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RESUMEN 

El objetivo de este trabajo es probar la seguridad que ofrecen los CAPTCHA basados en texto. 

Presentamos diferentes tipos de CAPTCHAs y un preprocesamiento y segmentación para 

limpiar la distorsión de los CAPTCHAs y recortar sus dígitos o caracteres en imágenes 

individuales. Presentamos una arquitectura de una red neuronal convolucional que se entrenó 

bajo varios hiperparámetros, lo que permite la comparación de múltiples modelos con 

diferentes combinaciones de tamaños de lote, épocas y optimizador. Confirmamos que el uso 

de CAPTCHAs basados en texto ya no es un mecanismo seguro de protección porque con 

técnicas simples de visión por computadora y los actuales algoritmos de aprendizaje 

automatizado se pueden resolver fácilmente. Alcanzamos un 90.49% de precisión con nuestro 

modelo entrenado con una combinación de cuatro conjuntos de datos, y hasta un 97.10% con 

un conjunto de datos, lo suficiente para considerar estos esquemas inseguros en la práctica. 

Palabras clave: CAPTCHAs basados en texto, Red Neuronal Convolucional, Aprendizaje 

profundo, LeNet, Visión por computadora.  
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ABSTRACT 

The focus of this work is to test the security offered by Text-based CAPTCHAs. We present 

different types of CAPTCHAs and a preprocessing and segmentation process to clean noise in 

CAPTCHA Images and crop digits or character in single images. We present a convolutional 

neural network architecture which is trained under several hyperparameter; thus, allowing for 

comparison of multiple models with different combinations of batch sizes, epochs, and 

optimizer. We confirmed that using Text-based CAPTCHAs is no longer a secure mechanism 

for protection because with simple computer vision techniques and current machine learning 

algorithms can be broken. We achieved a 90.49% of accuracy with our model trained with a 

mix of four datasets, and up to 97.10% with one dataset, which is enough to consider these 

schemes insecure in practice. 

Keywords: Text-Based CAPTCHAs, Convolutional Neural Network, Deep Learning, LeNet, 

Computer Vision. 
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INTRODUCTION 

A CAPTCHA (Stark et al. 2015) (Completely Automated Public Turing test to tell 

Computers and Humans Apart) is a measure to deal with cyber-attacks, security threats and 

spam. They were introduced to stop automated attacks because they are based on hard problems 

for an artificial intelligence but easy to resolve for a human. 

An important task for CAPTCHAs is to prevent websites from being accessed by an 

automatic program and bots that waste network resources, maintain polls accuracy, prevent 

bots from spamming false reviews, false comments and contact forms. CAPTCHAs have been 

successfully applied to most of the most popular websites (Bursztein et al. 2011) such as 

Google, Wikipedia, CNN, and others. 

In order to make CAPTCHA breaking a hard problem for computers many CAPTCHAs 

inject noise to the images, rotates the letters or digits, varying their sizes, and adding structures 

like lines, grids, and bubbles following the guidelines given by Wilkins (2010). In addition, 

Wilkins recommends that CAPTCHA generators to also avoid characters which cannot be 

recognized easily for humans like the letter “O” and “Q” and the number “0”, letter “S” and 

number “5” that can be similar depending on the CAPTCHA font to prevent user confusion. 

Therefore, loads of CAPTCHA breaking algorithms and recognition methods based in 

Deep Learning (Wang et al. 2019) appeared to verify the security provided by them, and 

improve the creation of more robust and secure CAPTCHAs. There exist various CAPTCHA 

recognition methods for text-based CAPTCHAs according to their scheme, usually artificial 

neural networks with different associated Deep Learning models. 

Zhao, Liu and Jiang (2017) demonstrated that the efficiency of using Convolutional 

Neural Networks for learning and breaking CAPTCHAs in different scenarios for single letter 
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CAPTCHAs schemes achieving 99% of accuracy and a Multi-CNN (4 letters) achieving 76% 

of accuracy compared with a Clustering scheme achieving a 30% of accuracy and a Support 

Vector Machine using the one-vs-the-rest strategy for Multi-class classification achieving a 

69% of accuracy. 

Nouri and Rezai (2020) performed a deep neural network architecture named Deep 

Captcha, their model consisted of a Convolutional layer, a Max-Pooling, two Convolutional-

MaxPooling, followed by a Dense layer and finally a Softmax layer. Their model uses five-

digits CAPTCHAs generated using Python ImageCaptcha Library reaching an accuracy rate of 

99.33% on the training set and 98.94% on the test set. 

To increase the security of text-based CAPTCHAs from this automated model, websites 

and CAPTCHA generators have defined that a must have feature is to overlap CAPTCHA 

characters. Therefore, it appeared the “segment and recognize” approach where CAPTCHAs 

must go through a preprocessing process where the CAPTCHA will be segmented in individual 

character images and the accuracy of the model to break CAPTCHA will be limited by the 

segmentation process. Bursztein et al. (2014) created an algorithm that combines the 

segmentation and recognition step to solve CAPTCHAs and tested it with real-world 

CAPTCHA schemes achieving a 51.39% recognition rate on the CNN CAPTCHA dataset and 

a 55.22% on Baidu CAPTCHAs dataset enough rate to consider the CAPTCHA insecure but 

not reaching the accuracy of Neural Network models. 

Tang et al. (2018) modified LeNet-5 Convolutional Neural Network model, they added 

an extra convolutional layer to the original model of three convolutional layers, two 

subsampling layers and two fully connected layers. They proposed a model to classify the 

CAPTCHAs according to their characters and collected random CAPTCHA Images from the 

50 most popular websites with CAPTCHAs. Their success rate comes for each CAPTCHA 
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Scheme and goes from 10.1% to 90.0%. Bostick and Klecka (2018) developed a feedforward 

neural network, that can be used for pattern recognition and classification to target classes. This 

neural network consists of an input layer, two hidden layers, and output layer reaching a 

precision of 98.79% using Google ReCaptcha text Scheme. 

We present an effective approach to automatically solve Text-Based CAPTCHAs. We 

developed two preprocessing schemes, one for alphanumerical CAPTCHAs and other for 

numerical CAPTCHAS. We developed a Convolutional Neural Network and performed a 

hyperparameter grid search to find the best combination for the model for each dataset of 

different CAPTCHAs schemes and a combined dataset of the retrieved Captchas, following 

the recommendation for future work by Nouri and Rezai to solve CAPTCHAs with variable 

length and alphanumerical CAPTCHAS.  
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MATHERIAL AND METHODS 

Experimental Databases. 

We acquired four text-based alphanumerical and numerical CAPTCHA datasets from 

Kaggle with different features.  Table 1 shows a summary of each dataset features. 

• The first dataset consists of alphanumerical CAPTCHA images with 4 characters 

generated using Python ImageCaptcha Library (see figure 1(a)). This python library 

gives the freedom to generate CAPTCHAs by setting the desired font style, background 

noise and distortion. We have developed a CAPTCHA generator using this library to 

create CAPTCHA images setting their character length and characters available. 

• The second dataset consist of numerical CAPTCHAs that consist of 6 digits jailed 

CAPTCHAs with a red cut and some characters blurred (see figure 1(b)).  

• The third dataset consist of 5-character alphanumerical CAPTCHAs with gray 

background strikethrough text (see figure 1(c)). 

• The fourth dataset retrieved consist of 5 characters Alphanumerical CAPTCHAs with 

noisy background and strikethrough text some of the characters are slightly blurred, 

this CAPTCHA scheme is used in CNN (see figure 1(d)). 

Database Resolution 

 

Characters  Alphanumerical   Quantity 

Dataset 1 160-by-60 pixels 4 ✓ 24000 

Dataset 2 182-by-50 pixels 6 ✕ 5000 

Dataset 3 200-by-50 pixels 5 ✓ 1998 

Dataset 4 180-by-50 pixels 5 ✓  1066 

Table 1. Datasets Characteristics 
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Figure 1. Sample images of datasets: a) Dataset 1, b) Dataset 2, c) Dataset 3, d) 

Dataset 4. 

Artificial Neural Networks. 

In order to break the CAPTCHAs acquired, we developed a variation of the LeNet-5 

CNN model (Zhang, 2018). We added an extra Convolutional Layer varying the number of 

filters, the number of pools for the MaxPooling Layers and activation functions. The model 

consisted of two Convolutional layers (the activation function defined for this layer is Relu) 

followed by a MaxPooling Layer, followed by two Convolutional layers with Relu activation 

function, followed by a MaxPooling Layer, a Dropout Layer to prevent over-fitting, a Flatten 

layer followed by a fully connected layer, a Dropout Layer and finished with a fully 

connected layer with the number of classes detected as defined output. 

 

Figure 2. The Architecture of the proposed Convolutional Neural Network (scale 

1:10). 
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Database preprocessing. 

CAPTCHA image preprocessing is a series of steps to prepare the images used to 

train and evaluate the Convolutional Neural Network. The preprocessing method was divided 

in two different methods for the Alphanumeric datasets and the Numeric dataset. For the 

Alphanumeric CAPTCHA images, we converted the image color space from RGB to gray 

scale. Afterwards, we use a threshold segmentation method to remove the background noise. 

We are binarizing the image using the OTSU’s algorithm (Gonzalez & Woods, 2002) that 

automatically calculates a threshold value for the image to extract the foreground of the 

image. This optimal global threshold value is found given by equation 1. 

σ𝑤
2 (𝑡) = ω0(𝑡)σ0

2(𝑡) + ω1(𝑡)σ1
2(𝑡) (1) 

where ω0,1(t) is calculated from the histogram bins with: 

ω0(𝑡) = ∑ 𝑝(𝑖)
𝑡−1

𝑖=0
 

ω1(t) = ∑ p(i)
L−1

i=t
 

maximizing their inter-class variance: 

σ𝑏
2(𝑡) = σ2 − σ𝑤

2 (𝑡) = ω0(μ0 − μ𝑇)2 + ω1(μ1 − μ𝑇)2 

= ω0(𝑡)ω1(𝑡)[μ0(𝑡) − μ1(𝑡)]2 

which is expressed in class probabilities ω  and class means μ, where the class means μ0(t), 

μ1(t) and μT are calculated by: 

μ0(𝑡) =
∑ 𝑖𝑝(𝑖)𝑡−1

𝑖=0

ω0(𝑡)
 

μ1(𝑡) =
∑ 𝑖𝑝(𝑖)𝐿−1

𝑖=𝑡

ω1(𝑡)
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μ𝑇 = ∑ 𝑖𝑝(𝑖)
𝐿−1

𝑖=0
 

Then we applied an opening morphological transformation (Fisher et al. 1996) to the 

image which is defined as erosion followed by dilatation. Erosion removes the pixels at the 

boundaries and decreases the size of the foreground, in this case the letters. This operation we 

erase background noise. Dilatation is the opposite operation of erosion and increments the 

foreground object size and it is used to join broken parts of the foreground due to erosion 

operation. This process was applied to Dataset 1, Dataset 3, and Dataset 4 as shown in figure 

3(a). In the case of Dataset 2 (Numerical Captchas) we developed other preprocessing. We 

had to deal with the red cut line of the CAPTCHA. Hence, we started with converting the red 

color to black. We use an adaptive thresholding using the mean of neighborhood area to 

decide the value of conversion of each pixel, blurring the image and opening morphological 

transformation as shown in figure 3(b). 

 

 

 

 

 

 

 

 

Figure 3. Preprocessing CAPTCHAs process for a) Alphanumerical and b) Numerical 

CAPTCHAs 
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After preprocessing the image, the CAPTCHA Characters will be cropped in 

individual characters. We use the connected components method for segmentation and a 

Watershed algorithm (Gonzalez & Woods, 2002). This algorithm works treating the image as 

a topological surface where white areas represent peaks and black areas valleys. To 

determine segment boundaries, the algorithm floods basins from the markers until basins 

attributed to different markers meet on watershed lines.  

These watershed lines should match the CAPTCHA character length for each dataset, 

if not, we implemented an arbitrary pixel count for each mask to check if two characters are 

in the same mask if pixel value is greater than 2000 pixels. If this is the case, we split the 

mask in the middle. Using the mask, we segmented the original image in order to get 

individual character images. After preprocessing the CAPTCHA Images, we segmented 

every CAPTCHA character as a single image with black background and white letters as 

shown in Figure 4. We performed this process for every dataset showing the results in Table 

2. We created a large dataset consisting of the combination of the four datasets. 

Database Resolution Correct 

Segmented 

CAPTCHAs 

Bad 

Segmented 

CAPTCHAs 

Single Character 

Images 

Dataset 1 50-by-50 pixels 22890 1110 91560 

Dataset 2 50-by-50 pixels 4214 786 21070 

Dataset 3 50-by-50 pixels 1659 339 8295 

Dataset 4 50-by-50 pixels 629 437 3145 

Mixed 50-by-50 pixels 29392 0 124070 

Table 2. Preprocessing Results. 
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Figure 4. CAPTCHA Segmented. 

Training and testing. 

We created train and test sets of images and a validation set of images. 30% of the 

total images are used for testing, 30% of the testing images are used for validation and 70% 

are used for training the network. We are dealing with categorical labels therefore we 

transformed our labels using One Hot Encoding (Casari & Zheng, 2018) into vector of zeros 

and ones with a length equal to our number of classes, in this case the number of characters 

found in the datasets. Every element in this vector will be zero except for the element that 

correspond to that category. This category will be unique and will help the neural network to 

do a better job while predicting. 

Since we want to find the best hyperparameters for our Deep Learning Model, we use 

a GridSearch strategy for hyperparameter tuning. This method is based in build a model for 

each possible combination of the parameter we want to vary and find the best combination of 

them. We selected the following parameters: batch size, number of epochs, and optimizer 

function. We performed this task to the model for every dataset we retrieved and for the 

mixed dataset. Convolutional Neural Networks are sensitive to the batch size; therefore, we 

vary the batch size using 100, 150, 200, 220 and 240. The number of epochs changed from 

100 to 200 in steps of 20 and finally we tuned the Optimization Algorithm using Adagrad, 

Adam, Adamax and Nadam. These configurations created 100 different models and we used 

3 Cross fold Validation to find the best one. For the mixed dataset we vary the batch size 

using 100, 125, 150, 175, 200, 220 and 240. The number of epochs changed from 80 to 200 
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in steps of 20 and finally we tuned the Optimization Algorithm using Adagrad, Adam, 

Adamax and Nadam. Creating 196 different models to find the best combination. 

Selection criteria. 

After our GridSearch process we selected the best model reported for each dataset 

based in the test accuracy achieved. 

Results and Discussion. 

The CAPTCHA preprocessing process was successful for the majority of the 

CAPTCHA Images. We kept the count of wrong preprocessed CAPTCHAs giving us a total 

of 2672 failed CAPTCHA Images preprocessed of the total of CAPTCHA Images retrieved 

of our dataset. We retrieved the best hyperparameters for every dataset, accuracy during 

training, test accuracy and Area Under the Curve Receiver Operating Characteristics (AUC-

ROC) results showed in Table 3. We plotted the accuracy per epoch for the validation and 

training set for the mixed dataset (see figure 5). The gap between the training and validation 

curve suggests little overfitting.  

 

 

 

 

 

 

 

Figure 5. Accuracy vs Epoch plot Mixed dataset. 
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Table 3. Comparison Results 

With our model we obtained a multi-class classification problem we used AUC-ROC 

curve. We use this metric to check the performance of the model, by checking how much 

each model is capable of distinguish between classes. The AUC-ROC curve is used only in 

binary classification problems. We will use an extension of this metric because of our multi-

class classification, using a One vs Rest technique. We will retrieve this value with the macro 

average that average the performance of the individual true positives, true negatives, false 

positives, and false negatives of each class for every dataset. We graph the curve for the 

dataset 4 as shown in figure 6.  

 

 

 

 

 

 

 

Figure 6. Multi-Class ROC Curve Macro Averaged for dataset 4. 

Our best model achieved a 97.10% of accuracy in the third dataset of Five Character 

CAPTCHA with gray background. This dataset consisted of characters which are not rotated 

Database Batch size Epochs Optimizer Training Accuracy Test Accuracy One-vs-Rest ROC AUC score

Mixed 125 200 Nadam 91.23% 90.49% 0.9974

Dataset 1 100 200 Nadam 88.68% 87.80% 0.9927

Dataset 2 150 200 Adam 94.12% 93.90% 0.9938

Dataset 3 220 160 Nadam 98.72% 97.10% 0.9981

Dataset 4 220 160 Adamax 92.24% 93.48% 0.9916
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and not overlapped. Hence, our segmentation algorithm worked better, and the network 

obtained better results. Furthermore, we developed a pipeline of prediction to test the mixed 

model with new CAPTCHAs that the model never saw. We generated one hundred 6-

character CAPTCHAs. We tested this CAPTCHAs with the model trained with the mixed 

dataset achieving an accuracy of 75%. In most of the failed CAPTCHA prediction the model 

predicted wrong only one character. The model confused the character “B” with the number 

“8”, the character “S” and “s” with the number “5” and finally the character “l” with “I”. 

These cases were common mistakes in most of the models proposed. 

We trained a model with a dataset of 12,576 taking 3,144 single character images 

from every dataset to have a more even mixed dataset. We compared the validation accuracy 

from the model trained with the mixed dataset and the even dataset (see Table 4). 

Dataset used for training Validation Accuracy 

Mixed 85.15% 

Mixed-even 93.52% 

Table 4. Validation Accuracy of mixed models. 
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CONCLUSIONS AND FUTURE WORK 

A CAPTCHA is considered broken if it can be automatically solved at a rate above 1% 

(George et al. 2017). We designed our CNN to measure the strength and weakness of our 

CAPTCHAs retrieved. We achieved up to 97.10% accuracy for the dataset 3. For the dataset 4 

of CAPTCHAs that follow the CNN scheme for security, we achieved an accuracy of 93.48%, 

which represent an improvement to the 51.39% achieved by the algorithm proposed by 

Bursztein et al. (2011). For the dataset 1 the model achieved an accuracy of 87.80% and for 

the dataset 2 achieved an accuracy of 93.90%. 

 Overall, the accuracy achieved by our approach goes from 87.80% to 97.10% which is 

enough to consider these CAPTCHA datasets broken. Our results also suggest that the 

performance of our network could be improved with the correct segmentation process, our 

preprocessing was very accurate, but it showed weaknesses with the dataset 4 which scheme 

has their characters more overlapped that the rest of datasets.  

There is an AUC of 0.99, this suggest us that there is an 99% chance of a correct 

prediction when giving the model a CAPTCHA Character image. Our model achieved an 

accuracy of 90.49% with the mixed dataset with the different type of CAPTCHAs. This suggest 

that adding the frequency of characters with different font types and sizes improve the 

efficiency of the model. Therefore, improving the segmentation process for overlapping 

characters of the CAPTCHA and feed the network with more images for training will increase 

the accuracy of prediction.  

As a recommendation for future work, we suggest the use of neural networks for the 

segmentation process in order to increase the number of correct segmented CAPTCHAs and 

the accuracy of the models. Furthermore, we plan to explore the use of recurrent neural 

networks instead of convolutional neural networks for the character recognition process. 
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