

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

COLEGIO DE CIENCIAS E INGENIERIA

Power and Area Improvements on an Integrated Circuit by
Using Internal Counters on the Finite State Machine of a

Reduced MD5 Encryption Chip
Artículo Académico

.

Juan José Jiménez Villalba

Ingeniería Electrónica

Trabajo de titulación presentado como requisito
para la obtención del título de

Ingeniero Electrónico

Quito, 10 de mayo de 2019

2

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

COLEGIO DE CIENCIAS E INGENIERIA

HOJA DE CALIFICACIÓN
 DE TRABAJO DE TITULACIÓN

Power and Area Improvements on an Integrated Circuit by Using Internal
Counters on the Finite State Machine of a Reduced MD5 Encryption Chip

Juan José Jiménez Villalba

Calificación:

Nombre del profesor, Título académico:

Luis Miguel Prócel , PhD

Firma del profesor:

Quito, 10 de mayo de 2019

3

Derechos de Autor

Por medio del presente documento certifico que he leído todas las Políticas y Manuales

de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad

Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad

intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este

trabajo en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica

de Educación Superior.

Firma del estudiante: _______________________________________

Nombres y apellidos: Juan José Jiménez Villalba

Código: 124737

Cédula de Identidad: 1721783007

Lugar y fecha: Quito, 10 de mayo de 2019

4

RESUMEN

Debido al crecimiento en la utilización en circuitos integrados como aceleradores de
hardware y la importancia de la encriptación de la información, se ha decidido unirlos en el
diseño de un chip que realiza una versión reducida del algoritmo de reducción criptográfica
MD5. Se probaron dos tipos de control basados en las máquinas de estados finitos de
Moore. Uno de ellos utiliza registros como contadores que permitirán decodificar las salidas
para los 139 estados necesarios para procesar una entrada de 16 bits a una salida de 8 bits.
Considerando que el algoritmo requiere una constante iteración de las señales de control
en distintos módulos del chip, se espera que el control que utilizo contadores sea más
eficiente ya que estos podrán servir para módulos demutiplexores internos.

El chip se diseño con el método “Top Down” comenzando con un código en System
Verilog hasta terminar con un plano del circuito integrado que utiliza una tecnología de
500nm utilizando el software de Synopsys. Después de que el chip haya validado las etapas
de síntesis y compilación del flujo de diseño, se pudieron observar diferencias significativas
entre los controles con distintas máquinas de estados finitos. El que utilizó contadores
mostro una mejora del 22.17% en su consumo de energía y una reducción de 13.19% en
utilización de área, principalmente debido a una reducción de 8.8% en el número de celdas
requeridas para este chip.

Palabras clave: Circuito Integrado, System Verilog, Synopsys, Diseño Top-Down,

Optimización de energía, Reducción de área, Algoritmo de reducción criptográfica MD5

5

ABSTRACT

Due to the constant growth of integrated circuits as hardware accelerators and the
importance of data encryption, we decided to join them on the design of a chip that
performs a reduction of the MD5 Message Digest Algorithm. We tested two control types
based on a Moore Finite State Machine. One of them had registers as counters that will
help encode the output for each of the 139 states necessary to process the 16-bit input into
a 8-bit output. Considering that this algorithm required constant iterations of control
signals on different modules of the chip, we expected that the control that employed
counters would be more efficient since these internal counters might serve on internal
demuxing modules.

The chip went through a top down design approach where we started from the
System Verilog code and ended up with the floorplan of an integrated circuit with a 500 nm
technology by using Synopsys software. After the chip went through synthesis and
compilation phases of the design flow, we saw significant differences between the chips
with different finite state machines. The one that employed registers as internal counters
showed a 22.17% improvement in power consumption and a 13.19% on area utilization
mainly due to an 8.8% decrease in the number of cells required for the encryption chip.

Key words: Integrated Circuit, System Verilog, Synopsys, Top-Down Design, Power

Optimization, Area Reduction, MD5 Message Digest Algorithm.

6

TABLA DE CONTENIDO

Reaserch Paper ... 7

Introduction ... 7

Methodology .. 8

Results .. 12

Conclusions... 14

References .. 14

Power and Area Improvements on an
Integrated Circuit by Using Internal Counters

on the Finite State Machine
of a Reduced MD5 Encryption Chip

Juan José Jiménez
Colegio de Ciencias e Ingenierı́a

Universidad San Francisco de Quito
Campus Cumbayá, PO-Box 17-1200-841

Quito, Ecuador
jjimenezv@estud.usfq.edu.ec

Luis-Miguel Prócel
Instituto de Micro/Nanoelectrónica

Universidad San Francisco de Quito
Campus Cumbayá, PO-Box 17-1200-841

Quito, Ecuador
lprocel@usfq.edu.ec

Lionel Trojman
Instituto de Micro/Nanoelectrónica

Universidad San Francisco de Quito
Campus Cumbayá,PO-Box 17-1200-841

Quito, Ecuador
ltrojman@usfq.edu.ec

Abstract—Due to the constant growth of integrated circuits as
hardware accelerators and the importance of data encryption,
we decided to join them on the design of a chip that performs a
reduction of the MD5 Message Digest Algorithm. We tested two
control types based on a Moore Finite State Machine. One of
them had registers as counters that will help encode the outputs
for each of the 139 states necessary to process the 16-bit input
into a 8-bit output. Considering that this algorithm required
constant iterations of control signals on different modules of the
chip, we expected that the control that employed counters would
be more efficient since these internal counters might serve on
internal demuxing modules.

The chip went through a top down design approach where
we started from the System Verilog code and ended up with the
floorplan of an integrated circuit with a 500 nm technology by
using Synopsys software. After the chip went through synthesis
and compilation phases of the design flow, we saw significant
differences between the chips with different finite state machines.
The one that employed registers as internal counters showed a
22.17% improvement in power consumption and a 13.19% on
area utilization mainly due to a 8.8% decrease in the number of
cells required for the encryption chip.

KEYWORDS

Integrated Circuit, System Verilog, Synopsys, Top-Down
Design, Power Optimization, Area Reduction, MD5 Message
Digest Algorithm

I. INTRODUCTION

In an era were personal information is constantly shared
online, concerns about our privacy and the security of our
personal information is a pressing matter. Malicious activities
like eavesdropping users, gathering data from unsecure storage
or even obtaining information via monitoring an individuals
network traffic increase the necessity to somehow protect our
information. Storing or sending sensitive information, like
usernames or passwords, as plain text should be avoided
[1]. One way to protect our information is to encrypt our
information in some way, like with the MD5 Message-Digest
Algorithm.

Created in 1992 by Ronal Rivest, the MD5 Message-Digest
Algorithm proved to be an improvement over its predecessor,
the MD4 Message-Digest Algorithm. Its objective was to
create a 128-bit output that would serve as a digital fingerprint
for an input of an arbitrary length. It was expected to be
used for digital signature applications since it would be
computationally infeasible to recover the initial input by only
having the output [2]. Even though the MD5 algorithm has
been discredited for certain applications due to fact that it
can suffer from collision or dictionary attacks, it is still an
improvement over storing information as plain text.

Nevertheless, the MD5 is a protocol that was specified for
use in the Internet Protocol Security (IPSEC) as the basis for
the HMAC, which is used to produce MAC addresses. Con-
sidering that the MD5 Message-Digest Algorithm is currently
being used, there have been attempts to produce cryptographic
accelerators for IPSEC applications by implementing this
algorithm on FPGAs by a top down design describing the
operations in VHDL [3].

A top down design of an integrated circuit starts from the
description of the processes that the hardware is going to
perform via a Hardware Description Language (HDL) like
Verilog or System Verilog [4]. The next step is the logical
synthesis in which via software, the hardware described in the
previous step is converted into a logic circuit with logical cells.
In this step, the circuit is also optimized to use less amount
of cells possible or include additional elements, like buffers,
to insert delays to ensure a correct operation of the hardware
based on constrains that are introduced at this stage [5]. The
optimization on this stage usually becomes a tradeoff between
power, area and timing depending on the requirements of the
chip. The designer must choose the most optimal solution for
its application. Simulations to ensure that the chip would work
as expected are also performed in this stage.

The next step on the top down design is the physical
compilation. In this stage, the logical cells are replaced with

7

real standard cells that will be placed on the floorplan of a
chip. By placing and routing real cells on the floorplan, the
simulations becomes more realistic and problems congestion,
antennas created by wires connecting cells or delays in the
clock might arise. Once these problems are addressed, and
optimization of placement and routing of the cells is complete,
the result will be the final design of a chip that accomplishes
the task it was designed for [6].

For the compilation stage, the technology employed was
a 500nm library that contains characterized standard cells
designed by the Universidad de San Martin in Buenos Aires,
Argentina [7].

II. METHODOLOGY

To test different types of controls and evaluate its improve-
ments in area, timing and power usage on a chip dedicated for
encryption, the first stage will be to create the chip under the
specifications we desire. Since the original MD5 algorithm is
lengthy and requires numerous iterations, we have considered
making a reduction to the algorithm to avoid problems that
might come with having a large number of logical cells. The
algorithm will be reduced to take a 16-bit message as an input
and give an 8-bit digest as an output, but it will maintain
the original functions and methods the original MD5 method
employs. This will be enough to compare the different control
types to evaluate the improvements they might have. The steps
taken to evaluate the different controls are the following:

A. MATLAB Code

Since the MD5 algorithm was reduced to take a message
of 16 bits as an input and 8 bits as an output, the first stage
was to modify the MD5 algorithm but maintaining the original
processing blocks. The flow of the algorithm is presented in
Figure 1.

Fig. 1. Reduced MD5 Processing Algorithm

In each block presented above, the output is the result of
various operations done to the message, initial values and
constants. The operations include: adding the first two bits of

the input with two bits from the message (and discarding the
carry out), adding that result to a 2 bit constant, then adding
it to the result of a logical function that is different in each
block, shifting the order of the first two bits, adding it to the
third and forth bits of the input and finally rearranging the bits
in order to obtain an 8 bit output. A diagram which explains
this process is presented in Figure 2.

Fig. 2. Reduced MD5 Processing Algorithm

The output of each step is reused as the input of the
step. The F Block is used 8 times to use the full 16 bits
of the message but only 2 at the same time. We will use 4
constants which are used on a cyclical order. The constants
are determined by the following formula:

C(i) = floor(22 ∗ |sin(i+ 1)|) (1)

And the values for them in bits are:

C(1) = 11

C(2) = 11

C(3) = 00

C(4) = 11

In the first iteration of the Block F, initial values are required
for the processing of the information. These initial values are
the following:

A0 = 00

B0 = 01

C0 = 10

D0 = 11

The functions that are used in each block come from the
original MD5 algorithm and they are the following:

F (B,C,D) = (B ∧ C) ∨ (¬B ∧D) (2)

G(B,C,D) = (B ∧D) ∨ (C ∧ ¬D) (3)

H(B,C,D) = B ⊕ C ⊕D (4)

I(B,C,D) = C ⊕ (B ∨ ¬D) (5)

8

At the end, the encrypted message is added to the initial
values with a full 8-bit adder that discards the carry out to
finally get the message digest.

For this method to be an effective MD5 reduction, its output
should accomplish 2 objectives. The first one is that there is
not a pattern between the outputs that can help identify the
input. The second one is that between all the outputs, they
should have a similar frequency to show that it does not prefer
one output over another one. These objectives are shown on
figures 3 and 4.

Fig. 3. Frequency of all Possible Outputs

Fig. 4. First 100 Outputs

Like figure 3 shows, the frequency of the outputs from all
the 65536 possible inputs (created from a 16-bit input) have a
pretty similar frequency. This means that this reduction does
not significantly favors any output over another one. We can
also see that the outputs dont follow a pattern, based on figure
4 which shows the first 100 outputs.

B. System Verilog Implementation

The next stage was to create the description of a hardware
in System Verilog that would implement the reduced MD5 that
we previously implemented using MATLAB. To produce the
same outputs, some basic modules were needed to be created.
These modules are the following:

1) Register with enable: To create an 8 bit register with
an enable, we first created a register that would work on a
positive transition of the clock. The schematic for this register
is shown on figure 5.

Fig. 5. Register Schematic

We also required a 16 to 8 bit multiplexor with 1 bit for the
control. The schematic for this module is shown on figure 6.

Fig. 6. 18 to 8 Mux Schematic

By placing this two modules side by side in the following
way:

Fig. 7. Register with Enable Placement

We can create a register that will work normally if the enable
pin is set to high, but will retain the output in case that it is
set to low. The final schematic for this module is shown on
figure 8.

Fig. 8. Register with Enable Schematic

2) Blocks F, G, H and I: To create the blocks that perform
the combinational logic of the functions that the MD5 algo-
rithm employs, modules that perform a 1 bit shift, a 2 bit full
adder that discards the carry out and modules that performs
the logical functions from Equations 2 through 5 need to be
created. Once created, they must be joined into a module to
perform operation required. Figure 9 shows the placement of
these modules to create Block F. Notice that it has an internal
module that performs function F, described in Eq 2.

9

Fig. 9. F Processing Block Placement

The blocks for the function G, H and I are similar to this
one, but they implement their own function by using their own
module. Figure 10 shows the final schematic of these modules.
In this case, Block F is used as an example.

Fig. 10. F Processing Block Schematic

In these modules, the M represents the 2 bit section of
the message that is being used while the K represents 2 bits
constant.

3) Other Modules: For the encryption of the message
according to the MD5 algorithm, other smaller modules were
required. One of them was an 8 to 2 Multiplexor that has 2
bits of control. Its schematic is presented in figure 11.

Fig. 11. 8 to 2 Mux Schematic

Another module necessary was an 8 bit full adder that
discards the carry out. Its schematic is presented in figure 12.

Fig. 12. 8-bit Full Adder Schematic

These are all the modules that are going to be required to
implement the reduced MD5, however, there is still a control
required to make sure that the encryption works according to
plan.

The complete schematic that shows the placement of all the
modules to finally get the full encryption module is presented
in figure 12.

Fig. 13. Placement of all the Modules

All the signals label control will come from the control
module explained on the next section. The Processing blocks
will be explained on the next section as well.

4) Control: It is important to understand that the control
module works as a finite state machine which changes its cur-
rent state on every positive transition of the clock. Therefore,
in each state it should be sending the correct control signals
to the multiplexors and enables from the registers to perform
the operation that is necessary for the flow of the data. To
understand the logic behind the control module, it will be
helpful to understand how the processing of each step inside
each block works. The schematic for the processing of each
step is shown on figure 14.

Fig. 14. Schematic for the processing of every step

As we can see in the image above, this block has 7 inputs.
However, excluding the two clock signals, the control only has
to focus on 5 signals to process on each step. The processing
of each step is done in four states of a finite state machine.
These steps are the following:

1) In this stage, the values for the constants and for the
message are changed by changing their own multiplex-
ors so that the correct value enters the Block F. The
signal control of Mux F is set to 0 so that it gathers
the previous values and the enable of the first register,
En R1 is set to 1 so that it acquires the value of the
Initial Values. The enable of the second register is set
to 0 since the information has not been processed yet.

2) In this stage the enable of the first register changes
from 1 to 0 so that it saves the current value that will
enter the Block F. It is important to know that since the

10

moment that the previous values, the message and the
constant are propagated to the Block F, this block will
start to process this information with its combinational
logic. Therefore the value that outputs the Block F might
already have changed before this stage. But in this state
we only want to block the first register.

3) In this stage, the enable from the second register is set
to 1 so that it can acquire the same value that is coming
out from the Block F.

4) On the forth state, we change the enable from the second
register again to 0 so that it holds the value that was
changed on the previous state. This is important because
this value cannot change until the processing of the next
step is done. At this point one step is finally completed.

Another fact that we should take into consideration is that
these 4 stages in which data are processed will repeat with
minor changes 8 times for each block, before it passes to
the next block. Then they will repeat for the next 3 blocks.
This constant repetition will give us a change to optimize the
control and eventually the chip overall. The processing mod-
ules presented on figure 14 will be reduced to the schematic
presented on figure 15.

Fig. 15. Reduced schematic for the processing of every step

Notice that these schematics were previously used on figure
13.

For the creation of both controls we require the use of 139
states. The first 8 will have all the enables on 1 so that the
information can properly propagate through all the cells to
avoid problems by not allowing enough settling time. Then
we have 128 states for the processing of every step since we
need 4 states for each step, 8 steps for each block and there
are 4 blocks in total. And finally, 3 more states so that the
final addition can take place and be saved on a final register.
At the end, a final signal named Ready will turn to high when
the data is finally processed.

The control will have to input signals which are the clock
and an asynchronous reset that can be activated at any time
to start the processing from the start. It will have 20 outputs
connected to the enables of all the different registers and the
multiplexors of the encryption module, as well as an extra
control signal that will turn to high when the encryption is
ready. With these ideas in mind we proceeded to create two
different control modules to see what the advantages were of
using one over the other.

5) Control Module 1: Moore FSM without registers as
counters: The first control we will evaluate will be a Moore
finite state machine. Since the Moore machines output can

only depend only on the current state and we have 139
different states to encode, we need 8 bits to be able to encode
this machine. In each state a combinational logic will be
needed so that all the output signals take the values that are
necessary for that particular state. Each time there is a posedge
clock transition, the machine will go to the next state until it
reaches the last one. In the last state, the output named ready
will change to high so that the user can know the processing is
finally done. The machine will stay in this state forever unless
it receives a signal from the reset input, which will start this
process all over again.

6) Control Module 2: Moore FSM with registers as coun-
ters: Similarly, we will need to encode 139 different states
for this finite state machine. However, in this machine we will
encode only 4 states since only 4 are necessary to perform
every step. However, we will use registers as counters for
different applications to hopefully reduce the number of cells
required. Our hypothesis is that the same 4 stages are required
to do the processing for most of the steps with few exceptions,
therefore, the combinational logic behind each state can be
the same one. By using external counters, they will eventually
become signals for demultiplexers so that these outputs can go
to the correct output without creating a combinational logic for
each one of the states.

To describe this idea in System Verilog, we ended up using
2 bits to encode the actual state, but also two 3-bit counters
and two 1-bit flags, ending up in a total of 10 bits to encode
the states. This was done by nesting up to 3 case statements
to decode the output for each of the 139 states.

After we tested both the control modules and determined
that they gave the same output signals, we joined this module
to the encryption module and went on the process to the
synthetization.

Regardless of the control we use, by joining it to the
encryption module the final schematic of the complete chip
will be shown in figure 16.

Fig. 16. Schematic of the complete chip

C. Synthesis

In the synthesis phase we employed the tools the program
Design Compiler from Synopsys to go from our System
Verilog files to an optimized mapped netlist with standard
cells. We set up a time constrain which was a clock period of
15ns since it was the lowest speed possible at which both of
our designs could operate successfully. With these constraints
in mind, the compilation process determined which cells will
be the most adequate depending on the location of the cell. For
example, on a non-critical path, having fast cells that consume
a lot of power might not be effective since time is not so

11

important in that path. Changing it to a slower cell that does
not consume much power might be more effective. Once the
synthesis was done, these results were used for the compilation
for the actual floorplaning of the chip.

D. Compilation

In the compilation phase, the software IC Compiler gathers
the logical cells from the synthesis and places them in a
floorplan to create a real chip. On this stage, the software
makes power rings to supply energy to the cells. Then it makes
an initial placement of the cells which then is optimized to
avoid congestion problems. Afterwards, the chip is evaluated
under the clock tree synthesis (CTS) flow to make sure that
the clock signal gets to all the cells without a small enough
delay that might make the chip process the data with mistakes.
To achieve this, some places buffers might be inserted so that
the delay can as similar as possible in every place this signal
is required while still optimizing the area of the chip. Then
the chip undergoes routing were the most efficient path is
searched. All these steps are done in order to optimize timing,
area and power to finally get the floorplan of the chip. As
stated before, we will use a library of standard cells of a 500nm
technology for this stage.

III. RESULTS

In both the synthesis phase and the compilation phase, we
gathered reports that allow us to be able to compare both
control methods implemented.

A. Synthesis Results:

Tables 1 through 4 show the information obtained in the
reports after the synthesis was done.

2nd Control 1st Control
With counters Without counters Improvement

[mW] [mW] %
Cell Internal

Power 5.97 7.95 24.91

Net Switching
Power 0.74 1.00 26.00

Total Dynamic
Power 6.71 8.95 25.03

Cell Leakage
Power 0.00011 0.00014 21.43

Combinational
Power 22.65% 22.84% 0.83

Table 1:
Synthesis Power Consumption

2nd Control 1st Control
With counters Without counters Improvement

[nmˆ2] [nmˆ2] %
Total Area 196207.20 232560.00 15.63

Combinational
Area 131482.08 147296.16 10.74

Non-Comb
Area 64725.12 85263.84 24.09

Table 2:
Synthesis Area Utilization

2nd Control 1st Control Improvement
With counters Without counters %

Total Cell Count 1009 1138 11.34
Combinational

Cells 875 970 9.79

Sequential
Cells 134 168 20.24

Table 3:
Synthesis Cell Utilization

2nd Control 1st Control Improvement
With

counters
Without
counters % Units

Critical Path
Length 12.94 13.26 2.41 nm

Critical Path
Slack 0.01 0.01 0.00 ns

Table 4:
Synthesis Critical Path Results

As we can see, there were some significant results in power,
area and timing in the utilization of the control that has internal
counters. However, these results are preliminary since once
we go through the compilation phase and other optimization
stages take place, like congestion analysis or clock tree syn-
thesis, small changes might arise as the simulation becomes
more accurate. The final result of the synthesis is the logical
circuit that performs the processes described in the System
Verilog files. The final schematic is presented in figure 17.

Fig. 17. Schematic of the complete chip

By opening the schematic, we are able to see the logical
cells necessary for the implementation of the chip. They are
shown figures 18 through 20.

Fig. 18. All logical cells and their connections

By zooming the previous image, we can see the logical cells
implemented:

Fig. 19. Zoom on the schematic

As we can see on figure 20, each cell has an identifier. These
names will also show up on the layout after compilation.

12

Fig. 20. Zoom on the schematic

B. Compilation Results:

Once all the different optimizations that are performed on
the compilation phase are done, we can gather the results from
the reports that are generated. These results are summarized
on tables 5 through 9.

2nd Control 1st Control
With

counters
Without
counters Improvement

[mW] [mW] %
Cell Internal

Power 6.93 9.09 23.76

Net Switching
Power 2.83 3.45 17.97

Total Dynamic
Power 9.76 12.54 22.17

Cell Leakage
Power 0.00012 0.00014 14.29

Combinational
Power 23.12% 21.40% -1.72

Table 5:
Compilation Power Consumption

2nd Control 1st Control
With

counters
Without
counters Improvement

[nmˆ2] [nmˆ2] %
Total Area 223380.00 257309.28 13.19

Combinational
Area 158361.12 171898.56 7.88

Non-Comb
Area 65018.88 85410.72 23.88

Area of CT
Buffers 4112.64 5091.84 19.23

Table 6:
Compilation Area Utilization

2nd Control 1st Control Improvement
With

counters
Without
counters %

Total Cell
Count 1262 1385 8.88

Combinational
Cells 1128 1217 7.31

Sequential
Cells 134 168 20.24

CT Buffers 21 26 19.23
Table 7:

Compilation Cell Utilization

2nd Control 1st Control Improvement
With

counters
Without
counters % Units

Critical Path
Length 14.28 14.84 3.77 nm

Critical Path
Slack 0.05 -0.01 600.00 ns

Table 8:
Compilation Critical Path Results

2nd Control 1st Control
With

counters
Without
counters Improvement

[ns] [ns] %
Max Global

Skew 0.345 0.488 29.30

Longest Path
Delay 4.204 4.409 4.65

Shortest Path
Delay 3.859 3.921 1.58

Table 9:
Compilation Timing Results

Finally, the last result of the compilation is a finished
floorplan chip where all the cells are placed and routed on
a chip. This floorplan is presented on figure 21.

Fig. 21. Complete floorplan of the chip

On this image we can see the layout of the chips. On the
exterior we can see the input/output paths that the chip will
use. Each I/O path has its own name that corresponds to every
input and output. For signals that have more than 1 bit there
is a number identifier to which bit it corresponds to. Like the
ones on the bottom right corner which are named OutFinal 5
and OutFinal 1.

By zooming on the previous image, shown in figure 22, we
can see the individual cells with their names that correspond
to the schematic presented on the results of the synthesis. We
can also see the power strips from VDD and VSS and the
metal connections that occur between the logical cells.

13

Fig. 22. Floorplan zoom

IV. CONCLUSIONS

The objective of this investigation was to determine if
having a finite state machine with internal counters was more
efficient than another one that did not employ them in the
control module. It was interesting to see that the one which
employ them ended up using 10 bits to decode the outputs
of every signal on each state, while the one which did not
required 8 bits. From the synthesis phase we could see that
there were considerable improvements over the control module
which employed counters over the other one. However, since
the compilation phase simulates the system with more accurate
data by using physical libraries, we will focus on that data for
our results.

Looking to through the compilation results, we could clearly
see that there was an improvement from the control method
that employed counters on the control over the ones that
did not. The total power consumption decreased on 22.17%.
However, we can see that the power used on combinational
circuits increased by 1.72% by using this method, which
we did not expect, considering that the combinational cells
decreased in 7.88%. We can speculate that the compilation
could have optimized some other parameter like timing or
congestion that by using cells that require more power.

Like we expected, we saw an 8.88% reduction in the number
of cells that they were necessary for the chip. This also led to
a decrease in overall area usage of the chip which decreased
in a 13.19%. What also was interesting was that there was a
considerable timing improvement with the control that used
counters over the other one. The one that used counters ended
up achieving the constrain stated on the synthesis phase which
stated that the clock will have a period of 15ns by 0.05ns,
while the initial one ended up not being able to achieve timing
by 0.01ns. That is why the improvement percentage ended up
being 600%. The shortest path delay and longest path delay
also showed a small improvement as well. These results show
an improvement on the control that employed internal counters
on its FSM over the one that did not for this application.

REFERENCES

[1] X. Zheng and J. Jin, ”Research for the application and safety of MD5
algorithm in password authentication,” 2012 9th International Conference
on Fuzzy Systems and Knowledge Discovery, Sichuan, 2012, pp. 2216-
2219. doi: 10.1109/FSKD.2012.6234010

[2] Rivest, R., ”The MD5 Message-Digest Algorithm”, RFC 1321, April
1992. DOI 10.17487/RFC1321.

[3] J. Deepakumara, H. M. Heys and R. Venkatesan, ”FPGA imple-
mentation of MD5 hash algorithm,” Canadian Conference on Elec-
trical and Computer Engineering 2001. Conference Proceedings (Cat.
No.01TH8555), Toronto, Ontario, Canada, 2001, pp. 919-924 vol.2. doi:
10.1109/CCECE.2001.933564.

[4] Digital IC Design Flow. Datasheet. Assistants. SYNOPSYS. Accessed
on: Apr. 10, 2018, Available: https://www.synopsys.com.

[5] Custom Compiler. Datasheet. Assistants. SYNOPSYS. Accessed on: Apr.
10, 2018, Available: https://www.synopsys.com.

[6] IC Compiler. Datasheet. Assistants. SYNOPSYS. Accessed on: Apr. 10,
2018, Available: https://www.synopsys.com.

[7] Y. Kuo, L. J. Arana, L. Seva, C. Marchese and L. Tozzi, ”Educational
design kit for synopsys tools with a set of characterized standard
cell library,” 2018 IEEE 9th Latin American Symposium on Circuits
Systems (LASCAS), Puerto Vallarta, 2018, pp. 1-4. doi: 10.1109/LAS-
CAS.2018.8399907

14

