 1 where f(xk) 

approaching to 1 means a better performance on discriminating between the classes of U'. 

Discriminator Construction Algorithm (DCA) 

Finally, we are able to describe DCA algorithm. We first present data required and 

expected result. After we set up variable names to their representation in the algorithm.  

 

 

 

 

 

 

 

 

 

 

Figure 1. Pseudo Code of proposed DCA Algorithm. 

F. Experimental setup 

For U' ⊆ U we decided to choose 50 random objects of each class from training 

MNIST data set proceeding to binarize them to calculate B. With B calculated we 

removed all the zero columns in it, keeping record of the original indexes. 
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For the Genetic Components we settled 𝛼 to 0.2 as we have higher probability of 

finding testors of large length (Alba-Cabrera et al, 2000). We set the maximum number of 

iterations to 100 and the solution length to 1 as stop conditions. We searched only for one 

discriminator. Mutation was performed over 1% of the non-removed features in every 

generation. 

For FFBP we set its topology as follows: the input layer and all the hidden layers 

has relu (x)= max{0,x} as activation function. The first hidden layer has 52 neurons, and 

the second one has 26. The output layer has softmax as activation function which is 

defined as:  

𝜎(𝑧)𝑖 =  
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 

Where z is a vector of dimension k and j = 1,...,k. In our case z has dimension 10 

as we have that number of classes. Also we used Sparse Categorical Cross-entropy loss 

function, set batch size equal to 1/5 of the training samples and used 10 epochs which 

definitions are detailed in (Haykin, 2004), (Liu et al, 2016). 

Since DCA requires a threshold to change fitness function from f(xk) to g(xk) we 

decide to set t as the maximum accuracy that the model can reach under a batch size of 

1/5 of the training samples and the double epochs than used in g(xk) minus 0.04. Once a 

solution was found it was translated its original indexes. 

For assessment metrics let us call discriminator to one solution found by DCA. 

Following the same topology of g(xk) and as the length of the selected features of 

$discriminator$ turns the design of the neural network to be a unique model. This model 

was trained with Stratified K-Folds cross-validation for 5 folds over the train set each fold 

with 20 epochs whit the same batch size. For one-vs-all multi-class classification we also 
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used Stratified K-Folds cross-validation for model training over the same topology but 

with only two folds over the train set (Ramezan et al, 2019). We measured model's 

classification performance by accuracy, loss, multi-class precision. For calculate model 

precision we used three approaches: micro, macro and weighted. This types of precision 

contribute to present how samples and classes contribute to detailed view of model 

precision. We also measured multi-class log loss (Hazan et al, 2011), one-vs-all ROC 

curves and AUC scores (Wandishin et al, 2009), and one vs all precision vs recall metrics 

(Powers, 2020). Finally, we compared the discriminator error rate to some test error 

reported on the MNIST documentation. 

Since the selection criteria was developed directly in evolution we choose the first 

solution that DCA report. All source code was implemented in Python language version 

3.7.10 (Python Core Team, 2019) with the scikit-learn (SKlearn) library (Pedregosa et al., 

2011) and Keras (Chollet, 2018). 
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III. RESULTS AND DISCUSSION 

A total of 50 generations were needed to build a discriminator with 21.81% of the 

total features. We present in Figure 2 some evolution steps with the corresponding feature 

selection for each generation. 

 

 

 

 

 

 

 

 

Figure 2. Generations 0, 10, 20, 30, 40, 50. With left right up down direction respectively. 

 

A. Performance evaluation 

The discriminator reported from DCA has a length of 171 features which 

represents a 21.81% of the total amount of features. By reducing data sets matrices to 

those only containing the selected features and training a FFBP as described before we 

end up with the an accuracy on training of 99.65% and a validation accuracy of 97.83% 

on testing. In addition, the model reported a loss of 0.0191 on training and a loss of 0.081 

on testing. Detailed view of this metrics versus epochs for each fold are presented in 

Figure 3. 
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Figure 3. Graphic view of Accuracy vs Epochs (left) and Loss vs Epochs (rigth) 

As we can see training and validation almost converge later on, even though at the 

beginning the curves are slightly different. This means any variation between the training 

and validation curves is going to be statistical rather than systematic so the model fits the 

data properly. From Figure 3 we can also mention that the model is not overfitted. 

The confusion matrix in Figure 4 shows how the model performs on classifying 

between multiple classes. As seen below, almost the whole diagonal is almost 

highlighted. This describes a high rate between predicted labels and true labels. Results 

are presented in percentages. 

 

 

 

 

 

 

 

 

 Figure 4. Confusion Matrix for discriminator in percentage. 
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 The global prediction shows that in most of the time the model classifies correctly 

between all the classes but more than that it also shows in which classes it has problem. The 

errors in prediction of the model with the highest percetages are those made between 4 and 2 

classes, 5 and 8 classes,  and 8 and 3. However this error is not greater that 0.1% so it is not 

considered relevant. On the other hand, as mentionend the diagonal is highlighted which 

means in most cases every class is correctly identified. Furthermore, every class prediction 

rate is near 10% of the total amount, and since there are ten classes it also show balance 

between data and its prediction. 

 For micro-averaged precision we obtained a precision value of 97.15%. For macro-

averaged a precision value of 97.14%. For weighed-average a precision value of 97.15%. 

Therefore the model is consistent and predicts accurate for distinct classes. 

To show in more detail this fact we plotted the ROC curves for all one-vs-all with the 

corresponding AUC. Furthermore, precision versus recall plot for one-vs-all shows another 

perspective of the reported precision values. 

 

Figure 5. ROC curve one vs-all (left) and Precision versus Recall (rigth) 

 Figure 5 shows an area under the curve closer to 1 for every one versus all cases. This 

means that the model has an strong performance in distinghuis between all classes. This 
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scenario allows us to explicit interpret that those points chosen by discriminator are good 

enough to be able to clearly classify between all classes. The presicion measures the ability of 

the model to predict each of the classes; since the higher precision and recall scores, the 

better performance of the model, with an average presicion closer to 1,  the model presented 

can distinguish between all classes with precision. 

Finally, we calculate multi-class log loss with a value of 0.2240 which means the 

model assigns a high probability for each class to predict correctly. For this value in 

particular the fact of having 10 classes makes the reported value a positive metric.  

B. State of art based comparison 

Despite the fact that there is no other discriminator in the literature, we can 

evaluate the performance of the model against the error rate reported in the MNIST 

documentation. 

Table 1. MNIST documentation comparison to DCA + FFBP. 

 

 

 

 

 

From table 1, it is possible to notice that the discriminator is the only model that 

used less features of the data set. Due to the state of the art-based comparisons we are 

going to focus on test error, it should be noted that the error rate is clearly in the range of 

most of them. Therefore, the proposed model based on DCA could be considered less 

complex and faster in computational time, since it selects some features of the entire set. 
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 We would like to empjasize that DCA + FFPB method reported an error rate of only 

2.18% while using 21.81% of the features. Other models such as KNN or even SVM could 

not reach this error rates even with all the features. However, it would be desired to compare 

how all this models perform with feature selection of the discriminator  so then stablish if 

those selected features preserve error rates of what is presented in literature. Eventhough, for 

FFPB we see that this features are enough for truly classify and preserve accuracy and errors 

rate of a similar model.  
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IV. CONCLUSIONS AND FUTURE WORK  

This work proposed an algorithm (DCA) to build a discriminator for a group of 

classes. With the knowledge of testors we were able to establish a starting point for an 

intelligent search. With evolution strategy we searched for some features with properties of 

testors and typicality. Once this features were found, we changed the fitness value to reach 

the accuracy goal for this reduced featured set. In this point FFBP play with their accuracy on 

predicting played the role of fitness function. With this strategy we built a discriminator with 

21.81% of the total amount of features. Taking in consideration all calculated assessment 

metrics and the interpretation of them, with the discriminator we can build a model that 

predicts with a precision over 97% and it can distinguish between all the classes. Therefore 

we conclude that DCA algorithm is able to build a reduced features discriminator for training 

and testing over MNIST data set. 

Furthermore, experimentation is showing us that the computational cost represented 

by calculating testors is totally worth it, the substantial reduction in the number of variables 

that can be used confirms that not all the information is necessary when classifying objects. 

Also, the successful coordination of algorithms, evolutionary and neural networks is also 

important, which is manifested in the coherence of the classification results. Finally, 

interleaving two optimization functions, one for the selection of a discriminator and the other 

for training the network, shed light on the way forward to obtain robust discriminators with a 

substantially lower number of characteristics.  

As future work, we propose (1) to use typical testors properties to look for a 

minimum-length optimal discriminator, (2) to explore other feature selection techniques to 

compare their ability to preserve accuracy over prediction models, as well as (3) to reduce 

complexity over calculations to search over bigger spaces. 
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