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RESUMEN 

La dificultad de la colorización de imágenes ha incentivado a investigadores en el 

campo de las ciencias de la computación hacia el desarrollo de algoritmos capaces de facilitar 

esta tarea. A pesar de que sus esfuerzos han dado como fruto numerosos avances; los algoritmos 

desarrollados aun presentan varias limitaciones tanto en términos de la calidad de las imágenes 

generadas, como de la cercanía de estas colorizaciones a los colores reales representados en las 

fotografías. Por estas razones, en este trabajo proponemos un método automático de 

colorización de imágenes basado en modelos de aprendizaje profundo. Dicho modelo logra 

resultados de error absoluto medio y error cuadrático medio que demuestran que las 

colorizaciones producidas presentan colores bastante similares a los originales; adicionalmente 

los resultados de Proporción Máxima de Señal a Ruido indican que las imágenes generadas por 

este método exhiben una pérdida de calidad de imagen relativamente baja. Finalmente, la 

validación de las imágenes mediante percepción humana respalda los buenos resultados 

numéricos, mostrando imágenes con colorizaciones y saturación subjetivamente buenos. 

Palabras clave: Automatic colorization, autoencoders, CNNs, VGG, image-to-image 

translation. 
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ABSTRACT 

The difficulty behind image colorization has incentivized computer scientist towards 

the development of algorithms capable of simplifying the colorization process. Despite the 

numerous advancements yielded by these efforts; the developed algorithms are still limited in 

terms of the quality of the generated images, as well as the similarity of the generated colors to 

ground truth. For these reasons, in this work we propose an automatic image colorization 

method based on deep learning models. Said model achieves mean absolute error and mean 

quadratic error results that demonstrate the similarity between the generated colors and the 

ones present in the ground truth images; additionally, the peak signal-to-noise ratio results 

indicate that the colorized images generated by the proposed method exhibit a relatively low 

drop in image quality. Finally, the validation of the images by means of expert criterion 

validation supports the good numeric results, showing subjectively good colorization and 

saturation in the generated samples.  

Key words: Automatic colorization, autoencoders, CNNs, VGG, image-to-image 

translation.  
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INTRODUCTION 

The process of image colorization consists of painting colors over monochrome images 

(Cohen-Or, et al., 2007). At first glance this task may seem trivial; after all, it is easy for humans 

to imagine the colors that correspond to the objects portrayed within a picture (even if some of 

them can have more than one correct color). Nevertheless, the colorization process gets much 

more difficult when the task is not only imagining the colors but painting them to turn the 

monochrome picture into a fully colored one. This is very time consuming and usually requires 

a skilled artist. 

For these reasons, colorization has become a very researched topic amongst computer 

scientists. Hence numerous advancements have been made in the form of colorization 

algorithms. These algorithms can be divided into two groups based on how they correlate 

grayscale to color (Efros et al., 2016). The first group can be considered a semi-automatic 

approach as it needs some form of user input. The most basic version of such an algorithm uses 

“scribbles” or dots of color made to the grayscale image by the user, this was originally 

proposed Levin et al. (2004) and later improved by Chen et al. (2005) and  Efros et al. (2017). 

Other semi-automatic techniques were proposed by: Ashikhmin et al. (2002) where reference 

images are used for colorizing the grayscale pictures, yielding mostly unsatisfactory results; 

and Chang et al. (2015) where a reference color palette is required as an input. 

Although being simpler than manual colorization, user guided techniques still present 

several difficulties for the users. This caused researchers to turn their efforts towards 

developing fully automatic colorization techniques. These are mostly based on deep learning 

and try to take advantage of the large image datasets available to the public by turning them 

into color-grayscale pairs and using them to train neural networks. Cheng et al. (2015) proposed 

using Deep neural networks (DNNs) to approach the colorization task as a least squares 

minimization problem, yielding subjectively good results. Despite this, most modern colorizers 
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replace DNNs with Convolutional Neural Networks (CNNs). For example, In, Colorful Image 

Colorization (Efros et al., 2016), the task is proposed as a classification problem, and a CNN 

is trained using the ImageNet large scale visual recognition challenge (ILSVRC) dataset (Berg, 

et al., 2015). Although this approach results in colorized images portraying vibrant colors, they 

are not a good representation of the tonalities depicted in the ground truth images, resulting on 

a peak-signal-to-noise-ratio (PSNR) of 22.04 dB. Another attempt at using CNNs has been 

proposed by Larsson et al. (2017) where a model is trained to predict hue and chroma 

distributions on a per pixel basis based on spatially localized multilayer slices; this model was 

trained on SUN-A and SUN-6 subsets of the SUN dataset (Ehinger et al., 2010), and achieves 

a PSNR result of 24.93 dB.  

Finally, after the use of simple CNNs and autoencoders, Generative Adversarial Neural 

Networks (GANs) were proposed for the task. Ebrahimi et al. (2018) conducted a research to 

determine how effective these networks are as well as the best training strategies used for 

speeding up the training process and encouraging convergence. Another example of GANS 

used in this context was proposed by Ballester et al. (2020) in the form of a GAN model, where 

a two part generator is used, the first part which outputs the chrominance information while the 

second outputs a class distribution vector for adding a semantic representation of the picture; 

this method was trained over ILSVRC (Berg, et al., 2015) and achieved a PSNR of 25.57 dB. 

Finally, another important contribution made in their work was the addition of a non-human 

algorithm evaluation system in the form of the PSNR values used to rank both their model as 

well as some of the state-of-the-art methods. 

Despite the advancements made in the recent years, the process of automatic 

colorization still presents various limitations such as high losses in image quality, low color 

saturation (Ballester et al., 2020) and difficulty generating colors similar to  the original picture 
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(Efros et al., 2016). Therefore, in this work we propose an image colorization method based on 

deep learning and the most recent developments in the field. 
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MATERIALS AND METHODS 

Database 

In order to test the different capabilities of the proposed method, two datasets were 

selected for both training and testing the model, the Fruits-360 dataset (Muresan & Oltean, 

2017) and the Flickr-Faces-HQ dataset (Aila et al., 2018).   

First, the Fruits-360 dataset is comprised of over 90 000 images of distinct varieties of 

70 different fruits. A total of 131 classes conform the dataset, with an average of 688 images 

per class. The large number of classes and the little color variation between images of the same 

class is useful for determining ability of the model to recognize patterns in the form of fruits. 

For example, painting apples red and bananas yellow means being able to recognize between 

them.   

Secondly, the Flickr- Faces-HQ dataset consists of 70 000 portraits of people of various 

complexions and other physical characteristics (e.g., hair color, eye color, etc.) with different 

backgrounds and in different lightning settings. For this reason, FFHQ serves as a good 

benchmark of how well the network performs on the colorization process when confronted 

with a task of a higher complexity. 

Autoencoders 

Autoencoders (AEs), originally introduced by Hinton et al. (1985), are neural networks 

in which the input is the same as the output. The original AE architecture uses fully connected 

layers and is composed of two parts: the encoder and decoder (see Figure 1). The objective of 

the encoder is to be able to create a compressed (latent) representation of its inputs. Meanwhile, 

the goal of the decoder is to recreate these inputs by using only the latent representation 

previously generated and adhering to the restriction that the dimensionality of the outputs must 

be identical to that of the inputs.  



14 
 

 

Figure 1: Traditional autoencoder model architecture 

Traditional AEs were not designed to be used in image processing related tasks; instead, 

for this purpose a variant on the conventional AE architecture called Convolutional 

Autoencoder (CAE) is used. This variation extends the functionality of its predecessor by 

replacing the fully connected layers with convolution plus pooling layers in the encoder and 

transposed convolution layers in the decoder (Zhang, 2018).  

The general CAE workflow can be divided into an encoding and decoding segment. In 

the encoding or feature extraction portion of the workflow; an image is passed as input and is 

subject to any number of convolution plus pooling layer sequences. During this process, by 

means of convolution operations the most important features of the image are extracted in the 

form of filters. Subsequently, by means of pooling operations the image size is reduced to half, 

effectively increasing information density, and enabling the extraction of higher complexity 

patterns through ensuing convolution layers. As with traditional AEs the product of this portion 

of the network is the latent representation, which in the case has the form of a feature map. 

Finally, in the decoding segment of the architecture, transposed convolution operations are 

used to upsample the input and reduce the number of filters from feature maps, starting with 

the latent representation, until the output has the same dimensionality of the input image. The 

workflow depicted in Figure 2 corresponds to a real-life use case in which a three-channel 
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image with a resolution of 256x256 pixels is used as the input to a CAE architecture composed 

of two convolutions plus pooling layer sequences in the encoder and two transposed 

convolutions in the decoder. 

 

Figure 2: Workflow of a Convolutional Autoencoder 

Very Deep Convolutional Networks (VGG) 

Very Deep Convolutional Neural Networks are CNN models developed by Simonyan 

and Zisserman (2014) for ILSVRC (Berg, et al., 2015). Despite their similarity to other CNNs 

used for classification purposes, the VGG architecture stands out from its counterparts since it 

replaces singular large kernel-sized filters with multiple consecutive 3x3 kernel-sized filters. 

These changes make the networks decision function more discriminative and reduce the 

number of parameters (Simonyan & Zisserman, 2014). The VGG configuration used for this 

work employs five convolutional blocks and three fully connected layers for a total of sixteen 

weighted layers, hence the name VGG16 (see Figure 3). 

 

Figure 3: Original VGG16 architecture 
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 The behavior of the VGG16 (and all other VGG models) can be considered standard 

for CNN classification networks. This implies that the workflow of the network can be divided 

into two segments: feature extraction and classification. First, in the feature extraction step, the 

process is identical to the CAEs encoding process (described in the Autoencoders section), in 

which an image acts as the input to the network and a feature map is created with the most 

important features of the input. Secondly, the classification step is done by the fully connected 

layers, which output a vector with the probabilities of the previously generated feature map 

pertaining to a certain class. 

Proposed Model 

The proposed model consists of a fully convolutional autoencoder architecture with a 

VGG16-based encoder and a custom decoder model. Broadly speaking, the objective of this 

model is to have the ability to receive a one-channel (LAB color space) grayscale image and 

output a two-channel image of the same size containing the color information. For this, it is 

necessary to train the model for finding correlations between patterns and colors in       

grayscale-color pairs of images. The general workflow for the colorization process of this 

network (see  Figure 4), consists of three steps: (1) using the encoding portion of the network 

to obtain the latent representation of the input grayscale image, (2) employing this latent 

representation to create the two-channel output containing the color data and (3) stacking the 

input and output layers to obtain the colorization result. Both, the workflow of the real-life use 

case shown in Figure 4 and the architecture of the proposed model will be further explained in 

this section.   
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Figure 4: General colorization process for a real-life use case workflow 

Encoder Architecture. 

For the encoding portion of the network a modified VGG16 architecture was 

implemented. The modifications done to the original model are: (1) substituting the fixed size 

224x224x3 input layer for a new input layer capable of processing one-channel images of any 

resolution; (2) removing the top fully connected layers; (3) replacing the max pooling layers, 

for a stride of two in some of the convolution layers; (4) changing the activation function of all 

convolution layers from ReLU to LeakyReLU; and (5) Adding batch normalization after each 

convolution layer. The resulting architecture is shown in Figure 5. 

 

Figure 5: Detailed encoder model and workflow 
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The causes and effects of these modifications are as follows. First, substituting the fixed 

size input is critical for the model to be able to process one-channel grayscale images. Second, 

for adapting the VGG16 architecture to a fully convolutional network architecture, the top fully 

connected layers were removed; in their work, “Striving for simplicity: The all convolutional 

net”, Brox et al. (2015) proved these CNNs to be more efficient during inference and learning. 

Third, removing the Pooling layers reduces image distortion. Fourth, changing the loss function 

to LeakyReLU, effectively avoids the dying ReLU problem (Lu, 2020). And last, the addition 

of Batch Normalization was proposed by Efros et al. (2017); as it accelerates and stabilizes the 

learning process of the neural network by normalizing the inputs of each convolutional layer. 

The changes implemented to the architecture imply a different encoding/feature 

extraction workflow than that of the original VGG16 (see Figure 5). On the first two 

convolutional blocks of the architecture, features are extracted in the form of filters by the first 

convolution layer; subsequently the second convolution layer continues with feature extraction 

and reduces image size to half by performing the convolution operation using a stride of two. 

Lastly, the batch normalization layer normalizes the outputs of the convolutional block it 

pertains to. This process is then repeated by the remaining three blocks, with the difference that 

these have two convolution layers preceding the strided convolution operation. Identical to 

other CAEs, the product of the encoding process is the latent representation which in this case 

consists of 512 filters with a resolution of eight pixels by eight pixels. 

Decoder Architecture. 

For the decoder portion of the architecture a custom decoding model was created (see Figure 

6). This model mirrors each convolutional block of the encoder with a deconvolutional decoder 

block. An important difference between this model and a traditional decoder model is that in 

our decoder architecture bilinear upsampling plus a convolution operation is used to replace 

the traditional transposed convolution layers. This alternate approach reduces checkerboard 
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artifacts found by Dumoulin et al. (2016).  Additionally, to avoid the dying ReLU problem, 

LeakyReLU activation was used for all convolution layers, apart from the last one, in which 

hyperbolic tangent (tanh) was implemented. Finally, a key characteristic of this decoder lies 

within the final convolution layer, which outputs a two-channel image of the same size of the 

one-channel input. 

Figure 6: Detailed decoder model and workflow 

The behavior of the decoding portion of the network (see Figure 6) is the same for the 

five deconvolutional blocks that comprise it. First, the initial convolution operation is used for 

reducing the number of filters to half. Second, bilinear upsampling is applied to increase image 

size by a factor of two. Third, another convolution operation is applied with the same number 

of filters as the preceding convolution layer. Since all five blocks follow the same structure, 

this behavior is maintained throughout the entirety of the network. In simple terms, starting 

with the latent representation, each block halves the number of filters and up samples image 

size by a factor of two until the output is a two-channel image with the same dimensions of the 

input image. Finally, it is important to mention that to obtain the colorized image, it is necessary 

to stack the input and output layers of the network.  
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Experimental setup 

Data processing. 

First, for making both training and processing the images faster, both datasets were 

resized to a resolution of 256x256 pixels. A lower resolution could make the process faster, but 

it would impact the expert criterion validation when assessing the quality of the colorized 

images. Second, the images were transformed from the RGB to the LAB color space. This 

color space can be understood as a three-axis system in which the L axis contains the lightness 

information (from black to white), the A axis contains the green-red information (goes from 

green to red), and the B axis contains the blue-yellow information (goes from blue to yellow).  

Despite not being completely necessary, as there are other models which use different 

color spaces (Cheng et al., 2015), this transformation is very useful since by isolating the 

lightness/brightness of the image in a single channel (L) the color inference process gets 

simplified as the network will not have any impact on the lighting of the image and will only 

have to predict the A and B channels in which the color information resides. 

Training and testing partitions. 

For training and testing the proposed model, each dataset was empirically divided into 

two partitions formed by 5000 and 500 images to train and test, respectively. 

Model configuration. 

All the model parameters were determined empirically. Thus, we used Adam 

optimization with an initial learning rate of 0.0002 and  coefficient set to 0.5 (as suggested 

by Efros et al. (2017)). Additionally, the number of iterations (epochs) was tuned to 100 units.  

Assessment metrics. 

We computed the mean absolute error (MAE/L1), mean squared error (MSE/L2) and 

peak signal-to-noise ratio (PSNR) metrics to validate the feasibility and robustness of the 

proposed method in terms of quantitative results. The first and second metrics take the mean 
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of the absolute error and the mean of the squared error, of both the generated and original 

images to measure how different the images are color-wise. Meanwhile, the third metric 

measures the quality of the generated images. Since measuring the image colorization 

performance is a subjective task, we included the expert criterion validation as the qualitative 

validation to corroborate the methods performance on each dataset. 
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RESULTS AND DISCUSSION 

Quantitative Results 

According to the experimental design section, we validated the proposed method on 

two datasets of random images and the obtained results highlighted the quality of the method, 

as can be read in Table 1. 

Table 1: Average Metrics for the Selected Models 

Dataset MAE (L1) MSE (L2) PSNR (dB) 

Fruits-360 0.077 0.0152 27.721 

FFHQ 0.067 0.0104 26.858 

Considering the results shown in Table 1, it is possible to notice the successful 

performance of the proposed method. The obtained small MAE and MSE scores denote that 

the method generated samples (images) close to the ground truth. Meanwhile, a relatively high 

PSNR value indicates that a little error was introduced to the resulting images during the 

colorization task and thus, decreasing the image colorization quality.  

Important clarifications regarding the good numeric performance are: (1) since 

quadratic error is considered in the loss function of the model, good results were expected and 

(2) despite these results being good, quantitative metrics are generally not good at predicting

human visual response to image quality, therefore metrics are rarely used in image colorization 

research.   

Qualitative Results  

For expert criterion validation using the Fruits-360 dataset, it should be noted in 

Figure 7 some samples of the performance of the model were handpicked. Despite these results 

not being completely accurate when comparing the color predictions with the ground truth 

images, they show a subjectively good colorizing performance, leaving no gray borders or 



23 
 

uncolored fragments of the images. Additionally, these images are useful for showing that the 

autoencoder has acquired enough knowledge to distinguish between different fruits and color 

them accordingly to what it learned. A clear example of this is found in images 2 and 5, which 

are predicted to have a very similar color palette. 

 

Figure 7: Successful performance examples of colorization for the Fruits-360 dataset 

On the other hand, from Figure 8, it is possible to observe better visual colorization 

results on the FFHQ dataset. Generally, contrasting with the results obtained on the predictions 

for Fruits-360, a vast improvement can be seen in terms of the predictions not only being 

colored but also being colored with very similar shades as the ones appearing in their ground 

truth counterparts; images 1, 4 and 6 are prime examples of this. Another notable characteristic 

is that, in this set, the model does very well in terms of border detection, keeping the colors 

within the boundaries of their corresponding objects. 

 

Figure 8: Successful performance examples of colorization for the FFHQ dataset 
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Additional information about the network’s performance can be gathered by examining 

examples of green colorization. The colorization quality drops found in Figure 9 denote that, 

although the model was able to learn a general representation of green hues, this representation 

is not accurate enough to produce convincing colorization results. A possible cause for this 

behavior could be a shortage of green tonalities within the training set images. This implies 

that the model has high learning capabilities and that training with more examples of green 

would suffice to improve the green colorization quality. 

Figure 9: Examples of unexpected green image colorization 

Limitations 

Instances of vastly limited colorization performance are shown in Figure 10. These 

occur when the model infers the colors of images depicting uncommon lightning conditions. 

The prediction on the first row of the figure shows almost no color, which means that since the 

overexposed image has various tonalities of near-to-white colors, the best strategy to reduce 

L1 loss is to leave most of the picture uncolored and only colorizing the portions of the image 

that depicts darker tones. Meanwhile, for the example in the second row, a clear halo of color 

can be seen where the red light was located. This occurs since the red light turns the contours 
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of the face less well-defined, therefore reducing the model’s ability to keep colorization 

confined within them.  

Figure 10: Example of colorization under different lightning conditions 

Ultimately, between the performance in FFHQ and Fruits-360, some distinctions can 

be made. In terms of how close to ground truth the colorizations are, the model trained on 

FFHQ depicts closer colorization results than its Fruits-360 counterpart, as noted in the higher 

color saturation and detail in the predicted images seen in Figure 8. This is also supported by 

the lower L1 and L2 results. Conversely, in terms of border detection, the models performance 

is better in the Fruits-360 dataset where none of the predictions have color outside of the objects 

boundaries whereas the images in Figure 9 and Figure 10 do depict this behavior for FFHQ. 

Finally, in terms of image quality, a slightly higher degradation can be seen in most of the 

images pertaining to the FFHQ dataset. Although not very notable to expert criterion validation, 

this difference in quality can also be perceived in the marginally lower results for the PSNR of 

FFHQ with respect to the Fruits-360 dataset.  
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CONCLUSIONS AND FUTURE WORK 

In this work an autoencoder architecture with a VGG16-based encoder and Deep CNN 

decoder was implemented to successfully perform image-to-image translation in the form of 

colorization. The quantitative evaluation shows that the proposed model produces colorized 

images that are very similar to ground truth in an L1 and L2 sense; furthermore, the PSNR 

results show that the model can colorize images with a relatively small loss of image quality. 

Most importantly, the qualitative results show that the network performs the colorization task 

with mostly good results. Additionally, unexpected green tonalities colorization highlighted 

the learning capabilities of the proposed model. Nevertheless, some limitations were found 

when attempting colorization of images depicting uncommon lightning conditions. These leads 

us to conclude that there are many improvements to be made in the field of image colorization 

to get better performance as well as being able to generalize the colorizing procedure.  

As future work, we plan to include some improvements related to (1) conducting a study 

on how to overcome the lightning-related limitations found in this work, (2) training the model 

with more complex datasets to increase its generalization capabilities, (3) integrating the 

proposed method in a bigger composite model, i.e., GANs architecture to establish a 

benchmarking analysis, and (4) exploring other quantitative validation metrics to avoid using 

expert criterion. 
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