UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Posgrados

"Análisis y Diseño de Edificaciones Utilizando el Sistema de Marcos Arriostrados de Pandeo Restringido. Comparación con Sistemas de Arriostramiento Concéntrico"

Proyecto de Investigación y Desarrollo

Christian Arturo Merchán Sánchez

Ing. Pablo Andrés Torres Rodas Phd. Director de Trabajo de Titulación

Trabajo de titulación de posgrado presentado como requisito para la obtención del título de Magíster en Ingeniería Civil, Mención Diseño y Construcción de Estructuras Sismo Resistentes

Quito, Abril 2021

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ COLEGIO DE POSGRADOS

HOJA DE APROBACIÓN DE TRABAJO DE TITULACIÓN

Análisis y Diseño de Edificaciones Utilizando el Sistema de Marcos Arriostrados de Pandeo Restringido. Comparación con Sistemas de Arriostramiento Concéntrico

Christian Arturo Merchán Sánchez

Nombre del Director del Programa:	Fernando Romo
Título académico:	Master of Science
Director del programa de:	Maestría en Ingeniería Civil

Nombre del Decano del colegio Académico:	Eduardo Alba
Título académico:	Doctor of Philosophy
Decano del Colegio:	Colegio de Ciencias e Ingenierías

Nombre del Decano del Colegio de Posgrados:	Hugo Burgos
Título académico:	Doctor os Philosophy

Quito, Abril 2021

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este trabajo en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación Superior del Ecuador.

Nombre del estudiante:

Christian Arturo Merchán Sánchez

Código de estudiante:

____00211808_____

C.I.:

____0927351114_____

Lugar y fecha:

Quito, 27 de Abril de 2021.

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado como una publicación, incluso a pesar de estar disponible sin restricciones a través de un repositorio institucional. Esta declaración se alinea con las prácticas y recomendaciones presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017) Discussion document on best practice for issues around theses publishing, disponible en http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following graduation project is available through Universidad San Francisco de Quito USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be considered a publication. This statement follows the recommendations presented by the Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion document on best practice for issues around theses publishing available on http://bit.ly/COPETheses.

DEDICATORIA

A Dios el cual soy un ferviente devoto.

A mis queridos padres Jorge Merchán y Rosario Sánchez por su constante apoyo. A mi Esposa Mayra Montes por su apoyo y compresión. A hija Danna Merchán por darme las ganas de superarme. A mis hermanas Lissette Merchán y Daniela Merchán por siempre estar cuando las necesite.

AGRADECIMIENTOS

A todas esas personas que aportaron en el desarrollo y finalización de este trabajo de titulación, a mi familia por entender mis ausencias y mis tiempos, a mis colegas y amigos de la USFQ por que dieron su grano de arena. Al Dr. Pablo Torres por su apoyo para cumplir con el objetivo final de este trabajo de titulación.

RESUMEN

En Ecuador el crecimiento inmobiliario ha sido considerable, cada vez nos presentamos con edificios que exigen tener más habilidades en el campo de la ingeniería civil. Los edificios de acero en nuestro país se están incrementando su uso en los últimos años. Es por eso que nos vemos en la necesidad de aprender sistemas estructurales que tengan mejor desempeño en edificios de gran altura. Lo que se busca es tener un buen desempeño estructural y una menor cantidad de materiales. Al tener menor cantidad de materiales lo hace más amigable con el medio ambiente.

El trabajo de titulación está enfocado a la comparación de dos sistemas estructurales que son: los marcos arriostrados de pandeo restringido y los marcos con arriostramiento concéntrico. En la presente tesis por ejemplo detallaremos, el diseño del sistema de piso y el análisis y diseño del pórtico con arriostramiento concéntrico y el pórtico con pandeo restringido, a su vez crearemos una herramienta para el proceso de análisis y diseño.

Palabras clave: (Pórticos con Arriostramiento Concéntrico, Arriostramiento de pandeo restringido, disipadores, SCBF, BRB).

ABSTRACT

In Ecuador, real estate growth has been considerable, each time we are presented with buildings that require more skills in the field of civil engineering. Steel buildings in our country are increasing their use in recent years. That is why we see the need to learn structural systems that perform better in high-rise buildings. What is sought is to have a good structural performance and fewer materials. Having fewer materials makes it more environmentally friendly.

The titling work is focused on the comparison of two structural systems that are: braced frames with restricted buckling and frames with concentric bracing. In this thesis, for example, we will detail the design of the floor system and the analysis and design of the gantry with concentric bracing and the gantry with restricted buckling, in turn we will create a tool for the analysis and design process.

Keywords: (Special concentric brace frames, buckling restrained brace, dissipators, SCBF, BRB).

TABLA DE CONTENIDO

CAPITULO 1 INTRODUCCIÓN	14
CAPITULO 2 OBJETIVO	14
CAPITULO 3 MARCO TEORICO	
3.1 Pórticos de arriostramiento concéntrico	
3.2 Pórticos con arriostramiento de pandeo restringido	17
CAPITULO 4 DESCRIPCION DE LA EDIFICACION EN ESTUDIO	20
4.1 Normativa	
	22
CAPITOLO 5 CARGAS	
5.1 Carga Muerta	
5.2 Carga de Construcción	
5.5 Carga de Construccionas de Carga	23 22
5.5 Cargas Sísmicas	23 24
CAPITULO 6 SISTEMA DE PISO	
CAPITULO 7 ANALISIS Y DISEÑO DEL SISTEMA DE PORTICOS CON	
ARRIOSTRAMIENTO CONCENTRICO	
7.1 Configuración de la Estructura	
7.2 Parámetros para el análisis y diseño del edificio	31
7.3 Cortante en la base	31
7.4 Análisis estructural mediante un modelo matemático	33
7.5 Diseño estructural de elementos	34
7.6 Determinación del periodo de la estructura.	
7.7 Distribución Vertical del Cortante	
7.8 Distribución horizontal del Cortante.	
7.9 Diseno de riostras.	
7.10 Analisis del mecanismo plastico	
7.11 Fuerza sismica en viga concentrica	
7.12 Viga de l'edisti ibucioli	40
7.15 Fuel Zas sistificas en columna	49 51
7.15 Cantidades del pórtico con arriostramiento concéntrico	51 54
CAPITULU 8 ANALISIS Y DISENU DEL SISTEMA DE PORTICOS CON	
ARRIOSTRAMIENTO DE PANDEO RESTRINGIDO (BRB)	
8.1 Configuration estructural	
8.2 Clasificación del sistema estructural.	
8.3 Periodo de la Estructura.	
8.4 Analisis Estructural mediante modelo matematico	
8.6 Distribución do cortanto vortical	
8.7 Área requerida de la riostra	02 61
8.8 Diseño de viga	04 ۶۲
89 Diseño de columna	۲۵. ۲۹
8.10 Cantidades del pórtico con arriostramiento de pandeo restringido	

CAPITULO 9 COMPARACION DE RESULTADOS	.73
CAPITULO 10 CONCLUSIONES	.77
CAPITULO 11 REFERENCIA	.79
ÍNDICE DE ANEXOS	80
ANEXO A – SISTEMA DE PISO	80
ANEXO B – DISEÑO DE PORTICOS CON ARRIOSTRAMIENTO CONCENTRICO SENTIDO X	80
ANEXO C – DISEÑO DE PORTICOS CON ARRIOSTRAMIENTO DE PANDEO RESTRINGIDO	
SENTIDO X	80

ÍNDICE DE TABLAS

Tabla 1. Propiedades de los Materiales.	. 21
Tabla 2. Parámetros para el Espectro de Aceleraciones	25
Tabla 3. Geometría modelo.	. 30
Tabla 4. Carga muerta sobreimpuesta (SD).	. 31
Tabla 5. Carga Viva (L)	. 31
Tabla 6. Distribución Vertical de Cortante.	
Tabla 7. Distribución Horizontal del Cortante.	. 39
Tabla 8. Solicitación por carga axial en Riostras.	40
Tabla 9. Relación demanda-capacidad de riostras.	42
Tabla 10. Fuerzas esperadas en las Riostras	
Tabla 11. Carga Axial última y Momento último en vigas	47
Tabla 12. Propiedades de la Sección W16X57.	
Tabla 13. Relación demanda-capacidad en la vigas del SCBF.	. 49
Tabla 14. Resumen de Fuerzas por sismo en las columnas del SCBF	. 50
Tabla 15. Resumen de cargas por gravedad y Estado último	. 51
Tabla 16. Relación Demanda/Capacidad de las Columnas del SCBF	. 53
Tabla 17. Cantidad y peso por elemento del SCBF.	. 54
Tabla 18. Geometría Modelo	. 55
Tabla 19. Resumen de periodos de vibración	. 57
Tabla 20. Distribución del Cortante en sentido Y para BRB.	. 62
Tabla 21. Distribución de fuerza para cada pórtico BRB	. 63
Tabla 22. Áreas de Núcleo de cálculo y asumidas para el BRB.	. 65
Tabla 23. Propiedades de la viga W14X48.	. 66
Tabla 24. Relación demanda/capacidad de las vigas del pórtico con los BRB	. 68
Tabla 25. Resumen de las fuerzas que actúan en las Columnas	. 69
Tabla 26. Propiedades de la columna W14X370.	. 70
Tabla 27. Diseño de Columnas del BRB	71
Tabla 28. Cantidades del Modelo con BRB.	. 72
Tabla 29. Periodos de vibración de los 2 sistemas estructurales	. 73
Tabla 30. Presupuesto del edificio con SCBF	. 74
Tabla 31. Presupuesto del edificio con BRB	. 75

ÍNDICE DE FIGURAS

Ilustración 1. Configuraciones permitas y prohibidas en Zonas Sísmicas. Referencia:	
Ductiles design of Steel strutures.	15
Ilustración 2. Pandeo de una riostra, terremoto de hyogoken Nabu, Japon (Cortesia de	e
National Information Service for Earthquake Enginnering, EERC, University of	
California, Berkeley), Crisafulli, 2014	16
Ilustración 3. Comportamiento cíclico teniendo una relación de esbeltes de 120, curv	a de
histéresis fuerza axial versus desplazamiento axial. Ref: Ductile design of Steel	
structures	17
Ilustración 4. Comportamiento convencional de riostra versus BRB. Referencia Duct	ile
Design of Steel structures.	
Ilustración 5. Detalle de una riostra de pandeo restringido, formada por un núcleo de	acero
recubierto con una capa deslizante dentro de un tubo exterior relleno con mortero	de
cemento. Referencia. Clases Innovación Tecnológica 1, USFQ. Prof. Amador Te	rán 19
Ilustración 6. Vista de una riostra de pandeo restringido en un edificio de la Universid	dad de
California, Berkeley. Referencia: Crisafulli 2014	19
Ilustración 7. Respuesta típica histeretica de un BRB. Referencia Ductile Design of S	steel
Strutures	20
Ilustración 8. Planta del edificio en estudio	20
Ilustración 9. Alzado de la edificación en estudio	21
Ilustración 10. Espectro elastico de aceleraciones	26
Ilustración 11. Ingreso de datos en software creado en este estudio para el diseño del	sistema
de piso	27
Ilustración 12. Resultado de la macros, relación demanda capacidad, dimensiones de	la viga.
Ilustración 13. Relación demanda capacidad de la vigueta.	
Ilustración 14. Relación demanda/capacidad de la viga	
Ilustración 15. Vista en planta del modelo estructural en el software Etabs	
Ilustración 16. Modo $1 = 2.16$ seg, sentido Y	
Ilustración 17. Modo $2 = 1.76$ seg, sentido X	
Ilustración 18. Modo 3 = 1.06 seg, rotacional.	
Ilustración 19. Modelo tridimensional con diafragma rígido.	
Ilustración 20. Resultados de Derivas Máximas Modelo SCBF.	
Ilustración 21. Ingreso de datos en software creado en este estudio para el diseño del	Pórtico
de arriostramiento concéntrico. Ingreso Riostras.	
Ilustración 22. Ingreso de datos en software creado en este estudio para el diseño del	Pórtico
de arriostramiento concéntrico. Ingreso Riostras.	
Ilustración 23. Ingreso de datos en software creado en este estudio para el diseño del	Pórtico
de arriostramiento concéntrico. Ingreso Columnas.	
Ilustración 24. Configuración del pórtico el en cual vamos a diseñar los elementos	
Ilustración 25. Inclinación de la riostras de SCBF.	
Ilustración 26. Gráfico de cómo actúa el mecanismo plástico de fuerzas para la condi	ción 1.
1	
Ilustración 27. Gráfico de cómo actúa el mecanismo plástico de Fuerzas para la Conc	lición 2.
1 1	

Ilustración 28. Gráfico de cómo actúan las fuerzas en las vigas concéntricas en ambas	
condiciones.	45
Ilustración 29. Gráfico de cómo actúan las fuerzas en las vigas de redistribución en amba	as
condiciones.	46
Ilustración 30. Mecanismo de Fuerzas en Columnas para la condición 1	49
Ilustración 31. Mecanismo de Fuerzas en Columnas para la condición 2	50
Ilustración 32. Propiedades de la sección W14X370.	51
Ilustración 33. Vista en planta del Modelo de BRB.	55
Ilustración 34. Modo 1 T=1.91 seg Sentido Y – Modelo BRB	56
Ilustración 35. Modo 2 T=1.55 seg Sentido X – Modelo BRB.	57
Ilustración 36. Modo 3 T=0.93 seg Rotacional – Modelo BRB	57
Ilustración 37. Modelo tridimensional con diafragma rígido.	58
Ilustración 38. Gráfico de la distorsión entre piso Edificio con BRB.	58
Ilustración 39. Ingreso de datos en software creado en este estudio para el diseño del Ric	ostras
de Pandeo Restringido. Ingreso de datos generales	60
Ilustración 40. Ingreso de datos en software creado en este estudio para el diseño del Ric	ostras
de Pandeo Restringido. Ingreso de vigas	60
Ilustración 41. Ingreso de datos en software creado en este estudio para el diseño del Ric	ostras
de Pandeo Restringido. Ingreso de columnas	61
Ilustración 42. Configuración del pórtico el en cual vamos a diseñar los elementos del B	RB.
	61
Ilustración 43. Valor kf ingresado en el programa ETABS	63
Ilustración 44. Catálogo de Empresa de Disipadores BRB. Referencia: www.corebrace.c	om
	64
Ilustración 45. Deriva de piso de los 2 sistemas estructurales en el sentido x	73
Ilustración 46. Deriva de piso de los 2 sistemas estructurales en el sentido y	74
Ilustración 47. Costo de los 2 sistemas estructurales	75

CAPITULO 1.- INTRODUCCIÓN

Los Pórticos con arriostramiento concéntrico por sus iniciales en inglés (Special concentric braced frame) son sistemas estructurales muy eficiente para las cargas laterales que se inducen a los edificios ya sea por carga sísmica o de viento. Sin embargo las riostras cuando trabajan disipan su energía deformándose (acumulando daño). Las riostras tienen un gran desempeño trabajando a tensión. Sin embargo a compresión es deficiente. El sistema de pórticos con arriostramiento de pandeo restringido por sus iniciales en inglés (buckling-restrainded braced frames) al igual que el SCBF es muy eficiente ante cargas laterales, la diferencia entre estos sistemas que la resistencia a la compresión del BRB es mucho mayor porque el acero del núcleo de BRB fluye a tensión y a compresión.

CAPITULO 2.- OBJETIVO

En el presente documento realizaremos el análisis y diseño de un edificio tipo de 15 pisos con los sistemas de pórticos con arriostramiento concéntrico y pórticos con arriostramiento de pandeo restringido. Se analizara la respuesta estructural del edificio con los dispositivos mencionados, se llegaran a los diseños definitivos de ambos sistemas. Realizaremos comparación de resultados, tanto respuesta estructural, y cantidad de material que se utiliza. A su vez describiremos su facilidad constructiva.

CAPITULO 3.- MARCO TEORICO

3.1 Pórticos de arriostramiento concéntrico

El sistema de pórticos con arriostramiento concéntrico viene de la aplicación de armaduras para carga gravitacional que se construyen para puentes. Los SCBF son una armadura en vertical y trabaja a carga axial primordialmente. La utilización en puente viene desde Earl Trumbull{s 1840 puente sobre el canal Erie. Y por primera vez se utilizó en vertical en el edificio Crystal Palace en Londres en 1851 y en Crystal Palace en Nueva York Estados Unidos. La riostra contrarresta el movimiento ante las cargas de viento.

En la actualidad las diagonales es muy común ver edificios con este sistema el cual busca resistir las fuerza laterales. Aún más en zonas de amenaza sísmica alta. La filosofía de diseño sísmico busca dejar sin daños las vigas y columnas, una de sus ventajas es que es más fácil cambiar una diagonal que una viga o más aun columna deformada.

Las riostras diagonales deben estar especialmente diseñadas para soportar deformación plástica y disipar energía histeretica de manera estable a través de sucesivos ciclos de pandeo en compresión y deformación en tensión (Ductiles design of Steel strutures).

Para el uso de riostras diagonales existen configuraciones que están permitidas y otras que están prohibidas como se muestra en la ilustración.

Ilustración 1. Configuraciones permitas y prohibidas en Zonas Sísmicas. Referencia: Ductiles design of Steel strutures.

Nota: Diagonales en X (a,b y c), diagonal V invertida, diagonal en V, Diagonal K y doble diagonal k(f y g), Diagonal simple (h e i) y diagonal rodilla (j).

Ilustración 2. Pandeo de una riostra, terremoto de hyogoken Nabu, Japon (Cortesia de National Information Service for Earthquake Enginnering, EERC, University of California, Berkeley), Crisafulli, 2014

La capacidad de disipar energía se lo visualiza en un comportamiento histérico, en el cual se ensaya la riostra diagonal con carga cíclica axial tanto en tensión como en compresión. Se mide la deformación cuando se va incrementando la carga. El comportamiento de las riostras diagonales depende de la relación kl/r y sus limitantes. K es el factor de longitud efectiva, L es la longitud libre en el vano y r es el radio de giro del miembro dependiendo de su eje de pandeo. A continuación mostramos una histéresis de un perfil W ensayado en laboratorio.

Ilustración 3. Comportamiento cíclico teniendo una relación de esbeltes de 120, curva de histéresis fuerza axial versus desplazamiento axial. Ref: Ductile design of Steel structures.

En la ilustración 3 podemos visualizar que en tensión (lado derecho superior) tiene mayor capacidad de carga. Sin embargo en compresión (lado izquierdo inferior) primero llega a una capacidad alta y después se va degradando su fuerza. Este comportamiento se toma en cuanta en el diseño de los elementos que conforman el pórtico. Tenemos máxima Tensión, máxima compresión y compresión post-pandeo.

La norma AISC 341 establece límites de esbeltez en las diagonales el límite es $KL/r \le 200$.

3.2 Pórticos con arriostramiento de pandeo restringido

El sistema de pórticos con arriostramiento de pandeo restringido es relativamente nuevo a diferencia de los otros sistemas como los marcos de arriostramiento concéntrico o excéntrico, a igual que los pórticos resistentes a momento. Este sistema se desarrolló por primera vez en Japon en 1970 y a través de investigaciones posteriores este sistema gano una rápida aceptación después del terremoto de Northridge de 1994 y se codifico en los Estados Unidos. A continuación en la siguiente figura mostramos el comportamiento histeretico de un arriostramiento convencional y un arriostramiento de pandeo restringido.

Ilustración 4. Comportamiento convencional de riostra versus BRB. Referencia Ductile Design of Steel structures.

Podemos visualizar que el BRB tiene mayor capacidad de fuerza axial que una riostra convencional. A demás tiene mayor área dentro de la curva esto se traduce a que tiene mayor disipación de energía.

En la ilustración 5 podemos visualizar como se compone una riostra de pandeo restringido la cual tiene un núcleo de acero, un tubo de acero exterior y por dentro esta rellenado por mortero de cemento.

Además en la ilustración 6 mostramos la aplicación de este sistema a un edificio de acero real, con sus componente de conexión al pórtico.

Ilustración 5. Detalle de una riostra de pandeo restringido, formada por un núcleo de acero recubierto con una capa deslizante dentro de un tubo exterior relleno con mortero de cemento. Referencia. Clases Innovación Tecnológica 1, USFQ. Prof. Amador Terán

Ilustración 6. Vista de una riostra de pandeo restringido en un edificio de la Universidad de California, Berkeley. Referencia: Crisafulli 2014.

A continuación mostramos una histéresis típica de una riostra de pandeo restringido. La respuesta de histéresis es muy estable con una gran capacidad de disipación de energía. Lo que se busca con estos dispositivos es que la respuesta tanto bajo tensión como a compresión sea igual.

Ilustración 7. Respuesta típica histeretica de un BRB. Referencia Ductile Design of Steel Strutures.

CAPITULO 4.- DESCRIPCION DE LA EDIFICACION EN ESTUDIO

Nuestra edificación tendrá cinco vanos en el sentido en X, con longitudes uniforme de 6m. En el sentido Y tendremos cuatro vanos, con longitudes uniforme de 6m. La estructura simétrica en cruz. En la ilustración 8 visualizamos la planta de la edificación en estudio, y en la ilustración 9 vemos el alzado de la edificación.

Ilustración 8. Planta del edificio en estudio.

Ilustración 9. Alzado de la edificación en estudio.

Utilizaremos viguetas perfil W y también en las vigas principales, para las riostras diagonales en el SCBF usaremos perfiles redondos HSS. La losa será Steel deck, un placa colaborante de acero con hormigón fundido en sitio. En la tabla 1 se describen las propiedades de los materiales.

Tino	Norma	Modulo Elasticidad	Resistencia a Fluencia y a Rotura, Especificada y Esperada				ra,	
1100	ASTM	E (Mpa)	Fy/f'c (Mpa)	Fu (Mpa)	Ry	Rt	Fye Mpa)	Fue (Mpa)
Acero Estructural	A572	200000	352	455	1.1	1.1	387.2	500.5
Concreto CoreBrace		21538 200000	21 252	-	-	-	- -	-
Tablero Metálico	A653 SS Gr 40	200000	272	380	-	-	-	-

 Tabla 1. Propiedades de los Materiales.

4.1 Normativa

Para el estudio de nuestra edificación nos guiaremos con los siguientes códigos de construcción:

- Norma Ecuatoriana de la Construcción NEC-15
- American Institute Steel Construction AISC 360-10
- ASCE 7 -10

CAPITULO 5.- CARGAS

5.1 Carga Muerta

Definición: Se consideró como cargas muertas las que actúan permanentemente, tales como el peso propio de la estructura, revoques, instalaciones diversas, reacción del suelo (a través de la cimentación).

Pesos Unitarios:

Concreto reforzado (y)	2.400 Kg/m3
Mortero de cemento (γ)	2.000 Kg/m3
Tierra compactada (γ)	1.800 Kg/m3
Acero (γ)	7.850 Kg/m3
Tumbados, acabados de piso, instalaciones y varios	140 Kgf/m ²
Peso total de paredes por metro cuadrado	260 kgf/m ²
Carga Muerta sobre impuesta mínima aproximada por m2 de piso => 400	0kg/m²

5.2 Carga Viva

Son cargas que no son permanentes en la estructura y depende del tipo de uso que se le da a la edificación.

Nuestro edificio tendrá una ocupación de oficinas, de acuerdo a la Norma ecuatoriana de la Construcción en el Capítulo Cargas (no sísmicas) tenemos el siguiente valor:

OFICINA: 250 Kgf/m²

5.3 Carga de Construcción

Para el diseño de sistema de piso es obligatorio considerar la etapa constructiva es por ello que debemos considerar una carga viva en etapa de construcción, la cual será

$100 kg f/m^2$

5.4 Combinaciones de Carga

Método de diseño y combinaciones de carga

En general se tomaron los coeficientes de seguridad para la Teoría de Diseño Plástico según el Reglamento AISC – 360-16

Combinación Básica:

Las estructuras de Acero estructural, sus componentes y su cimentación deben diseñarse de tal manera que sus resistencias de diseño excedan los efectos de las cargas mayoradas, siendo este el requisito básico para el diseño por resistencia y se puede expresar como:

Resistencia de Diseño ≥ Resistencia Requerida

¢Rn≥U

La Resistencia Requerida U debe ser por lo menos igual al efecto de las cargas mayoradas en las siguientes ecuaciones:

$$U=1.4(D+F)$$
 Ec. (5.3)

$$U = 1,2 (D + F + T) + 1,6 (L + H) + 0,5 (Lr \circ S \circ R)$$
 Ec. (5.3)

 $U = 1,2 D + 1,6 (Lr \circ S \circ R) + (1,0 L \circ 0,8 W)$ Ec. (5.3)

$$U = 1,2 D + 1,6 W + 1,0 L + 0,5 (Lr \circ S \circ R)$$
 Ec. (5.3)

$$U = 1,2 D + 1,0 E + 1,0 L + 0,2 S$$
 Ec. (5.3)

$$U = 0.9 D + 1.6 W + 1.6 H$$
 Ec. (5.3)

$$U = 0.9 D + 1.0 E + 1.6 H$$
 Ec. (5.3)

Donde:

D	= cargas permanentes, o las solicitaciones correspondientes
Е	= efectos de carga de las fuerzas sísmicas, o las solicitaciones correspondientes
F	= cargas debidas al peso y presión de fluidos con densidades bien definidas y alturas
	máximas controlables, o las solicitaciones correspondientes.
Н	= cargas debidas al peso y presión lateral del suelo, del agua en el suelo, u otros
	materiales, Ó las solicitaciones correspondientes
L	= sobrecargas, o las solicitaciones correspondientes
Lr	= sobrecargas en las cubiertas, o las solicitaciones correspondientes
R	= cargas provenientes de la lluvia, o las solicitaciones correspondientes
S	= carga de nieve, o las solicitaciones correspondientes
Т	= efectos acumulativos de la contracción o expansión resultante de las variaciones de
	temperatura, la fluencia lenta, la contracción y el hormigón de contracción
compens	ada
U	= resistencia requerida para resistir las cargas mayoradas o las solicitaciones
correspo	ndientes

W = carga de viento, o las solicitaciones correspondientes

5.5 Cargas Sísmicas

De acuerdo al capítulo 2 de la Norma ecuatoriana de la construcción no indica el proceso y los parámetros para determinar esta carga.

Nuestro edificio se ubica en la ciudad de Quito la cual es zona sísmica 5, en esta ciudad el estudio de peligro sísmico para un 10% de excedencia en 50 años (periodo de retorno 475 años), tenemos una valor de aceleración sísmica de 0.40 g. Además el valor de $\eta = 2.48$ (Provincias de la Sierra).

El tipo de suelo donde vamos a cimentar nuestro edificio obedece a la categoría de D.

A continuación en la tabla presentaremos el factor de importancia dependiendo a la categoría de la estructura.

Para este proyecto estamos considerando que se trata de edificio privado, se considera categorizar a esta obra como "Otras estructuras", cuyo Factor de Importancia I es 1.0.

Tenemos un edificio regular y para estas edificaciones los coeficientes de irregularidad tanto en planta como en altura tienen un valor de 1.0.

En la tabla 3 visualizamos todos los parámetro para formar nuestro espectro de aceleraciones.

DESCRIPCION	VALOR
LOCALIZACION	QUITO
ZONA DE AMENAZA	
SISMICA	ALTA
Aa	0.4
TIPO DE PERFIL DE SUELO	D
Fa	1.2
Fd	1.19
Fs	1.28
REGION	SIERRA
η	2.48
COEFICIENTE DE	
IMPORTANCIA	1
ØPA	1
ØPB	1
ØP	1
ØEA	1
ØEB	1
ØE	1

Tabla 2. Parámetros para el Espectro de Aceleraciones.

Ilustración 10. Espectro elastico de aceleraciones.

CAPITULO 6.- SISTEMA DE PISO

El diseño de nuestro sistema de pisos lo realizaremos con la guía de diseño en Acero Número 11(floor Vibrations due to human activity). Diseñamos nuestras vigas de piso como un sistema compuesto con la losa de hormigón (topping), la cual aumenta la rigidez, se revisa la deformación y las vibraciones. A continuación procederemos al diseño del sistema de piso en el cual realizamos una hoja Excel en macros. En la siguiente imagen mostramos su uso.

Para nuestro sistema de piso usamos un factor de amortiguamiento de 12% porque nuestro edificio tendrá particiones con paredes de bloque.

Ilustración 11. Ingreso de datos en software creado en este estudio para el diseño del sistema de piso.

Una vez ya ingresado los datos procedemos a dar click al botón "CALCULAR".

Damos click en VER RESULTADOS, para visualizar las relaciones demandas-capacidad.

SISTEMA DE PISO

Ilustración 12. Resultado de la macros, relación demanda capacidad, dimensiones de la viga.

		Acceptable Designs	i -					Results for			
		Section	Shear Studs	Camber	Ratio]		Beam B65 at Story Story15		Last Analysis	W12X
		W12X19	8	0	0.888	Percent Com	ip. 27 🗸	Strength Checks			
						Uniform :	Shear Studs		Factored	Design	Rati
						Camber	0.00	Shear at Ends (kN)	67.4711	360.4828	0.18
								Construction Bending (kN	81.4365	108.0551	0.75
SULTADOS DE VIGUET						Reset th	ne Above	Full Comp. Bending (kN-m) Partial Comp. Bending (kN-m)	101.2067	281.3285	0.36
f (mm) = 102	, DT	+ f						ratio comp. Senarg (senary	10112001	104.0000	0.0
						Web Op	ienings				
(mm) = 8.89											
(mm) = 310								Constructability and Serviceability C	hecks		
u (mm) - E 07	a								Actual	Allowable	Rat
v (nin) = 5.97	u tw							Shear Studs Distribution	8	19	0.4
								Pre-composite Defl. (m)	0.01934	No Limit	N
$M_{m} > M_{m} = 0.38$								Post-composite Detl. (m)	0.00286	0.025	0.1
								Total Defl. (m)	0.0222	0.025	0.8
V S V 0.19		++						Bottom Flange Stress (kN/m²)	203030.1	344737.89	0.58
n vu								Walking Acceleration ap/g	0.000745	0.005	0.14
pa de construccion		Auto Select List	NONE ~	Specify S	ection	Show G	roup Results	-	0.1.7		
M > M = 0.74	Currente	Oroup	NONE					Temporary	/ Details	-	
$n - m_u$	Cumple	Group	NONE	Overwr	tes	Show Al	Alternates	Combos	Diagrams	Rep	ort

Ilustración 13. Relación demanda capacidad de la vigueta.

Después que nuestro sistema de piso allá cumplido con lo establecido damos click en IMPRIMIR para visualizar la memoria de cálculo, En el Anexo 1 presentamos la memoria de Cálculo del Sistema de Piso.

	Alternate Designs					Results for			-
	Section	Shear Studs	Camber	Ratio		Beam B37 at Story Story15		Last Analysis	W14X3
	W14X34	3,3,3	0	0.963	Percent Comp. 0 V	Strength Checks			
					Uniform Shear Studs		Factored	Design	Ratio
					Camber 0.00	Shear at Ends (kN)	137.2162	532.4522	0.258
						Construction Bending (kN-m)	204.6787	265.5768	0.77
					Reset the Above	Positive Bending (kN-m)	253.8292	265.5768	0.95
					Web Openings				
						-			
						Constructability and Serviceability	Checks		
bit abos de viga cargadora							Actual	Allowable	Ratio
						Constr. Dead Defl. (m)	0.01753	No Limit	N/4
nm) = 11.6						Post-concrete Defl. (m)	0.00653	0.025	0.26
nm) = 356						Live Load Defl. (m)	0.00653	0.01667	0.39
mm) = 7.24						Bottom Flance Stress (kN/m ²)	220305 17	344737 89	0.50
3						Walking Acceleration ap/g	0.000758	0.005	0.15
$n > M_u$ 0,94			24		1				
. > V _u 0,27	Auto Select List	NONE ~	Specify	Section	Show Group Results	Temporary Sho	w Details		
de construccion	Group	NONE 🗸 🗸	Overv	vrites	Show All Alternates	Combos	Diagrams	Rep	ort
$M_{*} > M_{*}$ 0,76 Cumple									

Ilustración 14. Relación demanda/capacidad de la viga.

En el Diseño de Sistema de piso realizado por el software Etabs hemos observado lo siguiente: La consideración de ancho efectivo para la vigueta, cuando se indica automático, el programa considera la distancia entre vigueta divida para dos, no considera la longitud de la vigueta L/8. Cuando calcula la capacidad a momento de la sección considera la menor entre la resistencia como sección compuesta o la resistencia a flexión de la viga con apuntalamiento.

CAPITULO 7.- ANALISIS Y DISEÑO DEL SISTEMA DE PORTICOS CON ARRIOSTRAMIENTO CONCENTRICO

7.1 Configuración de la Estructura

En la siguiente imagen visualizamos la configuración de nuestro sistema estructural en planta, la nomenclatura con sus siglas en ingles SCBF (Special concentric braces frames).

Tabla 3. Geometría modelo.

Ilustración 15. Vista en planta del modelo estructural en el software Etabs.

Para nuestro edificio usaremos el sistema puro de Pórticos especiales con arriostramiento concéntrico.

R = 6.0

7.2 Parámetros para el análisis y diseño del edificio

En las siguientes tablas se describen los parámetros para el análisis y diseño de la edificación de acero en estudio, ubicado en la ciudad de Quito y destinado para el uso de oficinas.

 Tabla 4. Carga muerta sobreimpuesta (SD).

DESCRIPCION	VALOR	UND
ACABADOS DE PISO	140	kgf/m²
MAMPOSTERIA DIVISORIA	260	kgf/m²
CARGA MUERTA SOBREIMPUESTA (SD)	400	kgf/m²

DESCRIPCION	VALOR	UND
CARGA VIVA USO OFICINA	250	kgf/m²

Tabla 5. Carga Viva (L).

7.3 Cortante en la base

Determinar el periodo fundamental de la estructura de manera aproximada NEC-15

 $T = C_t h_n^{\alpha}$

Para pórticos de Acero arriostrados

 $C_t = 0.073$

 $\alpha = 0.75$

 h_n = Altura del edificio en metros

$$T = (0.073)(54)^{0.75}$$
$$T = 1.45 s$$

El periodo que calculamos con la ecuación anterior, lo usamos para obtener un prediseño de los elementos, en el momento que ingresamos datos en el programa ETABS determinamos los periodos reales fundamentales. A continuación mostramos los periodos de la estructura en estudio.

Ilustración 16. Modo 1 = 2.16 seg, sentido Y.

Ilustración 17. Modo 2 = 1.76 seg, sentido X.

Ilustración 18. Modo 3 = 1.06 seg, rotacional.

7.4 Análisis estructural mediante un modelo matemático

A continuación mostramos el modelo matemático de la edificación utilizando el software de diseño ETABS, para el revisar la distorsión entre piso.

Ilustración 19. Modelo tridimensional con diafragma rígido.

A continuación mostramos la derivas máximas inelásticas obtenidas por el análisis.

Ilustración 20. Resultados de Derivas Máximas Modelo SCBF.

 $\Delta_1 = 0.01454$, Deriva máxima en X del Análisis de Primer Orden $\Delta_1 = 0.01792$, Deriva máxima en Y del Análisis de Primer Orden $\Delta_2 = 0.01485$, Deriva máxima en X del Análisis de Segundo Orden $\Delta_2 = 0.01850$, Deriva máxima en Y del Análisis de Segundo Orden

Relación Deriva en X:

$$\frac{\Delta_2}{\Delta_1} = \frac{0.01485}{0.01454} = 1.02 < 1.50$$

Relación Deriva en Y:

$$\frac{\Delta_2}{\Delta_1} = \frac{0.01850}{0.01792} = 1.03 < 1.50$$

Como la relación entre derivas máximas del análisis de segundo orden y las derivas de primer orden en cada sentido son menores de 1.50, no se considera cargas nocionales.

7.5 Diseño estructural de elementos

Para el diseño de elementos estructurales usaremos nuestro software creado para este trabajo.

A continuación presentaremos su funcionamiento.

Paso 1: Ingresar los datos como geometría, cargas, periodo, tipo de acero en (viga, riostra, columna), seleccionar Perfil (riostra, viga, columna).

Paso 2: Presionar el botón CALCULAR

Paso 3: Presionar el botón VER RESULTADOS.

Si realizamos una modificación, presionamos CALCULAR y después VER RESULTADOS.

Una vez obtenido nuestro diseño presionamos el botón IMPRIMIR para que se genere una memoria de cálculo.

Ilustración 21. Ingreso de datos en software creado en este estudio para el diseño del Pórtico de arriostramiento concéntrico. Ingreso Riostras.

Ilustración 22. Ingreso de datos en software creado en este estudio para el diseño del Pórtico de arriostramiento concéntrico. Ingreso Riostras.

Ilustración 23. Ingreso de datos en software creado en este estudio para el diseño del Pórtico de arriostramiento concéntrico. Ingreso Columnas.

A continuación presentamos el diseño estructural del pórtico con arriostramientro concéntrico en el sentido Y.

Ilustración 24. Configuración del pórtico el en cual vamos a diseñar los elementos.
7.6 Determinación del periodo de la estructura.

Obtención del coeficiente sísmico para el diseño del pórtico en el sentido Y.

$$C_y = \frac{IS_a(I_a)}{R\phi_p\phi_E}$$
$$C_y = \frac{(1)(0.35)}{(6)(1)(1)}$$
$$C_y = 0.06g$$

Peso del edificio

 $W = 57690 \ kN$

Cortante en el sentido Y

Ilustración 25. Inclinación de la riostras de SCBF.

7.7 Distribución Vertical del Cortante.

Basado en los principios de la dinámica, las fuerzas laterales totales de cálculo deben ser distribuidas en la altura de la estructura, usando la siguiente expresión que se encuentra en el capítulo de riesgo sísmico de la NEC-15

$$F_x = \frac{w_x h_x^k}{\sum_{i=1}^n w_i h_i^k}$$

Donde:

V	Cortante total en la base de la estructura
V_x	Cortante total en el piso x de la estructura
F _i	Fuerza lateral aplicada en el piso i de la estructura
F_{x}	Fuerza lateral aplicada en el piso x de la estructura
n	Número de pisos de la estructura
<i>W</i> _{<i>x</i>}	Peso asignado al piso o nivel x de la estructura, siendo una fracción de la carga
	reactiva W.
Wi	Peso asignado al piso o nivel i de la estructura, siendo una fracción de la carga reactiva
	W.
h_x	Altura del piso x de la estructura
h _i	Altura del piso i de la estructura

k Coeficiente relacionado con el periodo de vibración de la estructura T

Determinación de k:

$$T \le 0.5$$
 ; $k = 1$
 $0.5 < T \le 2.5$; $k = 0.75 + 0.5T$
 $T > 2.5$; $k = 2$

Para nuestro ejemplo el valor de k es igual a 1.83

Nivel	wi(kN)	hi(m)	wihi^k	Cvx	Fy(kN)
PISO 15	3846	54	5692327	0.172	646
PISO 14	3846	50.4	5017151	0.152	570
PISO 13	3846	46.8	4380858	0.132	497
PISO 12	3846	43.2	3783943	0.114	430
PISO 11	3846	39.6	3226944	0.098	366
PISO 10	3846	36	2710459	0.082	308
PISO 9	3846	32.4	2235150	0.068	254
PISO 8	3846	28.8	1801762	0.054	205

 Tabla 6. Distribución Vertical de Cortante.

PISO 7	3846	25.2	1411147	0.043	160
PISO 6	3846	21.6	1064289	0.032	121
PISO 5	3846	18	762356	0.023	87
PISO 4	3846	14.4	506772	0.015	58
PISO 3	3846	10.8	299347	0.009	34
PISO 2	3846	7.2	142537	0.004	16
PISO 1	3846	3.6	40091	0.001	5

7.8 Distribución horizontal del Cortante.

La distribución horizontal de la fuerza requiere considerar la torsión de los diafragmas. Se supone que los marcos de la cuadricula A y F resisten el 50 por ciento de la fuerza sísmica norte-sur más el 80% de la excentricidad accidental.

$$R_A = 0.5V + 0.8[V(0.05L)/L] = 0.54V$$

		Fuerza	
Nivel	Fy(kN)	Viga	Cortante
		(kN)	Viga (kN)
PISO 15	744	401.93	401.93
PISO 14	665	359.18	359.18
PISO 13	589	318.31	318.31
PISO 12	517	279.37	279.37
PISO 11	449	242.43	521.80
PISO 10	384	207.55	729.35
PISO 9	324	174.80	904.15
PISO 8	267	144.26	1048.41
PISO 7	215	116.05	1164.45
PISO 6	167	90.26	1254.72
PISO 5	124	67.06	1321.77
PISO 4	86	46.61	1368.38
PISO 3	54	29.16	1397.54
PISO 2	28	15.06	1412.60
PISO 1	9	4.87	1417.47

Tabla 7. Distribución Horizontal del Cortante.

7.9 Diseño de riostras.

La resistencia requerida de los arriostramientos se calcula a partir de las fuerzas sísmicas en la tabla. Es común que el diseñador ignore las fuerzas de gravedad en los tirantes. Aunque ese

enfoque no está explícitamente permitido para SCBF. Donde las Fuerzas de gravedad son significativas, deben ser consideradas. En este caso las fuerzas de gravedad, compartidas por seis tirantes y la viga, se ha determinado que es de 20 kN para la condición típica del piso para las combinaciones de carga sísmica. El efecto de tensión de esta fuerza de gravedad se descuida de manera conservadora para el diseño

Convertimos el cortante de piso en un cortante de riostra considerando tres riostras y el ángulo de riostra es de ATAN(3.6/3)=50.2 grados, las fuerzas de la riostra se calculan y y se presenta en la tabla 9. La resistencia a la compresión requerida se calcula sumando la fuerza de gravedad.

Nivel	Riostra Fuerza Sísmica (kN)	Riostra Fuerza de gravedad(kN)	Pu (kN)
PISO 15	136.27	20	136.27
PISO 14	120.11	0	120.11
PISO 13	104.87	20	104.87
PISO 12	90.58	0	90.58
PISO 11	167.83	20	167.83
PISO 10	232.72	0	232.72
PISO 9	286.23	20	286.23
PISO 8	329.36	0	329.36
PISO 7	363.14	20	363.14
PISO 6	388.62	0	388.62
PISO 5	406.87	20	406.87
PISO 4	419.00	0	419.00
PISO 3	426.17	20	426.17
PISO 2	429.58	0	429.58
PISO 1	430.54	20	430.54

 Tabla 8. Solicitación por carga axial en Riostras.

Se supone que la longitud efectiva de las riostras es la longitud del punto de trabajo (4,69 m) menos cierta distancia en cada extremo para tener en cuenta el tamaño de la conexión. A los efectos de la selección de miembros, se supondrá que la longitud efectiva es 85% de la longitud total 3.98m. Para ajustarse al límite de esbeltez de la riostra, el radio mínimo de giro es:

$$\frac{KL}{r} \le 200$$
$$r \le \frac{KL}{200}$$
$$r \le 19.91mm$$

Se utilizara perfiles redondos HSS A1085. El HSS redondo debe cumplir con los requisitos de AISC 341 para miembros altamente dúctiles. También se puedo utilizar perfiles redondos de CEDULA 40 que es más común en Ecuador.

$$D/t \le 0.053 \frac{E}{R_y F_y}$$
$$D/t \le 0.053 \frac{200000}{1.1 * (350)}$$

$$D/t \leq 27.53mm$$

$$F_e = \frac{\pi^2 E}{\left(\frac{L_c}{r}\right)^2}$$

$$F_{cr} = (0.658^{\frac{F_y}{F_e}})F_y$$
$$F_{cr} = (0.658^{\frac{R_yF_y}{F_e}})F_y$$

En la siguiente tabla mostramos las secciones de las riostras usadas en el eje A.

Nivel	Brace Size	r (mm)	kL/r	D/t	Area	Fe (Mna)	Fcr (Mna)	Fcre (Mna)	ØPn (kN)	Pu/ØPn
	11005 5(2¥0 500	<u>(mm)</u>	966	10	4010	$\frac{(mpa)}{2(2,2)}$	$\frac{(mpa)}{200.02}$	200		0.15
PISO 15	HSS5.563X0.500	46.00	86.6	12	4810	263.3	200.63	209	869	0.15
PISO 14	HSS5.563X0.500	46.00	86.6	12	4810	263.3	200.63	209	869	0.13
PISO 13	HSS5.563X0.500	46.00	86.6	12	4810	263.3	200.63	209	869	0.12
PISO 12	HSS5.563X0.500	46.00	86.6	12	4810	263.3	200.63	209	869	0.10
PISO 11	HSS5.563X0.500	46.00	86.6	12	4810	263.3	200.63	209	869	0.19
PISO 10	HSS5.563X0.500	46.00	86.6	12	4810	263.3	200.63	209	869	0.26
PISO 9	HSS5.563X0.500	46.00	86.6	12	4810	263.3	200.63	209	869	0.32
PISO 8	HSS6.625X0.500	55.40	71.9	14.2	5810	381.9	238.50	252	1247	0.26
PISO 7	HSS6.625X0.500	55.40	71.9	14.2	5810	381.9	238.50	252	1247	0.29
PISO 6	HSS6.625X0.500	55.40	71.9	14.2	5810	381.9	238.50	252	1247	0.31
PISO 5	HSS6.625X0.500	55.40	71.9	14.2	5810	381.9	238.50	252	1247	0.32
PISO 4	HSS6.625X0.500	55.40	71.9	14.2	5810	381.9	238.50	252	1247	0.33
PISO 3	HSS6.625X0.500	55.40	71.9	14.2	5810	381.9	238.50	252	1247	0.34
PISO 2	HSS6.625X0.500	55.40	71.9	14.2	5810	381.9	238.50	252	1247	0.34
PISO 1	HSS6.625X0.500	55.40	71.9	14.2	5810	381.9	238.50	252	1247	0.34

Tabla 9. Relación demanda-capacidad de riostras.

7.10 Análisis del mecanismo plástico.

Una vez que se dimensiona la riostra, se pueden calcular las demandas máximas sobre el resto del sistema. Se consideran dos condiciones: las fuerzas máximas que pueden entregar los tirantes (ya sea en tensión o compresión) y la condición después de que algunos tirantes se hayan pandeado (que puede ser crítica para ciertos miembros).

Para realizar estos análisis, se requieren tres valores para cada riostra: la resistencia a la tensión esperada, la resistencia a la tensión esperada, la resistencia a la compresión esperada y la resistencia post-pandeo aproximada.

La resistencia a la tensión esperada es:

 $R_y F_y A_g$

La resistencia a la compresión esperada es:

 $1.14F_{cre}A_{g}$

La resistencia post-pandeo es 0.3 veces la resistencia a la compresión esperada:

 $0.342F_{cre}A_g$

Los valores de estas fuerzas de la secciones se muestra en la tabla 11.

Nivel	Brace Size	Resistencia a Tensión Esperada (kN)	Resistencia a Compresión Esperada (kN)	Resistencia Post- Pandeo (kN)
PISO 15	HSS5.563X0.500	1851.85	1144.6	343.4
PISO 14	HSS5.563X0.500	1851.85	1144.6	343.4
PISO 13	HSS5.563X0.500	1851.85	1144.6	343.4
PISO 12	HSS5.563X0.500	1851.85	1144.6	343.4
PISO 11	HSS5.563X0.500	1851.85	1144.6	343.4
PISO 10	HSS5.563X0.500	1851.85	1144.6	343.4
PISO 9	HSS5.563X0.500	1851.85	1144.6	343.4
PISO 8	HSS6.625X0.500	2236.85	1672.2	501.7
PISO 7	HSS6.625X0.500	2236.85	1672.2	501.7
PISO 6	HSS6.625X0.500	2236.85	1672.2	501.7
PISO 5	HSS6.625X0.500	2236.85	1672.2	501.7
PISO 4	HSS6.625X0.500	2236.85	1672.2	501.7
PISO 3	HSS6.625X0.500	2236.85	1672.2	501.7
PISO 2	HSS6.625X0.500	2236.85	1672.2	501.7
PISO 1	HSS6.625X0.500	2236.85	1672.2	501.7

 Tabla 10. Fuerzas esperadas en las Riostras.

Condición 1: Máxima fuerza de tensión y máxima fuerza de compresión.

Visualizamos como se distribuyen las fuerzas en el pórtico del eje 1. Se asume el primer modo de deformación, todas las riostras en tensión alcanzan su fuerza de tensión esperada total, y se asume que las riostras en compresión alcanzan su fuerza de compresión esperada completa.

Ilustración 26. Gráfico de cómo actúa el mecanismo plástico de fuerzas para la condición 1.

Condición 2: Máxima fuerza de tensión y fuerza de compresión post-pandeo.

En la figura visualizamos la condición post-pandeo en el eje 1. Suponiendo una deformación de primer modo, se supone que todas las riostras en tensión alcanzan su máxima resistencia a la tensión esperada, y se asume que todas las riostras en compresión se han degradado a su resistencia nominal posterior al pandeo.

Ilustración 27. Gráfico de cómo actúa el mecanismo plástico de Fuerzas para la Condición 2.

7.11 Fuerza sísmica en viga concéntrica

La resistencia requerida de las vigas intersectadas por los arriostramientos, sus conexiones y miembros de soporte, deberá ser determinada de acuerdo a las combinaciones de carga aplicables para el diseño de edificaciones,

CONDICION 1

CONDICION 2

Ilustración 28. Gráfico de cómo actúan las fuerzas en las vigas concéntricas en ambas condiciones.

Nomenclatura:

PI: Piso Inferior

PS: Piso Superior

Condición 1:

La fuerza vertical en la viga es:

$$Q_{V1} = \left[R_y F_y A_g - 1.14 F_{cre} A_g \right]_{PI} \sin(\theta_{PI}) - \left[R_y F_y A_g - 1.14 F_{cre} A_g \right]_{PS} \sin(\theta_{PS})$$

La fuerza Horizontal en la viga es:

$$Q_{H1} = \left[R_{y} F_{y} A_{g} + 1.14 F_{cre} A_{g} \right]_{PI} \cos(\theta_{PI}) - \left[R_{y} F_{y} A_{g} + 1.14 F_{cre} A_{g} \right]_{PS} \cos(\theta_{PS})$$

Dada la simetría de la concisión, la fuerza axial en cada segmento es:

$$P_u = \frac{1}{2} Q_{H1}$$

Condición 2:

La fuerza vertical en la viga es:

$$Q_{V2} = \left[R_y F_y A_g - 0.342 F_{cre} A_g \right]_{PI} \sin(\theta_{PI}) - \left[R_y F_y A_g - 0.342 F_{cre} A_g \right]_{PS} \sin(\theta_{PS})$$

La fuerza Horizontal en la viga es:

$$Q_{H2} = \left[R_{y} F_{y} A_{g} + 0.342 F_{cre} A_{g} \right]_{PI} \cos(\theta_{PI}) - \left[R_{y} F_{y} A_{g} + 0.342 F_{cre} A_{g} \right]_{PS} \cos(\theta_{PS})$$

Dada la simetría de la concisión, la fuerza axial en cada segmento es:

$$P_u = \frac{1}{2} Q_{H2}$$

No está claro que condición gobierna debido a la selección de tamaño de riostra por encima y

por debajo de la viga. Las fuerzas de gravedad se aplican a la viga para el diseño.

La fuerza axial en la viga es:

$$P_u = F_{3R} + \left[0.342F_{cre}A_g\right]_{PS} \cos(\theta_{PS}) - \left[R_y F_y A_g\right]_{PI} \cos(\theta_{PI})$$

La resistencia a la compresión se puede calcular considerando la restricción proporcionada en el ala superior de la losa.

7.12 Viga de redistribución

En el siguiente grafico visualizamos como actúan las fuerzas de ambas condiciones en las vigas de redistribución.

Ilustración 29. *Gráfico de cómo actúan las fuerzas en las vigas de redistribución en ambas condiciones.*

Se supone que la fuerza de piso se entrega a dos tercios a través del cortante a lo largo de la

viga y una tercera parte a través de una fuerza colectora de lado derecho

$$F_{3} = \left[R_{y}F_{y}A_{g} + 0.342F_{cre}A_{g} \right]_{PI} \cos(\theta_{PI}) - \left[R_{y}F_{y}A_{g} + 0.342F_{cre}A_{g} \right]_{PS} \cos(\theta_{PS})$$

Se aplica un tercio de la fuerza

$$F_{3R} = 1/3F_3$$

La fuerza axial en la viga es:

$$P_u = F_{3R} + \left[0.342F_{cre}A_g\right]_{PS} \cos(\theta_{PS}) - \left[R_y F_y A_g\right]_{PI} \cos(\theta_{PI})$$

				Viga de							
Nivel	CO	NDICIO	N 1	CO	NDICIO	N 2	Rec	listribu	ıción	Mu	Pu
_	Qv1	Qh1	Pu	Qv2	Qh2	Pu	F3	F3R	Pu	(kN-m)	(kN)
PISO 15	543.3	1918.4	959.2	1158.8	1405.4	702.7				23.5	959.2
PISO 14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	965.7	23.5	965.7
PISO 13	0.0	0.0	0.0	0.0	0.0	0.0				23.5	0.0
PISO 12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	965.7	23.5	965.7
PISO 11	0.0	0.0	0.0	0.0	0.0	0.0				23.5	0.0
PISO 10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	965.7	23.5	965.7
PISO 9	0.0	0.0	0.0	0.0	0.0	0.0				23.5	0.0
PISO 8	109.5	584.3	292.1	174.2	347.8	173.9	347.8	115.9	1096.2	23.5	1096.2
PISO 7	0.0	0.0	0.0	0.0	0.0	0.0				23.5	0.0
PISO 6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1110.8	23.5	1110.8
PISO 5	0.0	0.0	0.0	0.0	0.0	0.0				23.5	0.0
PISO 4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1110.8	23.5	1110.8
PISO 3	0.0	0.0	0.0	0.0	0.0	0.0				23.5	0.0
PISO 2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1110.8	23.5	1110.8
PISO 1	0.0	0.0	0.0	0.0	0.0	0.0				23.5	0.0

Tabla 11. Carga Axial última y Momento último en vigas.

El diseño de la viga consideramos que tiene restricción en el ala superior proporcionada por la losa. Usamos el manual de diseño sísmico del AISC, el cual proporciona expresiones para el cálculo del pandeo de flexion-torsion de eje restringido.

	PROPIEDADES DE LA VIGA											
A =	10800	mm ²	Iy =	17900000	mm ⁴							
d =	417	mm	Sy =	198000	mm³							
tw=	10.9	mm	ry =	40.6	mm							
bf=	181	mm	Zy=	17900	mm³							
tf=	18.2	mm	rts =									
Ix=	316000000	mm^4	h =									
Sx=	1510000	тт³	J =	924000	$\rm mm^4$							
rx=	171	mm	C =	7.14E+11	mm ⁶							
Zx=	1720000	тт³	h/tw =	33.00								

 Tabla 12. Propiedades de la Sección W16X57.

$$F_e = \left[\frac{\pi^2 E\left(C_w + I_y\left(\frac{d}{2}\right)^2\right)}{(K_z L)^2} + GJ\right] \frac{0.9}{I_x + I_y + \left(\frac{d}{2}\right)^2 A_g}$$
$$F_e = 190.5 MPa$$
$$\emptyset P_n = 1576.9 kN$$
$$\frac{P_u}{\emptyset P_n} = 0.70$$
$$L = 5825mm$$

De la Tabla 3-10 del Manual del AISC. La resistencia a la flexión es

En la tabla podemos visualizar el perfil seleccionado para cada piso y su relación demanda capacidad.

NIVEL	Seleccione	Lb	rts^2	Lr	ØMn	Mu/ØMn	ØPn	Pu/ØPn	$\frac{P_U}{dR} + \frac{8M_u/9}{dM}$
		mm		mm	kN-m		kN		
PISO 15	W16X57	5545	2693.31	5826.45	347.23	0.07	1647.4	0.58	0.64
PISO 14	W16X57	5545	2693.31	5826.45	347.23	0.07	1647.4	0.59	0.64
PISO 13	W16X57	5545	2693.31	5826.45	347.23	0.07	1647.4	0.00	0.06
PISO 12	W16X57	5545	2693.31	5826.45	347.23	0.07	1647.4	0.59	0.64
PISO 11	W16X57	5545	2693.31	5826.45	347.23	0.07	1647.4	0.00	0.06
PISO 10	W16X57	5545	2693.31	5826.45	347.23	0.07	1647.4	0.59	0.64
PISO 9	W16X57	5545	2693.31	5826.45	347.23	0.07	1647.4	0.00	0.06
PISO 8	W16X57	5545	2693.31	5826.45	347.23	0.07	1647.4	0.67	0.72
PISO 7	W16X57	5545	2693.31	5826.45	347.23	0.07	1647.4	0.00	0.06
PISO 6	W16X57	5545	2693.31	5826.45	347.23	0.07	1647.4	0.67	0.73
PISO 5	W16X57	5545	2693.31	5826.45	347.23	0.07	1647.4	0.00	0.06
PISO 4	W16X57	5545	2693.31	5826.45	347.23	0.07	1647.4	0.67	0.73
PISO 3	W16X57	5545	2693.31	5826.45	347.23	0.07	1647.4	0.00	0.06
PISO 2	W16X57	5545	2693.31	5826.45	347.23	0.07	1647.4	0.67	0.73
PISO 1	W16X57	5545	2693.31	5826.45	347.23	0.07	1647.4	0.00	0.06

Tabla 13. Relación demanda-capacidad en la vigas del SCBF.

7.13 Fuerzas sísmicas en columnas

Las fuerzas para el diseño de las columnas es la mayor fuerza entre la condición 1 y la condición

2. A continuación mostramos las fuerzas del mecanismo tanto para la condición 1 y la condición

2.

CONDICION 1 Ilustración 30. Mecanismo de Fuerzas en Columnas para la condición 1.

Ilustración 31. Mecanismo de Fuerzas en Columnas para la condición 2.

Al igual que las vigas se obtiene la mayor fuerza de las condiciones 1 y 2.

CONDICION 1			CO	NDICIO	N 2	CARG	A POR S	ISMO	
Nivel	Col 2	Col 3	Col 4	Col 2	Col 3	Col 4	Col 2	Col 3	Col 4
1,11,01	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
PISO 15	271.6	543.3	271.6	-579.4	1158.8	579.4	-579.4	1158.8	579.4
PISO 14	-2030.3	-543.3	2573.6	-2265.8	-1158.9	2265.8	-2265.8	-543.3	2573.6
PISO 13	-2030.3	-543.3	2573.6	-2265.8	-1158.9	2265.8	-2265.8	-543.3	2573.6
PISO 12	-4332.3	-543.3	4875.6	-3952.3	-1158.9	3952.3	-4332.3	-543.3	4875.6
PISO 11	-4332.3	-543.3	4875.6	-3952.3	-1158.9	3952.3	-4332.3	-543.3	4875.6
PISO 10	-5895.0	543.3	6438.3	-5264.7	1158.8	5264.7	-5895.0	1158.8	6438.3
PISO 9	-5895.0	543.3	6438.3	-5264.7	1158.8	5264.7	-5895.0	1158.8	6438.3
PISO 8	-8602.3	-940.0	9145.6	-7072.7	197.9	7072.7	-8602.3	197.9	9145.6
PISO 7	-8602.3	-940.0	9145.6	-7072.7	197.9	7072.7	-8602.3	197.9	9145.6
PISO 6	-11605.4	50.2	12148.7	-9176.5	2900.7	9176.5	-11605.4	2900.7	12148.7
PISO 5	-11605.4	50.2	12148.7	-9176.5	2900.7	9176.5	-11605.4	2900.7	12148.7
PISO 4	-14608.4	917.6	15151.7	-11280.3	5566.7	11280.3	-14608.4	5566.7	15151.7
PISO 3	-14608.4	917.6	15151.7	-11280.3	5566.7	11280.3	-14608.4	5566.7	15151.7
PISO 2	-17611.5	1785.1	18154.8	-13384.1	8232.7	13384.1	-17611.5	8232.7	18154.8
PISO 1	-17611.5	1785.1	18154.8	-13384.1	8232.7	13384.1	-17611.5	8232.7	18154.8

 Tabla 14. Resumen de Fuerzas por sismo en las columnas del SCBF.

El área tributaria para las columnas esquinera es de 9m² y para las columnas centrales de 18m².

En la tabla se muestra las cargas gravitacionales y las cargas ultimas.

COL. ESQ	UINAS	COL. CEN	FRALES	CAR	RGAS DE DIS	EÑO	
1.2 D + L	Σ	1.2 D + L	Σ	Column 2	Column 3	Column 4	MU
(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	kN-m
94.2	94.2	188.3	188.3	-485.2	1347.1	673.6	23.5
94.2	188.3	188.3	376.7	-2077.5	-166.7	2761.9	23.5
94.2	282.5	188.3	565.0	-1983.3	21.7	2856.1	23.5
94.2	376.7	188.3	753.3	-3955.6	210.0	5252.2	23.5
94.2	470.8	188.3	941.6	-3861.5	398.3	5346.4	23.5
94.2	565.0	188.3	1130.0	-5330.1	2288.8	7003.3	23.5
94.2	659.1	188.3	1318.3	-5235.9	2477.1	7097.5	23.5
94.2	753.3	188.3	1506.6	-7849.0	1704.5	9898.9	23.5
94.2	847.5	188.3	1694.9	-7754.9	1892.8	9993.1	23.5
94.2	941.6	188.3	1883.3	-10663.8	4784.0	13090.3	23.5
94.2	1035.8	188.3	2071.6	-10569.6	4972.3	13184.5	23.5
94.2	1130.0	188.3	2259.9	-13478.5	7826.6	16281.7	23.5
94.2	1224.1	188.3	2448.2	-13384.3	8014.9	16375.8	23.5
94.2	1318.3	188.3	2636.6	-16293.2	10869.3	19473.0	23.5
94.2	1412.4	188.3	2824.9	-16199.0	11057.6	19567.2	23.5

Tabla 15. Resumen de cargas por gravedad y Estado último.

7.14 Diseño de columna

Presentaremos el diseño de la columna más cargada, seleccionamos una columna W14X370, en la tabla mostramos las propiedades geométricas.

	PROPIEDA	DES I	DE LA CO	LUMNA	
A =	70300	mm ²	Iy =	828000000	mm ⁴
d =	455	mm	Sy =	3950000	тт³
tw=	42.2	mm	ry =	108	mm
bf=	419	mm	Zy=	828000	mm³
tf=	67.6	mm	rts =		
Ix=	226000000	$\rm mm^4$	h =		
Sx=	9950000	тт³	J =	92400000	mm^4
rx=	180	mm	C =	3.12E+13	mm ⁶
Zx =	1720000	mm³	h/tw =	6.89	

Ilustración 32. Propiedades de la sección W14X370.

Comprobación de la relación ancho-espesor

Revisión del Patín

$$\lambda_{ps} = \frac{b_f}{2t_f} < 0.32 \sqrt{\frac{200000 \, MPa}{1.1 * 350 MPa}}$$

$$\lambda_{ps} = \frac{419}{2(67.6)} < 7.29$$
$$\lambda_{ps} = 3.09 < 7.29$$

Revisión del Alma

$$C_{a} = \frac{P_{u}}{P_{y}}$$

$$C_{a} = \frac{19588kN}{24605kN} = 0.79$$

$$\lambda_{ps} = \frac{h}{t_{w}} < 0.88 \sqrt{\frac{200000 MPa}{1.1 * 350MPa}} (2.68 - C_{a})$$

$$\lambda_{ps} = 6.89 < 37.79$$

Resistencia a la compresión

$$L_{c} = 3600mm$$

$$F_{e} = \frac{\pi^{2}E}{\left(\frac{L_{c}}{r_{\chi}}\right)^{2}} = 4934MPa$$

$$F_{cr} = \left(0.658^{\frac{F_{y}}{F_{e}}}\right)F_{y} = 339MPa$$

$$\emptyset Pn = \emptyset F_{cr}A_{g}$$

De la Tabla 3-10 del Manual del AISC. La resistencia a la flexión es

En la tabla podemos visualizar el perfil seleccionado para cada piso y su relación demanda capacidad.

					EXT	INT
NIVEL	Sección	ØMn	Mu/ØMn	ØPn	$P_n = 8M_u/9$	$P_n \mid 8M_u/9$
		kN-m		kN-m	$\overline{\partial P_n}^+ \overline{\partial M_n}$	$\overline{QP_n}^+ \overline{QM_n}$
PISO 15	W14X68	555.05	0.04	3217.10	0.24	0.38
PISO 14	W14X68	555.05	0.04	3217.10	0.89	-0.09
PISO 13	W14X68	555.05	0.04	3217.10	0.92	-0.03
PISO 12	W14X109	1009.31	0.02	5644.47	0.95	0.02
PISO 11	W14X109	1009.31	0.02	5644.47	0.96	0.05
PISO 10	W14X176	1676.63	0.01	9617.13	0.74	0.23
PISO 9	W14X176	1676.63	0.01	9617.13	0.75	0.25
PISO 8	W14X193	1860.15	0.01	10628.21	0.94	0.15
PISO 7	W14X193	1860.15	0.01	10628.21	0.95	0.17
PISO 6	W14X257	2541.53	0.01	14479.34	0.91	0.32
PISO 5	W14X257	2541.53	0.01	14479.34	0.91	0.34
PISO 4	W14X342	3495.75	0.01	19668.78	0.83	0.39
PISO 3	W14X342	3495.75	0.01	19668.78	0.83	0.40
PISO 2	W14X370	3842.50	0.01	21286.47	0.92	0.51
PISO 1	W14X370	3842.50	0.01	21286.47	0.92	0.51

 Tabla 16. Relación Demanda/Capacidad de las Columnas del SCBF.

7.15 Cantidades del pórtico con arriostramiento concéntrico.

Sección	Tipo de Objeto	Número de Piezas	Longitud	Peso
W12V10	Vice	190	(m)	(toni)
W12A19	Viga	460	2880.0	01.2
W14A34	v Iga	403	2790.0	134.0
W16X57	v iga	150	900.0	/1./
HSS6.625X.375	Riostra	31	145.3	5.1
HSS6.625X.500	Riostra	123	576.4	26.3
HSS5.563X.375	Riostra	90	421.8	12.2
HSS5.563X.500	Riostra	56	262.4	9.9
W12X40	Columna	36	129.6	7.7
W12X58	Columna	36	129.6	11.2
W12X72	Columna	24	86.4	9.2
W12X106	Columna	48	172.8	27.3
W14X68	Columna	50	180.0	18.2
W14X109	Columna	30	108.0	17.5
W12X136	Columna	36	129.6	26.2
W14X90	Columna	24	86.4	11.6
W14X176	Columna	8	28.8	7.6
W14X193	Columna	8	28.8	8.3
W14X211	Columna	32	115.2	36.2
W14X233	Columna	8	28.8	10.0
W14X257	Columna	8	28.8	11.0
W14X74	Columna	6	21.6	2.4
W14X283	Columna	8	28.8	12.1
W14X132	Columna	12	43.2	8.5
W14X342	Columna	8	28.8	14.7
W14X370	Columna	8	28.8	15.9

En la siguiente tabla mostramos los pesos por elementos.

 Tabla 17. Cantidad y peso por elemento del SCBF.

Peso SCBF = 595.9 tonf

Area Total del Edificio = 8640 m² Peso por Area = $\frac{595900 \ kgf}{8640 \ m^2}$ = 68.9 kgf/m²

CAPITULO 8.- ANALISIS Y DISEÑO DEL SISTEMA DE PORTICOS CON ARRIOSTRAMIENTO DE PANDEO RESTRINGIDO (BRB)

8.1 Configuración estructural

En la siguiente imagen visualizamos la configuración de nuestro sistema estructural en planta, la nomenclatura con sus siglas en ingles BRB (Buckling-Restrained Braced frame)

Nro. Pá	orticos	Nro. Do	e Vanos	Longi Va	Longitud de Vanos		h Entrepiso	h Total
Χ	Y	Χ	Y	X(m)	Y(m)	pisos	(m)	(m)
6	5	5	4	6	6	15	3.6	54

Tabla 18. Geometría Modelo.

8.2 Clasificación del sistema estructural

Para nuestro edificio usaremos el sistema puro de Pórticos especiales con arriostramiento de pandeo restringido. El sentido X tiene cuatro pórticos con BRB y el sentido Y tiene seis pórticos con BRB. Ambos modelos tienes un factor de reducción de: R = 8.0

Ilustración 33. Vista en planta del Modelo de BRB.

8.3 Periodo de la Estructura

Determinar el periodo fundamental de la estructura de manera aproximada NEC-15

$$T = C_t h_n^{\alpha}$$

Para pórticos de Acero arriostrados

 $C_t = 0.073$

 $\alpha = 0.75$

 h_n = Altura del edificio en metros

$$T = (0.073)(54)^{0.75}$$
$$T = 1.45 s$$

El periodo que calculamos con la ecuación anterior, lo usamos para obtener un prediseño de los elementos, en el momento que ingresamos datos en el programa ETABS determinamos los periodos reales fundamentales. A continuación mostramos los periodos de la estructura en estudio

Ilustración 34. Modo 1 T=1.91 seg Sentido Y – Modelo BRB.

Ilustración 35. *Modo 2 T=1.55 seg Sentido X – Modelo BRB.*

Ilustración 36. Modo 3 T=0.93 seg Rotacional – Modelo BRB.

	Periodo de Vibración						
	Sentido Y Modo 1 (seg)	Sentido X Modo 2 (seg)	Rotacional Modo 3 (seg)				
BRB	1.91	1.55	0.93				

A continuación mostramos un resumen de los modos de vibración. *Tabla 19. Resumen de periodos de vibración.*

8.4 Análisis Estructural mediante modelo matemático

A continuación mostramos el modelo matemático de la edificación utilizando el software de diseño ETABS, para el revisar la distorsión entre piso.

Ilustración 37. Modelo tridimensional con diafragma rígido.

A continuación mostramos la derivas máximas inelásticas obtenidas por el análisis.

Ilustración 38. Gráfico de la distorsión entre piso Edificio con BRB.

Resultados de Derivas Máximas para Modelo con BRB.

 $\Delta_1 = 0.01234$, Deriva máxima en X del Análisis de Primer Orden $\Delta_1 = 0.01785$, Deriva máxima en Y del Análisis de Primer Orden $\Delta_2 = 0.01254$, Deriva máxima en X del Análisis de Segundo Orden $\Delta_2 = 0.01834$, Deriva máxima en Y del Análisis de Segundo Orden Relación Deriva en X:

$$\frac{\Delta_2}{\Delta_1} = \frac{0.01254}{0.01234} = 1.01 < 1.50$$

Relación Deriva en Y:

$$\frac{\Delta_2}{\Delta_1} = \frac{0.01834}{0.01785} = 1.03 < 1.50$$

Como la relación entre derivas máximas del análisis de segundo orden y las derivas de primer orden en cada sentido son menores de 1.50

8.5 Diseño de elementos estructurales

Para el diseño de elementos estructurales usaremos nuestro software creado para este trabajo.

A continuación presentaremos su funcionamiento.

Paso 1: Ingresar los datos como geometría, cargas, periodo, tipo de acero.

Paso 2: Presionar el botón CALCULAR

Paso 3: Presionar el botón ACERO SOLICITADO BRB.

Paso 4: Vemos el acero requerido e ingresamos un valor igual o mayor al que nos presentan.

Paso 5: Presionar el botón CALCULAR

Paso 6: Presionar el botón VER RESULTADOS

Si realizamos una modificación, presionamos CALCULAR y después VER RESULTADOS.

Una vez obtenido nuestro diseño presionamos el botón IMPRIMIR para que se genere una memoria de cálculo.

Ilustración 39. Ingreso de datos en software creado en este estudio para el diseño del Riostras de Pandeo Restringido. Ingreso de datos generales.

Ilustración 40. Ingreso de datos en software creado en este estudio para el diseño del Riostras de Pandeo Restringido. Ingreso de vigas.

Ilustración 41. Ingreso de datos en software creado en este estudio para el diseño del Riostras de Pandeo Restringido. Ingreso de columnas.

A continuación presentaremos el diseño estructural del pórtico con arriostramientro concéntrico en el sentido Y.

Ilustración 42. Configuración del pórtico el en cual vamos a diseñar los elementos del BRB.

Obtención del coeficiente sísmico para el diseño del pórtico en el sentido Y.

$$C_{y} = \frac{IS_{a}(T_{a})}{R \phi_{p} \phi_{E}}$$

$$C_y = \frac{(1)(0.37)}{(8)(1)(1)}$$
$$C_y = 0.053g$$

Peso del edificio

$$W = 57690 \ kN$$

Cortante en el sentido Y

 $V_y = 3108 \ kN$

8.6 Distribución de cortante vertical.

Basado en los principios de la dinámica, las fuerzas laterales totales de cálculo deben ser distribuidas en la altura de la estructura, usando la siguiente expresión que se encuentra en el capítulo de riesgo sísmico de la NEC-15. Para nuestro ejemplo el valor de k es igual a 1.73.

NIVEL	wi(kN)	hi(m)	wihi^k	Cvx	Fx(kN)
PISO 15	3846	54	3819887	0.30	932
PISO 14	3846	50.4	3390112	0.27	827
PISO 13	3846	46.8	2982185	0.23	727
PISO 12	3846	43.2	2596547	0.20	633
PISO 11	3846	39.6	2233685	0.18	545
PISO 10	3846	36	1894142	0.15	462
PISO 9	3846	32.4	1578527	0.12	385
PISO 8	3846	28.8	1287533	0.10	314
PISO 7	3846	25.2	1021956	0.08	249
PISO 6	3846	21.6	782734	0.06	191
PISO 5	3846	18	570993	0.04	139
PISO 4	3846	14.4	388129	0.03	95
PISO 3	3846	10.8	235957	0.02	58
PISO 2	3846	7.2	117002	0.01	29
PISO 1	3846	3.6	35271	0.00	9

 Tabla 20. Distribución del Cortante en sentido Y para BRB.

Tenemos una respuesta ortogonal en el sentido Y, en este caso repartiremos la fuerza sísmica en partes iguales para cada pórtico BRB.

NIVEL	Fstory(kN)	FBF4(kN)	VBF4
PISO 15	932	232.9	232.9
PISO 14	827	206.7	439.7
PISO 13	727	181.9	621.5
PISO 12	633	158.3	779.9
PISO 11	545	136.2	916.1
PISO 10	462	115.5	1031.6
PISO 9	385	96.3	1127.8
PISO 8	314	78.5	1206.4
PISO 7	249	62.3	1268.7
PISO 6	191	47.7	1316.4
PISO 5	139	34.8	1351.2
PISO 4	95	23.7	1374.9
PISO 3	58	14.4	1389.3
PISO 2	29	7.1	1396.4
PISO 1	9	2.2	1398.6

Tabla 21. Distribución de fuerza para cada pórtico BRB.

Para nuestro edificio utilizaremos áreas de núcleos de acero de disipadores comerciales de acuerdo al siguiente catálogo ilustración 44. En el catálogo se muestra el área de núcleo de acero del BRB, a su vez la longitud punto a punto de la riostra y el valor de modificación de rigidez axial k_f . El coeficiente k_f se lo ingresa en el programa ETABS cuando definimos el BRB, definimos el área del núcleo y modificamos la rigidez axial del mismo.

Property/Stiffness Modification Facto Property/Stiffness Modifiers for Analysis Cross-section (axial) Area	1.95	×	General Data Property Name Material Display Color Notes	BRB 45 CoreBrace Modify/?	Change	2
Shear Area in 2 direction Shear Area in 3 direction Tonional Constant Moment of Inetia about 2 axis Moment of Inetia about 3 axis Mass Weight	1 5 1 1 5 7 1		Shape Section Shape Section Property Source Source: User Defined Section Dimensions Depth Width	Steel Plate	0.067 m 0.067 m	Property Modilers Modify/Show Modilers Currently User Specified
OK.	Cancel			Show Section Properties		OK Cancel

Ilustración 43. Valor kf ingresado en el programa ETABS.

8.7 Área requerida de la riostra.

Área del núcleo requerida en BRB

$$P_{yse} = F_{yse}A_{se}$$
 Con $\emptyset = 0.9$

Donde:

 F_{yse} = Tensión de fluencia mínima especificada del núcleo de acero, o tensiones de fluencia reales del núcleo de acero determinadas a partir de una prueba.

 $A_{se} =$ Área neta del núcleo de acero.

Para este ejercicio usamos el $F_{yse} = 31.7 \text{ kN/cm}^2$ se utilizó con una tolerancia de 2.7kN/cm² así para el área de núcleo de acero requerido para consideración de resistencia, el límite inferior $F_{yse} = 26.2 \text{kN/cm}^2$ fue usado.

$P_u = V_u/2 \operatorname{Riostras}/\cos(\Theta)$

El área usada lo determinamos de catálogo de la Empresa Corebrace de Estados Unidos. A su

Nivel	Vu (kN)	Pu (kN)	Ase Req'd (cm2)	Ase Used (cm2)	kf
PISO 15	233	182	7.7	35	1.850
PISO 14	440	343	14.6	35	1.850
PISO 13	622	485	20.6	35	1.850
PISO 12	780	609	25.8	35	1.850
PISO 11	916	715	30.3	35	1.850
PISO 10	1032	806	34.2	35	1.850
PISO 9	1128	881	37.4	48	1.950
PISO 8	1206	942	40.0	48	1.950
PISO 7	1269	991	42.0	48	1.950
PISO 6	1316	1028	43.6	48	1.950
PISO 5	1351	1055	44.8	48	1.950
PISO 4	1375	1074	45.5	48	1.950
PISO 3	1389	1085	46.0	48	1.950
PISO 2	1396	1091	46.3	48	1.950
PISO 1	1399	1092	46.3	48	1.950

determinamos el valor de k_f para aumentar la rigidez axial en el análisis estructural. **Tabla 22**. Áreas de Núcleo de cálculo y asumidas para el BRB.

8.8 Diseño de viga.

La viga en un marco BRB actúa tanto como un miembro de carga axial como un miembro de flexión. La carga axial surge porque la viga actúa como un colector que transfiere la fuerza del diafragma a la riostra. La flexión surge porque la viga soporta cargas de gravedad desde el piso y en configuraciones geométricas especiales (chevron), lleva la carga desequilibrada de los tirantes de compresión y tensión. La viga en el segundo piso en la bahía de marco arriostrado se diseñará.

Comprobar la relación ancho-espesor.

En nuestro marco usaremos una viga W14X48.

PROPIEDADES DE LA VIGA 21400000 mm⁴ 9100 mm² A = Iy = 210000 mm³ d = 351 mm Sy= ry = 48.5 mm tw= 8.64 mm 21400 mm³ bf= 204 mm Zy =tf= 15.1 mm rts =20100000 mm⁴ Ix= h = 604000 mm⁴ Sx= 1150000 mm³ J = 149 mm C =6.04E+11 mm⁶ rx= Zx =1280000 mm³ h/tw =33.60

 Tabla 23. Propiedades de la viga W14X48.

$$\lambda_{ps} = \frac{b_f}{2t_f} < 0.32 \sqrt{\frac{E}{1.1 * F_y}}$$
$$\lambda_{ps} = \frac{204}{2(15.1)} < 0.32 \sqrt{\frac{200000}{1.1 * 350}}$$
$$\lambda_{ps} = 6.75 < 7.29$$
$$\lambda_{ps} = \frac{h}{t_w} < 1.57 \sqrt{\frac{E}{1.1 * F_y}}$$
$$\lambda_{ps} = 33.60 < 1.57 \sqrt{\frac{200000}{1.1 * 350}}$$
$$\lambda_{ps} = 33.60 < 35.78$$

La carga desequilibrada debido a la capacidad desigual de compresión y tensión de los BRB se calcula como;

$$P_{unbalanced} = \left(\beta \omega R_y P_{yse} - \omega R_y P_{yse}\right) \sin(\theta)$$

Respectivamente, donde w y b (el factor de ajuste del endurecimiento por deformación y el factor de ajuste de la resistencia a la compresión) se determinan con base en la medición de la prueba de calificación BRB correspondiente al doble de la deriva de piso de diseño que se puede obtener del análisis computacional. Este es un valor aproximado solo ya que la deformación del núcleo se basa en factores múltiples, como la longitud del núcleo, la rigidez efectiva de los

tirantes, etc., las pruebas de calificación previas realizadas por los fabricantes de BRB muestran que $\beta = 1.04$ y $\omega = 1.54$ para una deformación central de 1.3 %.

La fluencia límite del disipador 29kN/cm² + 2.7kN/cm², esto se confirmara en un prueba de laboratorio del disipador.

$$R_{y}P_{ysc} = \left(31.7\frac{kN}{cm^{2}}\right)(48cm^{2}) = 1521.6 \, kN$$

 $P_{unbalanced} = ((1.04)(1.54)(1521.6) - (1.54)(1521.6))\sin(50.2) = 72kN$

Esto produce un Momento de 72kN x 6m/4 = 108kN-m

Momento por carga gravitacional 11.34 kN-m

$$Mu = 119.3kN.m$$

Revisión de la viga con combinación axial y flexión debida al colector de acción.

Determinamos la fuerza axial en la viga en el vano BRB. Esto se hace asumiendo que la capacidad de la riostra en tracción y compresión se moviliza en el piso más bajo, produciendo una capacidad de corte horizontal.

$$V_{u-capacity} = (\beta \omega R_y P_{yse} - \omega R_y P_{yse}) \cos(\theta)$$
$$V_{u-capacity} = ((1.04)(1.54)(1521.6) - (1.54)(1521.6)) \cos(50.2) = 3060 \ kN$$

Máxima fuerza que resiste el disipador.

$$V_{u-capacity} = \frac{3060 \, kN}{2} = 1530 \, kN$$

Determinamos la tensión de pandeo por flexión de la viga. Asumimos que la viga esta arriostrada en la mitad por el disipador.

$$\frac{K_x l_x}{r_x} = \frac{(1)(6000)}{149} = 40.26mm$$
$$\frac{K_y l_y}{r_y} = \frac{(1)(3000)}{48.5} = 61.85mm$$
$$F_e = \frac{\pi^2 E}{\left(\frac{l_y}{r_y}\right)^2} = 515.9MPa$$
$$F_{cr} = \left(0.658^{\frac{F_y}{F_e}}\right)F_y = 263 MPa$$

Realizamos el diseño nuestra viga con el método AISC para el pandeo de flexion-torsion de eje restringido.

Momento Resistente para una longitud no arriostrada de 3.0m.

En la siguiente tabla se muestra la relación demanda/capacidad de las vigas por piso del pórtico

con los BRB. Tabla 24. Relación demanda/capacidad de las vigas del pórtico con los BRB.

NIVEL	SECCION	ØMn	Mu	Mu/ØMn	Pu	ØPn	Pu/ØPn	$\frac{P_n}{P_n} + \frac{8M_u/9}{P_n}$
		kN-m	kN-m		kN	kN		
PISO 15	W14X48	369.52	91.47	0.25	1115.72	2157.9	0.52	0.730
PISO 14	W14X48	369.52	91.47	0.25	1115.72	2157.9	0.52	0.730
PISO 13	W14X48	369.52	91.47	0.25	1115.72	2157.9	0.52	0.730
PISO 12	W14X48	369.52	91.47	0.25	1115.72	2157.9	0.52	0.730
PISO 11	W14X48	369.52	91.47	0.25	1115.72	2157.9	0.52	0.730
PISO 10	W14X48	369.52	91.47	0.25	1115.72	2157.9	0.52	0.730
PISO 9	W14X48	369.52	120.73	0.33	1530.12	2157.9	0.71	0.990
PISO 8	W14X48	369.52	120.73	0.33	1530.12	2157.9	0.71	0.990
PISO 7	W14X48	369.52	120.73	0.33	1530.12	2157.9	0.71	0.990
PISO 6	W14X48	369.52	120.73	0.33	1530.12	2157.9	0.71	0.990
PISO 5	W14X48	369.52	120.73	0.33	1530.12	2157.9	0.71	0.990
PISO 4	W14X48	369.52	120.73	0.33	1530.12	2157.9	0.71	0.990
PISO 3	W14X48	369.52	120.73	0.33	1530.12	2157.9	0.71	0.990
PISO 2	W14X48	369.52	120.73	0.33	1530.12	2157.9	0.71	0.990
PISO 1	W14X48	369.52	120.73	0.33	1530.12	2157.9	0.71	0.990

8.9 Diseño de columna.

La resistencia de la columna se basa en la siguiente combinación de carga.

$$1.2D + 1.0L + 1.0E$$

Al determinar la carga sísmica amplificada, se toma como las fuerzas en todo los arriostramientos correspondientes a su resistencia.

El componente vertical de esta resistencia ajustada de la riostra es $P_{yse} \sin(\theta)$. Para la configuración de chevron, la carga de desequilibrio en el tramo medio de la viga es $(\beta \omega R_y P_{yse} - \omega R_y P_{yse}) \sin(\theta)$ actuando hacia arriba. La mitad de esta carga desequilibrada se resiste en cada extremo de la viga y reduce la fuerza axial en la columna en compresión (y aumenta la carga de tracción en la columna en tracción). Por lo tanto, las cargas de la columna se pueden reducir mediante $(\beta - 1)/2\omega R_y P_{yse} \sin(\theta)$.

Las cargas para el diseño de las columnas se muestran en la tabla

	Ase		Unbal.	Trib					
NIVEL	Used	$P_{yse} = P_e$	Load	Área	D	\mathbf{L}	1.2D+L	1.2D+L+E	Cum. S
	cm2	(kN)	(kN)	(m2)	(kN/m2)	(kN/m2)	(kN)	(kN)	(kN)
PISO 15	35	0.0	0.00	9	60.09	22.05	94.16	94.2	94.2
PISO 14	35	1365.1	26.25	9	60.09	22.05	94.16	1203.7	1297.8
PISO 13	35	1365.1	26.25	9	60.09	22.05	94.16	1203.7	2501.5
PISO 12	35	1365.1	26.25	9	60.09	22.05	94.16	1203.7	3705.2
PISO 11	35	1365.1	26.25	9	60.09	22.05	94.16	1203.7	4908.8
PISO 10	35	1365.1	26.25	9	60.09	22.05	94.16	1203.7	6112.5
PISO 9	48	1365.1	26.25	9	60.09	22.05	94.16	1203.7	7316.1
PISO 8	48	1872.2	36.00	9	60.09	22.05	94.16	1615.8	8931.9
PISO 7	48	1872.2	36.00	9	60.09	22.05	94.16	1615.8	10547.7
PISO 6	48	1872.2	36.00	9	60.09	22.05	94.16	1615.8	12163.4
PISO 5	48	1872.2	36.00	9	60.09	22.05	94.16	1615.8	13779.2
PISO 4	48	1872.2	36.00	9	60.09	22.05	94.16	1615.8	15395.0
PISO 3	48	1872.2	36.00	9	60.09	22.05	94.16	1615.8	17010.7
PISO 2	48	1872.2	36.00	9	60.09	22.05	94.16	1615.8	18626.5
PISO 1	48	1872.2	36.00	9	60.09	22.05	94.16	1615.8	20242.2

Tabla 25. Resumen de las fuerzas que actúan en las Columnas.

Comprobación de la relación ancho-espesor

	PROPIEDA	ADES	DE LA COL	UMNA	
A =	70300	mm^2	Iy =	8.28E+08	mm^4
d =	455	mm	Sy =	3950000	mm³
tw=	42.2	mm	ry =	108	mm
bf=	419	mm	Zy =	828000	mm³
tf=	67.6	mm	rts =		
Ix=	2260000000	mm^4	h =		
Sx=	9950000	mm³	J =	92400000	mm^4
rx=	180	mm	C =	9.24E+13	mm ⁶
Zx =	12100000	mm³	h/tw =	6.89	

Para la columna de primer piso usaremos un perfil W14X370. **Tabla 26.** *Propiedades de la columna W14X370.*

Revisión del Patín

$$\lambda_{ps} = \frac{b_f}{2t_f} < 0.32 \sqrt{\frac{200000 MPa}{1.1 * 350 MPa}}$$
$$\lambda_{ps} = \frac{419}{2(67.6)} < 7.29$$
$$\lambda_{ps} = 3.09 < 7.29$$

Revisión del Alma

$$C_{a} = \frac{P_{u}}{P_{y}}$$

$$C_{a} = \frac{20242kN}{24605kN} = 0.82$$

$$\lambda_{ps} = \frac{h}{t_{w}} < 0.88 \sqrt{\frac{200000 MPa}{1.1 * 350MPa}} (2.68 - C_{a})$$

$$\lambda_{ps} = 6.89 < 36.85$$

Realizamos el diseño de las columnas con el Manual de acero AISC para longitud no arriostrada de 3.6m que es la altura entrepiso. A continuación mostramos la tabla en la cual se presenta la sección y la relación demanda capacidad.

$$F_e = \frac{\pi^2 E}{\left(\frac{l_y}{r_y}\right)^2} = 4934MPa$$

$$F_{cr} = \left(0.658\frac{F_y}{F_e}\right)F_y = 339.8 MPa$$

$$\emptyset Pn = \emptyset F_{cr}A_g = 21496.7kN$$

$$\frac{P_u}{\emptyset P_n} = \frac{20242kN}{21496kN} = 0.94$$

De la Tabla 3-10 del Manual del AISC. La resistencia a la flexión es

A continuación mostramos las relación/demanda capacidad del Pórtico con BRB

									$P_n = 8M_u/9$
NIVEL	SECCION	Lp	Lb	Lr	ØMn	Mu/ØMn	ØPn	Pu/ØPn	$\overline{\phi P_n}^+ \overline{\phi M_n}$
		mm	mm	mm	kN-m		kN-m		
PISO 15	W14X68	2629.5	3600	8365.5	489.7	0.07	3899.9	0.02	0.08
PISO 14	W14X68	2629.5	3600	8365.5	489.7	0.07	3899.9	0.33	0.39
PISO 13	W14X82	2650.5	3600	10126.2	624.9	0.05	4688.4	0.53	0.58
PISO 12	W14X82	2650.5	3600	10126.2	624.9	0.05	4688.4	0.79	0.83
PISO 11	W14X132	4017.9	3600	15208.9	1252.5	0.03	7584.6	0.65	0.67
PISO 10	W14X132	4017.9	3600	15208.9	1252.5	0.03	7584.6	0.81	0.82
PISO 9	W14X159	4291.3	3600	18601.7	1553.6	0.02	9140.3	0.80	0.81
PISO 8	W14X159	4291.3	3600	18601.7	1553.6	0.02	9140.3	0.98	0.99
PISO 7	W14X233	4375.5	3600	30239.6	2318.0	0.01	13456.5	0.78	0.79
PISO 6	W14X233	4375.5	3600	30239.6	2318.0	0.01	13456.5	0.90	0.91
PISO 5	W14X283	4459.6	3600	38651.1	2869.0	0.01	16374.4	0.84	0.85
PISO 4	W14X283	4459.6	3600	38651.1	2869.0	0.01	16374.4	0.94	0.95
PISO 3	W14X342	4543.8	3600	49033.2	3540.1	0.01	19917.0	0.85	0.86
PISO 2	W14X342	4543.8	3600	49033.2	3540.1	0.01	19917.0	0.94	0.94
PISO 1	W14X370	4543.8	3600	53784.4	3886.1	0.01	21496.8	0.94	0.94

Tabla 27. Diseño de Columnas del BRB.

Sección	Tipo de Objeto	Nro de Piezas	Longitud (m)	Peso (tonf)
W12X19	Viga	480	2880	81.23
W14X34	Viga	465	2790	133.95
W14X48	Viga	150	900	60.10
W12X40	Columna	36	129.6	7.68
W12X58	Columna	36	129.6	11.16
W12X72	Columna	24	86.4	9.23
W12X106	Columna	48	172.8	27.30
W14X68	Columna	36	129.6	13.13
W12X136	Columna	36	129.6	26.19
W14X159	Columna	12	43.2	10.22
W14X176	Columna	16	57.6	15.11
W14X233	Columna	36	129.6	44.96
W14X283	Columna	28	100.8	42.52
W14X132	Columna	36	129.6	25.46
W14X82	Columna	28	100.8	12.25
W14X342	Columna	12	43.2	22.09
W14X370	Columna	6	21.6	11.92

8.10 Cantidades del pórtico con arriostramiento de pandeo restringido.

Tabla 28. Cantidades del Modelo con BRB.

En la siguiente tabla mostramos los pesos por elementos.

Peso BRB1 = 554.5 tonf

Area Total del Edificio = 8640 m²
Peso por Area =
$$\frac{554500 \, kgf}{8640 \, m^2}$$
 = 64.2 kgf/m²

Para el modelo 1 tenemos un peso por metro cuadrado de construcción de 64.2kgf/m². Sin embargo en peso de BRB para todo el edificio tenemos para Modelo 1 40.3 tonf .
CAPITULO 9.- COMPARACION DE RESULTADOS

Mostraremos los resultados de los 2 sistemas haciendo una comparación tanto técnica y económica. A continuación mostraremos los periodos de vibración de los 2 sistemas estructurales.

	D		• / .
	Período de Vibración		
	Sentido Y Sentido X Rotacion		
	Modo 1	Modo 2	Modo 3
	(seg)	(seg)	(seg)
SCBF	2.16	1.76	1.06
BRB	1.91	1.55	0.93

Tabla 29. Periodos de vibración de los 2 sistemas estructurales.

En la tabla 30. Podemos determinar que el sistema de arriostramiento concéntrico es más flexible que el de arriostramiento de pandeo restringido.

Ilustración 45. Deriva de piso de los 2 sistemas estructurales en el sentido x.

Ilustración 46. Deriva de piso de los 2 sistemas estructurales en el sentido y.

En el sentido X el sistema BRB tiene mayor desempeño que el SCBF. Sin embargo en el sentido Y ambos sistemas tienen prácticamente la misma máxima deriva de piso.

DESCRIPCION	Cantidad	Unidad	P. Unitario	Total
Acero Columnas (ASTM A572 Gr50)	255500	kg	2.5	638750
Acero Vigas (ASTM A572 Gr50)	286900	kg	2.5	717250
Acero Riostras (ASTM A572 Gr50)	53400	kg	2.5	133500
Placa colaborante	8640	m2	20.2	174528
Hormigón de Losa	735.2	m3	148	108809.6
Malla electro soldada	8640	m2	4	34560
			Total	1807397.6

 Tabla 30. Presupuesto del edificio con SCBF.

DESCRIPCION	Cantidad	Unidad	P. Unitario	Total
Acero Columnas (ASTM A572 Gr50)	279210	kg	2.5	698025
Acero Vigas (ASTM A572 Gr50)	275280	kg	2.5	688200
Placa colaborante	8640	m2	20.2	174528
Hormigón de Losa	735.2	m3	148	108809.6
Malla electro soldada	8640	m2	4	34560
Riostra de pandeo restringido Tipo 1	228	u	750	171000
Riostra de pandeo restringido Tipo 2	72	u	750	54000
			Total	1929122.6

 Tabla 31. Presupuesto del edificio con BRB.

Para el costo de las riostras de pandeo restringido tenemos un precio referencial de un comerciante en Ecuador. Sin embargo este precio varía si la riostra es importada tendría un costo mucho más elevado del que estamos considerando y el edificio con BRB no sería competente con el sistema SCBF.

Ilustración 47. Costo de los 2 sistemas estructurales.

En la ilustración 45 mostramos el costos de los 2 sistemas el cual el edificio con SCBF tiene un costo de \$1807397 dólares y el edificio con BRB tiene un costo de \$1929122 dólares. Teniendo una diferencia de \$121725 dólares que es el 7 %.

Tenemos un peso por metro del sistema con SCBF es de 68.9 kgf/m² y para el sistema BRB sin contar los dispositivos es de 64.2 kgf/m²

CAPITULO 10.- CONCLUSIONES

En el presente trabajo se realizó la comparación de 2 sistemas estructurales, los pórticos de arriostramiento concéntrico siglas en inglés (SCBF) y los pórticos con arriostramiento de pandeo restringido siglas en inglés (BRB). Para realizar la comparación creamos un programa de diseño de los elementos estructurales tanto como para SCBF y BRB. En cambio para revisar la distorsión entre piso se utilizó el programa Etabs.

Se realizó una comparación teniendo en cuenta el mismo desempeño en la distorsión entre pisos, el sistema SCBF tiene una deriva máxima de 1.78% y el sistema BRB tiene una deriva máxima de 1.79%, prácticamente lo mismo. Sin embargo el periodo fundamental del SCBF es de 2.16 segundos y el de BRB es de 1.76 segundos siendo el SCBF más flexible.

La cantidad de pórticos con arriostramiento concéntrico y pórticos con arriostramiento de pandeo restringido, tanto en el sentido corto y sentido largo del edificio, tienen la misma cantidad de pórticos en ambos sistemas. No obstante si quisiéramos reducir el número de pórticos SCBF o BRB el peso de acero se incrementa porque tendremos que usar columnas de mayor área.

El peso de acero (kg) por m2 del pórtico con arriostramiento concéntrico (SCBF) es de 68.9 kg/m2 y para los pórticos con arriostramiento de pandeo restringido (BRB) es de 64.2 kg/m2.

El costo de los 2 sistemas varía un 7% siendo el SCBF más económico. Sin embargo el precio de los BRB varía dependiendo del fabricante a su vez en Ecuador se tiene poca experiencia produciendo estos dispositivos. Y si tenemos un dispositivo importado el costo se incrementa sustancialmente y el sistema de BRB no sería competente.

El sistema SCBF tiene mayor uso en Ecuador que el sistema BRB. Pero el sistema que más se utiliza en nuestro país es el de pórticos resistentes a momentos. Las diagonales del sistema BRB tienen un mejor comportamiento a la compresión que las diagonales convencionales como se visualizó en la ilustración 4 del marco teórico pero su implementación en la industria ecuatoriana es escasa.

Los 2 sistemas requieren una construcción secuencial de los pórticos con las diagonales, no se puede dejar al último la colocación de las diagonales ya teniendo todos los pisos montados porque el sistema se vuelve inestable sin diagonales. Las diagonales tienen mejor desempeño en los pórticos exteriores, esto hace que la fachada del edificio se vea afectada. Los 2 sistemas son muy eficiente para edificios altos tienen una peso de acero similar y un buen desempeño pero limita la arquitectura.

Para obtener el programa realizado en la presente tesis lo puede descargar en el siguiente vínculo:

https://drive.google.com/file/d/14SzpNSAX6CXxdg6oA4oYidfSwu09fJQl/view?usp=sharing

CAPITULO 11.- REFERENCIA

- Structural Engineers Association of California (SEACO) (2020). 2018 IBC SEAOC Structural/Seismic Design Manual. Volume 4 Examples for Steel-Frame Building. Sacramento, California 95814
- Michel Bruneau, Chia-Ming Uang, Rafael Sabelli (2011). Second Edition, Ductile Design of Steel Structures. United States. The McGraw-Hill Companies, Inc.
- Francisco Crisafulli (2018). *Diseño Sismorresistente de construcciones de Acero*. Mendoza, Argentina. Alacero.
- Javier Ortiz (2018). Diseño del sistema sismorresistente de una estructura utilizando pórticos con riostras de pandeo restringido (BRBFs). Universidad de Cuenca. Cuenca, Ecuador.
- Jose Andrades, Maribel Jaramillo (2015). *Análisis comparativo entre sistemas estructurales* sismo resistentes para edificios utilizando sistemas combinados con pórticos, muros o diagonales en hormigón y acero. Universidad de Cuenca. Cuenca Ecuador.
- MIDUVI (2015). *NEC_SE_DS Peligro Sísmico Diseño Sismo Resistente*. Quito: Ministerio de Desarrollo Urbano y Vivienda.
- MIDUVI (2015). *NEC_SE_CG Cargas No Sísmicas*. Quito: Ministerio de Desarrollo Urbano y Vivienda.
- AISC/ANSI (2016) AISC 360-16 Specification for Structural Steel Buildings. Chicago: American Institute of Steel Construction.
- AISC. (2005) 13th Steel Construction Manual. Chicago: American Institute of Steel Construction.

Carlos Delgado, Luis Garza, Ricardo Hernández (2017). *Conexiones Precalificadas en Colombia*. Universidad Industrial de Santander. Bucaramanga, Colombia.

ÍNDICE DE ANEXOS

ANEXO A – SISTEMA DE PISO

ANEXO B – DISEÑO DE PORTICOS CON ARRIOSTRAMIENTO CONCENTRICO SENTIDO X

ANEXO C – DISEÑO DE PORTICOS CON ARRIOSTRAMIENTO DE PANDEO RESTRINGIDO SENTIDO X

ANEXO A: SISTEMA DE PISO

SISTEMA DE PISO

CARGAS			
CARGA MUERTA			
PISO ACABADO	100	kgf/m2	
MAMPOSTERIA	260	kgf/m2	
CIELO RASO	20	kgf/m2	
INSTALACIONES	20	kgf/m2	
TOTAL	400	kgf/m2	
		kaf/m2	
Longitud X	6	m	
Longitud Y	6	m	
Numero de Viguetas	2		
Ancho (A)	2	m	
PROPIEDADES DE L	OS MATERIALE	ES	
ACE	RO DE VIGAS		
1	ASTM A572		
Properties Material			
fy=	350	MPa	
Fe=	450	MPa	
E=	200000	MPa	
G=	76900	MPa	
Ry=	1.1		

HORMIGON f'c= 21 MPa Ec= 21538 MPa

Seleccionar el Perfil	W12X19		
	PROPIEDADES D	E LA VIGUETA	
A =	3590	ly =	1570000
d =	310	Sy =	30800
tw=	5.97	ry =	20.9
bf=	102	Zy =	1570
tf=	8.89	kdes=	16.5
lx=	54100000	h =	
Sx=	349000	J =	74900
rx=	48.8	C =	3520000000
Zx=	405000	h/tw =	46.20
	fc del Hormigon		

10448.2 kgf-m

hr = 55 mm tp= 60 mm CARGAS QUE ACTUARAN EN VIGA DE PISO

Carga sobre impuesta	400 kgf/m2
Concreto	210 kgf/m2
Peso Steel Deck	10 kgf/m2
vigueta	28.18 kgf/m
Carga Muerta	620.0 kgf/m2
Carga Viva	250 kgf/m2
Wu = 1.20 D + 1.60 L Ancho	1144.0 kgf/m2
Carga Repartida en Viga	2321.8 kgf/m

Momento Ultimo	
----------------	--

	fy(MPa)
ASTM A572	350
ASTM A36	250

	102.5 kN-m
Cortante Ultimo	6965.5 kgf
	68.3 kN
CONECTORES TIPO STUD	

VIGUETA <mark>19</mark> mm Usaremos conectores tipo Stud de 3/4"x4-1/2". El conector sera soldado con filete de 8mm Asc = 283.53 mm2 VIGA 19 mm Asc = 283.53 mm2 EFFECTIVE FLANGE WIDTH The portion of the floor slab that acts compositely with the steel beam is a function of several factors, including the span length and beam spacing. AISC 13.1a requires that the effective width of floor slab on *each side* of the beam centerline be taken as the smallest of Definicion del ancho efectivo b1 = 0.75 m b2 = 1 m one eighth of the span length,
 one half of the distance to the centerline of the adjacent beam, or
 the distance from the beam centerline to the edge of the slab. be= 1 m Escogemos el menor esfuerzo entre fluencia del patin y la compresion del topping As = 3590 mm2 T = As * fyT1 = 1256500 N C = 0.85 * f'c * tp * beC2= 1071000 N C=min(t1,C2)1071000 N Usaremos pernos de 3/4" cada 300mm Asc= 283.53 mm $Qn1 = 0.5 * A_{sc} * \sqrt{f'c * Ec}$ Qn1 = 95341.1 N fu = 450 Mpa fu de los pernos $Qn2 = Rg * Rp * A_{sc} * fu$ Rg= 1 RP= 0.6 Qn2 = 76552.69433 N $Qn = \min(Qn1;Qn2)$ Qn = 76552.69433 N Numero de Conectores $n1 = 2\frac{C}{Qn}$ n1 = 28 Conectores en Viga -Numero de Valles en la viga $n2 = \frac{l}{300mm}$ n2= 20

Ubicacion del eje neutro en la seccion compuesta As * fy

$$a = \frac{AS * fy}{0.85 * f'c * be}$$

$$a = 70.39 \text{ mm} \qquad a < tp$$

$$M_n = 0.85 * f'c * be * a(\frac{d}{2} + hr + tp - \frac{a}{2})$$

Mn= 295031127.5 N-mm
Mn = 295.0 kN-m
ØMn = 265.53 kN-m

$$\frac{M_u}{\emptyset M_n} = 0.38 \text{ Cumple}$$

Resistencia Cortante

$V_n = 0.60 fy *$	∗d * tw	
Vn =	388647	Ν
ØVn =	349782.3	Ν
ØVn =	349.8	kN
$\frac{V_u}{\emptyset V_n} =$	0.19	Cumple

Calculamos el modulo estatico de la seccion Es

$$\eta = \frac{b3}{Ec}$$

$$\eta = 9.29$$

$$b_{\eta} = \frac{be}{\eta}$$

$$bn = 107.69 \text{ mm}$$

Calculamos el eje neutro elastico de la seccion trasformada

$$y_c = \frac{b_{\eta}t_p(d + hr + (tp/2)) + As(d/2)}{As + (b_{\eta}t_p)}$$

yc = 309.3 mm

Calculamos la Inercia con el teorema de Steiner

$$I_{i} = \frac{b_{\eta}tp^{3}}{12} + b_{\eta}tp\left(d + hr + \frac{tp}{2} - yc\right)^{2} + I_{v} + As\left(yc - \frac{d}{2}\right)^{2}$$

I = 188966825.7 mm4 Revision de las deflexiones por la carga Viva

$$\delta = \frac{5 * wv * l^4}{384 * Es * I_i}$$

$$\delta = 2.2325 \text{ mm} < \delta \text{ limite} = \frac{l}{360}$$
Cumple

Revision de las condiciones de Construccion

Carga sobre impuesta			400	kgf/m2
Concreto			210	kgf/m2
Peso Steel Deck			10	kgf/m2
vigueta W12X19			28.2	kgf/m
Carga Viva Construccion			100	kgf/m2
wu =	1841.8	kgf/m2		-
Considerar apuntalamiento			3	
L=	1.5	m		

Momento	
Mu =	8288.2 kgf-m
Mu =	81.3 kN-m

The Flexural strength is Yielding

$$M_p = F_y Z_x$$

Mp = 141750000 N-mm
Mp = 141.75 kN-m

Lateral-Torsional Buckling

(a) When Lb < Lp, the limit state of lateral-torsional buckling does not apply

$$Lb = \frac{1500 \text{ mm}}{L_p = 1.76 r_y \sqrt{\frac{E}{F_y}}}$$

$$Lp = \frac{879.3 \text{ mm}}{L_b \le L_p}$$

$$1500 < 879.31 \text{ No cumple}$$

879.3 mm

1500 mm

 $L_p \le L_b \le L_r$ (b) When

> Lp= Lb= 2597.1 mm Lr= CONDICION Cumple

> > L_r

$$r_{ts}^2 = \frac{\sqrt{I_y C_w}}{C}$$

$$r_{ts}^{2} = 673.59$$

$$= 1.95r_{ts} \frac{E}{0.7F_{y}} \sqrt{\frac{Jc}{S_{x}h_{o}} + \sqrt{\left(\frac{Jc}{S_{x}h_{o}}\right)^{2} + 6.76\left(\frac{0.7F_{y}}{E}\right)^{2}}}$$

 $L_r =$ 2597.09 mm

$$M_n = C_b \left[M_p - (M_p - 0.7F_y S_x) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right]$$

Mn= 121426747 N-mm
Mn= 121 kN-m

(c) Cuando Lb > Lr

$$Cb = \frac{1.00}{F_{cr}} = \frac{C_b \pi^2 E}{\left(\frac{L_b}{r_{ts}}\right)^2} \sqrt{1 + 0.078 \frac{Jc}{S_x h_o} \left(\frac{L_b}{r_{ts}}\right)^2}$$
For = 641.99
Mn= 224054022.5 N-mm
Mn= 224.05 kN-m
ØMn = 109.28 kN-m
 $\frac{M_u}{\emptyset M_n} = 0.740$ Cumple

DISEÑO DE VIGA

Seleccionar el Perfil	W14X34		
	PROPIEDADE	ES DE LA VIGA	
A =	6450	ly =	9700000
d =	356	Sy =	113000
tw=	7.24	ry =	38.9
bf=	171	Zy =	9700
tf=	11.6	kdes=	21.7
lx=	142000000	h =	
Sx=	796000	J =	237000
rx=	174	C =	2.87E+11
Zx=	895000	h/tw =	43.10

Las Cargas que actuan en la viga son las reacciones de las viguetas

Selección Posicion	Viga Central	
Multiplo	2	
Carga Muerta	73.0	kN
Carga Viva	29.4	kN
Pu=	134.67	kN
n=	3	
Mu =	269.3	kN-m
Vu =	134.7	kN
b1 =	0.8	m
b2=	3.0	m
be =	3000.0	mm
Escogemos el menor	esfuerzo entre la	a fluencia del patin y la compresion del topping
tlosa =	87.5	mm
T =	As * fy	
T1=	2257.5	kN
C2 =	0.85 * f'c * tp	* be
C2 =	4685.625	kN
C =	2257.5	kN
Usaremos pernos de	3/4"	Area de perno = 283.53 mm2
$Qn1 = 0.5 * A_{sc} * $	f'c * Ec	fu = 450 Mpa
Qn1 =	95.34	kN
Rg=	1	
Rp=	0.6	
Qn2 = Rg	$*Rp * A_{sc} * fu$	
Qn2=	76.55269433	kN
Qn=	76.55269433	kN
$Qn = \min(Qn1; Qr)$	ເ2)	
Numero de Conector	es c	
	$n1 = 2\frac{c}{Qn}$	
	n1=	58 Conectores en toda la viga
Ubicacion del eje Ner A	utro en la seccior s * f v	n compuesta
$a = \frac{1}{0.85}$	* f'c * be	
a=	42.16	mm

,

a<tlosa

$$\begin{split} M_n &= 0.85*f'c*be*a(\frac{d}{2}+hr+tp-\frac{a}{2})\\ &\text{Mn} = & 613.9 \text{ kN-m}\\ & \emptyset \text{Mn} = & 552.5 \text{ kN-m}\\ & \frac{M_u}{\emptyset M_n} = & 0.95 \text{ Cumple} \end{split}$$

Resistencia Cortante

$$V_n = 0.60 fy * d * tw$$

$$Vn = 541.3 \text{ kN}$$

$$\emptyset Vn = 487.1 \text{ kN}$$

$$\frac{V_u}{\emptyset V_n} = 0.27 \text{ Cumple}$$

9.29

Calculamos el modulo estatico de la seccion trasformada $\eta = \frac{Es}{Ec}$

η =

$$=\frac{be}{\eta}$$

323.07 mm bn =

 b_{η}

Calculamos el eje neutro elastico de la seccion trasformada $y_c = \frac{b_{\eta} t_p (d + hr + (tp/2)) + As(d/2)}{b_{\eta} t_p (d + hr + (tp/2)) + As(d/2)}$

$$As + (b_{\eta}t_{p})$$

$$Sr = 375.34 \text{ mm}$$

Calculamos la inercia de la seccion trasformada

$$I_{i} = \frac{b_{\eta} t p^{3}}{12} + b_{\eta} t p \left(d + hr + \frac{tp}{2} - yc \right)^{2} + I_{v} + As \left(yc - \frac{d}{2} \right)^{2}$$

482568389.5 mm4 I = Revision de las deflexiones por la carga viva 3 n=

		-			
Carga Viva =		29430.0 N			
be =	323.07 mm				
L =	6000 mm				
		$(5n^2+1)(n^2-1)FL^3$			
		$o = \frac{1}{384n^3} \frac{EI}{EI}$			
	δ =	2.34 mm			

Revision de las condiciones de Construccion

	400 kgf/m2 210 kgf/m2 10 kgf/m2 50.63 kgf/m
	100 kgf/m2
11050.9	kgf/m2
)	3
1.5	m
-	
22101.81	kaf-m
216.82	kN-m
	$M_p = F_y Z_x$
Mp =	313250000 N-mm
Mp =	313.25 kN-m
•	
it state of la	ateral-torsional buckling does not apply
Lb =	1500 mm
	$L_p = 1.76 r_y \sqrt{\frac{E}{F_y}}$
	11050.9 1.5 22101.81 216.82 Mp = Mp = it state of la Lb =

Lp =

1636.6 mm

δ limite=

<

16.66666667 mm

$$L_b \le L_p$$

< 1636.60 cumple

(b) When

$$\begin{split} L_p &\leq L_b \leq L_r \\ & \text{Lp} = & 1636.6 \text{ mm} \\ & \text{Lb} = & 1500 \text{ mm} \\ & \text{Lr} = & 4683.2 \text{ mm} \\ \text{CONDICION No cumple} \\ & r_{ts}^2 = \frac{\sqrt{I_y C_w}}{S_x} \\ & r_{ts}^2 = & 2096.11 \\ & L_r = & 1.95 r_{ts} \frac{E}{0.7F_y} \sqrt{\frac{Jc}{S_x h_o} + \sqrt{\left(\frac{Jc}{S_x h_o}\right)^2 + 6.76 \left(\frac{0.7F_y}{E}\right)^2}} \\ & L_r = & 4683.22 \text{ mm} \end{split}$$

$$M_n = C_b \left[M_p - (M_p - 0.7F_y S_x) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right]$$

Mn=	327295330	N-mm
Mn=	327	kN-m
No	cumple 1.00	

(c) Cuando Lb > Lr No cumple

$$\begin{aligned} Cb &= \frac{Cb}{r_{cr}} = \frac{C_b \pi^2 E}{\left(\frac{L_b}{r_{ts}}\right)^2} \sqrt{1 + 0.078 \frac{Jc}{S_x h_o} \left(\frac{L_b}{r_{ts}}\right)^2} \\ Fcr &= 1902.09 \\ Mn &= 1514067500 \text{ N-mm} \\ Mn &= 1514.07 \text{ kN-m} \\ \emptyset Mn &= 281.93 \text{ kN-m} \\ \frac{M_u}{\emptyset M_n} &= 0.76 \text{ Cumple} \end{aligned}$$

1500

DISEÑO POR VIBRACIONES

Ancho efectivo Modulo Dinamico

η = 6.878420496

Ancho efectivo para Vibraciones

	b=	2000 mm	<		bmax =	2400 mm
Calcular la Inercia	a de la seccior	n transformada				
lv1 = lv2 = w = wj =	188966 482568 D + L	5825.7 mm4 3389.5 mm4 870.0 kgf/m2	Inercia transfe Inercia transfe	ormada de ormada de	vigueta viga	
l1 = Calculo de deflex	ion de vigueta	6000 mm a				
$\Delta j =$		7.77 mm				
Calculo de fj						
fj =	6.3961	44631 >	3hz	Para evita	ar resonancia	
Calculo de Dj						

Dj =		94483.41283	mm3			
Ancho e Modulo Cj = Ds = Bj =	efectivo Bj	Borde 1 5700 2973.589888	mm			
Longitud	d total de piso	perpendicular a	las viguetas		2	<mark>!4</mark> m
	2973.589888	mm	<	16000	mm	Cumple
Calculo	de Wj					
f = Wj=		1.5 232.8320883	f es un factor mas de 0.7L kN	que puede ser 1. si no ocurre la co	5 si la vigueta se ndicion	extiende
Vibracio	on en Viga					
Ly = B =		6000 2400	mm mm			
bη= tlosa=		348.9 87.5	mm mm			
Al igual cuenta e	que en la parte el nuevo modu	e de resistencia lo dinamico	se debe calc	ular una inercia tra	insformada, toma	indo en

Calculamos el eje neutro de la seccion transformada

yc = 406.479997 mm

Inercia transformada dinamica

lj =	569324307.7 mm4				
Se Calcula la carga l	ineal				
n=	3				
w =	870 kgf/m				
F =	10440.00 kgf				
F=	102416.40 N				
Calculo de deflexion	de la viga cargadora				
$\Delta g = \frac{(5n^2 + 1)}{384}$	$\frac{n^2 (n^2 - 1)}{m^3} \frac{FL^3}{EI_j}$				
Δg =	6.90 mm				
Calculo de fg =	6.79 hz	>	3	hz No	hay resonancia
Calculo de Dg					
Dg =	94887.38461 mm3				
Calculo del ancho efe	ectivo				
Cg =	1.8	1.8 para vigu	etas de alma llena y	y conectadas al al	ma
Longitud total de pisc	o paralelo a las viguetas		18	m	
Bg =	10788.48667 <	12000) mm	no necesita reduc	cir ag
Calculo de Wg Modulo Wg = Δg = Modulo Combinado	Borde 563159.0043 N	1			
Condicion	No cumple con Bj>Ly				

Calculo de fn (Frecuencia Natural)

fn =	4.65 Hz	>	3 Hz	No hay resonancia
Calculo de W				
Wj = Wg = Δj = Δg =	232832.1 N 563159.0 N 7.8 mm 6.9 mm			
	W =	388159.0475 N		
Evaluacion Po = β =	289 N 0.12			
	ap = ap =	0.00122 < 0.0012	0.005 Vibracion Ade	ecuada

ANEXO B – DISEÑO DE PORTICOS CON ARRIOSTRAMIENTO CONCENTRICO SENTIDO X

PORTICO CON ARRIOSTRAMIENTO CONCENTRICO

Ocupacion	Oficina	
Numero de Pisos	15	
Altura entre piso (m)	3.6	
Altura del 1 Piso (m)	3.6	
Peso de Piso (kN)	3846	
Peso de Cubierta (kN)	3846	
Numero de PAC en Direccion	6	
Area total de la planta	576	

Classify the Structural System				
R =	6			
Ω=	2			
Cd=	5			

Design Response Spectrum

BASE SHEAR

$C_t =$	0.073	
x =	0.75	
$h_n =$	54	m
$T_a = C_t h$	x n	
$T_a =$	1.4542	sec
T1 =	1.70	<mark>6</mark>
$S_{DS} =$	0.48089919	9
$C_S =$	0.08	3 g

high Building

Ingrese periodo de la estructura en la direccion que se va a diseñar

PESO DEL EDIFICIO

			Valor de k
	W =	57690 kN	$T \le 0.5$ No cumple
			$0.5 < T \le 2.5$ 1.63
SHEAR			T > 2.5 No cumple
			k= 1.63
	V =	4615.2 kN	

GEOMETRIC

OLOWICHNIC			
Longitud del F	Portico de Arriostramiento C	oncentrico	
L1=	<mark>6</mark> m		L1
hi=	3.6 m	hi	
α inclinacion=	50.2		

DISTRIBUCION	N VERTICAL DEI		E EN LOS PIS	SOS	k=	1.63
Nivel	wi(kN)	hi(m)	wihi^k	Cvx	Fy(kN)	
PISO 15	3846	54	2563369	0.161	743	
PISO 14	3846	50.4	2290715	0.144	664	
PISO 13	3846	46.8	2030065	0.127	588	
PISO 12	3846	43.2	1781754	0.112	516	
PISO 11	3846	39.6	1546153	0.097	448	
PISO 10	3846	36	1323678	0.083	384	
PISO 9	3846	32.4	1114802	0.070	323	
PISO 8	3846	28.8	920066	0.058	267	
PISO 7	3846	25.2	740103	0.046	214	
PISO 6	3846	21.6	575664	0.036	167	
PISO 5	3846	18	427665	0.027	124	
PISO 4	3846	14.4	297263	0.019	86	
PISO 3	3846	10.8	185990	0.012	54	
PISO 2	3846	7.2	96042	0.006	28	
PISO 1	3846	3.6	31030	0.002	9	
Total	57690		15924358		4615	
DISTRIBUCIO		DEL CODT.	ANTE ENLLOS	DICOC		

DISTRIBUCION HORIZONTAL DEL CORTANTE EN LOS PISOS

La distribución horizontal de fuerzas requiere considerar la torsión del diafragma. Esta leva se puede aproximar en esta etapa del diseño (antes de la selección de los tamaños de las riostras) haciendo suposiciones aproximadas que se confirmarán en una etapa posterior. Se supone que los marcos de la cuadrícula A y F resisten el 50 por ciento de las fuerzas sísmicas norte-sur, más el 80 por ciento de la excenticidad accidental. Esto da como resultado una parte de las fuerzas norte-sur igual a

 $R_A = 0.5V + 0.8[V(0.05L)/L] = 0.54V$

Nicosi	E(1-NI)	Fuerza	Cortante	
nivei	Fy(KN)	Viga (kN)	Viga (kN)	
PISO 15	743	401.17	401.17	
PISO 14	664	358.50	358.50	
PISO 13	588	317.71	317.71	
PISO 12	516	278.85	278.85	
PISO 11	448	241.98	520.83	
PISO 10	384	207.16	727.99	
PISO 9	323	174.47	902.46	
PISO 8	267	143.99	1046.45	
PISO 7	214	115.83	1162.28	
PISO 6	167	90.09	1252.37	
PISO 5	124	66.93	1319.30	
PISO 4	86	46.52	1365.82	
PISO 3	54	29.11	1394.93	
PISO 2	28	15.03	1409.96	
PISO 1	9	4.86	1414.82	

DISEÑO DE ARRIOSTRAMIENTO

REQUIRED STRENGTH

In this case the gravity forces, shared by

Nivel	Riostra Fuerza Sismica (kN)	Pu (kN)		
PISO 15	104.44	104.44		
PISO 14	93.33	93.33		
PISO 13	82.71	82.71		
PISO 12	72.60	72.60		
PISO 11	135.59	135.59		
PISO 10	189.53	189.53		
PISO 9	234.95	234.95		
PISO 8	272.43	272.43		
PISO 7	302.59	302.59		
PISO 6	326.04	326.04		
PISO 5	343.47	343.47		
PISO 4	355.58	355.58		
PISO 3	363.16	363.16		
PISO 2	367.07	367.07		
PISO 1	368.34	368.34		

DEFINIR MATERIAL PARA RIOSTRAS

Properties Material										
	ASTM A572									
fy=	350	Мра								
Fe=	450	MPa								
E=	200000	MPa								
G=	76900	MPa								
Ry=	1.1									
SECTION SEL	ECTION									
Ltotal brace=	4.69	m								
Lefectiva=	3.98	m								
	$\frac{KL}{-} < 200$	0								
$r \leq \frac{KL}{200}$	r = - r	-								
$r \ge$	19.91613667	mm								
$\frac{L_c}{r} \le 4.7$ $4.71 \boxed{\frac{E}{E}} =$	$1\sqrt{\frac{E}{F_y}}$ 112.6									
$\sqrt{\frac{F_y}{D/t}} \le 0.053 \frac{E}{R_y F_y} =$	$0.053 \frac{E}{R_y F_y}$ 27.53246753									

$$F_e = \frac{\pi^2 E}{\left(\frac{L_c}{r}\right)^2}$$
$$F_{cr} = (0.658\frac{F_y}{F_e})F_y$$

						RELACION		NOTA: VE	R LOS VAL	ORES DE	PN
Nivol	Braco Sizo	r (mm)	kl /r	D/t	Area			Fcre			
NIVEI	Diace Size	1 (1111)	KL/I	D/L	(mm2)	Fe (Mpa)	Fcr (Mpa)	(Mpa)	ØPn (kN)	Fu/ØFII	
PISO 15	HSS5.563X0.37	47.000	84.7	15.9	3690	274.9	205.40	214	682	0.15	Cumple
PISO 14	HSS5.563X0.37	47.000	84.7	15.9	3690	274.9	205.40	214	682	0.13	Cumple
PISO 13	HSS5.563X0.37	47.000	84.7	15.9	3690	274.9	205.40	214	682	0.12	Cumple
PISO 12	HSS5.563X0.37	47.000	84.7	15.9	3690	274.9	205.40	214	682	0.10	Cumple
PISO 11	HSS5.563X0.37	47.000	84.7	15.9	3690	274.9	205.40	214	682	0.19	Cumple
PISO 10	HSS5.563X0.37	47.000	84.7	15.9	3690	274.9	205.40	214	682	0.27	Cumple
PISO 9	HSS5.563X0.37	47.000	84.7	15.9	3690	274.9	205.40	214	682	0.34	Cumple
PISO 8	HSS5.563X0.37	47.000	84.7	15.9	3690	274.9	205.40	214	682	0.39	Cumple

-											
Cumple	0.44	682	214	205.40	274.9	3690	15.9	84.7	47.000	HSS5.563X0.37	PISO 7
Cumple	0.47	682	214	205.40	274.9	3690	15.9	84.7	47.000	HSS5.563X0.37	PISO 6
Cumple	0.40	847	206	198.18	257.6	4750	11.8	87.5	45.500	HSS5.500X0.50	PISO 5
Cumple	0.41	847	206	198.18	257.6	4750	11.8	87.5	45.500	HSS5.500X0.50	PISO 4
Cumple	0.42	847	206	198.18	257.6	4750	11.8	87.5	45.500	HSS5.500X0.50	PISO 3
Cumple	0.43	847	206	198.18	257.6	4750	11.8	87.5	45.500	HSS5.500X0.50	PISO 2
Cumple	0.43	847	206	198.18	257.6	4750	11.8	87.5	45.500	HSS5.500X0.50	PISO 1

Elegir Piso	PISO 1						
Perfil	HSS5.500X0.500						
Diametro	140 mm						
espesor	12.7 mm						
Pu/ØPn	0.43						
ANALISIS DE MECANISMO PLASTICO							

Resistencia a la tension esperada Resistencia a la compresion esperada Resistencia Post-Pandeo $R_y F_y A_g$ 1.14 $F_{cre} A_g$ 0.342 $F_{cre} A_g$

The values for these forces the sections used are shown **FUERZAS DE CAPACIDAD EN LA RIOSTRAS**

	FUERZASI		dad en la ri	USIKAS
Nivol	Braco Sizo	itencia a Te	encia a Comp	sistencia Pos
NIVEI	Diace Size	sperada (kl	Esperada (kN	Pandeo (kN)
PISO 15	HSS5.563X0.37	1420.65	901.1	270.3
PISO 14	HSS5.563X0.37	1420.65	901.1	270.3
PISO 13	HSS5.563X0.37	1420.65	901.1	270.3
PISO 12	HSS5.563X0.37	1420.65	901.1	270.3
PISO 11	HSS5.563X0.37	1420.65	901.1	270.3
PISO 10	HSS5.563X0.37	1420.65	901.1	270.3
PISO 9	HSS5.563X0.37	1420.65	901.1	270.3
PISO 8	HSS5.563X0.37	1420.65	901.1	270.3
PISO 7	HSS5.563X0.37	1420.65	901.1	270.3
PISO 6	HSS5.563X0.37	1420.65	901.1	270.3
PISO 5	HSS5.500X0.50	1828.75	1115.2	334.6
PISO 4	HSS5.500X0.50	1828.75	1115.2	334.6
PISO 3	HSS5.500X0.50	1828.75	1115.2	334.6
PISO 2	HSS5.500X0.50	1828.75	1115.2	334.6
PISO 1	HSS5.500X0.50	1828.75	1115.2	334.6

CONDICIÓN 1: FUERZA MÁXIMA DE TENSIÓN Y FUERZA MÁXIMA DE COMPRESIÓN

CONDICIÓN 2: FUERZA MÁXIMA DE TENSIÓN Y FUERZA DE COMPRESIÓN POST-PANDEO

6. Fuerza Sismica en Vigas

CONDICION 1

Fuerza vertical en la viga es:

 $Q_{V1} = [R_y F_y A_g - 1.14 F_{cre} A_g]_5 \sin(\theta_5) - [R_y F_y A_g - 1.14 F_{cre} A_g]_6 \sin(\theta_6)$ $Q_{V1} = 149.06 \text{ kN} \qquad 38.7$

Fuerza Horizontal en la viga es:

$$Q_{H1} = \begin{bmatrix} R_y F_y A_g + 1.14 F_{cre} A_g \end{bmatrix}_5 \cos(\theta_5) - \begin{bmatrix} R_y F_y A_g + 1.14 F_{cre} A_g \end{bmatrix}_6 \cos(\theta_6)$$

$$Q_{H1} = 0.00 \text{ kN}$$

Dada la simetría de la construcción, la fuerza axial en cada segmento de esta viga se puede tomar como

 $P_{u} = \frac{1}{2} Q_{H1}$ $P_{U} = 0.00 \text{ kN}$ **CONDICION 2** $Q_{V2} = [R_{y}F_{y}A_{g} - 0.342F_{cre}A_{g}]_{5} sin(\theta_{5}) - [R_{y}F_{y}A_{g} - 0.342F_{cre}A_{g}]_{6} sin(\theta_{6})$ $Q_{V2} = 0.00 \text{ kN}$

$$Q_{H2} = \left[R_y F_y A_g + 0.342 F_{cre} A_g \right]_5 \cos(\theta_5) - \left[R_y F_y A_g + 0.342 F_{cre} A_g \right]_6 \cos(\theta_6)$$

 $Q_{H2} = 0.0 \text{ kN}$

Dada la simetría de la construcción, la fuerza axial en cada segmento de esta viga se puede tomar como

 $P_u = \frac{1}{2} Q_{H2}$ Pu = 0.00 kN La Combinacion que gobierna

COMB 5 : 1.2 + 1.0*E* + 1*L* NEC-15

El momento a gravedad es basado en: DEAD = 6.68 kN/m LIVE = 2.45 kn/m

Ancho = 1 mCOMB5 $M_u = w_g L^2 / 16$

Mu = 23.5 kN-m VIGA DE REDISTRIBUCION

$$F_{3} = [R_{y}F_{y}A_{g} + 0.342F_{cre}A_{g}]_{2} \cos(\theta_{2}) - [R_{y}F_{y}A_{g} + 0.342F_{cre}A_{g}]_{3}\cos(\theta_{3})$$

$$F_{3} = 0.0 \text{ kN}$$

$$F_{2p} = 1/3F_{2}$$

$$F3R = 0.0 \text{ kN}$$

La fuerza Axial en la viga es:

 $P_{u} = F_{3R} + [0.342F_{cre}A_{g}]_{3} \cos(\theta_{3}) - [R_{y}F_{y}A_{g}]_{2}\cos(\theta_{2})$ Pu = 956.55 kN

El momento es el mismo que para la viga en la sección anterior:

$$M_u = w_g L^2 / 16$$

Mu = 23.54 kN-m

Nivel	CONDICION 1			CONDICION 2			Viga de Redistribucion			Mu	Pu
	Qv1	Qh1	Pu	Qv2	Qh2	Pu	F3	F3R	Pu	(kN-m)	(kN)

PISO 15	399.1	1486.4	743.2	883.7	1082.6	541.3				23.5	743.2
PISO 14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	736.4	23.5	736.4
PISO 13	0.0	0.0	0.0	0.0	0.0	0.0				23.5	0.0
PISO 12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	736.4	23.5	736.4
PISO 11	0.0	0.0	0.0	0.0	0.0	0.0				23.5	0.0
PISO 10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	736.4	23.5	736.4
PISO 9	0.0	0.0	0.0	0.0	0.0	0.0				23.5	0.0
PISO 8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	736.4	23.5	736.4
PISO 7	0.0	0.0	0.0	0.0	0.0	0.0				23.5	0.0
PISO 6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	736.4	23.5	736.4
PISO 5	149.1	398.3	199.2	264.2	302.4	151.2				23.5	199.2
PISO 4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	956.6	23.5	956.6
PISO 3	0.0	0.0	0.0	0.0	0.0	0.0				23.5	0.0
PISO 2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	956.6	23.5	956.6
PISO 1	0.0	0.0	0.0	0.0	0.0	0.0				23.5	0.0

La resistencia a la compresión se puede calcular considerando la restricción proporcionada en el ala superior de la losa. El Manual de diseño sísmico de AISC proporciona estas expresiones para su uso en el cálculo de pandeo de flexión-torsión de eje restringido para una viga restringida en el ala superior.

$$F_e = \left[\frac{\pi^2 E\left(C_w + I_y\left(\frac{d}{2}\right)^2\right)}{(K_z L)^2} + GI\right] \frac{0.9}{I_x + I_y + \left(\frac{d}{2}\right)^2 A_g}$$

raced distance 5576 mm

No braced distance

Seletion the section

NIVE	Solocciono	d	lx	ly	Ag	J	Cw	ry	Sx	Zx	Fe
	Seleccione	mm	mm4	mm4	mm2	mm4	mm3	mm	mm3	mm3	Мра
PISO 15	W16X57	417	316000000	17900000	10800	924000	9.24E+11	40.6	1510000	1720000	200.66
PISO 14	W16X57	417	316000000	17900000	10800	924000	9.24E+11	40.6	1510000	1720000	200.66
PISO 13	W16X57	417	316000000	17900000	10800	924000	9.24E+11	40.6	1510000	1720000	200.66
PISO 12	W16X57	417	316000000	17900000	10800	924000	9.24E+11	40.6	1510000	1720000	200.66
PISO 11	W16X57	417	316000000	17900000	10800	924000	9.24E+11	40.6	1510000	1720000	200.66
PISO 10	W16X57	417	316000000	17900000	10800	924000	9.24E+11	40.6	1510000	1720000	200.66
PISO 9	W16X57	417	316000000	17900000	10800	924000	9.24E+11	40.6	1510000	1720000	200.66
PISO 8	W16X57	417	316000000	17900000	10800	924000	9.24E+11	40.6	1510000	1720000	200.66
PISO 7	W16X57	417	316000000	17900000	10800	924000	9.24E+11	40.6	1510000	1720000	200.66
PISO 6	W16X57	417	316000000	17900000	10800	924000	9.24E+11	40.6	1510000	1720000	200.66
PISO 5	W16X57	417	316000000	17900000	10800	924000	9.24E+11	40.6	1510000	1720000	200.66
PISO 4	W16X57	417	316000000	17900000	10800	924000	9.24E+11	40.6	1510000	1720000	200.66
PISO 3	W16X57	417	316000000	17900000	10800	924000	9.24E+11	40.6	1510000	1720000	200.66
PISO 2	W16X57	417	316000000	17900000	10800	924000	9.24E+11	40.6	1510000	1720000	200.66
PISO 1	W16X57	417	316000000	17900000	10800	924000	9.24E+11	40.6	1510000	1720000	200.66

Мр	Lp	Lb	rts^2	Lr	Mn	ØMn	Mu/ØMn	ØPn	Pu/ØPn	$P_{U} + \frac{8M_{u}}{9}$
N-mm	mm	mm		mm	kN-m	kN-m		kN		
602000000	1708.1	5576	2693.3051	5826.45	########	345.66	0.07	1639.3	0.45	0.51
602000000	1708.1	5576	2693.3051	5826.45	########	345.66	0.07	1639.3	0.45	0.50
602000000	1708.1	5576	2693.3051	5826.45	########	345.66	0.07	1639.3	0.00	0.06
602000000	1708.1	5576	2693.3051	5826.45	########	345.66	0.07	1639.3	0.45	0.50
602000000	1708.1	5576	2693.3051	5826.45	########	345.66	0.07	1639.3	0.00	0.06
602000000	1708.1	5576	2693.3051	5826.45	########	345.66	0.07	1639.3	0.45	0.50
602000000	1708.1	5576	2693.3051	5826.45	########	345.66	0.07	1639.3	0.00	0.06
602000000	1708.1	5576	2693.3051	5826.45	########	345.66	0.07	1639.3	0.45	0.50
602000000	1708.1	5576	2693.3051	5826.45	########	345.66	0.07	1639.3	0.00	0.06
602000000	1708.1	5576	2693.3051	5826.45	########	345.66	0.07	1639.3	0.45	0.50
602000000	1708.1	5576	2693.3051	5826.45	########	345.66	0.07	1639.3	0.12	0.18
602000000	1708.1	5576	2693.3051	5826.45	########	345.66	0.07	1639.3	0.58	0.64
602000000	1708.1	5576	2693.3051	5826.45	########	345.66	0.07	1639.3	0.00	0.06
602000000	1708.1	5576	2693.3051	5826.45	########	345.66	0.07	1639.3	0.58	0.64
602000000	1708.1	5576	2693.3051	5826.45	########	345.66	0.07	1639.3	0.00	0.06

DISEÑO DE VIGA

VIGA		PISO 1	
Pu=		0.00	kN
Mu=		23.54	kN-m
	Pro	perties Material	
		ASTM A572	
	fy=	350	Мра
	Fe=	450	MPa
	E=	200000	MPa
	G=	76900	MPa
	Ry=	1.1	

eleccionar el PerW16X57

	PROPIE	DADES DE	LA COLUMN	A	
A =	10800	mm²	ly =	17900000	mm⁴
d =	417	mm	Sy =	198000	mm³
tw=	10.9	mm	ry =	40.6	mm
bf=	181	mm	Zy =	17900	mm³
tf=	18.2	mm	rts =		
lx=	316000000	mm⁴	h =		
Sx=	1510000	mm³	J =	924000	mm⁴
rx=	171	mm	C =	7.14E+11	mm⁵
Zx=	1720000	mm³	h/tw =	33.00	

$$\begin{array}{rll} {\sf Fe} = & 200.66 \ {\sf Mpa} \\ {\it \emptyset} P_n = & 1639.35 \ {\sf kN} \\ P_u/{\it \emptyset} P_n = & 0.58 \end{array}$$

La Resistencia a La flexion es Momemto Plastico

 $M_p = F_y Z_x$ Mp = 60200000 N-mm Mp = 602.00 kN-m Pandeo Lateral Torsional (a) Cuando Lb < Lp, El estado limite del pandeo Lateral no aplica. Lb = 5576 mm $L_p = 1.76 r_y \sqrt{\frac{E}{F_y}}$ $\begin{array}{c} 1708.1 \ \mathrm{mm} \\ L_b \leq L_p \end{array}$ Lp = (b) Cuando $L_p \leq L_b \leq L_r$ No cumple < 1708.13 1708.1 mm Lp= . Lb= 5576 mm Lr= 5826.5 mm CONDICION Cumple $r_{ts}^2 = \frac{\sqrt{I_y C_w}}{S_x}$ 2693.31 $r_{ts}^2 =$ $L_r = 1.95r_{ts} \frac{E}{0.7F_y} \sqrt{\frac{Jc}{S_x h_o} + \sqrt{\left(\frac{Jc}{S_x h_o}\right)^2 + 6.76\left(\frac{0.7F_y}{E}\right)^2}}$ $L_r = 9 \qquad 18.00 \text{ mm}$ $M_n = C_b \left[M_p - (M_p - 0.7F_yS_x) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right]$

 $\begin{array}{rl} & \operatorname{Mn=} 384061856 \ \operatorname{N-mm} \\ & \operatorname{Mn=} & 384 \ \operatorname{kN-m} \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ &$

FUERZA SISMICA EN COLUMNAS

Area induiaria e	an Columnas										
	Esquinera	Central									
Area Tributaria	18	9									
PU por piso	188.325	94.1625								COLU	JMNA
	CC	DNDICION 1		C	ONDICION	2	CAR	GA POR S	ISMO	ESQL	JINAS
Nivel	Column 2	Column 3	Column 4	Column 2	Column 3	Column 4	Column 2	Column 3	Column 4	1.2 D + L	Σ
	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
PISO 15	199.5	399.1	199.5	-441.8	883.7	441.8	-441.8	883.7	441.8	188.3	188.3
PISO 14	-1584.1	-399.1	1983.2	-1740.9	-883.7	1740.9	-1740.9	-399.1	1983.2	188.3	376.7
PISO 13	-1584.1	-399.1	1983.2	-1740.9	-883.7	1740.9	-1740.9	-399.1	1983.2	188.3	565.0
PISO 12	-3367.7	-399.1	3766.8	-3039.9	-883.7	3039.9	-3367.7	-399.1	3766.8	188.3	753.3
PISO 11	-3367.7	-399.1	3766.8	-3039.9	-883.7	3039.9	-3367.7	-399.1	3766.8	188.3	941.6
PISO 10	-2784.5	399.1	3183.6	-3539.6	883.7	3539.6	-3539.6	883.7	3539.6	188.3	1130.0
PISO 9	-2784.5	399.1	3183.6	-3539.6	883.7	3539.6	-3539.6	883.7	3539.6	188.3	1318.3
PISO 8	-4568.1	458.1	4967.2	-4838.7	2498.7	4838.7	-4838.7	2498.7	4967.2	188.3	1506.6
PISO 7	-4568.1	458.1	4967.2	-4838.7	2498.7	4838.7	-4838.7	2498.7	4967.2	188.3	1694.9
PISO 6	-6351.8	1322.5	6750.9	-6137.7	4285.9	6137.7	-6351.8	4285.9	6750.9	188.3	1883.3

PISO 5	-6202.7	1471.5	6825.4	-6005.6	4550.1	6269.8	-6202.7	4550.1	6825.4	188.3	2071.6
PISO 4	-8464.3	2567.9	9087.0	-7667.5	6845.8	7931.7	-8464.3	6845.8	9087.0	188.3	2259.9
PISO 3	-8464.3	2567.9	9087.0	-7667.5	6845.8	7931.7	-8464.3	6845.8	9087.0	188.3	2448.2
PISO 2	-10725.9	3664.2	11348.6	-9329.4	9141.5	9593.6	-10725.9	9141.5	11348.6	188.3	2636.6
PISO 1	-10725.9	3664.2	11348.6	-9329.4	9141.5	9593.6	-10725.9	9141.5	11348.6	188.3	2824.9

	COLL	JMNAS	1			_	
	CENT	RALES	GAS DE DIS	GAS DE DISEÑO			
Nivel	1.2 D + L	Σ	Column 2	Column 3	Column 4	MU	
111.01	(kN)	(kN)	(kN)	(kN)	(kN)	kN-m	
PISO 15	94.2	94.2	-253.5	977.8	630.2	23.5	
PISO 14	94.2	188.3	-1364.2	-210.8	2359.8	23.5	
PISO 13	94.2	282.5	-1175.9	-116.6	2548.2	23.5	
PISO 12	94.2	376.7	-2614.4	-22.5	4520.1	23.5	
PISO 11	94.2	470.8	-2426.1	71.7	4708.5	23.5	
PISO 10	94.2	565.0	-2409.7	1448.6	4669.6	23.5	
PISO 9	94.2	659.1	-2221.3	1542.8	4857.9	23.5	
PISO 8	94.2	753.3	-3332.1	3252.0	6473.8	23.5	
PISO 7	94.2	847.5	-3143.7	3346.1	6662.2	23.5	
PISO 6	94.2	941.6	-4468.5	5227.5	8634.1	23.5	
PISO 5	94.2	1035.8	-4131.2	5585.8	8897.0	23.5	
PISO 4	94.2	1130.0	-6204.4	7975.7	11346.9	23.5	
PISO 3	94.2	1224.1	-6016.1	8069.9	11535.2	23.5	
PISO 2	94.2	1318.3	-8089.4	10459.8	13985.2	23.5	
PISO 1	94.2	1412.4	-7901.1	10554.0	14173.5	23.5	

		Lb =	3600	mm							
NIVEL	Section	d	lx	ly	Ag	J	Cw	ry	Sx	Zx	Fe
NIVEL	Seccion	mm	mm4	mm4	mm2	mm4	mm3	mm	mm3	mm3	Мра
PISO 15	W14X68	356	301000000	50400000	12900	1250000	1.25E+12	62.5	1690000	1880000	627.21
PISO 14	W14X68	356	301000000	50400000	12900	1250000	1.25E+12	62.5	1690000	1880000	627.21
PISO 13	W14X68	356	301000000	50400000	12900	1250000	1.25E+12	62.5	1690000	1880000	627.21
PISO 12	W14X99	361	462000000	167000000	18800	2240000	2.24E+12	94.2	2570000	2830000	972.94
PISO 11	W14X99	361	462000000	167000000	18800	2240000	2.24E+12	94.2	2570000	2830000	972.94
PISO 10	W14X99	361	462000000	167000000	18800	2240000	2.24E+12	94.2	2570000	2830000	972.94
PISO 9	W14X132	373	637000000	228000000	25000	5120000	5.12E+12	95.5	3420000	3830000	1235.6
PISO 8	W14X132	373	637000000	228000000	25000	5120000	5.12E+12	95.5	3420000	3830000	1235.6
PISO 7	W14X132	373	637000000	228000000	25000	5120000	5.12E+12	95.5	3420000	3830000	1235.6
PISO 6	W14X211	399	1110000000	429000000	40000	18600000	1.86E+13	103	5540000	6390000	1973
PISO 5	W14X211	399	1110000000	429000000	40000	18600000	1.86E+13	103	5540000	6390000	1973
PISO 4	W14X233	406	1250000000	479000000	44200	24800000	2.48E+13	104	6150000	7140000	2203
PISO 3	W14X233	406	1250000000	479000000	44200	24800000	2.48E+13	104	6150000	7140000	2203
PISO 2	W14X283	424	160000000	599000000	53700	43300000	4.33E+13	106	7520000	8880000	2736.6
PISO 1	W14X283	424	160000000	599000000	53700	43300000	4.33E+13	106	7520000	8880000	2736.6

								EXTERIOR	INTERIOR	EXTERIO	NTERIOR
Lp	Lp	rts^2	Lr	Mn	ØMn	Mu/ØMn	ØPn	Pu/ØPn	Pu/ØPn	$\frac{P_n}{P_n} \pm \frac{8N}{8N}$	$1\frac{1}{4}\frac{1}{1}\frac{9}{1} + \frac{81}{1}$
mm	mm		mm	kN-m	kN-m		kN-m				¢4P _m '¢
2629.502941	3600	4696.60	8365.54	###########	555.05	0.04	3217.10	0.20	0.30	0.23	0.27
2629.502941	3600	4696.60	8365.54	###########	555.05	0.04	3217.10	0.73	-0.07	0.77	-0.10
2629.502941	3600	4696.60	8365.54	###########	555.05	0.04	3217.10	0.79	-0.04	0.82	-0.07
3963.186832	3600	7525.74	11057.03	###########	908.08	0.03	5094.22	0.89	0.00	0.91	-0.03
3963.186832	3600	7525.74	11057.03	###########	908.08	0.03	5094.22	0.92	0.01	0.94	-0.01
3963.186832	3600	7525.74	11057.03	###########	908.08	0.03	5094.22	0.92	0.28	0.93	0.26
4017.880493	3600	9990.25	15208.91	###########	1223.34	0.02	6994.58	0.69	0.22	0.71	0.20
4017.880493	3600	9990.25	15208.91	###########	1223.34	0.02	6994.58	0.93	0.46	0.94	0.45
4017.880493	3600	9990.25	15208.91	###########	1223.34	0.02	6994.58	0.95	0.48	0.96	0.46
4333.420846	3600	16124.10	26672.06	###########	2038.83	0.01	11698.35	0.74	0.45	0.74	0.44
4333.420846	3600	16124.10	26672.06	###########	2038.83	0.01	11698.35	0.76	0.48	0.77	0.47
4375.492893	3600	17722.23	30239.64	###########	2275.88	0.01	13027.29	0.87	0.61	0.88	0.60
4375.492893	3600	17722.23	30239.64	###########	2275.88	0.01	13027.29	0.89	0.62	0.89	0.61
4459.636987	3600	21416.06	38651.09	###########	2825.84	0.01	16033.81	0.87	0.65	0.87	0.64
4459.636987	3600	21416.06	38651.09	#############	2825.84	0.01	16033.81	0.88	0.66	0.89	0.65

DISEÑO DE COLUMNA Columna PISO 1

Pu=	14173.50 kN
Mu=	23.54 kN-m

Properties Material ASTM A572								
fy=	350	Мра						
Fe=	450	MPa						
E=	200000	MPa						
G=	76900	MPa						
Rv=	1.1							

eleccionar el Per W14X283

PROPIEDADES DE LA COLUMNA										
A = 53700 mm² ly = 59900000 mm⁴										
d =	424	mm	Sy =	2930000	mm³					

tw=	32.8	mm	ry =	106	mm
bf=	409	mm	Zy =	599000	mm³
tf=	52.6	mm	rts =		
lx=	160000000	mm⁴	h =		
Sx=	7520000	mm³	J =	43300000	mm⁴
rx=	172	mm	C =	2.09E+13	mm⁵
Zx=	1720000	mm³	h/tw =	8.84	

Chequeo de Relacion Ancho - Espesor

$$\begin{split} \lambda_{ps} &= \frac{b_{f}}{2t_{f}} \ 0.32 \sqrt{\frac{29000 \ ksi}{1.1 \ * \ 50ksi}} \\ \lambda_{ps} &= \frac{3.89}{C_{a}} < 7.29 \qquad \text{Cumple} \\ Ca &= \frac{P_{u}}{P_{y}} \\ Ca &= 0.7541102 \\ \lambda_{ps} &= \frac{h}{t_{w}} < 0.88 \sqrt{\frac{29000 \ ksi}{1.1 \ * \ 50ksi}} (2.68 - C_{a}) \\ \lambda_{ps} &= 8.84 < 38.63 \qquad \text{Cumple} \end{split}$$

Momento ultimo en la columna

kL 3600 mm

$$F_e = \frac{\pi^2 E}{\left(\frac{L_c}{r}\right)^2}$$

$$F_{cr} = (0.658^{F_e})F_y$$

$$\emptyset Pn = \emptyset F_{cr}A_g$$
Fe= 2736.6 Mpa

$$\emptyset P_n = 16033.8 \text{ kN}$$

$$P_u/\emptyset P_n = 0.88$$

Resistencia a la Flexion

Momento Plastico $M_p = F_y Z_x$ Mp = 60200000 N-mm Mp = 602.00 kN-m Pandeo Lateral Torisional (a) Cuando Lb < Lp, Estado limite de pandeo lateral no aplica Lb = 3600 mm $L_p = 1.76 r_y \sqrt{\frac{E}{F_y}}$ 4459.6 mm Lp = $\begin{array}{c} L_b \leq L_p \\ < \quad 4459.64 \end{array}$ 3600 cumple $L_p \le L_b \le L_r$ (b) Cuando 4459.6 mm 3600 mm Lp= Lb= Lr= 326004.9 mm CONDICION No cumple $r_{ts}^2 = \frac{\sqrt{I_y C_w}}{S_x}$ = 14878.83 $L_r = 1.95r_{ts} \frac{E}{0.7F_y} \sqrt{\frac{Jc}{S_x h_o} + \sqrt{\left(\frac{Jc}{S_x h_o}\right)^2 + 6.76\left(\frac{0.7F_y}{E}\right)^2}}$ $r_{ts}^2 =$ $L_r = 326004.87 \text{ mm}$ $M_n = C_b \left[M_p - (M_p - 0.7F_y S_x) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right]$ Mn= 529469929 N-mm 529 kN-m Mn= ØMn= 477 kip-ft

 $\frac{M_u}{\phi M_n} = 0.040 \text{ Cumple}$ $\frac{P_n}{\phi P_n} + \frac{8M_u/9}{\phi M_n} = 0.910 \text{ Cumple}$

ANEXO C – DISEÑO DE PORTICOS CON ARRIOSTRAMIENTO DE PANDEO RESTRINGIDO SENTIDO X

PORTICO CON ARRIOSTRAMIENTO DE PANDEO RESTRINGIDO

CARACTERISTICAS DE LA EDIFICACION

Ocupacion	Oficina	
Numero de Pisos	15	
Altura entre piso	3.6	m
Altura del 1 Piso	3.6	m
Peso de Piso	3846	kN
Peso de Cubierta	3846	kN
Area total de la planta	576	m²
Numero de BRB en Dir	6	

R=	8
t =	1.55 SEG
Cs=	0.54
Cs/R=	0.07
W=	57690.00 kN
V=	3865.23 kN

DEFINE MATERIAL

Prope	rties Material		_	
	ASTM A572		Valor de	k
fy=	350	MPa	$T \leq 0.5$	No cumple
Fe=	450	MPa	$0.5 < T \le 2.5$	1.525
E=	200000	MPa	T > 2.5	No cumple
G=	76900	MPa	k=	1.525
Rv=	1.1			

DISTRIBUCION VERTICAL DEL CORTANTE

k= 1.525

NIVEL	wi(kN)	hi(m)	wihi^k	Cvx	Fx(kN)
PISO 15	3846	54	1686203	0.27	1032
PISO 14	3846	50.4	1517805	0.24	929
PISO 13	3846	46.8	1355608	0.21	830
PISO 12	3846	43.2	1199836	0.19	734
PISO 11	3846	39.6	1050738	0.17	643
PISO 10	3846	36	908596	0.14	556
PISO 9	3846	32.4	773732	0.12	474
PISO 8	3846	28.8	646521	0.10	396
PISO 7	3846	25.2	527406	0.08	323
PISO 6	3846	21.6	416919	0.07	255
PISO 5	3846	18	315718	0.05	193
PISO 4	3846	14.4	224653	0.04	138
PISO 3	3846	10.8	144871	0.02	89
PISO 2	3846	7.2	78062	0.01	48
PISO 1	3846	3.6	27125	0.00	17
Total	46152		6314177		3865

DISTRIBUCION HORIZONTAL DEL CORTANTE DE PISO

NIVEL	Fstory(kN)	FBF4(kN)	VBF4
PISO 15	1032	172.0	172.0
PISO 14	929	154.9	326.9
PISO 13	830	138.3	465.2
PISO 12	734	122.4	587.6
PISO 11	643	107.2	694.8
PISO 10	556	92.7	787.5
PISO 9	474	78.9	866.5
PISO 8	396	66.0	932.4
PISO 7	323	53.8	986.2
PISO 6	255	42.5	1028.8
PISO 5	193	32.2	1061.0
PISO 4	138	22.9	1083.9
PISO 3	89	14.8	1098.7
PISO 2	48	8.0	1106.6
PISO 1	17	2.8	1109.4
Total			

BRB CONFIGURACION

Ø = Fysc= L =

26.2 kN/cm2 4.69 m

Nivol	Vu	Pu	Ase Req'd	Ase Used	lef.
INIVEI	(kN)	(kN)	(cm2)	(cm2)	N
PISO 15	172	134	5.7	29	1.850
PISO 14	327	255	10.8	29	1.850
PISO 13	465	363	15.4	29	1.850
PISO 12	588	459	19.5	29	1.850
PISO 11	695	543	23.0	29	1.850
PISO 10	788	615	26.1	29	1.850
PISO 9	866	677	28.7	29	1.950
PISO 8	932	728	30.9	35	1.950
PISO 7	986	770	32.7	35	1.950
PISO 6	1029	803	34.1	35	1.950
PISO 5	1061	829	35.1	35	1.950
PISO 4	1084	847	35.9	39	1.950
PISO 3	1099	858	36.4	39	1.950
PISO 2	1107	864	36.7	39	1.950
PISO 1	1109	866	36.7	39	1.950

VIGA PISO 1 Seleccionar el Perfil W14X48

PROPIEDADES DE LA VIGA										
A =	9100	mm²	ly =	21400000	mm⁴					
d =	351	mm	Sy =	210000	mm³					
tw=	8.64	mm	ry =	48.5	mm					
bf=	204	mm	Zy =	21400	mm³					
tf=	15.1	mm	rts =							
lx=	201000000	mm⁴	h =							
Sx=	1150000	mm³	J =	604000	mm⁴					
rx=	149	mm	C =	6.04E+11	mm⁰					
Zx=	1280000	mm³	h/tw =	33.60						

	Lb=	3000									
Seletion the section											
NIVE	SECCION	d	lx	ly	Ag	J	Cw	ry	Sx	Zx	Fe
	SECCIÓN	mm	mm4	mm4	mm2	mm4	mm3	mm	mm3	mm3	Мра
PISO 15	W14X48	351	201000000	21400000	9100	604000	6.04E+11	48.5	1150000	1280000	515.875724
PISO 14	W14X48	351	201000000	21400000	9100	604000	6.04E+11	48.5	1150000	1280000	515.875724
PISO 13	W14X48	351	201000000	21400000	9100	604000	6.04E+11	48.5	1150000	1280000	515.875724
PISO 12	W14X48	351	201000000	21400000	9100	604000	6.04E+11	48.5	1150000	1280000	515.875724
PISO 11	W14X48	351	201000000	21400000	9100	604000	6.04E+11	48.5	1150000	1280000	515.875724
PISO 10	W14X48	351	201000000	21400000	9100	604000	6.04E+11	48.5	1150000	1280000	515.875724
PISO 9	W14X48	351	201000000	21400000	9100	604000	6.04E+11	48.5	1150000	1280000	515.875724
PISO 8	W14X48	351	201000000	21400000	9100	604000	6.04E+11	48.5	1150000	1280000	515.875724
PISO 7	W14X48	351	201000000	21400000	9100	604000	6.04E+11	48.5	1150000	1280000	515.875724
PISO 6	W14X48	351	201000000	21400000	9100	604000	6.04E+11	48.5	1150000	1280000	515.875724
PISO 5	W14X48	351	201000000	21400000	9100	604000	6.04E+11	48.5	1150000	1280000	515.875724
PISO 4	W14X48	351	201000000	21400000	9100	604000	6.04E+11	48.5	1150000	1280000	515.875724
PISO 3	W14X48	351	201000000	21400000	9100	604000	6.04E+11	48.5	1150000	1280000	515.875724
PISO 2	W14X48	351	201000000	21400000	9100	604000	6.04E+11	48.5	1150000	1280000	515.875724
PISO 1	W14X48	351	201000000	21400000	9100	604000	6.04E+11	48.5	1150000	1280000	515 875724

rts^2	Lr	Mn	ØMn	$R_{\gamma}P_{\gamma sc}$	Punbalanced	Mu	Mu/ØMn	Pu	ØPn	Pu/ØPn	$P_n + \frac{8M_u}{9}$
	mm	kN-m	kN-m			kN-m		kN	kN		
3126.277433	6303.22	410578411	369.52	919.3	43.50	78.03	0.21	924.45	2157.9	0.43	0.610
3126.277433	6303.22	410578411	369.52	919.3	43.50	78.03	0.21	924.45	2157.9	0.43	0.610
3126.277433	6303.22	410578411	369.52	919.3	43.50	78.03	0.21	924.45	2157.9	0.43	0.610
3126.277433	6303.22	410578411	369.52	919.3	43.50	78.03	0.21	924.45	2157.9	0.43	0.610
3126.277433	6303.22	410578411	369.52	919.3	43.50	78.03	0.21	924.45	2157.9	0.43	0.610
3126.277433	6303.22	410578411	369.52	919.3	43.50	78.03	0.21	924.45	2157.9	0.43	0.610
3126.277433	6303.22	410578411	369.52	919.3	43.50	78.03	0.21	924.45	2157.9	0.43	0.610
3126.277433	1.00	526214402	473.59	1109.5	52.50	91.53	0.19	1115.72	2157.9	0.52	0.680
3126.277433	6303.22	410578411	369.52	1109.5	52.50	91.53	0.25	1115.72	2157.9	0.52	0.730
3126.277433	6303.22	410578411	369.52	1109.5	52.50	91.53	0.25	1115.72	2157.9	0.52	0.730
3126.277433	6303.22	410578411	369.52	1109.5	52.50	91.53	0.25	1115.72	2157.9	0.52	0.730
3126.277433	6303.22	410578411	369.52	1236.3	58.50	100.53	0.27	1243.23	2157.9	0.58	0.810
3126.277433	2.45	526270049	473.64	1236.3	58.50	100.53	0.21	1243.23	2157.9	0.58	0.760
3126.277433	6303.22	410578411	369.52	1236.3	58.50	100.53	0.27	1243.23	2157.9	0.58	0.810
3126.277433	6303.22	410578411	369.52	1236.3	58.50	100.53	0.27	1243.23	2157.9	0.58	0.810

CHEQUEO ANCHO-ESPESOR

$$\lambda_{ps} = \frac{b_f}{2t_f} < 0.32 \sqrt{\frac{E}{1.1 * F_y}}$$

6.75 < 7.29

$$\lambda_{ps} = \frac{h}{t_w} < 1.57 \sqrt{\frac{E}{1.1 * F_y}}$$

33.60 < 35.78

Cumple

Ancho afluente Wd=

<mark>1</mark> m 6.68 kN/m2 Cumple

Peso de la viga =	0.70	kN/m
Wd= wl=	7.38 2.5	kN/m2
WL=	2.5	
wu=	11.35	kN/m
Mu=	-12.77	kN-m

Mu= -12.77 kN-m La carga desequilibrada debido a la capacidad desigual de compresión y tensión de los BRB se calcula como

 $P_{unbalanced} = \left(\beta \omega R_y P_{yse} - \omega R_y P_{yse}\right) \sin(\theta)$

Nota: Fluencia limite del disipador 42ksi + 4 ksi, esto sera confirmado con un test

Fy disi	pador =	31.7 kN/cm	2				
$R_y P_{ysc} =$		1236.3 kN		Flue	ncia del Dis	ipador	
	β=	1.04		Fy =	29	kN/cm2	
	ω=	1.54					
$P_{unbalanced} =$		58.505 kN					
Esto produce u	n momento	87.75	570818				
	Mu =	100.53 kN-m		\implies	100.53 I	kN-m	

Revision de la viga con combinacion axial y flexion debida al colector acionarios n the beam in the BRB bay will be followed. This done by assuming that the brace capacity in tension and compression is mobilized in the low

$$\begin{split} V_{u-capacity} &= \left(\beta \omega R_y P_{yse} - \omega R_y P_{yse}\right) \cos(\theta) \\ V_{u-capacity} &= 2486.451 \text{ kN} \\ 1243.2253 \\ &= \frac{K_v L_v}{r_x} = 0.04 \\ &= 0.04 \\ &= \frac{K_v L_y}{r_y} = 0.06 \\ &= 515.91 \\ \theta_v P_n = 2157.9 \text{ kN} \\ \text{Check beam yielding} \\ \theta M_n = \theta Z_x F_y \\ M_p = 44800000 \text{ N-mm} \\ Lateral-Torsional Buckling \\ \text{(a) When Lb < Lp, the limit state of lateral-torsional buckling does not apply \\ Lb = 3000 \text{ mm} \\ L_p = 1.76r_y \sqrt{\frac{F}{F_y}} \\ Lp = 2040.5 \text{ mm} \\ Lb \leq L_p \\ \text{(b) When } L_p \leq L_b \leq L_r \\ \text{(b) When } L_p \leq L_b \leq L_r \\ \text{(c) DICION Cumple} \\ r_{ts}^2 = \frac{\sqrt{I_y C_w}}{S_x} \\ r_{ts}^2 = 3126.28 \\ L_r = 1.95r_{ts} \frac{F}{S_x} \sqrt{\frac{J_z C_w}{S_x}} \\ L_r = 6303 \text{ mm} \\ M_n = C_b \left[M_p - (M_p - 0.7F_y S_x) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right] \\ \text{(b) } \\ \text{(b) } Mn = 4110578411 \text{ N-mm} \\ \frac{M_n}{\theta M_n} = 0.27 \\ \frac{P_n}{\theta P_n} + \frac{8M_n/9}{\theta M_n} = 0.810 \\ \end{array}$$

					Reaction		_				
Area Columna		9	m²		From						
NIVEL	Ase Req'd	P_{yse}	$\beta \omega R_y P_{yse}$	$P_{yse} = P_e$	Unbal. Load	Trib Area	DL	L	1.2D+L	1.2D+L+E	Cum.
	cm2	(kN)	(kN)	(kN)	(kN)	(m2)	(kN/m2)	(kN/m2)	(kN)	(kN)	(kN)
PISO 15	29	0	0.00	0.0	0.00	9	60.09375	22.5	94.61	94.6	94.6
PISO 14	29	919.3	1472.35	1131.1	21.75	9	60.09375	22.5	94.61	1013.9	1108.5
PISO 13	29	919.3	1472.35	1131.1	21.75	9	60.09375	22.5	94.61	1013.9	2122.4
PISO 12	29	919.3	1472.35	1131.1	21.75	9	60.09375	22.5	94.61	1013.9	3136.4
PISO 11	29	919.3	1472.35	1131.1	21.75	9	60.09375	22.5	94.61	1013.9	4150.3
PISO 10	29	919.3	1472.35	1131.1	21.75	9	60.09375	22.5	94.61	1013.9	5164.2
PISO 9	29	919.3	1472.35	1131.1	21.75	9	60.09375	22.5	94.61	1013.9	6178.1
PISO 8	35	919.3	1472.35	1131.1	21.75	9	60.09375	22.5	94.61	1013.9	7192.0
PISO 7	35	1109.5	1776.98	1365.1	26.25	9	60.09375	22.5	94.61	1204.1	8396.1
PISO 6	35	1109.5	1776.98	1365.1	26.25	9	60.09375	22.5	94.61	1204.1	9600.2
PISO 5	35	1109.5	1776.98	1365.1	26.25	9	60.09375	22.5	94.61	1204.1	10804.3
PISO 4	39	1109.5	1776.98	1365.1	26.25	9	60.09375	22.5	94.61	1204.1	12008.5
PISO 3	39	1236.3	1980.06	1521.2	29.25	9	60.09375	22.5	94.61	1330.9	13339.4
PISO 2	39	1236.3	1980.06	1521.2	29.25	9	60.09375	22.5	94.61	1330.9	14670.3
PISO 1	39	1236.3	1980.06	1521.2	29.25	9	60.09375	22.5	94.61	1330.9	16001.2

		Lb =	3600	mm							
NIVE	SECCION	d	lх	ly	Ag	J	Cw	ry	ry	Sx	Zx
	SECCIÓN	mm	mm4	mm4	mm2	mm4	mm3	mm	mm	mm3	mm3
PISO 15	W14X68	356	301000000	50400000	12900	1250000	1.25E+12	153	62.5	1690000	1880000
PISO 14	W14X68	356	301000000	50400000	12900	1250000	1.25E+12	153	62.5	1690000	1880000
PISO 13	W14X68	356	301000000	50400000	12900	1250000	1.25E+12	153	62.5	1690000	1880000
PISO 12	W14X82	363	367000000	61600000	15500	2110000	2.11E+12	154	63	2020000	2280000
PISO 11	W14X82	363	367000000	61600000	15500	2110000	2.11E+12	154	63	2020000	2280000
PISO 10	W14X132	373	637000000	2.28E+08	25000	5120000	5.12E+12	160	95.5	3420000	3830000
PISO 9	W14X132	373	637000000	2.28E+08	25000	5120000	5.12E+12	160	95.5	3420000	3830000
PISO 8	W14X132	373	637000000	2.28E+08	25000	5120000	5.12E+12	160	95.5	3420000	3830000
PISO 7	W14X176	386	891000000	3.49E+08	33400	11000000	1.1E+13	163	102	4600000	5240000
PISO 6	W14X176	386	89100000	3.49E+08	33400	11000000	1.1E+13	163	102	4600000	5240000
PISO 5	W14X233	406	1.25E+09	4.79E+08	44200	24800000	2.48E+13	168	104	6150000	7140000
PISO 4	W14X233	406	1.25E+09	4.79E+08	44200	24800000	2.48E+13	168	104	6150000	7140000
PISO 3	W14X283	424	1.6E+09	5.99E+08	53700	43300000	4.33E+13	172	106	7520000	8880000
PISO 2	W14X283	424	1.6E+09	5.99E+08	53700	43300000	4.33E+13	172	106	7520000	8880000
PISO 1	W14X283	424	1.6E+09	5.99E+08	53700	43300000	4.33E+13	172	106	7520000	8880000

										EXTERIOR	
Fe	Мр	Lp	Lb	rts^2	Lr	Mn	ØMn	Mu/ØMn	ØPn	Pu/ØPn	$P_n + \frac{8M_u}{9}$
Мра	N-mm	mm	mm		mm	N-mm	kN-m		kN-m		
3565.184288	658000000	2629.50294	3600	4696.6	8365.5	#########	489.7	0.07	3899.9	0.02	0.08
3565.184288	658000000	2629.50294	3600	4696.6	8365.5	#########	489.7	0.07	3899.9	0.28	0.34
3565.184288	658000000	2629.50294	3600	4696.6	8365.5	#########	489.7	0.07	3899.9	0.54	0.60
3611.940304	798000000	2650.53896	3600	5643.9	10126.2	#########	624.9	0.05	4688.4	0.67	0.71
3611.940304	798000000	2650.53896	3600	5643.9	10126.2	#########	624.9	0.05	4688.4	0.89	0.93
3898.872988	1340500000	4017.88049	3600	9990.2	15208.9	#########	1252.5	0.03	7584.6	0.68	0.70
3898.872988	1340500000	4017.88049	3600	9990.2	15208.9	#########	1252.5	0.03	7584.6	0.81	0.83
3898.872988	1340500000	4017.88049	3600	9990.2	15208.9	#########	1252.5	0.03	7584.6	0.95	0.97
4046.451422	1834000000	4291.3488	3600	13469.5	21194.2	#########	1719.6	0.02	10146.9	0.83	0.84
4046.451422	1834000000	4291.3488	3600	13469.5	21194.2	#########	1719.6	0.02	10146.9	0.95	0.96
4298.507469	2499000000	4375.49289	3600	17722.2	30239.6	#########	2318.0	0.01	13456.5	0.80	0.81
4298.507469	2499000000	4375.49289	3600	17722.2	30239.6	#########	2318.0	0.01	13456.5	0.89	0.90
4505.635096	3108000000	4459.63699	3600	21416.1	38651.1	#########	2869.0	0.01	16374.4	0.81	0.82
4505.635096	3108000000	4459.63699	3600	21416.1	38651.1	#########	2869.0	0.01	16374.4	0.90	0.90
4505.635096	3108000000	4459.63699	3600	21416.1	38651.1	#########	2869.0	0.01	16374.4	0.98	0.98

-

DISEÑO DE COLUMNA

VIGA	PISO 1	
Pu=	16001.19	kN
wu =	11.35	kN/m
Mu=	34.06	kN-m
Seleccionar el Perfil	W14X283	

PROPIEDADES DE LA COLUMNA									
A =	53700	mm²	ly =	5.99E+08	mm⁴				
d =	424	mm	Sy =	2930000	mm³				
tw=	32.8	mm	ry =	106	mm				
bf=	409	mm	Zy =	599000	mm³				
tf=	52.6	mm	rts =						
lx=	160000000	mm⁴	h =						
Sx=	7520000	mm ³	J =	43300000	mm⁴				
rx=	172	mm	C =	4.33E+13	mm⁰				
7v-	8880000	mm3	h/tw -	8.84					

CHECK WIDTH-THICKNESS RATIO

$$\lambda_{ps} = \frac{b_f}{2t_f} < 0.32 \sqrt{\frac{E}{1.1 * F_y}}$$

$$3.89 < 7.29 \qquad \text{Cumple}$$

$$C_{a} = \frac{P_{u}}{P_{y}} \qquad \text{Ca=} \qquad 0.85 \\ \lambda_{ps} = \frac{h}{t_{w}} < 1.57 \sqrt{\frac{E}{1.1 * F_{y}}} \\ 8.84 \qquad < \qquad 36.68 \end{cases}$$

Cumple

Momento ultimo en la columna

$$F_{e} = \left[\frac{\pi^{2} E\left(C_{w} + I_{y}\left(\frac{d}{2}\right)^{2}\right)}{(K_{z}L)^{2}} + GI \right] \frac{0.9}{I_{x} + I_{y} + \left(\frac{d}{2}\right)^{2} A_{g}}$$
Fe= 4505.6
Fcr = 338.8
 $\emptyset P_{n} = 16374367.6$ kN
 $\emptyset P_{n} = 16374.3676$
 $P_{u}/\emptyset P_{n} = 0.97$

The Flexural strength is Yielding

$$M_p = F_y Z_x$$

Mp = 310800000 N-mm

Mp = 3108.00 kN-m

(a) When Lb < Lp, the limit state of lateral-torsional buckling does not apply Lb = 3600 mm

$$L_p = 1.76r_y \sqrt{\frac{E}{F_y}}$$

$$L_p = 4459.6 \text{ mm}$$

$$L_b \le L_p$$

$$3600 < 4459.64$$

$$L_p \le L_b \le L_r$$

cumple

(b) When

$$Lp = 4459.6 \text{ mm}$$

$$Lb = 3600 \text{ mm}$$

$$Lr = 469239.9 \text{ mm}$$
CONDICION No cumple
$$r_{ts}^{2} = \frac{\sqrt{I_{y}C_{w}}}{S_{x}}$$

$$r_{ts}^{2} = 21416.06$$

$$L_{r} = 1.95r_{ts} \frac{E}{0.7F_{y}} \sqrt{\frac{Jc}{S_{x}h_{o}} + \sqrt{\left(\frac{Jc}{S_{x}h_{o}}\right)^{2} + 6.76\left(\frac{0.7F_{y}}{E}\right)^{2}}}$$

$$L_{r} = 469239.85 \text{ mm}$$

$$M_{n} = C_{b} \left[M_{p} - (M_{p} - 0.7F_{y}S_{x})\left(\frac{L_{b} - L_{p}}{L_{r} - L_{p}}\right)\right]$$
MDE 3110340798 N-mm

$$\begin{array}{rcl} \mathsf{Mn}=&3110340798 \ \mathsf{N-mm}\\ \mathsf{Mn}=&3110 \ \mathsf{kN-m}\\ \emptyset\mathsf{Mn}=&2797 \ \mathsf{kN-m}\\ \hline \\ \frac{M_u}{\emptyset M_n}=&0.010 \ \mathsf{Cumple}\\ \hline \\ \frac{P_n}{\emptyset P_n}+\frac{8M_u/9}{\emptyset M_n}=&0.979 \ \mathsf{Cumple} \end{array}$$