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RESUMEN 

En este trabajo se propone utilizar modelos de aprendizaje automático supervisado para dirigir 

el tráfico en una red definida por software. El objetivo es balancear el tráfico considerando el 

ancho de banda de los enlaces existentes en la red. En este trabajo se creó una red virtual, para 

la cual se desarrolló una aplicación de control para direccionar el tráfico por diferentes enlaces. 

Considerando el funcionamiento convencional, se generó tráfico en la red para construir 

datasets y alimentar los modelos de aprendizaje automático. Específicamente, se crean 2 

datasets y los modelos utilizados son: redes neuronales artificiales, Support Vector Machines, 

k-nearest neighbors, para los cuales se provee una configuración empírica. Todos los modelos 

usados en ambos datasets obtienen excelentes resultados, sin embargo, debido a que no se 

obtuvo una diferencia significativa en las métricas de los modelos, no se pudo determinar a un 

modelo como ganador. Adicionalmente, solo para el segundo dataset los modelos fueron 

capaces de generar alternabilidad en los paths de la red SDN, alcanzando el comportamiento 

deseado. 

Palabras clave: SDN, Machine Learning, Artificial Neural Networks, Support Vector 

Machine, k-Nearest Neighbors. 
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ABSTRACT 

In this work we propose to use supervised machine learning models to direct traffic in a 

software-defined network. The objective is to balance the traffic considering the bandwidth of 

the existing links in the network. In this work, a virtual network was created, for which a control 

application was developed to direct traffic through different links. Considering the 

conventional operation, traffic was generated on the network to build datasets and feed machine 

learning models. Specifically, two datasets were created, and the models used are: artificial 

neural networks, support vector machines, and k-nearest neighbors, for which empirical 

configurations are provided. All the models used in both datasets obtained excellent results, 

however, since a significant difference was not obtained in the metrics of the models, a winning 

model could not be determined. Additionally, only for the second dataset the models were able 

to generate alternation in the paths of the SDN network, reaching the desired behavior. 

Key words: SDN, Machine Learning, Artificial Neural Networks, Support Vector 

Machine, k-Nearest Neighbors. 
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INTRODUCTION 

The constant and rapid growth of the Internet in recent years has contributed to the 

complexity of communication networks, making them more diverse and extensive, due to the 

arrival of new infrastructure such as 5G networks or the internet of things (IoT) (Cai et al., 

2018; Fadlullah et al., 2017; Gubbi et al., 2013). Because of the large traffic that flows through 

the network and its complexity, it is difficult to monitor and maintain it. According to Cisco, 

for 2021 a global IP traffic of 3.3 Zettabytes was expected, but, considering the COVID-19 

pandemic, there has been an increase in packet loss, congestion, and internet latency variability 

(Candela et al., 2020; Forecast & G. M. D. T, 2019). For this reason, the traffic could be even 

higher than expected by Cisco for this year. 

Some approaches have been proposed to improve the quality of service (QoS) in 

communication networks. The current proposals are focused on machine learning classifer 

(MLC) based techniques, which have been used to classify and predict network traffic. 

According to the state of the art Decision Trees (DT), support vector machines (SVM), Naive 

Bayes (NB), and artificial neural networks (ANN) are frequently used techniques. For example, 

Shafiq et al. (2016) use the following models C4.5 DT, SVM, BayesNet, and NB classifiers, 

reaching the C4.5 DT the higher classification accuracy (ACC) score of 78.91%. Michael, A, 

Valla, Neggatu, and Moore (2017) use a multilayer perceptron ANN classifier with 248 and 12 

neurons for the input and output layers, respectively. In addition, the proposal includes one 

hidden layer with 12 neurons. This model obtained a classification ACC score of 97%. Moore 

and Zuev (2005) employed two configurations of the NB classifier with and without kernel 

density estimation. Additionally, a fast correlation-based filter was employed together with 

both NB classifiers, obtaining ACC scores of 93.38% and 93.73%, respectively. Recently, a 

deep neural network with two hidden layers with 500 and 100 neurons achieved a classification 

ACC score of 98.5% (Shu, Jiang, & Sun, 2018). 
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Although the use of MLCs has been proven to be successful in the classification and 

prediction of network traffic on traditional networks, there is no evidence reported in the 

literature of their use on modern software-defined networks (SDN). This type of network is 

characterized by having separate control and data plane, making them highly scalable, 

dynamic, and programmable (Azodolmolky, 2013). Therefore, in this work, we propose using 

three supervised learning MLCs to address the problem of classification and prediction of 

traffic in modern SDN. 

This paper is organized as follows: the materials and methods section present the 

definition of the SDN, the datasets creation, and a brief description of selected MLCs; The 

results and discussion section argue the obtained performance of employed MLCs. Finally,  the 

conclusions and future work are reported. 
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MATERIALS AND METHODS 

Software defined networks (SDN) 

A SDN is a new paradigm in networks, in which the control and data plane are 

decoupled, which offers multiple benefits such as: programmable infrastructure, centralized 

administration, dynamic optimization and automation (Azodolmolky, 2013). The control plane 

refers to a software which is responsible for having data forwarding policies such as routing 

tables, topology tables or Address Resolution Protocol (ARP) tables, among others. While the 

data plane is the network device that is responsible for forwarding the data. 

The SDN controller oversees managing the network infrastructure, through the 

communication with a southbound protocol such as OpenFlow, allowing a centralized 

administration as shown in Figure 1. Regarding, the SDN controller, it is worth mentioning the 

wide array of commercial and open-source solutions that exist. In this context, considering that 

machine models are mainly implemented with Python’s libraries throughout this work, the Ryu 

SDN controller is selected. Ryu controller is impolemented in Python and provides a rich 

northbound API that simplified the development of network applications. 

Network topology 

We considered the creation of a virtualized network using the virtual networks over 

Linux (VNX) virtualization tool, which is designed to build virtual networks for testbeds 

(Fernández et al., 2012). Additionally, the network follows the SDN paradigm, so Open 

vSwitch devices (OVS) are used as the data plane (Pfaff et al., 2015). Later, these devices will 

be controlled by a network application running on Ryu. 
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Figure 1: The SDN architecture (figure taken from (Azodolmolky, 2013)) 

 

Figure 2: Implemented network topology. 

The implemented network topology consists of 8 OVS nodes with limited 10 Mbps 

bandwidth per link. It can be distinguished as a partial mesh topology, i.e., an OVS node is 

connected to all the remaining devices or some of them that are linked to the others (Davies, 

2019), as shown in Figure 2. Besides, two machines H1 and H2, were added upon S1 and S2 

networks to guarantee three communication paths between both machines. This structure 

allows simulating a real production network. 
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Experimental datasets 

We used the aformentioned described network topology (see Figure 2) to create two 

different experimental datasets named Dataset1 and Dataset2. 

The Dataset1 considered the following parameters: datapath id (OVS), source, input 

port, bandwidth, packets sent and received, bytes sent and received, and path. Since the 

topology in Figure 2 has several paths, the Spanning Tree Protocol (STP) was used in order to 

obtain data on all paths. STP operates on layer 2 of the OSI model, its function is to find loops 

in network topologies and enable or disable links to eliminate these loops. In our case, the STP 

is used in a different way, ports (links) were closed intentionally to force the STP to find new 

paths in the topologies, obtaining data from the network traffic in all paths. Moreover, to 

simulate the traffic through the network, the Iperf tool was used mainly, which allows 

generating measurements of the maximum achievable bandwidth (Silva & Alves, 2014). 

Specifically, the Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) 

protocols were used, which operate in the transport layer of the OSI model. Additionally, the 

Netem tool was used to generate errors in the sent packages. 

On the other hand, the Dataset2 employed the datapath id (OVS), source, input port, 

chosen path, path-1, path-2, and path-3 bandwidths parameters. Specifically, this dataset differs 

from the Dataset1 in that for each observation the bandwidth on each path is taken into account 

and the path chosen corresponds to the path with the less congestion. Similarly, the Iperf tool 

was used to generate traffic for the network. When the last bandwidth of the chosen path is 

greater than 5 Mbps, the path with the lowest bandwidth is searched and it is chosen, in order 

to alleviate the traffic on the network. 
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Machine learning classifiers 

Artificial neural networks. 

Artificial Neural Networks (ANN) are supervised learning models inspired by brain 

neural networks. An ANN is made up of layers of neurons, at least one input and output layer, 

the neurons of one layer connect to the neurons of the layer that precedes it, forming 

connections (Lantz, 2015). Each of the neurons has a weight, which is adjusted as the algorithm 

progresses, through an algorithm called Backpropagation. This method seeks to minimize a 

loss function, for this the algorithm is repeated several times minimizing the error and adjusting 

the weights. 

Support vector machine. 

Support vector machines (SVM) are very powerful supervised learning classifiers that 

separates similar classes with the use of hyperplanes, obtaining a maximum margin between 

these classes (Lantz, 2015). A SVM model is capable of separating classes that are not linearly 

separable with the use of kernerls. A Kernel is a function that maps data in a higher dimensional 

space, obtaining more characteristics on the data, where the algorithm is able to separate two 

classes with a hyperplane. This is possible with the use of a process known as the kernel trick, 

which allows operating in the upper dimensional space without calculating the coordinates of 

the data in this space, making it a much less expensive computational process. 

K-nearest neighbors. 

The k-nearest neighbors (kNN) algorithm is one of the simplest supervised learning 

classifiers. Its name is due to the fact that it uses one or more k-nearest instances to classify 

unlabeled examples (Lantz, 2015). This method is based on the similarity, which is determined 

by the Euclidean distance, a number k of most similar neighbors is taken into account to label 

an unlabeled observation. 
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Experimental setup 

Data processing. 

For Dataset1 and Dataset2 the same data treatment was used. The categorical variables 

were encoded with the OneHot encoding technique, which uses dummy variables  to encode 

categorical features (Liu, 2017). while the numerical variables were normalized with the Min-

Max technique with a minimum value of 0 and a maximum value of 1. The response variable 

was encoded with the label encoding technique. Additionally, a characteristic reduction was 

performed for both datasets with the Chi-square statistical test, which measures the 

independence of the variables, eliminating the independent or irrelevant variables for the 

classification (Lantz, 2015). 

For the Dataset1, the variables determined as dependent, after applying the Chi-square 

technique, were the datapath id, the input port and the number of packets sent. In the case of 

Dataset2, after performing the chi-square test, the following variables were found to be 

relevant: bandwidths of path-1, path-2, and path-3, the datapath id and input port. It is important 

to emphasize that the characteristic reduction applies to all the variables of the dataset except 

for the response variables. 

Finally, both datasets were balanced by applying the SMOTE over-sampling technique, 

in which the minority class is oversampled by introducing synthetic examples of the minority 

class (Chawla et al., 2002). 

Training and testing partitions. 

All models use the 10-fold cross-validation technique to evaluate their performance. 

This technique randomly divides the dataset into k disjoint subsets of equal size, where one 

subset is for testing and the rest of the subsets are for training. In each trial, a test set is classified 

with a learning algorithm, obtaining the value of a validation metric. The average of k 
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validation metrics for all trials is the estimated percentage of a metric for the classifier (Garcı ́a 

López et al., 2006). 

Models configuration. 

All machine learning models use an empirical parameter configuration for both 

experimental datasets. Therefore, the ANN model uses a single hidden layer with 1000 neurons 

and a ReLU activation function used in modern neural networks as default recomendation 

(Goodfellow et al., 2016). The input and output layers use a ReLU and SoftMax activation 

functions, respectively. Also, this model was trained with 100 epochs and an Adam 

optimization function with a learning rate of 0.001, in addition, it uses a categorical cross 

entropy as loss function. The SVM uses a Polynomial kernel, with a cost coefficient 𝐶 = 10 , 

𝛾 = 1 and a of degree 3. Finally, the kNN model was set with 𝑘 = 5 and the Euclidean distance.  

Assessment metrics. 

We computed the area under the receiver operating characteristic curve (AUC) metric 

to validate the performance of the MLCs. The AUC metric indicates how capable the model is 

in distinguishing between classes. The ACC, precision, and recall metrics were also calculated 

to support the discussion of obtained results. 

Selection criteria. 

Since we explored three MLCs on each dataset, we selected the best model according 

to the following rule: the model with the highest AUC score is selected, in the event of a tie in 

the AUC score, the model with the highest accuracy is selected.  

The implementation of all the classifiers was done in the Python 3.8.5 language with 

the scikit-learn (SKlearn) and Keras libraries (Chollet, 2015; Guido & L, 2009; Pedregosa et 

al., 2011). In the same way, the network application in charge of steering the traffic in the 

network was developed for the Ryu SDN controller (Kubo et al., 2014). 
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RESULTS AND DISCUSSION 

According to the experimental setup section, we used three different MLCs with the 

10-fold cross-validation method on both experimental datasets. The obtained results in terms 

of computed metrics highlighted successful performance for Dataset1 and Dataset2, as could 

be read in Table 1and Table 2, respectively. 

Method AUC Accuracy Precision Recall 

ANN 0.9822 0.8592 0.8869 0.8556 

SVM 0.9994 0.9523 0.9584 0.9451 

KNN 0.9989 0.9964 0.9964 0.9967 

Table 1: Metrics for ML Techniques for Dataset1 

In Table 1 it can be seen that all the models reached a high AUC value, which indicates 

that they were able to distinguish between the 3 classes of the data set. In this case, the model 

that achieved the highest AUC was the Support Vector Machine, with a value of 0.9994 for 

AUC and 0.9523 for accuracy, however, a winning model cannot be defined because there are 

no significant differences between the 3 models. Empirically, the SVM performed slightly 

better in comparison with the remaining models. 

In Figure 3 below, it shows the validation curves for the SVM model, these curves 

shows that the model is not over-fitting or under-fitting. The curves are displayed as a function 

of the gamma value. 
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Figure 3: Validation curves for the SVM model by value of gamma Dataset1 

Figure 4 shows the ROC and Precision-Recall curves, these curves indicate that good 

results were obtained for this model. The area under the ROC curve specifies that the SVM 

model was able to distinguish between each of the 3 classes, while a high value of the area 

under the Precision-Recall curve indicates a low rate of false positives and negatives. 

 

Figure 4: ROC and Precision-Recall curves for SVM Dataset1 

Although the results regardinf the classification were encoraging, neither the SVM nor 

the other models achieved the desired alternation behavior on the paths of the network. The 
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models are limited to sending and receiving packets using a single route in the network. This 

means that the Dataset1 is not the right one to obtain the desired behavior. 

Regarding the second dataset, all the models obtained an exceptionally good 

performance. The AUC metrics achieved are excellent, which indicates that each of the 

proposed models was able to correctly distinguish between each of the 3 classes. In addition 

the accuracy obtained is also particularly good, as can be read in Table 2. 

Method AUC Accuracy Precision Recall 

ANN 0.9996 0.9877 0.9877 0.9877 

SVM 0.9996 0.9909 0.9909 0.9909 

KNN 0.9980 0.9844 0.9844 0.9844 

Table 2: Metrics for ML Techniques for Dataset2 

In the same way, the results shown in Table 2 do not allow designating a model as the 

best because there are no significant differences in the metrics of the 3 models. Empirically, 

the SVM model performed a little better in comparison with the remaining, due to its AUC and 

accuracy. 

The validation curves for the SVM model are shown below in Figure 5, where it can be 

seen that the model does not have over-fitting or under-fitting. 
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Figure 5: Validation curves for the SVM model by value of gamma Dataset2 

Figure 6 shows the ROC and Precision-Recall curves, indicating that successful results 

were obtained for the SVM model and that the classification was particularly good, with a very 

low rate of false negatives and positives and a good distinction between classes. 

 

Figure 6: ROC and Precision-Recall curves for SVM Dataset2 

In addition, it is important to mention that the SVM and the other models used in 

Dataset2 were able of correctly direct the traffic for the proposed network, obtaining the 

desired behavior. These models provide alternation in the routes to send and receive packets, 
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when the last speed is greater than 5 Mbps, the models choose the next route with the lower 

bandwidth. 

Finally, it is worth mentioning that for both datasets, all the models achieved an 

excellent performance, showing that the three have great generalization power. In addition, the 

data collected for each dataset helped the models to obtain excellent results in classifying the 

paths. 
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CONCLUSIONS AND FUTURE WORK 

This work uses a software-defined network to obtain two datasets in order to feed 3 

machine learning models and perform a network path classification. Specifically, the following 

classifiers were used: SVM, ANN and kNN, of which all managed to obtain good results. 

Despite the good results of all the models, no model could be designated as the winner, because 

there were no significant differences in their performance. Regardless of having excellent 

results for both datasets, in the first dataset, none of the classifiers were able to generate 

alternation in the network paths, which indicates that the dataset was not adequate for this 

behavior. 

In the case of the second dataset, the algorithms did achieve the goal of creating 

alternation between the paths of the network, exchanging paths when the bandwidth of the 

current path was greater than 5 Mbps. 

As future work, it is planned to use a network with a greater number of nodes such as 

the Abilene network, which have 11 nodes and 14 paths between the New York and Seattle 

nodes. This network would allow testing the performance of the machine learning models in a 

more complex network, as well as, to use reinforcement learning models to address the problem 

of classifying traffic on the network. 
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