
UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e ingenierías

Very Deep Convolutional Neural Networks for Image Colorization

Stefano Camilo Cevallos Aguirre

Ingeniería en Ciencias de la Computación

Trabajo de fin de carrera presentado como requisito
para la obtención del título de

Ingeniero en Ciencias de la Computación

Quito, 6 de mayo de 2021

2

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e ingeniería

HOJA DE CALIFICACIÓN
DE TRABAJO DE FIN DE CARRERA

Very Deep Convolutional Neural Networks for Image Colorization

Stefano Camilo Cevallos Aguirre

Nombre del profesor, Título académico Noel Pérez, Ph.D.

Quito, 6 de mayo de 2021

3

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales

de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad

Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad

intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este

trabajo en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación

Superior del Ecuador.

Nombres y apellidos: Stefano Camilo Cevallos Aguirre

Código: 00139936

Cédula de identidad: 1719313585

Lugar y fecha: Quito, 6 de mayo de 2021

4

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado

como una publicación, incluso a pesar de estar disponible sin restricciones a través de un

repositorio institucional. Esta declaración se alinea con las prácticas y recomendaciones

presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017)

Discussion document on best practice for issues around theses publishing, disponible en

http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following capstone project is available through Universidad San Francisco de Quito

USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be

considered a publication. This statement follows the recommendations presented by the

Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion

document on best practice for issues around theses publishing available on

http://bit.ly/COPETheses.

5

RESUMEN

La dificultad de la colorización de imágenes ha incentivado a investigadores en el

campo de las ciencias de la computación hacia el desarrollo de algoritmos capaces de facilitar

esta tarea. A pesar de que sus esfuerzos han dado como fruto numerosos avances; los algoritmos

desarrollados aun presentan varias limitaciones tanto en términos de la calidad de las imágenes

generadas, como de la cercanía de estas colorizaciones a los colores reales representados en las

fotografías. Por estas razones, en este trabajo proponemos un método automático de

colorización de imágenes basado en modelos de aprendizaje profundo. Dicho modelo logra

resultados de error absoluto medio y error cuadrático medio que demuestran que las

colorizaciones producidas presentan colores bastante similares a los originales; adicionalmente

los resultados de Proporción Máxima de Señal a Ruido indican que las imágenes generadas por

este método exhiben una pérdida de calidad de imagen relativamente baja. Finalmente, la

validación de las imágenes mediante percepción humana respalda los buenos resultados

numéricos, mostrando imágenes con colorizaciones y saturación subjetivamente buenos.

Palabras clave: Automatic colorization, autoencoders, CNNs, VGG, image-to-image

translation.

6

ABSTRACT

The difficulty behind image colorization has incentivized computer scientist towards

the development of algorithms capable of simplifying the colorization process. Despite the

numerous advancements yielded by these efforts; the developed algorithms are still limited in

terms of the quality of the generated images, as well as the similarity of the generated colors to

ground truth. For these reasons, in this work we propose an automatic image colorization

method based on deep learning models. Said model achieves mean absolute error and mean

quadratic error results that demonstrate the similarity between the generated colors and the

ones present in the ground truth images; additionally, the peak signal-to-noise ratio results

indicate that the colorized images generated by the proposed method exhibit a relatively low

drop in image quality. Finally, the validation of the images by means of expert criterion

validation supports the good numeric results, showing subjectively good colorization and

saturation in the generated samples.

Key words: Automatic colorization, autoencoders, CNNs, VGG, image-to-image

translation.

7

TABLA DE CONTENIDO

Introduction .. 10

Materials and methods ... 13

Database ... 13

Autoencoders ... 13

Very Deep Convolutional Networks (VGG) ... 15

Proposed Model ... 16

Encoder Architecture. .. 17

Decoder Architecture. .. 18

Experimental setup... 20

Data processing. ... 20

Training and testing partitions. .. 20

Model configuration... 20

Assessment metrics. ... 20

Results and discussion ... 22

Quantitative Results ... 22

Qualitative Results ... 22

Limitations ... 24

Conclusions and future work ... 26

References .. 27

8

ÍNDICE DE TABLAS

Table 1: Average Metrics for the Selected Models ... 22

9

ÍNDICE DE FIGURAS

Figure 1: Traditional autoencoder model architecture ... 14
Figure 2: Workflow of a Convolutional Autoencoder ... 15
Figure 3: Original VGG16 architecture ... 15
Figure 4: General colorization process for a real-life use case workflow 17
Figure 5: Detailed encoder model and workflow .. 17
Figure 6: Detailed decoder model and workflow .. 19
Figure 7: Successful performance examples of colorization for the Fruits-360 dataset 23
Figure 8: Successful performance examples of colorization for the FFHQ dataset 23
Figure 9: Examples of unexpected green image colorization .. 24
Figure 10: Example of colorization under different lightning conditions 25

10

INTRODUCTION

The process of image colorization consists of painting colors over monochrome images

(Cohen-Or, et al., 2007). At first glance this task may seem trivial; after all, it is easy for humans

to imagine the colors that correspond to the objects portrayed within a picture (even if some of

them can have more than one correct color). Nevertheless, the colorization process gets much

more difficult when the task is not only imagining the colors but painting them to turn the

monochrome picture into a fully colored one. This is very time consuming and usually requires

a skilled artist.

For these reasons, colorization has become a very researched topic amongst computer

scientists. Hence numerous advancements have been made in the form of colorization

algorithms. These algorithms can be divided into two groups based on how they correlate

grayscale to color (Efros et al., 2016). The first group can be considered a semi-automatic

approach as it needs some form of user input. The most basic version of such an algorithm uses

“scribbles” or dots of color made to the grayscale image by the user, this was originally

proposed Levin et al. (2004) and later improved by Chen et al. (2005) and Efros et al. (2017).

Other semi-automatic techniques were proposed by: Ashikhmin et al. (2002) where reference

images are used for colorizing the grayscale pictures, yielding mostly unsatisfactory results;

and Chang et al. (2015) where a reference color palette is required as an input.

Although being simpler than manual colorization, user guided techniques still present

several difficulties for the users. This caused researchers to turn their efforts towards

developing fully automatic colorization techniques. These are mostly based on deep learning

and try to take advantage of the large image datasets available to the public by turning them

into color-grayscale pairs and using them to train neural networks. Cheng et al. (2015) proposed

using Deep neural networks (DNNs) to approach the colorization task as a least squares

minimization problem, yielding subjectively good results. Despite this, most modern colorizers

11

replace DNNs with Convolutional Neural Networks (CNNs). For example, In, Colorful Image

Colorization (Efros et al., 2016), the task is proposed as a classification problem, and a CNN

is trained using the ImageNet large scale visual recognition challenge (ILSVRC) dataset (Berg,

et al., 2015). Although this approach results in colorized images portraying vibrant colors, they

are not a good representation of the tonalities depicted in the ground truth images, resulting on

a peak-signal-to-noise-ratio (PSNR) of 22.04 dB. Another attempt at using CNNs has been

proposed by Larsson et al. (2017) where a model is trained to predict hue and chroma

distributions on a per pixel basis based on spatially localized multilayer slices; this model was

trained on SUN-A and SUN-6 subsets of the SUN dataset (Ehinger et al., 2010), and achieves

a PSNR result of 24.93 dB.

Finally, after the use of simple CNNs and autoencoders, Generative Adversarial Neural

Networks (GANs) were proposed for the task. Ebrahimi et al. (2018) conducted a research to

determine how effective these networks are as well as the best training strategies used for

speeding up the training process and encouraging convergence. Another example of GANS

used in this context was proposed by Ballester et al. (2020) in the form of a GAN model, where

a two part generator is used, the first part which outputs the chrominance information while the

second outputs a class distribution vector for adding a semantic representation of the picture;

this method was trained over ILSVRC (Berg, et al., 2015) and achieved a PSNR of 25.57 dB.

Finally, another important contribution made in their work was the addition of a non-human

algorithm evaluation system in the form of the PSNR values used to rank both their model as

well as some of the state-of-the-art methods.

Despite the advancements made in the recent years, the process of automatic

colorization still presents various limitations such as high losses in image quality, low color

saturation (Ballester et al., 2020) and difficulty generating colors similar to the original picture

12

(Efros et al., 2016). Therefore, in this work we propose an image colorization method based on

deep learning and the most recent developments in the field.

13

MATERIALS AND METHODS

Database

In order to test the different capabilities of the proposed method, two datasets were

selected for both training and testing the model, the Fruits-360 dataset (Muresan & Oltean,

2017) and the Flickr-Faces-HQ dataset (Aila et al., 2018).

First, the Fruits-360 dataset is comprised of over 90 000 images of distinct varieties of

70 different fruits. A total of 131 classes conform the dataset, with an average of 688 images

per class. The large number of classes and the little color variation between images of the same

class is useful for determining ability of the model to recognize patterns in the form of fruits.

For example, painting apples red and bananas yellow means being able to recognize between

them.

Secondly, the Flickr- Faces-HQ dataset consists of 70 000 portraits of people of various

complexions and other physical characteristics (e.g., hair color, eye color, etc.) with different

backgrounds and in different lightning settings. For this reason, FFHQ serves as a good

benchmark of how well the network performs on the colorization process when confronted

with a task of a higher complexity.

Autoencoders

Autoencoders (AEs), originally introduced by Hinton et al. (1985), are neural networks

in which the input is the same as the output. The original AE architecture uses fully connected

layers and is composed of two parts: the encoder and decoder (see Figure 1). The objective of

the encoder is to be able to create a compressed (latent) representation of its inputs. Meanwhile,

the goal of the decoder is to recreate these inputs by using only the latent representation

previously generated and adhering to the restriction that the dimensionality of the outputs must

be identical to that of the inputs.

14

Figure 1: Traditional autoencoder model architecture

Traditional AEs were not designed to be used in image processing related tasks; instead,

for this purpose a variant on the conventional AE architecture called Convolutional

Autoencoder (CAE) is used. This variation extends the functionality of its predecessor by

replacing the fully connected layers with convolution plus pooling layers in the encoder and

transposed convolution layers in the decoder (Zhang, 2018).

The general CAE workflow can be divided into an encoding and decoding segment. In

the encoding or feature extraction portion of the workflow; an image is passed as input and is

subject to any number of convolution plus pooling layer sequences. During this process, by

means of convolution operations the most important features of the image are extracted in the

form of filters. Subsequently, by means of pooling operations the image size is reduced to half,

effectively increasing information density, and enabling the extraction of higher complexity

patterns through ensuing convolution layers. As with traditional AEs the product of this portion

of the network is the latent representation, which in the case has the form of a feature map.

Finally, in the decoding segment of the architecture, transposed convolution operations are

used to upsample the input and reduce the number of filters from feature maps, starting with

the latent representation, until the output has the same dimensionality of the input image. The

workflow depicted in Figure 2 corresponds to a real-life use case in which a three-channel

15

image with a resolution of 256x256 pixels is used as the input to a CAE architecture composed

of two convolutions plus pooling layer sequences in the encoder and two transposed

convolutions in the decoder.

Figure 2: Workflow of a Convolutional Autoencoder

Very Deep Convolutional Networks (VGG)

Very Deep Convolutional Neural Networks are CNN models developed by Simonyan

and Zisserman (2014) for ILSVRC (Berg, et al., 2015). Despite their similarity to other CNNs

used for classification purposes, the VGG architecture stands out from its counterparts since it

replaces singular large kernel-sized filters with multiple consecutive 3x3 kernel-sized filters.

These changes make the networks decision function more discriminative and reduce the

number of parameters (Simonyan & Zisserman, 2014). The VGG configuration used for this

work employs five convolutional blocks and three fully connected layers for a total of sixteen

weighted layers, hence the name VGG16 (see Figure 3).

Figure 3: Original VGG16 architecture

16

 The behavior of the VGG16 (and all other VGG models) can be considered standard

for CNN classification networks. This implies that the workflow of the network can be divided

into two segments: feature extraction and classification. First, in the feature extraction step, the

process is identical to the CAEs encoding process (described in the Autoencoders section), in

which an image acts as the input to the network and a feature map is created with the most

important features of the input. Secondly, the classification step is done by the fully connected

layers, which output a vector with the probabilities of the previously generated feature map

pertaining to a certain class.

Proposed Model

The proposed model consists of a fully convolutional autoencoder architecture with a

VGG16-based encoder and a custom decoder model. Broadly speaking, the objective of this

model is to have the ability to receive a one-channel (LAB color space) grayscale image and

output a two-channel image of the same size containing the color information. For this, it is

necessary to train the model for finding correlations between patterns and colors in

grayscale-color pairs of images. The general workflow for the colorization process of this

network (see Figure 4), consists of three steps: (1) using the encoding portion of the network

to obtain the latent representation of the input grayscale image, (2) employing this latent

representation to create the two-channel output containing the color data and (3) stacking the

input and output layers to obtain the colorization result. Both, the workflow of the real-life use

case shown in Figure 4 and the architecture of the proposed model will be further explained in

this section.

17

Figure 4: General colorization process for a real-life use case workflow

Encoder Architecture.

For the encoding portion of the network a modified VGG16 architecture was

implemented. The modifications done to the original model are: (1) substituting the fixed size

224x224x3 input layer for a new input layer capable of processing one-channel images of any

resolution; (2) removing the top fully connected layers; (3) replacing the max pooling layers,

for a stride of two in some of the convolution layers; (4) changing the activation function of all

convolution layers from ReLU to LeakyReLU; and (5) Adding batch normalization after each

convolution layer. The resulting architecture is shown in Figure 5.

Figure 5: Detailed encoder model and workflow

18

The causes and effects of these modifications are as follows. First, substituting the fixed

size input is critical for the model to be able to process one-channel grayscale images. Second,

for adapting the VGG16 architecture to a fully convolutional network architecture, the top fully

connected layers were removed; in their work, “Striving for simplicity: The all convolutional

net”, Brox et al. (2015) proved these CNNs to be more efficient during inference and learning.

Third, removing the Pooling layers reduces image distortion. Fourth, changing the loss function

to LeakyReLU, effectively avoids the dying ReLU problem (Lu, 2020). And last, the addition

of Batch Normalization was proposed by Efros et al. (2017); as it accelerates and stabilizes the

learning process of the neural network by normalizing the inputs of each convolutional layer.

The changes implemented to the architecture imply a different encoding/feature

extraction workflow than that of the original VGG16 (see Figure 5). On the first two

convolutional blocks of the architecture, features are extracted in the form of filters by the first

convolution layer; subsequently the second convolution layer continues with feature extraction

and reduces image size to half by performing the convolution operation using a stride of two.

Lastly, the batch normalization layer normalizes the outputs of the convolutional block it

pertains to. This process is then repeated by the remaining three blocks, with the difference that

these have two convolution layers preceding the strided convolution operation. Identical to

other CAEs, the product of the encoding process is the latent representation which in this case

consists of 512 filters with a resolution of eight pixels by eight pixels.

Decoder Architecture.

For the decoder portion of the architecture a custom decoding model was created (see Figure

6). This model mirrors each convolutional block of the encoder with a deconvolutional decoder

block. An important difference between this model and a traditional decoder model is that in

our decoder architecture bilinear upsampling plus a convolution operation is used to replace

the traditional transposed convolution layers. This alternate approach reduces checkerboard

19

artifacts found by Dumoulin et al. (2016). Additionally, to avoid the dying ReLU problem,

LeakyReLU activation was used for all convolution layers, apart from the last one, in which

hyperbolic tangent (tanh) was implemented. Finally, a key characteristic of this decoder lies

within the final convolution layer, which outputs a two-channel image of the same size of the

one-channel input.

Figure 6: Detailed decoder model and workflow

The behavior of the decoding portion of the network (see Figure 6) is the same for the

five deconvolutional blocks that comprise it. First, the initial convolution operation is used for

reducing the number of filters to half. Second, bilinear upsampling is applied to increase image

size by a factor of two. Third, another convolution operation is applied with the same number

of filters as the preceding convolution layer. Since all five blocks follow the same structure,

this behavior is maintained throughout the entirety of the network. In simple terms, starting

with the latent representation, each block halves the number of filters and up samples image

size by a factor of two until the output is a two-channel image with the same dimensions of the

input image. Finally, it is important to mention that to obtain the colorized image, it is necessary

to stack the input and output layers of the network.

20

Experimental setup

Data processing.

First, for making both training and processing the images faster, both datasets were

resized to a resolution of 256x256 pixels. A lower resolution could make the process faster, but

it would impact the expert criterion validation when assessing the quality of the colorized

images. Second, the images were transformed from the RGB to the LAB color space. This

color space can be understood as a three-axis system in which the L axis contains the lightness

information (from black to white), the A axis contains the green-red information (goes from

green to red), and the B axis contains the blue-yellow information (goes from blue to yellow).

Despite not being completely necessary, as there are other models which use different

color spaces (Cheng et al., 2015), this transformation is very useful since by isolating the

lightness/brightness of the image in a single channel (L) the color inference process gets

simplified as the network will not have any impact on the lighting of the image and will only

have to predict the A and B channels in which the color information resides.

Training and testing partitions.

For training and testing the proposed model, each dataset was empirically divided into

two partitions formed by 5000 and 500 images to train and test, respectively.

Model configuration.

All the model parameters were determined empirically. Thus, we used Adam

optimization with an initial learning rate of 0.0002 and  coefficient set to 0.5 (as suggested

by Efros et al. (2017)). Additionally, the number of iterations (epochs) was tuned to 100 units.

Assessment metrics.

We computed the mean absolute error (MAE/L1), mean squared error (MSE/L2) and

peak signal-to-noise ratio (PSNR) metrics to validate the feasibility and robustness of the

proposed method in terms of quantitative results. The first and second metrics take the mean

21

of the absolute error and the mean of the squared error, of both the generated and original

images to measure how different the images are color-wise. Meanwhile, the third metric

measures the quality of the generated images. Since measuring the image colorization

performance is a subjective task, we included the expert criterion validation as the qualitative

validation to corroborate the methods performance on each dataset.

22

RESULTS AND DISCUSSION

Quantitative Results

According to the experimental design section, we validated the proposed method on

two datasets of random images and the obtained results highlighted the quality of the method,

as can be read in Table 1.

Table 1: Average Metrics for the Selected Models

Dataset MAE (L1) MSE (L2) PSNR (dB)

Fruits-360 0.077 0.0152 27.721

FFHQ 0.067 0.0104 26.858

Considering the results shown in Table 1, it is possible to notice the successful

performance of the proposed method. The obtained small MAE and MSE scores denote that

the method generated samples (images) close to the ground truth. Meanwhile, a relatively high

PSNR value indicates that a little error was introduced to the resulting images during the

colorization task and thus, decreasing the image colorization quality.

Important clarifications regarding the good numeric performance are: (1) since

quadratic error is considered in the loss function of the model, good results were expected and

(2) despite these results being good, quantitative metrics are generally not good at predicting

human visual response to image quality, therefore metrics are rarely used in image colorization

research.

Qualitative Results

For expert criterion validation using the Fruits-360 dataset, it should be noted in

Figure 7 some samples of the performance of the model were handpicked. Despite these results

not being completely accurate when comparing the color predictions with the ground truth

images, they show a subjectively good colorizing performance, leaving no gray borders or

23

uncolored fragments of the images. Additionally, these images are useful for showing that the

autoencoder has acquired enough knowledge to distinguish between different fruits and color

them accordingly to what it learned. A clear example of this is found in images 2 and 5, which

are predicted to have a very similar color palette.

Figure 7: Successful performance examples of colorization for the Fruits-360 dataset

On the other hand, from Figure 8, it is possible to observe better visual colorization

results on the FFHQ dataset. Generally, contrasting with the results obtained on the predictions

for Fruits-360, a vast improvement can be seen in terms of the predictions not only being

colored but also being colored with very similar shades as the ones appearing in their ground

truth counterparts; images 1, 4 and 6 are prime examples of this. Another notable characteristic

is that, in this set, the model does very well in terms of border detection, keeping the colors

within the boundaries of their corresponding objects.

Figure 8: Successful performance examples of colorization for the FFHQ dataset

24

Additional information about the network’s performance can be gathered by examining

examples of green colorization. The colorization quality drops found in Figure 9 denote that,

although the model was able to learn a general representation of green hues, this representation

is not accurate enough to produce convincing colorization results. A possible cause for this

behavior could be a shortage of green tonalities within the training set images. This implies

that the model has high learning capabilities and that training with more examples of green

would suffice to improve the green colorization quality.

Figure 9: Examples of unexpected green image colorization

Limitations

Instances of vastly limited colorization performance are shown in Figure 10. These

occur when the model infers the colors of images depicting uncommon lightning conditions.

The prediction on the first row of the figure shows almost no color, which means that since the

overexposed image has various tonalities of near-to-white colors, the best strategy to reduce

L1 loss is to leave most of the picture uncolored and only colorizing the portions of the image

that depicts darker tones. Meanwhile, for the example in the second row, a clear halo of color

can be seen where the red light was located. This occurs since the red light turns the contours

25

of the face less well-defined, therefore reducing the model’s ability to keep colorization

confined within them.

Figure 10: Example of colorization under different lightning conditions

Ultimately, between the performance in FFHQ and Fruits-360, some distinctions can

be made. In terms of how close to ground truth the colorizations are, the model trained on

FFHQ depicts closer colorization results than its Fruits-360 counterpart, as noted in the higher

color saturation and detail in the predicted images seen in Figure 8. This is also supported by

the lower L1 and L2 results. Conversely, in terms of border detection, the models performance

is better in the Fruits-360 dataset where none of the predictions have color outside of the objects

boundaries whereas the images in Figure 9 and Figure 10 do depict this behavior for FFHQ.

Finally, in terms of image quality, a slightly higher degradation can be seen in most of the

images pertaining to the FFHQ dataset. Although not very notable to expert criterion validation,

this difference in quality can also be perceived in the marginally lower results for the PSNR of

FFHQ with respect to the Fruits-360 dataset.

26

CONCLUSIONS AND FUTURE WORK

In this work an autoencoder architecture with a VGG16-based encoder and Deep CNN

decoder was implemented to successfully perform image-to-image translation in the form of

colorization. The quantitative evaluation shows that the proposed model produces colorized

images that are very similar to ground truth in an L1 and L2 sense; furthermore, the PSNR

results show that the model can colorize images with a relatively small loss of image quality.

Most importantly, the qualitative results show that the network performs the colorization task

with mostly good results. Additionally, unexpected green tonalities colorization highlighted

the learning capabilities of the proposed model. Nevertheless, some limitations were found

when attempting colorization of images depicting uncommon lightning conditions. These leads

us to conclude that there are many improvements to be made in the field of image colorization

to get better performance as well as being able to generalize the colorizing procedure.

As future work, we plan to include some improvements related to (1) conducting a study

on how to overcome the lightning-related limitations found in this work, (2) training the model

with more complex datasets to increase its generalization capabilities, (3) integrating the

proposed method in a bigger composite model, i.e., GANs architecture to establish a

benchmarking analysis, and (4) exploring other quantitative validation metrics to avoid using

expert criterion.

27

REFERENCES

Aila, T., Karras, T., & Laine, S. (2018). A Style-Based Generator Architecture for Generative

Adversarial Networks. CoRR, abs/1812.04948. Retrieved from

http://arxiv.org/abs/1812.04948

Ashikhmin, M., Mueller, K., & Welsh, T. (2002, 7). Transferring Color to Greyscale Images.

ACM Trans. Graph., 21, 277–280. doi:10.1145/566654.566576

Ballester, C., Raad, L., & Vitoria, P. (2020, 1). ChromaGAN: Adversarial Picture

Colorization with Semantic Class Distribution. arXiv:1907.09837 [cs]. Retrieved

from http://arxiv.org/abs/1907.09837

Berg, A. C., Bernstein, M., Deng, J., Fei-Fei, L., Huang, Z., Karpathy, A., . . . Su, H. (2015,

12). ImageNet Large Scale Visual Recognition Challenge. International Journal of

Computer Vision, 115, 211–252. doi:10.1007/s11263-015-0816-y

Brox, T., Dosovitskiy, A., Riedmiller, M., & Springenberg, J. T. (2015). Striving for

Simplicity: The All Convolutional Net. Striving for Simplicity: The All Convolutional

Net.

Chang, H., DiVerdi, S., Finkelstein, A., Fried, O., & Liu, Y. (2015, 7). Palette-based photo

recoloring. ACM Transactions on Graphics, 34, 1–11. doi:10.1145/2766978

Chang, S., Hasegawa-Johnson, M., Qian, K., Yang, X., & Zhang, Y. (2019). AutoVC: Zero-

Shot Voice Style Transfer with Only Autoencoder Loss. In K. Chaudhuri, & R.

Salakhutdinov (Ed.), Proceedings of the 36th International Conference on Machine

Learning. 97, pp. 5210–5219. PMLR. Retrieved from

http://proceedings.mlr.press/v97/qian19c.html

Chen, D., Hua, G., Liao, J., Yu, N., & Yuan, L. (2017, 7). StyleBank: An Explicit

Representation for Neural Image Style Transfer. Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR).

28

Chen, J.-C., Huang, Y.-C., Tung, Y.-S., Wang, S.-W., & Wu, J.-L. (2005). An adaptive edge

detection based colorization algorithm and its applications. Proceedings of the 13th

annual ACM international conference on Multimedia - MULTIMEDIA '05 (p. 351).

Hilton: ACM Press. doi:10.1145/1101149.1101223

Cheng, Z., Sheng, B., & Yang, Q. (2015, 12). Deep Colorization. 2015 IEEE International

Conference on Computer Vision (ICCV) (pp. 415–423). Santiago: IEEE.

doi:10.1109/ICCV.2015.55

Cohen-Or, D., Liang, L., Luan, Q., Shum, H.-Y., Wen, F., & Xu, Y.-Q. (2007). Natural

Image Colorization. In J. Kautz, & S. Pattanaik (Ed.), Rendering Techniques. The

Eurographics Association. doi:10.2312/EGWR/EGSR07/309-320

Dumoulin, V., Odena, A., & Olah, C. (2016). Deconvolution and Checkerboard Artifacts.

Distill. doi:10.23915/distill.00003

Ebrahimi, M., Nazeri, K., & Ng, E. (2018). Image Colorization with Generative Adversarial

Networks. arXiv:1803.05400 [cs], 10945, 85–94. doi:10.1007/978-3-319-94544-6_9

Efros, A. A., Geng, X., Isola, P., Lin, A. S., Yu, T., Zhang, R., & Zhu, J.-Y. (2017, 7). Real-

time user-guided image colorization with learned deep priors. ACM Transactions on

Graphics, 36, 1–11. doi:10.1145/3072959.3073703

Efros, A. A., Isola, P., & Zhang, R. (2016, 10). Colorful Image Colorization.

arXiv:1603.08511 [cs]. Retrieved from http://arxiv.org/abs/1603.08511

Efros, A. A., Isola, P., Zhou, T., & Zhu, J.-Y. (2017, 7). Image-to-Image Translation with

Conditional Adversarial Networks. 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) (pp. 5967–5976). Honolulu: IEEE.

doi:10.1109/CVPR.2017.632

Ehinger, K. A., Hays, J., Oliva, A., Torralba, A., & Xiao, J. (2010). SUN database: Large-

scale scene recognition from abbey to zoo. 2010 IEEE Computer Society Conference

29

on Computer Vision and Pattern Recognition, (pp. 3485-3492).

doi:10.1109/CVPR.2010.5539970

Hinton, G. E., Rumelhart, D. E., & Williams, R. J. (1985). Learning internal representations

by error propagation. Tech. rep., California Univ San Diego La Jolla Inst for

Cognitive Science.

Larsson, G., Maire, M., & Shakhnarovich, G. (2017, 8). Learning Representations for

Automatic Colorization. arXiv:1603.06668 [cs]. Retrieved from

http://arxiv.org/abs/1603.06668

Levin, A., Lischinski, D., & Weiss, Y. (2004, 6). Colorization using Optimization. ACM

Transactions on Graphics, 23. doi:10.1145/1015706.1015780

Lu, L. (2020, 6). Dying ReLU and Initialization: Theory and Numerical Examples.

Communications in Computational Physics, 28, 1671–1706. doi:10.4208/cicp.oa-

2020-0165

Muresan, H., & Oltean, M. (2017). Fruit recognition from images using deep learning. CoRR,

abs/1712.00580. Retrieved from http://arxiv.org/abs/1712.00580

Nash, R., & O'Shea, K. (2015). An Introduction to Convolutional Neural Networks. CoRR,

abs/1511.08458. Retrieved from http://arxiv.org/abs/1511.08458

Simonyan, K., & Zisserman, A. (2014, 9). Very Deep Convolutional Networks for Large-

Scale Image Recognition. arXiv 1409.1556.

Zhang, Y. (2018). A better autoencoder for image: Convolutional autoencoder. ICONIP17-

DCEC. Available online:

http://users.cecs.anu.edu.au/~Tom.Gedeon/conf/ABCs2018/paper/ABCs2018_paper_

58.pdf (accessed on 23 March 2017).

