

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

Text-based CAPTCHA Vulnerability Assessment using Deep

Learning-based Solver

.

Daniel Alejandro Aguilar Fauta

Ingeniería en Ciencias de la Computación

Trabajo de fin de carrera presentado como requisito

para la obtención del título de

Ingeniero en Ciencias de la Computación

Quito, 10 de mayo de 2021

2

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

HOJA DE CALIFICACIÓN

 DE TRABAJO DE FIN DE CARRERA

Text-based CAPTCHA Vulnerability Assessment using Deep

Learning-based Solver

Daniel Alejandro Aguilar Fauta

Nombre del profesor, Título académico Daniel Riofrio, PhD.

Quito, 10 de mayo de 2021

3

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales

de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad

Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad

intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este

trabajo en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación

Superior del Ecuador.

Nombres y apellidos: Daniel Alejandro Aguilar Fauta

Código: 00139519

Cédula de identidad: 1726290230

Lugar y fecha: Quito, 10 de mayo de 2021

4

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado

como una publicación, incluso a pesar de estar disponible sin restricciones a través de un

repositorio institucional. Esta declaración se alinea con las prácticas y recomendaciones

presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017)

Discussion document on best practice for issues around theses publishing, disponible en

http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following capstone project is available through Universidad San Francisco de Quito

USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be

considered a publication. This statement follows the recommendations presented by the

Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion

document on best practice for issues around theses publishing available on

http://bit.ly/COPETheses.

http://bit.ly/COPETheses
http://bit.ly/COPETheses

5

RESUMEN

El objetivo de este trabajo es probar la seguridad que ofrecen los CAPTCHA basados en texto.

Presentamos diferentes tipos de CAPTCHAs y un preprocesamiento y segmentación para

limpiar la distorsión de los CAPTCHAs y recortar sus dígitos o caracteres en imágenes

individuales. Presentamos una arquitectura de una red neuronal convolucional que se entrenó

bajo varios hiperparámetros, lo que permite la comparación de múltiples modelos con

diferentes combinaciones de tamaños de lote, épocas y optimizador. Confirmamos que el uso

de CAPTCHAs basados en texto ya no es un mecanismo seguro de protección porque con

técnicas simples de visión por computadora y los actuales algoritmos de aprendizaje

automatizado se pueden resolver fácilmente. Alcanzamos un 90.49% de precisión con nuestro

modelo entrenado con una combinación de cuatro conjuntos de datos, y hasta un 97.10% con

un conjunto de datos, lo suficiente para considerar estos esquemas inseguros en la práctica.

Palabras clave: CAPTCHAs basados en texto, Red Neuronal Convolucional, Aprendizaje

profundo, LeNet, Visión por computadora.

6

ABSTRACT

The focus of this work is to test the security offered by Text-based CAPTCHAs. We present

different types of CAPTCHAs and a preprocessing and segmentation process to clean noise in

CAPTCHA Images and crop digits or character in single images. We present a convolutional

neural network architecture which is trained under several hyperparameter; thus, allowing for

comparison of multiple models with different combinations of batch sizes, epochs, and

optimizer. We confirmed that using Text-based CAPTCHAs is no longer a secure mechanism

for protection because with simple computer vision techniques and current machine learning

algorithms can be broken. We achieved a 90.49% of accuracy with our model trained with a

mix of four datasets, and up to 97.10% with one dataset, which is enough to consider these

schemes insecure in practice.

Keywords: Text-Based CAPTCHAs, Convolutional Neural Network, Deep Learning, LeNet,

Computer Vision.

7

TABLE OF CONTENTS

INTRODUCTION ... 10

MATHERIAL AND METHODS .. 13

Experimental Databases. .. 13

Artificial Neural Networks. ... 14

Database preprocessing. ... 15

Training and testing. .. 18

Selection criteria. ... 19

Results and Discussion. ... 19

CONCLUSIONS AND FUTURE WORK .. 22

REFERENCES .. 23

8

LIST OF TABLES

Table 1. Datasets Characteristics ... 13

Table 2. Preprocessing Results .. 17

Table 3. Comparison Results ... 20

Table 4. Validation Accuracy of mixed models. ... 21

9

LIST OF FIGURES

Figure 1. Sample images of datasets .. 14

Figure 2. The architecture of the proposed Convolutional Neural Network 14

Figure 3. Preprocessing CAPTCHAs process ... 16

Figure 4.CAPTCHA segmented .. 18

Figure 5. Accuracy vs Epoch Mixed dataset ... 19

Figure 6. Multi-Class ROC curve Macro Averaged for dataset 4 ... 19

10

INTRODUCTION

A CAPTCHA (Stark et al. 2015) (Completely Automated Public Turing test to tell

Computers and Humans Apart) is a measure to deal with cyber-attacks, security threats and

spam. They were introduced to stop automated attacks because they are based on hard problems

for an artificial intelligence but easy to resolve for a human.

An important task for CAPTCHAs is to prevent websites from being accessed by an

automatic program and bots that waste network resources, maintain polls accuracy, prevent

bots from spamming false reviews, false comments and contact forms. CAPTCHAs have been

successfully applied to most of the most popular websites (Bursztein et al. 2011) such as

Google, Wikipedia, CNN, and others.

In order to make CAPTCHA breaking a hard problem for computers many CAPTCHAs

inject noise to the images, rotates the letters or digits, varying their sizes, and adding structures

like lines, grids, and bubbles following the guidelines given by Wilkins (2010). In addition,

Wilkins recommends that CAPTCHA generators to also avoid characters which cannot be

recognized easily for humans like the letter “O” and “Q” and the number “0”, letter “S” and

number “5” that can be similar depending on the CAPTCHA font to prevent user confusion.

Therefore, loads of CAPTCHA breaking algorithms and recognition methods based in

Deep Learning (Wang et al. 2019) appeared to verify the security provided by them, and

improve the creation of more robust and secure CAPTCHAs. There exist various CAPTCHA

recognition methods for text-based CAPTCHAs according to their scheme, usually artificial

neural networks with different associated Deep Learning models.

Zhao, Liu and Jiang (2017) demonstrated that the efficiency of using Convolutional

Neural Networks for learning and breaking CAPTCHAs in different scenarios for single letter

11

CAPTCHAs schemes achieving 99% of accuracy and a Multi-CNN (4 letters) achieving 76%

of accuracy compared with a Clustering scheme achieving a 30% of accuracy and a Support

Vector Machine using the one-vs-the-rest strategy for Multi-class classification achieving a

69% of accuracy.

Nouri and Rezai (2020) performed a deep neural network architecture named Deep

Captcha, their model consisted of a Convolutional layer, a Max-Pooling, two Convolutional-

MaxPooling, followed by a Dense layer and finally a Softmax layer. Their model uses five-

digits CAPTCHAs generated using Python ImageCaptcha Library reaching an accuracy rate of

99.33% on the training set and 98.94% on the test set.

To increase the security of text-based CAPTCHAs from this automated model, websites

and CAPTCHA generators have defined that a must have feature is to overlap CAPTCHA

characters. Therefore, it appeared the “segment and recognize” approach where CAPTCHAs

must go through a preprocessing process where the CAPTCHA will be segmented in individual

character images and the accuracy of the model to break CAPTCHA will be limited by the

segmentation process. Bursztein et al. (2014) created an algorithm that combines the

segmentation and recognition step to solve CAPTCHAs and tested it with real-world

CAPTCHA schemes achieving a 51.39% recognition rate on the CNN CAPTCHA dataset and

a 55.22% on Baidu CAPTCHAs dataset enough rate to consider the CAPTCHA insecure but

not reaching the accuracy of Neural Network models.

Tang et al. (2018) modified LeNet-5 Convolutional Neural Network model, they added

an extra convolutional layer to the original model of three convolutional layers, two

subsampling layers and two fully connected layers. They proposed a model to classify the

CAPTCHAs according to their characters and collected random CAPTCHA Images from the

50 most popular websites with CAPTCHAs. Their success rate comes for each CAPTCHA

12

Scheme and goes from 10.1% to 90.0%. Bostick and Klecka (2018) developed a feedforward

neural network, that can be used for pattern recognition and classification to target classes. This

neural network consists of an input layer, two hidden layers, and output layer reaching a

precision of 98.79% using Google ReCaptcha text Scheme.

We present an effective approach to automatically solve Text-Based CAPTCHAs. We

developed two preprocessing schemes, one for alphanumerical CAPTCHAs and other for

numerical CAPTCHAS. We developed a Convolutional Neural Network and performed a

hyperparameter grid search to find the best combination for the model for each dataset of

different CAPTCHAs schemes and a combined dataset of the retrieved Captchas, following

the recommendation for future work by Nouri and Rezai to solve CAPTCHAs with variable

length and alphanumerical CAPTCHAS.

13

MATHERIAL AND METHODS

Experimental Databases.

We acquired four text-based alphanumerical and numerical CAPTCHA datasets from

Kaggle with different features. Table 1 shows a summary of each dataset features.

• The first dataset consists of alphanumerical CAPTCHA images with 4 characters

generated using Python ImageCaptcha Library (see figure 1(a)). This python library

gives the freedom to generate CAPTCHAs by setting the desired font style, background

noise and distortion. We have developed a CAPTCHA generator using this library to

create CAPTCHA images setting their character length and characters available.

• The second dataset consist of numerical CAPTCHAs that consist of 6 digits jailed

CAPTCHAs with a red cut and some characters blurred (see figure 1(b)).

• The third dataset consist of 5-character alphanumerical CAPTCHAs with gray

background strikethrough text (see figure 1(c)).

• The fourth dataset retrieved consist of 5 characters Alphanumerical CAPTCHAs with

noisy background and strikethrough text some of the characters are slightly blurred,

this CAPTCHA scheme is used in CNN (see figure 1(d)).

Database Resolution

Characters Alphanumerical Quantity

Dataset 1 160-by-60 pixels 4 ✓ 24000

Dataset 2 182-by-50 pixels 6 ✕ 5000

Dataset 3 200-by-50 pixels 5 ✓ 1998

Dataset 4 180-by-50 pixels 5 ✓ 1066

Table 1. Datasets Characteristics

14

Figure 1. Sample images of datasets: a) Dataset 1, b) Dataset 2, c) Dataset 3, d)

Dataset 4.

Artificial Neural Networks.

In order to break the CAPTCHAs acquired, we developed a variation of the LeNet-5

CNN model (Zhang, 2018). We added an extra Convolutional Layer varying the number of

filters, the number of pools for the MaxPooling Layers and activation functions. The model

consisted of two Convolutional layers (the activation function defined for this layer is Relu)

followed by a MaxPooling Layer, followed by two Convolutional layers with Relu activation

function, followed by a MaxPooling Layer, a Dropout Layer to prevent over-fitting, a Flatten

layer followed by a fully connected layer, a Dropout Layer and finished with a fully

connected layer with the number of classes detected as defined output.

Figure 2. The Architecture of the proposed Convolutional Neural Network (scale

1:10).

15

Database preprocessing.

CAPTCHA image preprocessing is a series of steps to prepare the images used to

train and evaluate the Convolutional Neural Network. The preprocessing method was divided

in two different methods for the Alphanumeric datasets and the Numeric dataset. For the

Alphanumeric CAPTCHA images, we converted the image color space from RGB to gray

scale. Afterwards, we use a threshold segmentation method to remove the background noise.

We are binarizing the image using the OTSU’s algorithm (Gonzalez & Woods, 2002) that

automatically calculates a threshold value for the image to extract the foreground of the

image. This optimal global threshold value is found given by equation 1.

σ𝑤
2 (𝑡) = ω0(𝑡)σ0

2(𝑡) + ω1(𝑡)σ1
2(𝑡) (1)

where ω0,1(t) is calculated from the histogram bins with:

ω0(𝑡) = ∑ 𝑝(𝑖)
𝑡−1

𝑖=0

ω1(t) = ∑ p(i)
L−1

i=t

maximizing their inter-class variance:

σ𝑏
2(𝑡) = σ2 − σ𝑤

2 (𝑡) = ω0(μ0 − μ𝑇)2 + ω1(μ1 − μ𝑇)2

= ω0(𝑡)ω1(𝑡)[μ0(𝑡) − μ1(𝑡)]2

which is expressed in class probabilities ω and class means μ, where the class means μ0(t),

μ1(t) and μT are calculated by:

μ0(𝑡) =
∑ 𝑖𝑝(𝑖)𝑡−1

𝑖=0

ω0(𝑡)

μ1(𝑡) =
∑ 𝑖𝑝(𝑖)𝐿−1

𝑖=𝑡

ω1(𝑡)

16

μ𝑇 = ∑ 𝑖𝑝(𝑖)
𝐿−1

𝑖=0

Then we applied an opening morphological transformation (Fisher et al. 1996) to the

image which is defined as erosion followed by dilatation. Erosion removes the pixels at the

boundaries and decreases the size of the foreground, in this case the letters. This operation we

erase background noise. Dilatation is the opposite operation of erosion and increments the

foreground object size and it is used to join broken parts of the foreground due to erosion

operation. This process was applied to Dataset 1, Dataset 3, and Dataset 4 as shown in figure

3(a). In the case of Dataset 2 (Numerical Captchas) we developed other preprocessing. We

had to deal with the red cut line of the CAPTCHA. Hence, we started with converting the red

color to black. We use an adaptive thresholding using the mean of neighborhood area to

decide the value of conversion of each pixel, blurring the image and opening morphological

transformation as shown in figure 3(b).

Figure 3. Preprocessing CAPTCHAs process for a) Alphanumerical and b) Numerical

CAPTCHAs

17

After preprocessing the image, the CAPTCHA Characters will be cropped in

individual characters. We use the connected components method for segmentation and a

Watershed algorithm (Gonzalez & Woods, 2002). This algorithm works treating the image as

a topological surface where white areas represent peaks and black areas valleys. To

determine segment boundaries, the algorithm floods basins from the markers until basins

attributed to different markers meet on watershed lines.

These watershed lines should match the CAPTCHA character length for each dataset,

if not, we implemented an arbitrary pixel count for each mask to check if two characters are

in the same mask if pixel value is greater than 2000 pixels. If this is the case, we split the

mask in the middle. Using the mask, we segmented the original image in order to get

individual character images. After preprocessing the CAPTCHA Images, we segmented

every CAPTCHA character as a single image with black background and white letters as

shown in Figure 4. We performed this process for every dataset showing the results in Table

2. We created a large dataset consisting of the combination of the four datasets.

Database Resolution Correct

Segmented

CAPTCHAs

Bad

Segmented

CAPTCHAs

Single Character

Images

Dataset 1 50-by-50 pixels 22890 1110 91560

Dataset 2 50-by-50 pixels 4214 786 21070

Dataset 3 50-by-50 pixels 1659 339 8295

Dataset 4 50-by-50 pixels 629 437 3145

Mixed 50-by-50 pixels 29392 0 124070

Table 2. Preprocessing Results.

18

Figure 4. CAPTCHA Segmented.

Training and testing.

We created train and test sets of images and a validation set of images. 30% of the

total images are used for testing, 30% of the testing images are used for validation and 70%

are used for training the network. We are dealing with categorical labels therefore we

transformed our labels using One Hot Encoding (Casari & Zheng, 2018) into vector of zeros

and ones with a length equal to our number of classes, in this case the number of characters

found in the datasets. Every element in this vector will be zero except for the element that

correspond to that category. This category will be unique and will help the neural network to

do a better job while predicting.

Since we want to find the best hyperparameters for our Deep Learning Model, we use

a GridSearch strategy for hyperparameter tuning. This method is based in build a model for

each possible combination of the parameter we want to vary and find the best combination of

them. We selected the following parameters: batch size, number of epochs, and optimizer

function. We performed this task to the model for every dataset we retrieved and for the

mixed dataset. Convolutional Neural Networks are sensitive to the batch size; therefore, we

vary the batch size using 100, 150, 200, 220 and 240. The number of epochs changed from

100 to 200 in steps of 20 and finally we tuned the Optimization Algorithm using Adagrad,

Adam, Adamax and Nadam. These configurations created 100 different models and we used

3 Cross fold Validation to find the best one. For the mixed dataset we vary the batch size

using 100, 125, 150, 175, 200, 220 and 240. The number of epochs changed from 80 to 200

19

in steps of 20 and finally we tuned the Optimization Algorithm using Adagrad, Adam,

Adamax and Nadam. Creating 196 different models to find the best combination.

Selection criteria.

After our GridSearch process we selected the best model reported for each dataset

based in the test accuracy achieved.

Results and Discussion.

The CAPTCHA preprocessing process was successful for the majority of the

CAPTCHA Images. We kept the count of wrong preprocessed CAPTCHAs giving us a total

of 2672 failed CAPTCHA Images preprocessed of the total of CAPTCHA Images retrieved

of our dataset. We retrieved the best hyperparameters for every dataset, accuracy during

training, test accuracy and Area Under the Curve Receiver Operating Characteristics (AUC-

ROC) results showed in Table 3. We plotted the accuracy per epoch for the validation and

training set for the mixed dataset (see figure 5). The gap between the training and validation

curve suggests little overfitting.

Figure 5. Accuracy vs Epoch plot Mixed dataset.

20

Table 3. Comparison Results

With our model we obtained a multi-class classification problem we used AUC-ROC

curve. We use this metric to check the performance of the model, by checking how much

each model is capable of distinguish between classes. The AUC-ROC curve is used only in

binary classification problems. We will use an extension of this metric because of our multi-

class classification, using a One vs Rest technique. We will retrieve this value with the macro

average that average the performance of the individual true positives, true negatives, false

positives, and false negatives of each class for every dataset. We graph the curve for the

dataset 4 as shown in figure 6.

Figure 6. Multi-Class ROC Curve Macro Averaged for dataset 4.

Our best model achieved a 97.10% of accuracy in the third dataset of Five Character

CAPTCHA with gray background. This dataset consisted of characters which are not rotated

Database Batch size Epochs Optimizer Training Accuracy Test Accuracy One-vs-Rest ROC AUC score

Mixed 125 200 Nadam 91.23% 90.49% 0.9974

Dataset 1 100 200 Nadam 88.68% 87.80% 0.9927

Dataset 2 150 200 Adam 94.12% 93.90% 0.9938

Dataset 3 220 160 Nadam 98.72% 97.10% 0.9981

Dataset 4 220 160 Adamax 92.24% 93.48% 0.9916

21

and not overlapped. Hence, our segmentation algorithm worked better, and the network

obtained better results. Furthermore, we developed a pipeline of prediction to test the mixed

model with new CAPTCHAs that the model never saw. We generated one hundred 6-

character CAPTCHAs. We tested this CAPTCHAs with the model trained with the mixed

dataset achieving an accuracy of 75%. In most of the failed CAPTCHA prediction the model

predicted wrong only one character. The model confused the character “B” with the number

“8”, the character “S” and “s” with the number “5” and finally the character “l” with “I”.

These cases were common mistakes in most of the models proposed.

We trained a model with a dataset of 12,576 taking 3,144 single character images

from every dataset to have a more even mixed dataset. We compared the validation accuracy

from the model trained with the mixed dataset and the even dataset (see Table 4).

Dataset used for training Validation Accuracy

Mixed 85.15%

Mixed-even 93.52%

Table 4. Validation Accuracy of mixed models.

22

CONCLUSIONS AND FUTURE WORK

A CAPTCHA is considered broken if it can be automatically solved at a rate above 1%

(George et al. 2017). We designed our CNN to measure the strength and weakness of our

CAPTCHAs retrieved. We achieved up to 97.10% accuracy for the dataset 3. For the dataset 4

of CAPTCHAs that follow the CNN scheme for security, we achieved an accuracy of 93.48%,

which represent an improvement to the 51.39% achieved by the algorithm proposed by

Bursztein et al. (2011). For the dataset 1 the model achieved an accuracy of 87.80% and for

the dataset 2 achieved an accuracy of 93.90%.

 Overall, the accuracy achieved by our approach goes from 87.80% to 97.10% which is

enough to consider these CAPTCHA datasets broken. Our results also suggest that the

performance of our network could be improved with the correct segmentation process, our

preprocessing was very accurate, but it showed weaknesses with the dataset 4 which scheme

has their characters more overlapped that the rest of datasets.

There is an AUC of 0.99, this suggest us that there is an 99% chance of a correct

prediction when giving the model a CAPTCHA Character image. Our model achieved an

accuracy of 90.49% with the mixed dataset with the different type of CAPTCHAs. This suggest

that adding the frequency of characters with different font types and sizes improve the

efficiency of the model. Therefore, improving the segmentation process for overlapping

characters of the CAPTCHA and feed the network with more images for training will increase

the accuracy of prediction.

As a recommendation for future work, we suggest the use of neural networks for the

segmentation process in order to increase the number of correct segmented CAPTCHAs and

the accuracy of the models. Furthermore, we plan to explore the use of recurrent neural

networks instead of convolutional neural networks for the character recognition process.

23

REFERENCES

Bostik, O., & Klecka, J. (2018). Recognition of CAPTCHA characters by supervised

machine learning algorithms. IFAC-PapersOnLine, 51(6), 208-213.

Bursztein, E., Aigrain, J., Moscicki, A., & Mitchell, J. C. (2014). The end is nigh: Generic

solving of text-based captchas. In 8th {USENIX} Workshop on Offensive

Technologies ({WOOT} 14).

Bursztein, E., Martin, M., & Mitchell, J. (2011, October). Text-based CAPTCHA strengths

and weaknesses. In Proceedings of the 18th ACM conference on Computer and

communications security (pp. 125-138).

Casari, A., Zheng, A. (2018). Feature engineering for machine learning: principles and

techniques for data scientists. " O'Reilly Media, Inc.".

Fisher, R., Perkins, S., Walker, A., & Wolfart, E. (1996). Hypermedia image processing

reference. England: John Wiley & Sons Ltd, 118-130.

George, D., Lehrach, W., Kansky, K., Lázaro-Gredilla, M., Laan, C., Marthi, B., ... &

Phoenix, D. S. (2017). A generative vision model that trains with high data efficiency

and breaks text-based CAPTCHAs. Science, 358(6368).

Gonzalez, R. C., & Woods, R. E. (2002). Digital image processing.

Nouri, Z., & Rezaei, M. (2020). Deep-CAPTCHA: a deep learning based CAPTCHA solver

for vulnerability assessment. Available at SSRN 3633354.

Stark, F., Hazırbas, C., Triebel, R., & Cremers, D. (2015, October). Captcha recognition with

active deep learning. In Workshop new challenges in neural computation (Vol. 2015,

p. 94).

Tang, M., Gao, H., Zhang, Y., Liu, Y., Zhang, P., & Wang, P. (2018). Research on deep

learning techniques in breaking text-based captchas and designing image-based

captcha. IEEE Transactions on Information Forensics and Security, 13(10), 2522-

2537.

Wang, J., Qin, J., Xiang, X., Tan, Y., & Pan, N. (2019). CAPTCHA recognition based on

deep convolutional neural network. Math. Biosci. Eng, 16(5), 5851-5861.

Wilkins, J. (2010). Strong captcha guidelines.

Zhang, Q. (2018, January). Convolutional neural networks. In Proceedings of the 3rd

International Conference on Electromechanical Control Technology and

Transportation (pp. 434-439).

Zhao, N., Liu, Y., & Jiang, Y. (2017). CAPTCHA Breaking with Deep Learning.

