UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

Diseño de un sistema de pirólisis rápida

Fernando Alberto De Howitt Guerrero

Sebastián Fernando Vásquez Retamales

Daniela Brigette Vidal Salazar

Juan Andrés Zurita Mosquera

Ingeniería Mecánica

Trabajo de fin de carrera presentado como requisito para la obtención del título de Ingeniería Mecánica

Quito, 23 de diciembre de 2021

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

HOJA DE CALIFICACIÓN DE TRABAJO DE FIN DE CARRERA

Diseño de un sistema de pirólisis rápida

Fernando Alberto De Howitt Guerrero

Sebastián Fernando Vásquez Retamales

Daniela Brigette Vidal Salazar

Juan Andrés Zurita Mosquera

Nombre del profesor, Título académico

Juan Sebastián Proaño, PhD

Quito, 23 de diciembre de 2021

Por medio del presente documento certifico que he leído todas las Políticas y Manuales de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Nombres y apellidos:	Fernando Alberto De Howitt Guerrero
Código:	200053
Cédula de identidad:	0604400481
Lugar y fecha:	Quito, 23 de diciembre de 2021

Por medio del presente documento certifico que he leído todas las Políticas y Manuales de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Nombres y apellidos:	Sebastián Fernando Vásquez Retamales
Código:	203476
Cédula de identidad:	2000064770
Lugar y fecha:	Quito, 23 de diciembre de 2021

Por medio del presente documento certifico que he leído todas las Políticas y Manuales de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Nombres y apellidos:	Daniela Brigette Vidal Salazar
Código:	201641
Cédula de identidad:	1105038929
Lugar y fecha:	Quito, 23 de diciembre de 2021

Por medio del presente documento certifico que he leído todas las Políticas y Manuales de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Nombres y apellidos:	Juan Andrés Zurita Mosquera
Código:	200584
Cédula de identidad:	1722759824
Lugar y fecha:	Quito, 23 de diciembre de 2021

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado como una publicación, incluso a pesar de estar disponible sin restricciones a través de un repositorio institucional. Esta declaración se alinea con las prácticas y recomendaciones presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017) Discussion document on best practice for issues around theses publishing, disponible enhttp://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following capstone project is available through Universidad San Francisco de Quito USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be considered a publication. This statement follows the recommendations presented by the Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion document on best practice for issues around theses publishing available onhttp://bit.ly/COPETheses.

RESUMEN

Este trabajo detalla el diseño y la construcción de un sistema de pirólisis rápida para alimentar un cromatógrafo de gases para el análisis de la composición. El prototipo cumple con los requisitos establecidos por el Instituto para el Desarrollo de Energías y Materiales Alternativos (IDEMA) de la Universidad San Francisco de Quito. El sistema tiene cuatro subsistemas principales: método de calentamiento, atmósfera inerte, control de flujo y materiales inertes. En este reactor participan múltiples conceptos: transferencia de calor, inducción electromagnética, mecánica de fluidos y propiedades de los materiales.

La tasa de transferencia de calor teórico es de 230.88 [°C/s], la temperatura alcanzada por la muestra es de 500 [°C] en 2.079 [s], y la potencia requerida para la inducción electromagnética es 76 [W]. A través de métodos de verificación establecidos se obtuvo que: la biomasa alcanza una temperatura de 515.1 [°C] en un tiempo 3 [s], dando una tasa de calentamiento de 165.03 [°C/s], y el tratamiento de pasivación garantiza materiales químicamente inertes. Así, se concluyó que el prototipo es una buena primera aproximación para un diseño final de micropirolizador asequible en el mercado.

Palabras clave: Pirólisis rápida, biomasa, cromatógrafo de gases, transferencia de calor, inducción electromagnética, pasivación, micropirolizador.

ABSTRACT

This work details the design and construction of a fast pyrolysis system to feed a gas chromatograph for composition analysis. The prototype meets the requirements set by the Institute for the Development of Alternative Energies and Materials (IDEMA) of the Universidad San Francisco de Quito. The system has four main subsystems: heating method, inert atmosphere, flow control, and inert materials. Multiple concepts participate in this reactor, namely heat transfer, electromagnetic induction, fluid mechanics, and properties of materials.

The theorical heat transfer rate is 230.88 [°C/s], the temperature reached by the sample is 500 [°C] at 2,079 [s], and the power required for electromagnetic induction is 76 [W]. Through established verification methods it was obtained that: the biomass reaches a temperature of 515.1 [°C] in 3 [s], giving a heating rate of 165.03 [°C/s], and the passivation treatment guarantees chemically inert materials. Thus, it was concluded that the prototype is a good first approximation for a final affordable micro-pyrolizer design on the market.

Keywords: Fast pyrolysis, biomass, gas chromatograph, heat transfer, electromagnetic induction, passivation, micro-pyrolizer.

TABLA DE CONTENIDO

INTRODUCCIÓN	
Resumen Ejecutivo	
Declaración del problema y especificación del proyecto	19
Conceptos de diseño y selecciones	
Análisis de riesgos	
Manejo de proyecto	
Estándares de ingeniería	
MATERIALES Y MÉTODOS	
Selección de materiales y componentes	
Diseño de manufactura	
RESULTADOS Y DISCUSIÓN	
Reporte de Diseño	
Análisis ingenieril	47
Plan de pruebas de prototipo	
Mantenimiento y operación	68
Resultados y discusión	
Conclusiones	
Trabajo futuro	

BIBLIOGRAFÍA	
ANEXOS	100
Anexo A	100
Anexo B	123
Anexo C	

ÍNDICE DE TABLAS

Tabla 1. Descripción de los requerimientos establecidos 19
Tabla 2. Términos de referencias (TRDs)
Tabla 3. Requerimiento y posibles opciones
Tabla 4. Impacto y probabilidad de riesgos 29
Tabla 5. Calendario de tareas generales
Tabla 6. Precios de subsistemas para la construcción del sistema
Tabla 7. Proceso de fabricación de componentes 38
Tabla 8. Verificación de dimensiones de componentes
Tabla 9. Condiciones generales de diseño de cada subsistema
Tabla 10.Pruebas y métodos de validación para cada requerimiento 63
Tabla 11. Componentes del ensamble mostrado en la Figura 9 70
Tabla 12. Tabla de rango de temperatura de la biomasa y potencia requerida de la fuente de
poder
Tabla 13. Mantenimiento recomendado para cada elemento
Tabla 14. Posibles causas y solución al problema de que no se calienta el gas en la tubería 82
Tabla 15. Posibles causas y solución al problema de tasas de calentamiento bajas
Tabla 16. Posibles causas y solución al problema de fugas de gas
Tabla 17. Posibles causas y solución al problema de lectura errónea en el cromatógrafo de gases
Tabla 18. Propiedades del gas 100
Tabla 19. Propiedades del acero inoxidable 101
Tabla 20. Propiedades de la cinta calefactora 101

Tabla 21. Propiedades de la biomasa 102
Tabla 22 Propiedades movimiento de la partícula
Tabla 23. Criterios de selección 113
Tabla 24. Metodología de selección de los criterios ponderados 113
Tabla 25. Evaluación del peso específico para método de calentamiento del criterio:
Reproducibilidad
Tabla 26. Evaluación del peso específico para método de calentamiento del criterio: Precio 115
Tabla 27. Evaluación del peso específico para método de calentamiento del criterio:
Mantenimiento
Tabla 28. Evaluación del peso específico para método de calentamiento del criterio: Interfaz. 116
Tabla 29. Evaluación del peso específico para método de calentamiento del criterio: Montaje 117
Tabla 30. Tabla de conclusiones para método de calentamiento 117
Tabla 31. Evaluación del peso específico para control de flujo del criterio: Reproducibilidad. 118
Tabla 32. Evaluación del peso específico para control de flujo del criterio: Precio
Tabla 33. Evaluación del peso específico para control de flujo del criterio: Mantenimiento 118
Tabla 34. Evaluación del peso específico para control de flujo del criterio: Interfaz 119
Tabla 35. Evaluación del peso específico para control de flujo del criterio: Montaje 119
Tabla 36. Tabla de conclusiones para control de flujo 119
Tabla 37. Evaluación del peso específico para materiales inertes del criterio: Reproducibilidad
Tabla 38. Evaluación del peso específico para materiales inertes del criterio: Precio
Tabla 39. Evaluación del peso específico para materiales inertes del criterio: Mantenimiento . 120
Tabla 40. Evaluación del peso específico para materiales inertes del criterio: Interfaz 120

Tabla 41. Evaluación del peso específico para materiales inertes del criterio: Montaje	121
Tabla 42. Tabla de conclusiones para control de flujo	121
Tabla 43. Detalle de compras de componentes	125

ÍNDICE DE FIGURAS

Figura 1. Primer esquema de sistema de pirólisis rápida	
Figura 2. Segundo esquema de sistema de pirólisis rápida	
Figura 3. Tercer esquema de sistema de pirólisis rápida	
Figura 4. Diagrama de flujo del proceso para cada componente	
Figura 5. Esquema del sistema de pirólisis rápida	
Figura 6. Esquema del reactor del sistema pirolítico	49
Figura 7. Esquema de circuito LC	51
Figura 8. Diagrama de cuerpo libre de la biomasa	
Figura 9. Esquema del transporte de gas	
Figura 10. Plan de prueba del sistema general	
Figura 11. Plan de prueba para tasa de calentamiento	
Figura 12. Plan de prueba para la tasa de calentamiento mediante diferencia de temperaturas	66
Figura 13. Plan de prueba para la pasivación	67
Figura 14. Plan de prueba para fugas	67
Figura 15. Ensamble de sistema de pirólisis en vista isométrica	69
Figura 16. Vista a detalle de la configuración del reactor	
Figura 17. Controlador PID y Relé térmico Inkbird ITC 100VH	71
Figura 18. Cinta calefactora Briskheat bwh051020l xtremeflex BWH	71
Figura 19. Termocupla tipo K 'heavy duty' para sólidos	71
Figura 20. Fuente de poder programable 30V/10A DC Variable RockSeed RS310p	
Figura 21. Diagrama de instalación típica del sistema de pirólisis rápida	
Figura 22. División de subsistemas del sistema de pirolisis rápida	
Figura 23. Distribución de temperatura en la copa de acero inoxidable en 2 segundos	
Figura 24. Temperatura vs. Tiempo de la copa de acero inoxidable	
Figura 25. Campos magnéticos inducidos en la copa de acero inoxidable	

Figura 48. Skecth de pirolizador con precalentamiento y control de flujo	134
Figura 49. Sketch de pirolizador por caída libre	
Figura 50. Sketch de cálculos	
Figura 51. Factura 1	
Figura 52. Factura 2	
Figura 53. Factura 3	
Figura 54. Factura 4	
Figura 55. Factura 5	140
Figura 56. Factura 6	141
Figura 57. Factura 7	
Figura 58. Factura 8	
Figura 59. Factura 9	144
Figura 60. Factura 10	145
Figura 61. Factura 11	146
Figura 62. Factura 12	147
Figura 63. Factura 13	

INTRODUCCIÓN

Resumen Ejecutivo

La pirólisis es un proceso termoquímico que consiste en la descomposición de la materia orgánica en ausencia de oxígeno a altas temperaturas. La biomasa se piroliza para formar vapores y aerosoles con el objetivo de analizar los productos de la reacción pirolítica (Klug, 2012). Este proceso es relevante para el Instituto IDEMA de la Universidad San Francisco de Quito ya que se dedican a la investigación y desarrollo de energías y materiales, considerando la biomasa como fuente de energía. Para el desarrollo de este sistema de pirólisis rápida se requiere considerar métodos de calentamiento, caudal de flujo, precalentamiento del gas y sistemas de control. Para ello, se llevarán a cabo cálculos y simulaciones para verificar el cumplimiento de los objetivos propuestos.

El diseño de este prototipo requiere de conocimientos ingenieriles como inducción electromagnética, circuitos eléctricos, transferencia de calor y automatización. Subsecuentemente, la construcción de un prototipo que cumpla las necesidades del proceso pirolítico, así como los requerimientos del cliente para cada componente. Además, el alcance del proyecto está limitado por tiempo y presupuesto; por esta razón, se busca optimizar las acciones tomadas para avanzar satisfactoriamente en el desarrollo de este primer prototipo para pirólisis rápida.

Dado que los reactores pirolíticos disponibles en el mercado son de difícil acceso debido a sus precios elevados, este sistema busca contribuir con las investigaciones sobre análisis de productos obtenidos de procesos de pirólisis. A lo largo del proyecto se detallarán las acciones a tomar en trabajos futuros para mejorar el rendimiento del prototipo ya que, por limitación de presupuesto se opta por las opciones de componentes más baratos y disponibles en el mercado.

Declaración del problema y especificación del proyecto

En el presente trabajo se lleva a cabo el diseño de un sistema de pirólisis rápida con inducción electromagnética. Este proyecto se realizó de forma conjunta con el Instituto para el Desarrollo de Energías y Materiales Alternativos (IDEMA) de la Universidad San Francisco de Quito, mismo que se dedica al desarrollo tecnológico de nuevos procesos para la generación de energía y materiales. La pirólisis rápida es un proceso que en la actualidad no ha sido desarrollado completamente en el mercado. El problema radica en el acceso a equipos como micropirolizadores, ya que es reducido y con un nivel de operabilidad sofisticado, lo que resulta en costos elevados tanto de operación como de adquisición. Con el fin de realizar un equipo que sea asequible y fácil de usar, se ha planteado un diseño capaz de: alcanzar las tasas de calentamiento deseadas en el proceso de pirólisis, ser de fácil montaje y ejecución, además de ser de bajo costo. Se considera pirólisis rápida aquella que tiene condiciones específicas de tasas de calentamiento rápidas, una atmósfera inerte y cantidades bajas de biomasa. Para el desarrollo eficaz del diseño, el instituto IDEMA ha considerado los siguientes requerimientos:

Requerimiento	Especificación	Función/Propósito	
Tasa de calentamiento	180 [ºC/s]	Una tasa de 180 [ºC /s] garantiza el	
Tusu de culeitamento		proceso de pirólisis rápida.	
		La temperatura de la muestra a	
Temperatura de la	500 [ºC]	500[°C] es necesaria para obtene	
muestra	500[[0]	los productos de biomasa que se	
		analizan en el GC/MS.	

Tabla 1. Descripción de los requerimientos establecidos

Masa de la muestra	100 [µg]	La escala de la masa de la muestra es necesaria para que el proceso sea micropirolítico.		
Atmósfera inerte	Gases nobles	La atmósfera inerte es necesaria para que el oxígeno no afecte el análisis de los gases obtenidos en la pirólisis.		
D:	76 (W) x 143 (D) x 215	Las dimensiones para poder ser		
(H) mm, 1.6 kg		considerado como micropirolizador		
Caudal	Hasta 100 [ml/min]	Este caudal es el que recibe el cromatógrafo de gases para analizar los productos obtenidos de la pirólisis.		
Materiales inertes Materiales pasivados		La pasivación de materiales se realiza para que estos no reaccionen químicamente con los gases de la biomasa en la pirólisis rápida.		
Presupuesto	600 USD	El presupuesto planteado es un aproximado, pero se debe tomar en cuenta para el desarrollo del sistema.		

		El tiempo de ejecución establecido
Tiempo de ejecución	3 meses 23 días	se da en un intervalo desde el
		23/08/21 hasta 17/12/2021

El objetivo ponderado de este proyecto radica en construir un primer prototipo del sistema de pirólisis rápida de bajo costo y efectivo -dentro del presupuesto asignado- para de esta forma introducir al mercado un producto competente y asequible. Se espera instalar el sistema en un futuro en el laboratorio de Investigación de Procesos Termoquímicos de la Universidad San Francisco de Quito. Por último, es deseable que los próximos prototipos cumplan satisfactoriamente los criterios mencionados para acceder a una patente.

Con el fin de comunicar los objetivos, metodología e información desarrollada durante el proyecto, se establecen los siguientes términos de referencia:

	Diseño y construcción de un sistema de		
Propuesta	pirólisis rápida asequible en el mercado		
	ecuatoriano.		
	Todos los avances y actividades realizadas		
Rendición de cuentas	a lo largo del proyecto serán reportadas al		
Kendreion de cuentas	cliente Juan Sebastián Proaño		
	(representante de IDEMA) y tutor.		
Dovición	Se plantea un cronograma de actividades		
Kevision	que será revisado y actualizado		

Tabla 2.	Términos	de refere	ncias	(TRDs))
----------	----------	-----------	-------	--------	---

	periódicamente con el cliente en base al		
	cumplimiento de objetivos.		
	Se designa responsabilidades a cada uno		
Metodología	de los miembros del grupo para		
Metodologia	optimización de recursos durante el		
	proyecto.		
	Para comprobar la veracidad de la		
Información y recursos compartidos	información obtenida, se utiliza		
	bibliografía confiable relacionada al tema		
	de interés.		

En estudios previos, se han analizado reactores pirolíticos de varios tipos como el sistema de lecho fluidizado (Griffin, 2011), en el cual la biomasa se esparce en el reactor a manera de cama, se calienta mediante convección y conducción de calor a altas temperaturas (Cai et al., 2021). Otro tipo de reactor es mediante radiación láser, donde la luz láser se refracta en un espejo e impacta a la biomasa para el respectivo proceso pirolítico (Papari & Hawboldt, 2018). La mayoría de los estudios se basan en sistemas convencionales de caída libre (Huang et al., 2012), en los que la biomasa pasa por compartimientos antes de llegar al reactor, así se garantiza la atmósfera inerte desde el inicio del proceso (Palumbo & Weimer, 2015).

La importancia del proceso pirolítico radica en los productos de la pirólisis obtenidos de la reacción termoquímica, que posteriormente pasan a ser analizados en un cromatógrafo de gases para analizar azúcares y demás componentes de interés del cliente. El alcance de este proyecto consiste en no solamente centrarse en el diseño y construcción del reactor, sino también en

Conceptos de diseño y selecciones

Se busca cumplir los siguientes requisitos: reproducibilidad de las pruebas, costos de ensamblaje, facilidad de montaje y mantenimiento del equipo (Norton, 2020). Los conceptos generales que permiten la mejor combinación son: sistema de calentamiento, interfaz, estructura y flujo. La metodología implementada para encontrar la mejor alternativa se basó en la aplicación de matrices de selección de criterios ponderados. El valor ponderado de cada función depende de su relevancia considerando los requisitos del sistema de pirólisis rápida y los requerimientos del instituto IDEMA. La tabla que se presenta a continuación resume cada requisito con su función y posibles opciones.

		Opciones				
Requerimiento	Función	1	2	3	4	
Método de	Alcanzar la	Efecto Joule				
calentamiento	temperatura y	+	Resistencias	Láser +	Convección	
	tasa de	Convección		Convección	+ Inducción	
	calentamiento					
Interfaz de la	Acople de la	Copa de	Válvula			
muestra	muestra con el	AISI 316	para caída	Placa		
	reactor		libre			
Atmósfera inerte	Ausencia de	Helio	Nitrógeno	Argón	Hidrógeno	
	oxígeno					

Tabla 3. Requerimiento	y	posibles	opciones
------------------------	---	----------	----------

Control de	Para evitar la			
calentamiento de	condensación		PID PLC	Micro-
gas inerte	de los	PID		
	productos de la			controlador
	pirólisis rápida			
Control de flujo	Analizar los		Controlador	
	productos en el		Controlador	
	cromatógrafo	Flujometro	de flujo	
	de gases		(Alicat)	
Materiales inertes	Evitar reacción			
	con los	Pasivación	Material	
	productos de la		inerte	
	pirólisis rápida			

A continuación, se muestra tres esquemas preliminares a detalle con respecto a la composición del micropirolizador que responde a cada requisito presentado anteriormente.

Figura 1. Primer esquema de sistema de pirólisis rápida

La Figura 1 consiste en un sistema de precalentamiento de gas, calentamiento por inducción electromagnética, y post-calentamiento de gas. El sistema de distribución de gas inerte de dos vías permite que: por la parte inferior circule helio a temperatura ambiente purgando el oxígeno; al mismo tiempo se precalienta la vía superior. Una vez precalentada la vía superior, se cierra la vía inferior y se da paso al helio precalentado. Simultáneamente se activa el inductor que transfiere calor a la biomasa por medio de una copa donde se realiza la reacción termoquímica para que, posteriormente, se transporte el producto de la pirólisis a un analizador de gases.

Figura 2. Segundo esquema de sistema de pirólisis rápida

A diferencia de la Figura 1, la Figura 2 muestra un sistema de pirólisis rápida basado en efecto Joule directo, donde la biomasa se coloca encima de una placa, a la cual se le induce corriente directamente mediante cables alimentados por una fuente de corriente alterna.

Figura 3. Tercer esquema de sistema de pirólisis rápida

La Figura 3 es un sistema que sigue el principio de los pirolizadores de caída libre (Cai et al., 2021), donde se precalienta un horno a una temperatura deseada y se deja caer la biomasa asumiendo que está completamente pirolizada hasta el final del trayecto, para luego separar los sólidos del producto de la pirólisis con los gases que, finalmente serán analizado en un cromatógrafo de gases.

Análisis de riesgos

Identificar los riesgos brinda la oportunidad de manejarlos adecuadamente durante el desarrollo del proyecto. Para garantizar que todas las amenazas se están considerando, se divide el diseño del sistema de pirólisis rápida en cuatro subsistemas.

- **1. Flujo:** Se considera el transporte de tuberías y accesorios para la distribución del gas inerte a través de todo el sistema con el fin de desplazar el oxígeno.
- **2. Estructura:** Consiste en una estructura de soporte para instalar todo el sistema de pirólisis rápida en el laboratorio.
- **3.** Interfaz: Dentro de la interfaz se considera el sistema de control de temperaturas y el sistema de montaje de la muestra de biomasa.
- **4. Calentamiento:** Este subsistema se considera el calentamiento del gas inerte antes y después del reactor, así como el calentamiento generado por el mismo reactor.

Una vez establecido los subsistemas con sus funciones, se realizó el análisis de riesgo. Con la relación de impacto y probabilidad, además de las diferentes decisiones tomadas para el diseño del micropirolizador, se determina el nivel de importancia de las diferentes actividades para realizar el diseño.

#	Descripción	I x P *
1	Importación de materiales específicos	25
2	Falta de potencia de la fuente	25
3	Tasa de calentamiento menor a la del requerimiento	25
4	Pasivado de materiales	20

Tabla 4. Impacto y probabilidad de riesgos

En la Tabla 4 se muestra las actividades prioritarias para la construcción del sistema. El nivel de prioridad está cualificado ponderando la probabilidad de que suceda el riesgo y el impacto que tendría en el proyecto, siendo 25 el valor máximo, indicando que es muy probable y es de alto riesgo para completar el sistema (Riba Romeva, 2002).

Manejo de proyecto

La distribución de tareas y plazos para su finalización es fundamental para garantizar la culminación del proyecto en el tiempo establecido por el cliente. Se busca cumplir con los objetivos de diseño y construcción de los prototipos del sistema con su respectiva verificación, por lo cual se estableció un Diagrama de Gantt con trabajo detallado en el Anexo B. A continuación, se presenta una versión resumida de las tareas generales:

	Tarea	Duración	Comienzo	Finalización	%
1	Cronograma	7 días	23/08/2021	30/08/2021	100%
2	Diseño y cálculo	37 días	30/08/2021	06/10/2021	100%
3	Construcción	66 días	08/10/2021	13/12/2021	100%
4	Pruebas	9 días	13/12/2021	23/12/2021	75%
5	Portafolio	83 días	25/09/2021	17/12/2021	100%

Tabla 5. Calendario de tareas generales

Subsecuentemente, se analizó los subsistemas y se definió los materiales necesarios para la construcción del sistema con sus precios. Estos se muestran de manera detallada en la Tabla 43 del Anexo A, y a continuación se resumen los gastos de cada subsistema.

Tabla 6. Precios de subsistemas para la construcción del sistema

	Subsistema	Responsable	Precio	%
1	Precalentamiento de gas	Sebastián	\$ 420,28	55,76%
2	Inducción electromagnética (Reactor)	Fernando	\$ 224,49	29,79%
3	Pasivación	Daniela	\$ 50,95	6,76%
4	Sistema de control	Juan	\$ 57,98	7,69%
	Total		\$ 753,70	

*Los precios incluyen IVA

Estándares de ingeniería

Dentro del proyecto, se consideran los siguientes estándares ingenieriles:

• ISO 6141:2015 Gas analysis – Requirements for certificates for calibration gases and gas mixtures

Este estándar internacional especifica la información mínima requerida además de información adicional recomendada para caracterizar a gases puros, mezclas homogéneas de gases, entregada bajo presión en un cilindro u otros contenedores.

Aplicación: En el sistema se trabaja con gases, y aplicando la norma se puede caracterizar el gas inerte dentro del reactor del micropirolizador, mismo que se va a calentar hasta 500 °C.

• NFPA 86 – Standard for Ovens and Furnaces

1.1.1 Estas recomendaciones prácticas cubren calentadores de fluidos Tipo F, Tipo G y tipo H.

1.1.2 Dentro del alcance de estas recomendaciones, un calentador de fluido es cualquier proceso de calentamiento de fluidos con las siguientes características:

(1) El fluido está bajo presión.

(2) El fluido se calienta de forma indirecta.

(3) Dentro de la unidad ocurre liberación de energía de la combustión de un combustible líquido o gaseoso o una fuente eléctrica.

Aplicación: Este estándar proporciona recomendaciones para calentadores de fluidos para minimizar los riesgos de fuego y explosiones que pueden poner en peligro el calentador de fluido, el edificio o el personal.

ASTM D5374 – 13 - Standard Test Methods for Forced-Convection Laboratory Ovens for Evaluation of Electrical Insulation

Estos métodos de prueba cubren los procedimientos para evaluar las características de los hornos de convección forzada, ventilados y calentados eléctricamente, que operan en todo o parte del rango de temperatura desde 20 °C por encima de la temperatura ambiente hasta 500 °C y se utilizan para la evaluación de la resistencia térmica de materiales aislantes eléctricos.

Aplicación: Es una norma que se basa para las pruebas de materiales, y el proyecto requiere materiales aislantes que puede trabajar en temperaturas cercanas a los 500°C.

(ASTM, 2013).

• ISO 450001 - Sistemas de gestión de la seguridad y salud ocupacional

Radica en prevenir riesgos y manejar la salud de los trabajadores proporcionando sistemas de gestión de seguridad y salud en el trabajo (SST) para minimizar o eliminar el riesgo laboral.

Aplicación: Usar las recomendaciones encontradas en la norma para elaborar una guía de manejo y mantenimiento del micropirolizador para el operador y el cliente.

(ISO, 2018).

• PIP PIC001 Piping and Instrumentation Diagram

Esta norma proporciona requisitos para los diseñadores que preparan diagramas de tuberías e instrumentación (P & ID). También proporciona los estándares usados en la industria como aislamiento y tamaño de tuberías.

Aplicación: Debido a que se utiliza tuberías para el transporte del gas, esta norma rige el diseño e instalación de la tubería implementada.

(PIP, 2008).

MATERIALES Y MÉTODOS

Selección de materiales y componentes

A continuación, se muestran todas las opciones que se consideraron para cada subsistema con su respectiva descripción.

Opciones de calentamiento de biomasa:

- Efecto Joule + convección: Dentro del reactor se inserta la copa donde va la biomasa.
 Esta se calienta directamente por efecto Joule; al mismo tiempo que se precalienta gas inerte que pasa por el reactor transportando los gases hacia el cromatógrafo.
- Resistencias: Alrededor del reactor existen resistencias, mismas que se calientan hasta llegar a una temperatura deseada y se deja caer la biomasa por caída libre.
- 3) Láser + convección: En el interior del reactor se acopla la muestra de biomasa y se regula el láser para que el haz de luz sea el método de calentamiento principal para el proceso de pirólisis. Posteriormente, el gas caliente transporta los productos hacia el cromatógrafo.
- 4) Inducción + convección En el exterior del reactor se coloca una bobina que calienta por inducción a una copa de material ferromagnético. Una vez realizada la pirólisis, el gas inerte caliente pasa por el reactor transportando los productos al cromatógrafo.

Opciones de control de calentamiento de gas inerte:

 PID: Resulta de la combinación Proporcional, Integral y Derivativo para generar una señal de control. Actualmente son los más utilizados en procesos industriales debido a su precisión y disminución de perturbaciones (Ogata, 2013). Su configuración requiere cierto nivel de experiencia y antecedentes teóricos por parte del operador (Ferreyra, 2012).

- 2) PLC: El controlador lógico programable es un computador empleado en procesos de automatización industrial. Su precio en el mercado es bajo comparado con los múltiples beneficios que ofrecen en los procesos: registro y lectura de datos, autodiagnósticos de señales, entre otros (Bartlett, 2010).
- 3) Microcontrolador: Es un circuito integrado programable cuya función es automatizar y procesar datos e información. Cuentan con entradas, salidas y unidades lógicoaritméticas para reproducir una señal determinada (Valderrama, 2015).

Opciones de gases para atmósfera inerte:

- 1) Argón
- 2) Hidrógeno
- 3) Nitrógeno
- 4) Helio

Opciones de control de flujo:

- Flujómetro: Mide la velocidad y la fuerza de los líquidos y gases en movimientos. Este equipo mide el caudal másico, temperatura y densidad mediante un sensor. (Castillo, 2021).
- Controlador de flujo másico: Está diseñado para permitir el control rápido de flujos de gas sobre una amplia variedad dinámica.

Opciones para material de la estructura interna (a conveniencia del cliente):

- Material pasivado: Es un tratamiento superficial que se realiza con ácidos para proteger a los aceros de la corrosión (Callister, 2008).
- Material inerte: Son todos los componentes cerámicos que no reaccionan química ni biológicamente con la biomasa.

Para la metodología de selección, se tomó en cuenta los criterios ponderados, mismos que son los parámetros directrices para llevar a cabo el proyecto. Para seleccionarlos, se usó como referencia los requerimientos del cliente y las necesidades de este, los cuales son:

- Pruebas reproducibles: Que las pruebas sean replicables en el tiempo.
- Facilidad de movilidad y montaje: Que el reactor sea fácil de manejar, transportar y acoplar con el cromatógrafo de gases.
- Facilidad de mantenimiento y manipulación: Fácil de limpiar una vez terminada la prueba.
- Usabilidad e interfaz con el usuario: Fácil interpretación del funcionamiento del equipo.
- Precio moderado, debido a que existe un presupuesto limitado.

Así, la importancia en la metodología de selección se estableció de la siguiente manera:

Reproducibilidad > Precio > Mantenimiento = Interfaz > Montaje

A partir de estos criterios, se evaluaron las diferentes alternativas para cada subsistema del equipo de pirólisis rápida. Se realizó la comparación de los criterios ponderados con los métodos
de calentamiento y se obtuvo que el método seleccionado para el calentamiento del reactor es por inducción electromagnética + convección.

De igual forma, se realizó el mismo procedimiento para seleccionar las opciones en cada subsistema, mismas que se detallan en el Anexo A. Como resultado, para el control de calentamiento de gas inerte se escogió el uso de PID; para el control del flujo se estableció la aplicación de un flujómetro; para el material de la estructura interna del reactor se optó por el método de pasivación, el cuál es un tratamiento de difusión de masa que retira las partículas de hierro para evitar la corrosión del material, creando una capa de nicromo que protege la superficie del acero inoxidable (Callister, 2008). Asimismo, se utilizaron fuentes para suministrar energía al controlador PID y al circuito tanque de inducción electromagnética.

Diseño de manufactura

Para el diseño de un sistema de pirólisis rápida se determinaron cuatro componentes a fabricar que son: copa para biomasa, soporte de vidrio, método de calentamiento de la biomasa, y calentamiento de flujo de gas. Este último cuenta con dos partes, una sección antes del reactor pirolítico y una después de este. Además, se consideró que se tiene que realizar un tratamiento superficial de pasivado a los componentes de acero inoxidable.

En la Tabla 7 se detalla el proceso de fabricación de los componentes con su descripción, fechas de entrega, materiales utilizados, costos implicados y los indicadores para aceptar o rechazar el proceso.

Componente	Descripción del proceso	Fechas	Materiales	Costos	Performance Indicators
			utilizados		
Copa de	Se debe recortar un pedazo de	28/10/2021	Acero inoxidable	Materiales:	Indicador: Durabilidad del
acero	acero inoxidable de 1/4", de		de ¼'' de espesor	5.00\$	producto.
inoxidable	diámetro. Luego, se lleva la pieza a			Mano de obra:	Medida: Número de pruebas
	un torno manual para realizar un			2.50\$	que soporta la copa sin
	agujero en el centro a manera de				dañarse.
	recipiente para que se coloque la				Target: Que la copa sea
	biomasa.				reproducible a largo plazo
					(mínimo 100 pruebas).
Soporte de	Ir a la entidad responsable (Saigon)	8/11/2021-	Vidrio que	Materiales:	Indicador: Resistencia a
vidrio	y detallar los requerimientos para	15/11/2021	soporte altas	18.00\$	altas temperaturas.
	la realización del soporte tipo		temperaturas		Medida: Temperatura
	Venturi. Saigon cuenta con los				máxima que soporta el vidrio
	materiales y equipos necesarios				sin fracturarse.
	para el diseño y construcción del				Target: Que el vidrio sea
	producto.				resistente a temperaturas
					superiores a 500°C.

Tabla 7. Proceso de fabricación de componentes

Tubería	de	Se solicita tubería de 1/4 y 1/8 de	10/11/2021	Tubería de 1/4"	Materiales:	Indicador: Eficiencia en el
acero		pulgada a la entidad pertinente. La	-	y 1/8", válvulas	185.00\$	flujo de gas.
inoxidable		tubería conecta el reactor con el	19/11/2021	de paso	Mano de obra:	Medida: Caudal que pasa por
		cromatógrafo de gases y con la			7.50\$	las válvulas de la tubería.
		fuente del gas noble. Para el flujo				Target: Que las tuberías
		de gases, se necesita acoplar las				cumplan con los
		válvulas de paso. Los codos se				requerimientos del caudal sin
		realizan con una dobladora para				fugas de aire.
		evitar fugas por accesorios.				
Bobina de		Es necesario comprar 1 metro de	9/11/2021	Cobre esmaltado	Materiales:	Indicador: Eficiencia en
cobre		cobre esmaltado de 2 mm para			2.00\$	calentamiento por inducción
esmaltada		construir la bobina que calentará la			Mano de obra:	electromagnética.
		biomasa mediante inducción			2.50\$	Medida: Temperatura y
		electromagnética.				frecuencia a la que opera la
						bobina.
						Target: Obtener altas
						frecuencias y tasas de
						temperatura de 180 °C/s en el
						proceso pirolítico.

Pasivación	Adquirir un líquido decapar	te 22/11/2021	R.F.S Líquido	Materiales:	Indicador:	Correcto
de acero	disponible en el mercado pa	ra	decapante	45.00\$	pasivado del	acero
inoxidable	garantizar un produc	to		Mano de obra:	inoxidable.	
	químicamente inerte. Una v	ez		15.00\$	Medida: Cambi	os en la
	obtenido, se sumergen todos l	os			micrografía del	material
	componentes de acero inoxidal	le			luego de la	pasivación
	empleados en el reactor y se de	ja			observados	en el
	reposar por 45 minutos según	as			microscopio.	
	instrucciones del producto. Así,	la			Target: Minim	nizar al
	superficie queda pasivada.				máximo las par	tículas de
					hierro en la sup	erficie del
					material.	

Para la verificación de dimensiones y tolerancias de los componentes del sistema de pirólisis rápida, se establecen en la Tabla 8 las herramientas de medición para cada parte. El procedimiento estándar consiste en verificar las dimensiones durante la construcción de los componentes, y una vez terminados. La tolerancia general del proyecto es de ± 1.00 mm.

Todos los diagramas de flujo de los procesos de fabricación para la copa de acero inoxidable, el soporte de vidrio y sistema de tuberías se encuentran detallados en el Anexo B.

RESULTADOS Y DISCUSIÓN

Reporte de Diseño

Se realizaron cálculos y simulaciones para determinar las dimensiones de los componentes del sistema de pirólisis rápida y garantizar el óptimo funcionamiento del equipo realizado. Para ello, se consideró los requerimientos planteados por el cliente e información pertinente recopilada sobre procesos de pirólisis rápida. Teniendo en cuenta que el proceso pirolítico comienza con el flujo y precalentamiento de gas inerte a través de tuberías hasta llegar al reactor donde se realiza la pirólisis y posteriormente los productos son analizados en un cromatógrafo de gases. Los subsistemas que se analizarán son los siguientes:

• Estructura interna y externa del reactor

El reactor es la parte más importante de todo el sistema ya que dentro de él se calienta la biomasa, de la cual se obtendrán gases producto del proceso pirolítico que posteriormente son analizados en el cromatógrafo de gases según las necesidades del cliente. Dado que el reactor está expuesto a temperaturas superiores a los 500 °C, se debe tomar en cuenta que las propiedades de los materiales empleados en el reactor soporten altas temperaturas sin afectar su rendimiento.

• Sistema de fuentes de energía

Es el encargado de brindar la energía a todos los demás subsistemas para el funcionamiento del proceso pirolítico. Para determinar el número de fuentes requeridas es necesario analizar los componentes del sistema utilizan un suministro de energía, y su respectivo voltaje y amperaje para operar.

• Control de temperatura

Su función es mantener los rangos de temperatura necesarios para el precalentamiento del gas en la tubería antes de ingresar al reactor. Se utiliza una cinta calefactora alrededor de la tubería y su temperatura es controlada mediante un PID seteado con los valores requeridos para que el gas ingrese al reactor con 500 °C aproximadamente.

• Flujo de gas

El gas es el responsable de generar una atmósfera inerte dentro del proceso. En este caso, el gas empleado es helio dado que sus propiedades se adaptan satisfactoriamente a las necesidades del proyecto.

Calentamiento por inducción electromagnética

Se debe considerar la relación entre la masa térmica, la frecuencia, la potencia y la inductancia para que se alcance la tasa de calentamiento adecuado y se logre la temperatura requerida. Este método de calentamiento se realiza utilizando una bobina inductora y una copa de acero inoxidable. Al inducir una corriente alterna a través de la bobina se genera un campo magnético variante que induce una corriente parásita en la copa metálica ubicada de forma concéntrica con la bobina. De esta forma se consigue calentar la copa por efecto Joule (Purcell, 2013).

• Transferencia de calor a la biomasa

Dado que el proceso pirolítico consiste en la descomposición rápida de la biomasa a temperaturas elevadas, se produce transferencia de calor por convección debido a que el gas inerte entra precalentado al sistema; y por conducción, ya que las paredes internas de la copa se calientan, haciendo que la biomasa aumente su temperatura intrínsecamente (Incropera & DeWitt, 2008).

• Movimiento de la biomasa

Asumiendo la biomasa como un objeto compacto y diminuto, se analiza si la fuerza del gas es suficiente para mover la biomasa (Anderson, 2013).

Con los subsistemas anteriormente mencionados, se determinan las condiciones generales de diseño para cada uno.

Subsistema	Condiciones generales de diseño
Estructura interna y externa	Este subsistema cuenta con varios componentes que son:
del reactor	soporte de vidrio, que es el reactor como tal. Dentro de
	este se inserta la copa de acero inoxidable que sostiene la
	muestra de biomasa a ser pirolizada. Las dimensiones de
	estos componentes son:
	• Soporte de vidrio:
	DO: 6.5 mm DI: 4.55 mm L: 50 mm
	• Copa de acero inoxidable:
	D: 4.76 mm h: 5 mm
	Dentro de este subsistema, se considera la transferencia
	de calor a la biomasa y el movimiento de la misma.
Sistemas de fuentes de	Se incluyen todas las conexiones eléctricas de los demás
energía	subsistemas. Esto incluye los cables del PID, la cinta
	calefactora y las fuentes. Todas estas conexiones se
	encuentran dentro de un tablero de control aislado para
	evitar daños eléctricos. El tablero es de 40x40x20 cm.
Control de temperatura	El PID y la cinta calefactora no son diseñados, y sus
	medidas vienen determinadas por el proveedor
	respectivo.
	Cinta calefactora:

Tabla 9. Condiciones generales de diseño de cada subsistema

	L: 61 cm
	• PID InkBird ITC 100 HV:
	L: 1.89 in W: 3.5 in H: 1.89 in
Flujo de gas	Se diseña un sistema de tubería de acero inoxidable para
	el transporte de gas a lo largo del sistema de pirólisis
	rápida, las cuales son de ¼ y 1/8 de pulgada.
Inducción electromagnética	Para el calentamiento por inducción se utiliza un circuito
	tanque que cuenta con una bobina de cobre esmaltado, a
	la cual se le induce corriente según una frecuencia
	determinada para alcanzar los rangos de temperatura
	deseados. Las dimensiones de la bobina son:
	• DO: 16 mm
	• H: 15 mm

Tomando en cuenta las condiciones generales de diseño detalladas en la Tabla 9, se pueden determinar las rutas críticas en la fase de diseño. Dado que varios de los componentes del proyecto no son diseñados ni fabricados porque están disponibles en el mercado, solo se analizan los que aplican esta condición. El subsistema con la fabricación de diseño más crítica es el calentamiento por inducción electromagnética, ya que se debe tener conocimientos sobre electrónica para que el circuito tanque alcance la frecuencia necesaria para obtener altas temperaturas en la bobina. El segundo subsistema de interés es el de tuberías para el transporte del gas ya que es el más propenso a fugas, y las mismas pueden reducir la eficiencia de todo el proceso pirolítico.

A continuación, se muestra un diagrama de flujo del proceso llevado a cabo para los cálculos, simulaciones y pruebas de verificación de cada componente analizado.

Figura 4. Diagrama de flujo del proceso para cada componente

Análisis ingenieril

Para el diseño del sistema de pirólisis rápida se ha decidido seleccionar los siguientes elementos: reactor del proceso pirolítico y el sistema de transporte del gas. Se establecen las condiciones mínimas requeridas para cada elemento que garanticen el correcto funcionamiento del sistema. Así, los cálculos y simulaciones permiten determinar las secciones más críticas para tomar las medidas de seguridad correspondientes. El esquema de todo el sistema de pirólisis rápida se muestra en la Figura 5 a continuación:

Figura 5. Esquema del sistema de pirólisis rápida

Reactor del proceso pirolítico

Dentro de esta sección se detallan los cálculos y simulaciones del calentamiento por inducción

electromagnético, transferencia de calor hacia la biomasa y el movimiento de esta.

Figura 6. Esquema del reactor del sistema pirolítico

• Calentamiento por inducción electromagnética

El calentamiento por inducción electromagnética consiste en inducir una corriente alterna por medio de una bobina hacia la copa de acero inoxidable colocada en el centro de la bobina, esta corriente inducida causa un efecto Joule en el metal, elevando su temperatura y calentando la copa con la biomasa. Se consideró este método de calentamiento ya que permite tener un sistema sin contacto entre el reactor y la bobina, a diferencia de otros que necesitan cableado entre los componentes.

Para alcanzar las tasas de calentamiento establecidas, se fijó el tiempo en el que la copa alcanza la temperatura final en 2 segundos, de esta forma se puede encontrar la potencia requerida mediante la ecuación propuesta por Rudnev en su libro sobre inducción electromagnética:

$$P_w = mc\left(\frac{T_f - T_o}{t}\right)$$

Donde:

m = masa de la copa de acero inoxidable a calentar [kg]

 $c = \text{calor específico del acero inoxidable } \left[\frac{J}{\text{kgK}}\right]$

 T_f = Temperatura final [K]

 T_o = temperatura inicial [K]

t = tiempo que tarda el proceso de calentamiento [s]

Otro concepto importante en el caso del calentamiento por inducción es el "Penetration Depth" o la profundidad de penetración, que es la distancia desde la superficie del material hacia su centro en la que la densidad de corriente decrece 37% de la que hay en la superficie. Este valor es relevante ya que determina la máxima profundidad alcanzable donde los efectos de la corriente inducida se pueden apreciar con la mayor precisión (Rudnev et al., 2002).

$$\delta = 503 \sqrt{\frac{\rho}{u_r f}}$$

Donde:

 δ = penetration depth de la copa de acero inoxidable [m]

 ρ = resistividad eléctrica del material [Ω m]

 u_r = permeabilidad magnética relativa $\left[\frac{H}{m}\right]$

f = frecuencia [Hz]

También se utilizó el circuito de resonancia mostrado en la Figura 7, el cual consiste en un arreglo de capacitores y una bobina en paralelo. Este circuito es importante ya que, para calentar por inducción electromagnética se requiere una señal de frecuencia específica para que pase la mayor cantidad de potencia durante la inducción. El esquema del circuito se presenta a continuación:

Figura 7. Esquema de circuito LC

Para este circuito, es necesario que las reactancias estén en resonancia, y para ello se debe tener valores de reactancias iguales. El circuito cuenta con reactancia capacitiva e inductiva, las cuales pertenecen a los capacitores y bobina respectivamente (Purcell, 2013).

La reactancia capacitiva se calcula por medio de la ecuación:

$$X_C = \frac{1}{2\pi fC}$$

Donde:

f = frecuencia [Hz]

C = capacitancia equivalente [F]

La reactancia inductiva se obtiene de la siguiente ecuación:

$$X_L = 2\pi f L$$

Donde:

$$f =$$
 frecuencia [Hz]
 $L =$ Inductancia [H]

Debido a que la bobina fue diseñada para esta aplicación específica, se calculó su inductancia por medio de la siguiente ecuación.

$$L = u_o \left(\frac{N^2}{long}\right) A_{in}$$

De la cual:

$$L = Inductancia[H]$$

 u_o = Permeabilidad del vacío $\left[\frac{\mathrm{H}}{\mathrm{m}}\right]$

N = Número de vueltas bobinado

long = Longitud del bobinado [m]

 $A_{in} =$ Área interior de la bobina [m²]

Una vez se tiene la frecuencia e inductancia fijas para esta aplicación, se puede usar una ecuación para encontrar la capacitancia de resonancia óptima a la que debe operar el circuito. Para ello, se parte de la ecuación de frecuencia:

$$f = \frac{1}{2\pi\sqrt{LC}}$$

Y se obtiene que la capacitancia de resonancia óptima es:

$$C = \frac{1}{L(2\pi f)^2}$$

Es importante reconocer que la potencia P_w no representa la potencia en los terminales de la bobina (la llamada potencia de la bobina). La siguiente ecuación proporciona una correlación entre la potencia de la bobina P_c y la potencia entregada a la copa P_w .

$$P_c = \frac{P_w}{\eta_{el}\eta_{th}}$$

 $\eta_{el} =$ Eficiencia eléctrica

 $\eta_{th} =$ Eficiencia térmica

El valor de η_{el} representa la relación entre la potencia inducida en la copa P_w , el total de P_w y las pérdidas eléctricas P_{loss}^{el} :

$$\eta_{el} = \frac{P_w}{P_w + P_{loss}^{el}} = \frac{1}{1 + \frac{D_1'}{D_2'} \sqrt{\frac{\rho_1}{\mu_r \rho_2}}}$$

 $D'_1 = \text{Diámetro efectivo de la bobina [m]}$

 D'_2 = Diámetro efectivo de la copa de acero inoxidable [m]

 $\rho_1 = \text{Resistividad eléctrica de la bobina} [\Omega \text{ m}]$

 $\rho_2 = \text{Resistividad eléctrica de la copa } [\Omega \text{ m}]$

 u_r = Permeabilidad magnética relativa de la copa $\left[\frac{H}{m}\right]$

El valor de η_{th} representa la cantidad de pérdidas térmicas en comparación con la potencia de calefacción y se puede determinar mediante:

$$\eta_{el} = \frac{P_w^{av}}{P_w^{av} + P_{loss}^{th}}$$

La potencia inducida en la copa P_w no es una constante durante el ciclo de calentamiento y varía dependiendo del cambio en ρ y u_r . Esta es la razón por la que, en lugar de usar P_w , el valor de P_w^{av} (es decir, la potencia promedio por ciclo de calentamiento o por etapa de proceso en particular) se aplica a menudo. Se puede determinar una estimación precisa del valor de P_{loss}^{th} con modelado numérico por computadora. Al mismo tiempo, existen varias fórmulas empíricas que permiten una estimación aproximada de esas pérdidas. Para bobinas cilíndricas, el valor de las pérdidas térmicas se puede determinar como se muestra a continuación:

$$P_{loss}^{th} = 3.74E - 02\left(\frac{l}{\log_{10}\left(\frac{D_1}{D_2}\right)}\right)$$

 $D_1 = \text{Diámetro de la bobina [m]}$

 $D_2 = \text{Diámetro de la copa [m]}$

(Rudnev et al., 2002).

• Transferencia de calor a la biomasa

Debido al corto tiempo en el que la copa alcanza la temperatura deseada, para el análisis de la transferencia de calor desde la copa de acero inoxidable hacia la biomasa se considera el caso de conducción con un flujo de calor constante en estado estable sobre un cilindro perfecto(Incropera & DeWitt, 2008 C.E.). Así, se obtiene la siguiente ecuación:

$$q_{biomasa} = k_{biom} A_{s_{biom}} \left(\frac{T_{copa} - T_{i_{biom}}}{r_{o_{biom}}} \right) + q_{resistencia}$$

Donde:

 $q_{biomasa}$ = Calor entregado a la biomasa [W]

 k_{biom} = Coeficiente de conducción de la biomasa $\left[\frac{W}{m-K}\right]$

 $A_{s_{biom}} =$ Área de la biomasa [m²]

 T_{copa} = Temperatura superficial de la copa [K]

 $T_{i_{biom}}$ = Temperatura inicial biomasa [K]

 $r_{o_{biom}} =$ Radio de la biomasa [m]

 $q_{resistencia}$ = Calor perdido por resistencia de contacto [W]

La resistencia de contacto finita se origina debido a efectos de la rugosidad de la superficie. En el caso de la pirólisis de biomasa, los puntos de contacto con la superficie se intercalan con pequeños espacios llenos de aire, como se observa en la Figura 6. Así, la transferencia de calor se da por conducción a través del área superficial de contacto real, y debido a la conducción o radiación entre los espacios llenos de aire. El área de contacto es por lo general muy pequeña, y la mayor contribución a la resistencia se da por los espacios de aire. La resistencia de contacto se obtiene de:

$$R_t = \left(\frac{T_{copa} - T_{i_{biom}}}{q_{resistencia}}\right) A_{s_{biom}}$$

De acuerdo con el documento de investigación sobre pirólisis de Proaño Aviles, el valor de la resistencia de contacto estimado es de $1.64E - 0.4 \left[\frac{m^2 K}{W}\right]$ (Proano-Aviles, Lindstrom, Johnston, & Brown, 2017).

Para conocer el tiempo en el que sucede la reacción de transferencia de calor hacia la biomasa, se utiliza la ecuación de tiempo despejada anteriormente con datos de la biomasa:

$$t_{biomasa} = \frac{\rho_{biomasa} V_{biomasa} c_{biomasa}}{q_{biomasa}} (T_f - T_o) + t_{induction}$$

Movimiento de la biomasa

Para el movimiento de la biomasa se plantea el problema como una partícula estática a la que se le aplica una fuerza en dirección horizontal, el cálculo representa una primera aproximación tomando en cuenta la velocidad del gas y la fuerza de rozamiento.

Figura 8. Diagrama de cuerpo libre de la biomasa

 F_N = Fuerza normal [N]

 F_r = Fuerza de rozamiento [N]

 F_{v} = Fuerza del gas [N]

W = Peso[N]

Para poder determinar si la partícula de biomasa se mueve o no, se tiene que comparar la fuerza de rozamiento con la fuerza del gas. Por ende, se sabe que si la fuerza del gas es mayor que la fuerza de rozamiento entonces la biomasa se mueve.

Para encontrar la fuerza de rozamiento se tiene que conocer el coeficiente de rozamiento del acero inoxidable y la fuerza normal. Para encontrar la fuerza normal se analiza las fuerzas en el eje 'Y' suponiendo equilibrio estático, es decir, no hay aceleración en el eje vertical. De este análisis se obtiene que:

$$F_n = W$$

Donde W es el peso [N].

Según J.E Romero, el coeficiente de rozamiento del acero inoxidable está entre 0.3227 a 0.9674, por lo que -para fines prácticos- se escoge el promedio de estos valores, es decir 0.6451.

Se supone que el valor de la velocidad del helio debe ser menor que el de la fuerza de rozamiento para que la biomasa se mantenga estática. Para calcular la velocidad del gas se usa:

$$F_{\nu} = PA$$

P = Presión del gas [kPa]

A = Proyección del área donde el gas hace contacto (área transversal) [m²]

Para el área de la sección transversal se utilizan los datos de las suposiciones del cálculo de transferencia de calor a la biomasa. Para encontrar la presión del gas se utiliza la definición del coeficiente de arrastre y se despeja la presión, es decir:

$$P = \frac{\rho C_d V^2}{2}$$

 C_d = Coefieciente de arrastre

 $V = \text{Velocidad del gas} \left[\frac{\text{m}}{\text{s}}\right]$ $\rho = \text{Densidad del helio} \left[\frac{\text{kg}}{\text{m}^3}\right]$

Se realiza la comparación entre la fuerza del gas de acuerdo con las condiciones del reactor y la fuerza de arrastre: si la primera es mayor a la segunda se establece que la muestra de biomasa se desplazará de su ubicación debido al caudal entregado (Anderson, 2013).

Sistema de transporte del gas

Dentro del transporte de gas se analizó el sistema de tuberías por el cual pasa el helio desde su depósito hasta llegar al reactor y posteriormente al cromatógrafo de gases. Dado que el gas es precalentado antes de ingresar al reactor, se realizaron también los cálculos para determinar las características mínimas requeridas de la cinta calefactora. En esta sección se analizó el control de caudal de gas y el precalentamiento de este. A continuación, se muestra el esquema de todo el sistema con sus elementos:

Figura 9. Esquema del transporte de gas

• Control de caudal

Dentro del control del caudal del helio se debe considerar que en la sección de precalentamiento del gas se va a generar una expansión por causa del cambio de temperatura, para lo cual se aplica la ecuación del gas ideal para el cambio de condiciones:

$$\frac{V_2}{V_1} = \left(\frac{T_{mo}}{T_{mi}}\right)$$

 $\frac{V_2}{V_1}$ = Razón del cambio de volumen T_{mo} = Temperatura de salida [K] T_{mi} = Temperatura de entrada [K]

(Munson, 2016).

De esta manera, es pertinente multiplicar el volumen de entrada por la razón de cambio de temperatura para saber el volumen que sale de la tubería una vez que el gas es precalentado

Para obtener las velocidades de entrada y salida del gas inerte se aplica la siguiente relación:

$$\dot{V} = vA$$
$$A = \frac{\pi D_{in}^2}{4}$$

 $\dot{V} = Flujo volumétrico \left[\frac{m^3}{s}\right]$

 $A = \text{Área} [m^2]$

(Penoncello, 2018).

• Calentamiento del gas

Dentro del subsistema de precalentamiento se tiene la sección de tubería encargada de precalentar el helio. Para poder determinar la potencia necesaria para que la temperatura del gas a la entrada sea de 15 °C y a la salida alcance los 500 ± 5 °C, se realizó un análisis de transferencia de calor considerando que se tiene un flujo de calor constante y uniforme a lo largo de la sección de tubería de acero inoxidable.

$$q = q_s^{\prime\prime} PL$$

q = Tasa de calor [W]

 $q_s^{\prime\prime} =$ Flujo de calor $\left[\frac{W}{m^2}\right]$

Para el análisis del sistema de precalentamiento del gas, se contó con dos formas de transferencia de calor: conducción a través de las paredes externa e interna de la tubería y por convección entre la pared interna de la tubería y el gas inerte. La ecuación que gobierna la transferencia de calor por conducción en este sistema es la siguiente:

$$q_{cond} = \frac{2\pi L k_{inox}(T_{s1} - T_{s2})}{\ln\left(\frac{r_2}{r_1}\right)}$$

Además, para la transferencia de calor por convección se establecieron dos diferentes ecuaciones que rigen a este proceso: la primera que establece la convección por un flujo interno y la segunda que relaciona la convección en un cilindro.

$$q_{conve} = \dot{m}c_p(T_{mo} - T_{mi})$$

$$q_{conve} = PLh(T_{s2} - T_{mo})$$

Donde:

$$k_{inox} = \text{Constante de conductividad del acero inoxidable } \begin{bmatrix} W \\ m & K \end{bmatrix}$$
$$T_{s1} = \text{Temperatura superficial pared externa } \begin{bmatrix} K \end{bmatrix}$$
$$T_{s2} = \text{Temperatura superficial pared interna } \begin{bmatrix} K \end{bmatrix}$$
$$\dot{m} = \text{Flujo másico } \begin{bmatrix} \frac{\text{kg}}{\text{s}} \end{bmatrix}$$
$$h = \text{Constante de convección } \begin{bmatrix} W \\ m^2 & \text{K} \end{bmatrix}$$
$$c_p = \text{Capacidad calórica del helio } \begin{bmatrix} \frac{\text{kJ}}{\text{kg K}} \end{bmatrix}$$

$$P = Perímetro [m]$$

Para determinar la constante de convección del gas, se determinó en qué régimen está el flujo mediante la aplicación del número de Reynolds. Si este es menor a 2300, el flujo es laminar; y si es mayor de 4000, el flujo es turbulento. Mediante esta categorización del tipo de flujo, se aplicó la relación correspondiente para determinar el Número de Nusselt.

$$Re_D = \frac{\rho_{He} D_{in} v_m}{\mu_{He}}$$

$$Nu_D = \frac{h D_{in}}{k_{He}}$$

 Re_D = Número de Reynolds

$$D_{in} = \text{Diámetro interno } [m]$$

$$\mu_{He} = \text{Viscocidad dinámica del He} \left[\frac{\text{kg}}{\text{m s}}\right]$$

 $k_{inox} = \text{Constante de conductividad del He} \left[\frac{\text{W}}{\text{m K}}\right]$

El instrumento de calentamiento seleccionado fue una cinta calefactora que cuenta con las siguientes características: longitud 0,61 [m], ancho 0,013 [m], con una densidad de potencia máxima de 20 $\left[\frac{W}{m^2}\right]$. Con estos datos se obtuvo la longitud de la tubería necesaria, tomando en cuenta el número de vueltas y el espacio entre cada vuelta de la cinta calefactora (Incropera & DeWitt, 2008).

$$L_{cinta} = n \quad \sqrt{D_{out}^2 + P_{aso}^2}$$
$$n = \frac{L}{P_{aso}}$$

$$P_{aso} = S + \frac{W_{cinta}}{2}$$

 $L_{cinta} = Longitud de la cinta [m]$

n = Número de vueltas

 $P_{aso} = Paso \ entre \ vueltas$

 $w_{cinta} = Ancho de la cinta [m]$

S = Espacio entre las vueltas [m]

(Incropera & DeWitt, 2008).

Simulación

Para entender la tasa de transferencia de calor mediante el método de inducción electromagnética, se realizó una simulación en estado transitorio en el software COMSOL. En esta simulación se modeló la copa de acero inoxidable, la bobina de cobre que realiza la inducción y el helio que genera la atmósfera inerte. A cada uno de estos elementos se les asignó características propias del material del que están fabricados. Se establecieron los parámetros a los que se somete la copa que son: convección e inducción electromagnética y se definieron las condiciones iniciales. Se asignaron valores de corriente en la bobina y las propiedades de convección entre el helio a una temperatura de 500 [°C] y la copa.

Plan de pruebas de prototipo

El plan de pruebas de prototipo permite evaluar el desempeño que se espera que cumpla el sistema de pirólisis rápida de acuerdo con los requerimientos establecidos.

Prueba	Requerimiento	Subsistema	Método de	Estatus
			validación	
Taga da			Medición de	
			temperatura	No oprobodo
calentamiento	180 [°C/s]	Calentamiento	indirecta entre	No aprobado
de la copa de			dos sustancias	
AISI 316			Cámara térmica	No aprobado
			Por reducción al	
Tasa de	180 [°C/s]	Calentamiento	absurdo,	
calentamiento			probando un	No aprobado
de biomasa			sistema más	
			complejo	

Tabla 10.Pruebas y métodos de validación para cada requerimiento

Pasivación de materiales	Material inerte	Estructura	Metalografía de muestra de material pasivado Exposición de muestra de material pasivado a 500 [°C]	Aprobado Aprobado
Calentamiento del flujo	510±5 [°C]	Calentamiento - Flujo	Probar el sistema de control PID a la temperatura requerida	Revisión a futuro
Dimensiones apropiadas de sistema pirolítico	76 (W) x 143 (D) x 215 (H) mm, 1.6 kg	Estructura	Medición de dimensiones y masa	Aprobado
Atmósfera inerte	Ausencia de oxígeno	Flujo	Análisis en el cromatógrafo de gases	Revisión a futuro
Fugas	Ausencia de pérdidas de flujo	Estructura - Flujo	Inspección visual y burbujeo	Aprobado

Para el plan de pruebas es necesario probar cada subsistema de forma independiente antes de ensamblar para posteriormente, hacer una prueba en conjunto de todo el sistema ensamblado.

Figura 10. Plan de prueba del sistema general

En la prueba de tasa de calentamiento con cámara térmica se necesita: un trípode, accesorios de sujeción, un celular con sistema operativo Android y una cámara térmica Flir One.

Figura 11. Plan de prueba para tasa de calentamiento

Para la tasa de calentamiento por diferencia de temperaturas de una sustancia se necesita: agua, una balanza de mg, un recipiente de volumen conocido (en este caso de 0.5 cm³ aproximadamente), la copa donde se realizará la pirólisis (misma que será calentada) y un multímetro con una termocupla de masa térmica pequeña.

Figura 12. Plan de prueba para la tasa de calentamiento mediante diferencia de temperaturas

Para la pasivación del acero inoxidable:

Figura 13. Plan de prueba para la pasivación

Para la comprobación de fugas:

Figura 14. Plan de prueba para fugas

Mantenimiento y operación

El objetivo del manual es establecer los parámetros necesarios para un funcionamiento apropiado del sistema y maximizar su vida útil. De la misma manera, se busca priorizar la seguridad del operario para que no sea propenso a accidentes antes, durante o después de usar el equipo (Yanan, 2017).

Instrucciones generales de seguridad

Es de fundamental importancia que el usuario comprenda el funcionamiento de todos los controles y la configuración general del equipo para que pueda operarlo satisfactoriamente o actuar de manera correcta en caso de emergencia. Asegúrese que el operador haya recibido una capacitación o esté instruido adecuadamente antes de operar el sistema.

No permita que niños operen el equipo. Mantener niños y animales apartados del lugar donde se realice la instalación del sistema de pirólisis rápida.

Los gases que se utilizan en el reactor no son venenosos, sin embargo, se sugiere la instalación en un lugar con ventilación adecuada.

La bobina, la copa o probeta y las tuberías se calientan mucho durante la operación. Mantenga cualquier material volátil, delicado o inflamable a por lo menos 1 metro de distancia del sistema durante la operación de este. No ponga nada sobre el reactor mientras esté encendido.

El sistema de pirólisis está diseñado para que su operación sea segura si se realiza de acuerdo con las instrucciones. Lea, analice y comprenda el manual del usuario antes de operar. Caso contrario, el operario está sujeto a lesiones, daños personales

o daños del sistema como tal.

Los gases son precalentados por cintas calefactoras, la tubería estará caliente al igual que el reactor. Tener precaución con las superficies calientes, evitar tocarlas cuando el sistema está en uso o se está encendiendo. Aleje objetos volátiles,

inflamables o delicados de las superficies.

El método de calentamiento produce la suficiente energía eléctrica como para causar descargas graves o electrocución, en caso de manipulación se debe designar a una persona capacitada para el mantenimiento. Las conexiones mal logradas o

inadecuadas pueden causar cortocircuitos graves que dañen permanentemente al equipo o lesionen gravemente al usuario. Evitar manipular con las manos mojadas, elementos mojados, en lugares expuestos a lluvia, asegúrese de que el sistema siempre esté seco. Consulte con un electricista o un ingeniero eléctrico antes de realizar cualquier cambio o manipular el circuito.

Componentes y nombres

Figura 15. Ensamble de sistema de pirólisis en vista isométrica

Figura 16. Vista a detalle de la configuración del reactor

Ítem	Cantidad	Componente	
1	1	Bobina	
2	1	Soporte de vidrio	
3	3	Tee	
4	3	Válvula de bola de ¼''	
5	1	Tubería Ø ¼''	
6	1	Tubería Ø 1/8"	
7	1	Сора	
8	1	Conector de espiga Ø ¼''	
9	1	Conector de espiga Ø 1/8"	
10	2	Cinta calefactora	
11	1	Tablero de circuito	

Tabla 11. Componentes del ensamble mostrado en la Figura 15

En cuanto al control, los siguientes equipos están integrados al sistema:

Figura 17. Controlador PID y Relé térmico Inkbird ITC 100VH

Figura 18. Cinta calefactora Briskheat bwh051020l xtremeflex BWH

Figura 19. Termocupla tipo K 'heavy duty' para sólidos

RockSeed	DC Power Supply	RS310p
ЗЕ	100 •	M5 M2
IE	1 <u>00</u>	M3 M P
BE		MS CCP Loc ME List B _{Loc}
		GND +
	0	$\overline{0}$

Figura 20. Fuente de poder programable 30V/10A DC Variable RockSeed RS310p

Instalación Típica

La instalación inadecuada del sistema de pirólisis rápida puede ocasionar daños repetitivos, daños graves al sistema de tuberías, al sistema eléctrico y al sistema de precalentamiento. Es recomendable asesorarse con los diseñadores del sistema en caso de quererlo instalar o acoplar a un sistema nuevo o diferente. Asimismo, es recomendable asesorarse con un ingeniero electrónico o eléctrico para cambios en el circuito.

Figura 21. Diagrama de instalación típica del sistema de pirólisis rápida
- Acoplar la tubería de ¹/₄'' de acero inoxidable 316 mediante una Tee con el sistema de tubería de la fuente de gas inerte.
- Al insertar la tubería en la Tee, se debe ajustar -con la fuerza de la mano- hasta que no gire más la tuerca, en ese momento se debe marcar una línea recta en la tuerca y el cuerpo de la Tee con un marcador indeleble.
- 3. Para ajustar la Tee de debe dar una vuelta y un cuarto más (1 ¼) en sentido del ajuste.
- Instalar el controlador de flujo después del tanque y antes de la entrada de sistema de pirólisis rápida.
- Acoplar la tubería de salida del reactor con el cromatógrafo de gases. El acople depende del tipo de cromatógrafo del usuario. Se debe tomar en cuenta que la salida del reactor es una tubería de 1/8".
- 6. Sostener el sistema de tuberías que entra al sistema de pirólisis rápida por un soporte en cada una de las válvulas para evitar que el movimiento de estas (apertura o cierre) produzca esfuerzos que pueden doblar, dañar o romper el sistema.
- 7. Sostener y colocar el tablero de circuitos en un lugar seco, alejado de cualquier material volátil, explosivo o delicado. La compuerta de este se debe mantener cerrada. Se debe ubicar el tablero de tal manera que la bobina esté colocada de forma concéntrica con el reactor o soporte de vidrio.
- 8. Se recomienda la utilización de aislamiento térmico en las tuberías de precalentamiento y de transporte, de esta forma se puede prevenir pérdidas de calor innecesarias y se previene quemaduras o incendios de los alrededores. Sin embargo, al momento de operación ningún operario debe tocar el sistema.

 Se recomienda tener un tipo de extintor de fuego a menos de 6 metros de distancia del reactor.

Desensamblaje y desplazamiento

Para desensamblar el sistema, primero hay que cerciorarse que estén apagados todos los subsistemas del micropirolizador, que todo esté frío y que el tanque o reservorio de helio esté cerrado. Para el desensamble se tiene que desacoplar el reservorio de helio y el cromatógrafo de gases. En caso de que esté presurizado, al momento de desajustar la primera tuerca de la Tee, hacerlo de manera lenta y paulatina para que se purgue el gas y se libere la presión. Una vez que se desacople, se debe tener en cuenta cuáles son los subsistemas y etiquetar cada pieza. Remover el reactor de manera delicada tomando en cuenta que se tiene que etiquetar y empacar el mismo. Cuando se vaya a empaquetar el tablero de circuitos, cerciorarse que la bobina tenga un espacio de 5x5 [cm] para que no se golpee ni se dañe. Al momento del empaquetamiento se debe poner todas las piezas de un mismo subsistema en el mismo lugar, de tal manera que no se pierda. Usando cualquier tipo de montacargas, ubique los paquetes de cada sistema y muévalo con cuidado.

Operación

Inspección previa a la operación del equipo

Para garantizar la seguridad del operario y maximizar la vida útil del equipo, es recomendable revisar todos los componentes del equipo antes de su funcionamiento. Antes de poner en marcha el sistema de pirólisis rápida, se debe asegurar de haber solucionado cualquier problema encontrado en alguno de los componentes del equipo.

Comprobación del estado general:

- Verifique que todos los componentes eléctricos se encuentren apagados. Esto incluye: el sistema de inducción, las cintas calefactoras y la fuente de poder.
- 2. Compruebe que las válvulas de la tubería y del depósito de helio se encuentren cerradas.
- Mire en torno a la cápsula de vidrio y la copa de acero inoxidable para ver si están acopladas correctamente a las tuberías y hacia el cromatógrafo de gases.
- 4. Busque indicios de daños o suciedad en la cápsula de vidrio, copa y tuberías.

Sistema de válvulas y tuberías

Verifique que los elementos de flujo de helio estén limpios y en buen estado. Se recomienda realizar limpieza y mantenimiento al sistema de tuberías periódicamente para garantizar un buen funcionamiento del equipo.

Sistema de calentamiento

Compruebe que las cintas calefactoras se encuentren enrolladas en la tubería con una separación de aproximadamente 3 mm para evitar incendios por sobrecalentamiento. Por otro lado, verifique que el sistema de inducción se encuentre conectado a la fuente de poder.

Soporte de vidrio y copa de acero inoxidable

Observe que no haya daños como fisuras o suciedad en el soporte de vidrio. En caso de fisuras, reemplazar por uno nuevo. Asimismo, verifique que la copa de acero inoxidable se encuentre limpia y sin restos de biomasa antes de su uso. En caso de daños, reemplazar la copa.

Sistema de control

Verifique que el controlador PID se encuentre seteado según las condiciones de funcionamiento del sistema de pirólisis rápida. Compruebe que la termocupla esté conectada al PID y a la cinta calefactora para una correcta medición de la temperatura.

Modo de conexión

Para la conexión del sistema del micropirolizador, se recomienda hacerlo con el personal capacitado que cuente con experiencia en el ensamble del equipo y manejo del cromatógrafo de gases para asegurar el buen funcionamiento.

Conecte técnicamente el sistema para de esta manera evitar accidentes, daños o incidentes. La conexión del sistema de inducción debe cumplir con los requerimientos de protección de circuito eléctrico, además debe revisar la correcta conexión del circuito de control de las cintas calefactoras, teniendo énfasis en la conexión

entre el relé térmico y la cintas. En caso de que exista cortocircuito en uno de los sistemas, apague de emergencia su equipo y revise las conexiones previamente descritas, si es necesario haga las adecuaciones o reparaciones respectivas.

Aplicaciones

Pirólisis rápida de baja cantidad de biomasa.

La potencia entregada por la fuente de poder programable está directamente relacionada con la temperatura alcanzada por la muestra de biomasa. En la siguiente tabla se establece la potencia requerida por el circuito de inducción.

Temperatura de biomasa [°C]	Potencia de fuente de poder [W]
450	247
500	274
550	301
580	320

Tabla 12. Tabla de rango de temperatura de la biomasa y potencia requerida de la fuente de poder

Funcionamiento del micropirolizador

Previo al arranque del proceso pirolítico, verifique:

- (1) El correcto aislamiento térmico en las cintas calefactoras.
- (2) Sistema de válvulas en óptimas condiciones.
- (3) La correcta ubicación de copa y bobinado del sistema de inducción en el soporte de vidrio.
- (4) El correcto ajuste de los acoples de tuberías, accesorios y reactor para determinar la ausencia de fugas en el sistema de tuberías.
- (5) El correcto acoplamiento del sistema de tuberías con el tanque de distribución de gas inerte y al cromatógrafo de gases.

Apagado de emergencia

El sistema debe contar con un apagado de emergencia en caso de que ocurra algún suceso no deseado mientras se encuentra en funcionamiento. Para ello, se ha definido un método de parada de emergencia que busca priorizar la salud y seguridad ocupacional del operario.

Parada de emergencia

Se debe emplear únicamente en caso de emergencia haciendo presión sobre el botón de parada de emergencia en el panel de control, el mismo funciona como un contacto normalmente cerrado (NC) (Dorf & Svoboda, 2011). En caso de apagar normalmente el sistema use el pulsador de la fuente de poder.

Si no se detiene de esta manera proceda así:

- Apague el cromatógrafo de gases
- Cierre de válvula de paso del gas inerte desde el tanque de almacenamiento.
- Apague la fuente de poder de las cintas calefactoras.
- Apague la fuente de poder del sistema de inducción.

Mantenimiento

Importancia del mantenimiento

La buena práctica y el seguimiento del mantenimiento preventivo del sistema es fundamental para la operación segura y económica. De esta forma, se minimiza los mantenimientos correctivos y puede resultar ser más eficiente. Es importante mencionar que el mantenimiento inadecuado o la falta de reparación de problemas antes del uso del sistema puede causar una falla parcial o total del mismo y, a su vez pueden causar heridas leves, graves o de muerte. Siga siempre las recomendaciones del programa de mantenimiento.

Programa de mantenimiento

Se basa en un mantenimiento preventivo periódico, y se asume condiciones normales de operación. Si el sistema está sujeto a ambientes no recomendados tales como: Humedad, lluvia, polvo o temperaturas de más de 1200 [°C] consulte con un especialista o directamente con los diseñadores del sistema.

Subsistemas del micropirolizador

Figura 22. División de subsistemas del sistema de pirolisis rápida

• Sistema de tuberías

- ✓ Verifique que todos los acoples estén bien ajustados.
- ✓ Verifique que ninguna tubería esté rota o mal doblada.
- ✓ Verifique que no haya daños como roturas o deformaciones en el sistema de tuberías.
- \checkmark Verifique el empaque de las conexiones roscadas y asegúrese que no tengan fugas.
- ✓ Asegúrese que las tuberías estén limpias por dentro y por fuera (que no estén obstruidas).

• Sistema de control

- ✓ Asegúrese que el controlador PID tenga un funcionamiento normal.
- ✓ Asegúrese que el controlador PID esté conectado con la termocupla y la cinta calefactora.
- \checkmark Ajuste las entradas y las salidas del controlador PID de ser necesario.
- ✓ Asegúrese que la cinta calefactora esté fija y con un espaciamiento apropiado.
- \checkmark Asegúrese que se pueda sujetar la cinta y conectar la misma.
- ✓ Verifique que la termocupla esté bien posicionada.
- Verifique que todos los botones tanto del controlador PID como de la fuente de poder sean funcionales.
- Verifique el estado de los cables y las conexiones tanto del PID como de la fuente de poder.

• Sistema eléctrico

- Verifique que no haya daños en la bobina como: raspaduras, deformaciones o daños en los conectores.
- ✓ Verificar que la bobina no esté quemada.
- ✓ Verifique que el tablero eléctrico esté bien asegurado.
- ✓ Revisar el estado de los sockets.
- ✓ Verifique que los cables no estén pelados.
- ✓ Revisar que no haya tuercas flojas.

A continuación, se muestra la tabla de mantenimiento del sistema de pirólisis rápida por inducción electromagnética más convección, considerando las piezas críticas para un óptimo desempeño y posterior lectura de datos en el cromatógrafo de gases.

Elemento	Acción	C/uso	Cada 5	Cada	Cada
			usos	10	20
				usos	usos
or	Verificar el correcto funcionamiento				v
eacto	de las válvulas				Х
y r	Realizar una limpieza profunda de las				
erías	tuberías			Х	
tube	Calibrar el flujómetro de gas				Х
a de	Limpieza del soporte de vidrio	Х			
tem:	Limpieza de la copa metálica por	V			
Sis	ultrasonido	Λ			
	Verificar el correcto funcionamiento				
lo	del sistema de control (PID/Power		Х		
ontr	Supply)				
de c	Verificar la temperatura de la cinta		V		
ema	calefactora		Х		
Siste	Verificar termocupla		Х		
	Verificar estado de la cinta calefactora	Х			
	Verificar daños en la bobina	Х			
ema rico	Inspeccionar el tablero eléctrico		Х		
Siste sléct	Limpiar el circuito				Х
•	Ajustar pernos del circuito			Х	

Tabla de soluciones rápidas

Esta guía servirá para encontrar y solucionar problemas del sistema de pirólisis rápida por inducción electromagnética más convección. A continuación, se listan los problemas con sus causas y posibles soluciones:

Х

• No se calienta el gas en la tubería

Tabla 14. Posibles causas y solución al problema de que no se calienta el gas en la tubería

Causas posibles	Solución		
No están bien conectadas las cintas	Revisar que las conexiones estén como se		
calefactoras	especifica en el manual de instalación y el que		
	haya un flujo de corriente		
El sistema de control tiene una temperatura	Verificar que la temperatura de control sea la		
inferior a la desea	adecuada		
El flujo de aire es superior al establecido	Verificar que el flujómetro esté funcionando		
	correctamente		

• Tasas de calentamiento bajas

Tabla 15. Posibles causas y solución al problema de tasas de calentamiento bajas

Causas posibles	Solución
Mala configuración de la potencia para el	Volver a calcular e insertar los valores correctos
calentamiento por inducción	de potencia para el calentamiento por inducción
Mala conexión del circuito, bobina de	Revisar que las borneras de los circuitos estén
inducción o fuente de poder	bien conectadas

• Fugas de gas

Tabla 16. Posibles causas y	solución al	problema de	fugas de gas
-----------------------------	-------------	-------------	--------------

Causas posibles	Solución	
Mal acople del soporte de vidrio	Revisar que los empaques estén en buen estado	
	y que la unión esté correctamente ajustada	
Fugas por los accesorios	Revisar la conexión de los accesorios y que sus	
	empaques estén en buen estado	
Roturas o fisuras en tubería	Cambiar el tramo de tubería afectado	

Los errores listados de lectura errónea del cromatógrafo de gases son por causas específicas del sistema de pirólisis rápida por inducción electromagnética y su debido funcionamiento, en caso de que la lista presentada no resuelva el problema se recomienda contactar directamente al proveedor del cromatógrafo de gases.

• Lectura errónea en cromatógrafo de gases

Tabla 17. Posibles causas y solución al problema de lectura errónea en el cromatógrafo de gases

Causas posibles	Solución		
Desperdicios de muestras anteriores en	Realizar una limpieza profunda de todo el		
reactor o tuberías	sistema		
Mal funcionamiento del cromatógrafo	Revisar el correcto funcionamiento del equipo		

NOTA: Todo el manual de mantenimiento y operación de este prototipo está basado en (Abdelhafid et al., 2020) y en el manual de mantenimiento de la empresa Yanan para generadores eléctricos (Yanan, 2017).

Discusión

A continuación, se detallan y discuten los resultados obtenidos de las siguientes secciones: Cálculos teóricos, simulación y prueba de prototipo.

Cálculos teóricos

Una vez determinado el diseño del sistema de pirólisis rápida, se realizaron los cálculos necesarios para garantizar que las dimensiones del reactor son óptimas para la construcción del equipo y cumplen con los requerimientos del cliente planteados al comienzo del proyecto. El método de calentamiento de la muestra de biomasa establecido fue la inducción electromagnética. Para generar la atmósfera inerte con ausencia de oxígeno, se utilizó gas helio debido a sus propiedades de gas noble. Para el precalentamiento de gas, se utilizó una cinta calefactora controlada por un PID para mantener los rangos de temperatura necesarios para que el gas entre al reactor caliente y se realice el proceso pirolítico.

Según los cálculos realizados dentro de cada subsistema, se obtuvieron los siguientes resultados:

• Calentamiento por inducción electromagnética

Tomando en cuenta las dimensiones y las propiedades de la copa de acero inoxidable, se obtuvo que a potencia requerida para alcanzar una temperatura de 500 [°C] en la muestra de biomasa es de 76 [W]. Con esta potencia se garantiza que la bobina tiene la frecuencia necesaria para elevar su temperatura y calentar la biomasa para la pirólisis. • Método de calentamiento del gas

Mediante los cálculos de transferencia de calor, se obtuvo que la densidad de potencia de la cinta calefactora utilizada debe ser de al menos 1547 [W/m²] para que se alcance la tasa de transferencia de calor a lo largo de 60 [cm] de tubería de 1/4''destinados para este proceso.

• Control de flujo

Se tiene como dato que, del depósito de helio, el caudal es de 2 [L/min]. Considerando la expansión térmica que tiene el gas a lo largo de la tubería debido a las altas temperaturas a las que se calienta, se debe tener un control de caudal de 0.075 [L/min].

Movimiento de la biomasa

Realizando el análisis mediante el diagrama de cuerpo libre de la biomasa y tomando en consideración la fuerza normal, la del gas, la de rozamiento y el peso de la muestra se obtuvo que se mantiene estática cuando el gas pasa por el reactor.

• Transferencia de calor de la biomasa

De acuerdo con los cálculos de transferencia de calor por conducción y considerando una resistencia de contacto teórica de $1.64E - 0.4 \left[m^2 \frac{\kappa}{w}\right]$ (Proano-Aviles, Lindstrom, Johnston, & Brown, 2017) entre la superficie de la copa de acero inoxidable y la muestra de biomasa, se determinó que el tiempo que tarda la biomasa en alcanzar los 500 [°C] es de 0.079 [s]. Este tiempo sumado al proceso de inducción electromagnética en alcanzar los 500 [°C] que es de 2 [s], determinó que el tiempo total del proceso pirolítico es de 2.079 [s]. Así también, se obtuvo que la tasa de transferencia de calor teórica es de 230.88 [°C/s].

Simulación de inducción electromagnética

Se realizó una simulación multifísica en COMSOL para la copa de acero inoxidable y la bobina. Se establecieron las propiedades del helio, el caudal de flujo y los parámetros de inducción electromagnética y se determinó un estado transitorio con un time step de 0.05 [s]. Se pudo verificar que los cambios son despreciables cuando se emplea un mallado fino. Los rangos de temperaturas alcanzados se muestran en la Figura 23. Así, los valores más altos son de 555 [°C] en la parte superior de la copa metálica, mientras que en la parte inferior se obtiene una temperatura de 506 [°C] aproximadamente.

Figura 23. Distribución de temperatura en la copa de acero inoxidable en 2 segundos

Además, se pudo observar en la gráfica de Temperatura vs. Tiempo mostrada en la Figura 24, que se alcanza los 550 [°C] en un tiempo inferior a los 2 [s], y que posterior a ese tiempo la temperatura se mantiene constante ya que para subir la temperatura se tiene que aumentar la potencia del inductor.

Figura 24. Temperatura vs. Tiempo de la copa de acero inoxidable

A continuación, se muestra los resultados de la simulación de los campos magnéticos inducidos en la copa de acero inoxidable.

Figura 25. Campos magnéticos inducidos en la copa de acero inoxidable

Pruebas de prototipo

Para la verificación de requerimientos, se tomó en cuenta diferentes métodos de validación para determinar si se cumple o no el requerimiento.

Tasa de calentamiento de la copa de AISI 316

Medición de temperatura indirecta entre dos sustancias: Permitió determinar de forma indirecta la temperatura alcanzada por la copa mediante la inducción electromagnética. El proceso se basa en colocar la copa dentro de un recipiente con agua y medir la diferencia de temperatura del agua antes (20 [°C]) como se observa en la Figura 26 a) y después 54 [°C], como lo indica la Figura 26 b) del proceso de inducción con un tiempo de duración 3 [s]. Se tomaron datos de la masa de la copa 0.1 [g] y de la masa de agua 0.4 [g]. Mediante la aplicación de la siguiente relación se obtuvo que la temperatura alcanzada por la copa es de 515.10 [°C], lo cual representa una tasa de calentamiento de 165.03 [°C/s].

$$(c m \Delta T)_{H_2 o} = -(c m \Delta T)_{AISI 316}$$

Figura 26. Medición de temperatura a) del agua a 20 °C y b) a 54 °C calentada por inducción electromagnética

(Çengel, 2015).

• Cámara térmica: Mediante el uso de una cámara térmica que tiene una lectura máxima de 150 [°C], se analizó la tasa de calentamiento del proceso de inducción electromagnética desde la temperatura ambiente de 24 [°C] (Figura 27 a) hasta los 138.8 [°C] (Figura 27 b) y mediante una extrapolación se asumió que la tasa de calentamiento es constante hasta alcanzar la temperatura de 500 [°C]. El proceso inductivo tuvo una duración de 0.8 [s], representando una tasa de calentamiento de 143.5 [°C/s]. La configuración de este sistema se encuentra en la Figura 30 en el Anexo A.

Figura 27. Temperatura de la copa utilizando una cámara térmica a) a 24 °C y b) a 138.8 °C

Pasivación de materiales

 Metalografía de muestra de material pasivado: Para verificar que los materiales del reactor no reaccionan químicamente con la biomasa o con los productos del proceso pirolítico, se realizó un proceso metalográfico de una muestra de acero inoxidable AISI 316 para observar los cambios en la estructura a través del microscopio. Para ello, se montó una baquelita con la muestra del material, se pulió la muestra a espejo y se realizó el pasivado. Este tratamiento superficial consiste en la aplicación de ácidos para eliminar la capa de hierro de la superficie y crear una capa protectora de nicromo para evitar la corrosión del acero. Al comparar la metalografía del acero sin pasivación con la metalografía pasivada, se pudo observar la diferencia superficial. Asimismo, contrastando las metalografías con bibliografía, se pudo determinar la efectividad del proceso.

Figura 28. Metalografía de acero inoxidable AISI 316 a 1000x a) Sin pasivación; b) Con Pasivación c) Pasivación de referencia obtenida de bibliografía. (Gaber, G. A., Mohamed, L. Z., Järvenpää, A., & Hamada, 2021)

Exposición de muestra de material pasivado a 500 [°C]: Una vez realizada la verificación del pasivado en el material, se debe someter la muestra a las condiciones de operabilidad a las que funciona el reactor pirolítico. Para ello, se realizó el mismo proceso descrito anteriormente para tener la muestra pasivada; sin embargo, en este caso se sometió la muestra a altas temperaturas. Se insertó la muestra en el horno del laboratorio de Ciencias e Ingeniería de Materiales de la USFQ a 500 [°C] por aproximadamente 1 minuto. Luego, se analizó la muestra en el microscopio óptico para determinar si existen cambios superficiales. Dado que el tiempo de exposición a altas temperaturas es pequeño, no se observaron cambios significantes en el material y se deduce que este sigue pasivado aún luego de ser expuesto a altas temperaturas.

Figura 29. Metalografía de acero inoxidable AISI 36 a 1000x pasivado y expuesto a una temperatura de

500 [°C]

Calentamiento del flujo

Probar el sistema de control PID a la temperatura requerida: Una vez acoplado el sistema
de pirólisis rápida en el laboratorio de procesos termoquímicos de la USFQ, se realiza la
prueba del precalentamiento del gas inerte, la cual permitirá establecer el estatus de
aprobado de ser el caso. Hasta el momento únicamente se ha verificado que la cinta
calefactora utilizada alcanza la temperatura requerida, sin embargo, el sistema de control
PID requiere verificación.

Atmósfera inerte

 Análisis en el cromatógrafo de gases: Para determinar que el proceso pirolítico se realiza bajo una atmósfera inerte, es necesario verificar que en la lectura del cromatógrafo de gases no se encuentre oxígeno.

Fugas

Inspección visual y burbujeo: Para el proceso de verificación de fugas se optó por dos procesos, el primero es mediante una inspección visual de las uniones y acoples de los accesorios en el sistema de tuberías las cuales fueron reforzadas con silicona de alta temperatura. Así mismo, se realizó la prueba de burbujeo, que consiste es una técnica de presión directa en la cual se presuriza un gas en el interior del sistema de tuberías para posteriormente sumergirlo en agua para determinar la presencia o no de burbujas. Para ambos procesos de verificación el sistema de tuberías cumplió con el requerimiento.

Conclusiones

El sistema diseñado es importante en la obtención de productos obtenidos de la pirólisis rápida, mismos que serán analizados en un cromatógrafo de gases. Este prototipo beneficiará al Departamento de Investigación de Procesos Termoquímicos de la USFQ y al Instituto IDEMA, ya que dentro de sus investigaciones y proyectos se centran en energía obtenida mediante biomasa. Para satisfacer las necesidades del cliente y del equipo se llevaron a cabo cálculos, simulaciones y pruebas para garantizar su cumplimiento.

Método de calentamiento y transferencia de calor a la biomasa

Como método de calentamiento para la copa donde se coloca la biomasa se propuso la aplicación de la inducción electromagnética. El presente prototipo se basó en la modificación de una soldadora Inverter acoplando un circuito tanque, el cual permite inducir una corriente a la bobina que calienta la copa de acero inoxidable, sin la necesidad que estas se encuentren en contacto. Este método permite alcanzar altas tasas de calentamiento sin comprometer el requerimiento de ausencia de fugas en el reactor. Se concluyó mediante los cálculos realizados que la diferencia en la tasa de transferencia de calor de la copa de acero inoxidable y biomasa es despreciable. Por lo cual, mediante los métodos de pruebas de verificación de transferencia de calor de la copa, se demostró que se alcanzaron rangos cercanos a los establecidos en los requerimientos; sin embargo, es necesario realizar otras pruebas de verificación que permitan mejorar la exactitud de los resultados y garantizar el cumplimiento de este requisito propuesto por el cliente.

• Método de calentamiento de gas

Uno de los requerimientos para realizar un sistema de pirólisis rápida es la atmósfera inerte. Por ese motivo se utilizó gas helio, ya que es un gas noble y sus propiedades son óptimas para el propósito del prototipo. Para evitar la condensación del gas a lo largo del proceso, se empleó una cinta calefactora para elevar la temperatura de la tubería y garantizar el paso del flujo hacia el reactor con las condiciones de temperatura requeridas. Se concluyó que la cinta calefactora alcanza la temperatura necesaria para el proceso pirolítico; sin embargo, el controlador PID y la termocupla que miden la temperatura de la cinta tienen un retraso en la lectura de sus datos. El mismo puede deberse a características propias del PID y su configuración de operación.

• Control de flujo – Movimiento de la biomasa

Según los cálculos realizados, se obtuvo un flujo de régimen laminar de helio a lo largo del sistema de tuberías. Asimismo, para determinar el movimiento de la biomasa generado por el flujo de gas se calculó la relación entre la fuerza del gas y el peso de la biomasa. Posteriormente, se empleó la ecuación de presión de gas y se despejó el coeficiente de arrastre para determinar si la biomasa se mueve o no cuando el gas pasa por el reactor. Los cálculos arrojaron que la biomasa se mantiene estática ya que la fuerza del gas es menor que la fuerza de la biomasa.

• Pasivación de materiales

Para garantizar que no existen reacciones químicas entre las propiedades de los materiales empleados en el reactor y la muestra de biomasa, se realizó el tratamiento de pasivación. Luego de pasivar una muestra de acero inoxidable AISI 316, se visualizaron los cambios en la metalografía mediante el uso del microscopio. Se comparó las imágenes obtenidas con bibliografía referente a pasivación en acero inoxidable, y se verificó que el material está pasivado. De igual forma, se expuso el material pasivado a altas temperaturas (500 °C) durante 1 minuto y se observó en el microscopio en busca de cambios en la metalografía. Dado que el tiempo de exposición a temperaturas elevadas es pequeño, no se observaron cambios significantes. Así, se verificó la efectividad del pasivado.

• Fugas

Como parte de los requerimientos del cliente se encuentra la ausencia de fugas a lo largo del sistema para no afectar el rendimiento del proceso pirolítico. Para ello, se optó por realizar dos pruebas de verificación. De acuerdo con la prueba de visualización y burbujeo se concluyó que sistema no tiene fugas.

Trabajo futuro

En vista de que el presupuesto y tiempo del proyecto son limitados, algunos de los requerimientos establecidos no se pudieron lograr. Sin embargo, el sistema de pirólisis rápida realizado es un primer prototipo para próximos trabajos sobre sistemas pirolíticos ya que el presente diseño es perfectible y mejorable (González et al., 2019). A continuación, se detallan las consideraciones que permitirían un mejor desempeño del sistema de pirólisis rápida:

- Adquisición de electroválvulas con conexión OD, para mejorar la precisión de la transición del gas inerte a temperatura ambiente al gas precalentado.
- Fabricación de bridas más livianas y con mejor ajuste con el reactor.
- Adquisición o diseño de circuito de inducción electromagnética con una potencia regulable, para alcanzar diferentes rangos de temperatura en el proceso pirolítico.
- Método más exacto de verificación de tasa de calentamiento de la biomasa.
- Calibración de PID y termocupla, con el objetivo de mejorar el control del sistema de calentamiento del gas inerte.

• Verificación del sistema de pirólisis rápida en funcionamiento en el laboratorio de Procesos Termoquímicos USFQ.

BIBLIOGRAFÍA

- Abdelhafid, R., Abdennebi, T., & Abdellah, K. (2020). The industrial maintenance : a function by mutation and the skills in evolution. *Researchgate.Net*, *May*, 146–154.
 https://www.researchgate.net/profile/Abdelhafid_Rachidi/publication/267557052_The_indu strial_maintenance_a_function_by_mutation_and_the_skills_in_evolution/links/5582074b0
 8ae1b14a0a103cc/The-industrial-maintenance-a-function-by-mutation-and-the-skills-in-
- Anderson, J. (2013). Fundamentals of Aerodynamics. In Zitelli and Davis' Atlas of Pediatric Physical Diagnosis (Vol. 5, Issue March). https://www.crcpress.com/Fundamentals-of-Picoscience/Sattler/p/book/9781466505094#googlePreviewContainer
- ASTM. (2013). ASTM D5374 13 Standard Test Methods for Forced-Convection Laboratory Ovens for Evaluation of Electrical Insulation.

Bartlett, T. (2010). Industrail Automated Systems: Instrumentation and Motion Control.

- Cai, W., Luo, Z., Zhou, J., & Wang, Q. (2021). A review on the selection of raw materials and reactors for biomass fast pyrolysis in China. *Fuel Processing Technology*, 221(June), 106919. https://doi.org/10.1016/j.fuproc.2021.106919
- Callister, W. (2008). *Introducción a la ciencia e ingeniería de materiales* (p. 803). Editorial Reverté, S.A.
- Çengel, Y. (2015). THERMODYNAMICS: AN ENGINEERING APPROACH. In Angewandte Chemie International Edition, 6(11), 951–952.
- Dorf, R. C., & Svoboda, J. A. (2011). Circuitos Eléctricos.

- Gaber, G. A., Mohamed, L. Z., Järvenpää, A., & Hamada, A. (2021). Enhancement of corrosion protection of AISI 201 austenitic stainless steel in acidic chloride solutions by Ce-doped TiO2 coating. Surface and Coatings Technology, 423, 127618. *Science Direct*.
- González, Y. E., Violet, M. A., & Agudelo, H. D. (2019). Aplicación del método de diseño para manufactura y ensamblaje al chasis de un vehículo de tracción humana de tres ruedas tipo recumbent como alternativa de transporte en la ciudad de Montería. *Entre Ciencia e Ingeniería*, 13(25), 35. https://doi.org/10.31908/19098367.4012
- Griffin, W. (2011). (12) United States Patent (54) METHOD AND APPARATUS FOR PYROLYSIS. 2(12).
- Groover, M. P. (1997). *Fundamentos de manufactura moderna: materiales, procesos y sistemas*. http://books.google.com/books?hl=es&lr=&id=tcV0l37tUr0C&pgis=1
- Huang, R., Huang, Q., Zhan, Z., & Wang, Y. (2012). (12) Patent Application Publication (10) Pub. No .: US 2012 / 0204308A1 Patent Application Publication. 1(19), 1–3.
- Incropera, F. P., & DeWitt, D. P. (2008). *Fundamentals of Heat and Mass Transfer*. https://doi.org/10.1016/j.applthermaleng.2011.03.022

ISO. (2018). ISO 450001 - Sistemas de gestión de la seguridad y salud ocupacional.

Klug, M. (2012). *Vista de Pirólisis, un proceso para derretir la biomasa* (p. 4). Revista de Química PUCP. http://revistas.pucp.edu.pe/index.php/quimica/article/view/5547/5543

Munson, B. (2016). Fundamentals of fluid Mechanics.

NFPA. (2019). NFPA 86 – Standard for Ovens and Furnaces.

Norton, R. L. (2020). Design of Machinery Sixth Edition.

Ogata, K. (2013). Ingenieria de Control Moderna.

- Palumbo, A. W., & Weimer, A. W. (2015). Heat transfer-limited flash pyrolysis of woody biomass: Overall reaction rate and time analysis using an integral model with experimental support. *Journal of Analytical and Applied Pyrolysis*, *113*, 474–482. https://doi.org/10.1016/j.jaap.2015.03.010
- Papari, S., & Hawboldt, K. (2018). A review on condensing system for biomass pyrolysis process. *Fuel Processing Technology*, *180*(August), 1–13. https://doi.org/10.1016/j.fuproc.2018.08.001
- Penoncello, S. G. (2018). Thermal Energy Systems. In *Thermal Energy Systems*. https://doi.org/10.1201/b22141
- PIP. (2008). PIP PIC001 Piping and Instrumentation Diagram.
- Proano-Aviles, J., Lindstrom, J. K., Johnston, P. A., & Brown, R. C. (2017). Heat and Mass Transfer Effects in a Furnace-Based Micropyrolyzer. *Energy Technology*, 5(1), 189–195. https://doi.org/10.1002/ente.201600279
- Purcell, E. (2013). *Electricity and Magnetism*.
- Riba Romeva, C. (2002). Diseño concurrente. In Ediciones UPC, España.
- Rudnev, V., Loveless, D., Cook, R. L., & Black, M. (2002). Handbook of Induction Heating. In Handbook of Induction Heating. https://doi.org/10.1201/9781420028904
- Valderrama, E. (2015). Sistemas digitales: Principios y aplicaciones.
- Yanan. (2017). Manual de Operacion y Mantenimiento.

ANEXOS

Anexo A

En este anexo, se especifican los cálculos realizados en el análisis ingenieril y los planos de detalle y trabajo.

Los datos considerados en los cálculos correspondientes a la transferencia de calor tanto para el gas como para la biomasa y el método de calentamiento por inducción electromagnética y cinta calefactora se muestran en las tablas a continuación:

Propiedad	Símbolo y unidades	Valor
Temperatura de entrada	$T_{in}[K]$	288.2
Temperatura de salida	$T_{out} [K]$	773.2
Temperatura media	$T_m[K]$	530.7
Presión entregada por el controlador	P [kPa]	344.7
Conductividad	$k_{He} \left[\frac{W}{m K} \right]$	0.2214
Calor específico	$cp\left[\frac{kJ}{kg\ K}\right]$	5.193
Densidad	$\rho \left[\frac{kg}{m^3} \right]$	0.3128
Viscosidad	$\mu \left[\frac{kg}{m s}\right]$	2.92E - 05
Caudal	$\dot{V}_{\rm out}\left[\frac{m^3}{s}\right]$	3.33E - 05
Área	$A[m^2]$	0.00002827

Tabla 18. Propiedades del gas

Propiedad	Símbolo y unidades	Valor
Conductividad	$k_{inox}\left[\frac{W}{m K}\right]$	21.14
Diámetro interno de la tubería	D _{in} [m]	0.00635
Diámetro externo de la tubería	$D_{out} [m]$	0.00735
Temperatura superficial de la tubería	$T_{s1}[K]$	783.4
Densidad	$ \rho_{inox}\left[\frac{kg}{m^3}\right] $	7836
Calor específico	$c_{inox} \left[\frac{kJ}{kg K} \right]$	0.5815
Resistividad eléctrica	$ \rho_{e_{inox}}\left[\Omega \ m\right] $	7.67E - 07
Permeabilidad magnética	μ [H/m]	9.42E-4
Conductividad eléctrica	[Siems/m]	1.37E+06

Tabla 19. Propiedades del acero inoxidable

Tabla 20.	Propiedades	de la	cinta	calefactora
1 4014 201	1.10010000000		• • • • • • • • • •	•

Propiedad	Símbolo y unidades	Valor
Longitud	L _{cinta} [m]	0.61
Ancho	$A_{ncho}[m]$	0.013
Paso entre hilos	$p_{aso}\left[m ight]$	0.03

Propiedad	Símbolo y unidades	Valor
Conductividad	$k_{biom} \left[\frac{W}{m K} \right]$	0.09
Densidad	$ \rho_{biom}\left[\frac{kg}{m^3}\right] $	175
Resistencia de contacto	$R_{contacto}\left[rac{m^2K}{W} ight]$	1.64E - 04
Calor específico	$c_{biom}\left[rac{kJ}{kg\ K} ight]$	3053
Temperatura	$T_{i_{biom}}$ [°C]	15
Área superficial	$A_{s_{biom}}[m^2]$	2.00E - 08
Radio aproximado	$r_{o_{biom}}[m]$	3.60E - 05

a. Obtenido de Referencia (Proano-Aviles et al., 2017).

Propiedad	Símbolo y unidades	Valor
Fuerza normal	$F_n[N]$	9.81E - 07
Fuerza de Rozamiento	$F_r[N]$	6.328E - 07
Fuerza de arrastre	$F_{V}[N]$	2.192 <i>E</i> – 12
Coeficiente de presión	C _d	0.47

A continuación, se muestra el detalle de los cálculos realizado en el software EES, dentro

de los cuales se hizo el estudio de la transferencia de calor tanto para la biomasa como para el gas

y de calentamiento inducción electromagnética.

Precalentamiento de gas y transferencia de calor a la biomasa

"Precalentamiento del gas" "TEMPERATURA A LA ENTRADA" T in1=15[C] T_in=ConvertTEMP(C;K;T_in1) "TEMPERATURA A LA SALIDA" T_out1=500[C] T_out=ConvertTEMP(C;K;T_out1) "TEMPERATURA MEDIA" $T_m1=(T_in1+T_out1)/2$ T_m=ConvertTEMP(C;K;T_m1) "-----PRESION ENTREGADA POR EL CONTROLADOR" P=50[psi]*convert(psi;kPa) **"TEMPERATURA SUPERFICIAL DEL CILINDRO"** T s21=ConvertTEMP(K;C;T s2) T s11=ConvertTEMP(K;C;T s1) "-----POTENCIA ENTREGADA POR LA CINTA POR M2" q_scinta=13,1[W/in^2]*convert(W/in^2;W/m^2) q_s1=q_s*convert(W/m^2;W/in^2) "-----DIMENSIONES DE LA CINTA CALEFACTORA" $L_cinta=0,61[m]$ A ncho=0,013[m] "-----LONGITUD DE LA CINTA ENVUELTA" L_cinta=(n)*(D_out^2+(p_aso+(A_ncho/2))^2)^(0,5)"tengo que revisar" "NUMERO DE VUELTAS" $n=(L/(p_aso+(A_ncho/2)))$ "-----PASO ENTRE HILO DE COMO SE PONDRIA LA CINTA" p_aso=0,03[m] "distancia entre cinta" "CAUDAL HELEO FRIO" V_dot_out=2 [L/min]*convert(L/min;m^3/s) "CAUDAL A CONTROLAR HELEO CALIENTE" V_dot_in=V_dot_out/(T_out/T_in) "GEOMETRIA DE TUBERIA" D out=6,35[mm]*convert(mm;m) D in=4,35[mm]*convert(mm;m) $r_2=D_out/2$ r 1=D in/2 Area=pi*D_in^2/4 "VELOCIDAD DEL GAS" v in=V dot in/Area v_out=V_dot_out/Area $v_m = (v_in + v_out)/2$ "PROPIEDADES He-Inox" rho=Density(He;T=T_m1;P=P) mu=Viscosity(He;T=T_m1) k He=Conductivity(He;T=T m1)

k_inox=Conductivity(Stainless_AISI316; T=T_s21) cp=Cp(He;T=T_m1) "------REYNOLD"

Re_D=rho*D_in*v_m/mu N uD=h*D in/k He "VALOR DE LA CONSTANTE DE CONVECCION POR FLUJO LAMINAR" N uD=4,36 "-----POTENCIA ENTREGADA POR LA CINTA CALEFACTORA CONSTANT SURFACE HF" q=q_s*(P_eri*L)"L_cinta*A_ncho" "-----LA POTENCIA ENTREGADA POR LA CINTA ES LA MISMA" ENTREGADA AL GAS" "CONDUCCION CILINDRO" $q=2*pi*L*k_inox*(T_s1-T_s2)/(ln(r_2/r_1))$ "CONVECCION FLUJO INTERNO" g=m dot*cp*(T out-T in)*convert(kJ/s;W) "CONVECCION CILINDRO" q=P_eri*L*h*(T_s2-T_out) "PERIMETRO DEL CILINDRO"

P_eri=pi*D_in "FLUJO MASICO" m_dot=rho*Area*v_m

"TRANSFERENCIA DE CALOR BIOMASA"

"Asumimos cilindro infinito solo se calienta por efecto joule propiedades constantes no hay efecto de radiacion perdidas por conduccion despreciables"

{L_c_biom=r_o_biom/2 "Para cilindro"} {L_c_biom=r_o_biom/3 "Para esfera"} {L_c_biom=V_o_biom/A_biom "Para plane wall"} r_o_biom=(72e-6)/2

k_biom= 0,09 [W/m-K] rho_biom= 175 [kg/m^3] "Aserrin" c_biom= 3,053 [kJ/kg-K]*convert(kJ/kg-K;J/kg-K)

V_biom=pi*(r_o_biom^2)*r_o_biom*4 "REVISAR" A_s_biom=200e-10 [m^2]

T_i_biom=15 [°C]

rho_inox=Density(Stainless_AISI316; T=T_out1) c_inox=Cv(Stainless_AISI347; T=T_out1)*convert(kJ/kg*K;J/kg*K) A_placa_joule=14*1 [mm^2]*convert(mm^2;m^2) L_placa=34 [mm]*convert(mm;m) V_placa_joule=265,665 [mm^3]*convert(mm^3;m^3) rho_e_inox=ElectricalResistivity(Stainless_AISI316; T=T_in1) rho_nicrom=Density(Nichrome; T=T_out1) c_nicrom=Cv(Nichrome; T=T_out1)*convert(kJ/kg*K;J/kg*K) V_alambre_nicrom= A*L_nicrom time_joule=((rho_nicrom*V_alambre_nicrom*c_nicrom)/(q_joule))*(T_out1-T_in1) q_r_biom=k_biom*A_s_biom*((500 [°C]-T_i_biom)/(r_o_biom))

q_biomasa= q_r_biom + q_resistencia*A_s_biom

T_placa=T_out1

"Efecto Joule"

D=0,28 [mm]*convert(mm;m) A= (pi/4)*D^2 T=500 [°C]

alpha=0,0002 [ohm/°C] rho_nicrom_e=ElectricalResistivity(Nichrome; T=T) R_nicrom=rho_nicrom_e*((L_nicrom)/A)

T_o=17 [°C] R_o=rho_nicrom_o*((L_nicrom)/A) rho_nicrom_o=ElectricalResistivity(Nichrome; T=T_o) L_nicrom=0,2 [m]

I= 3 [Amp]

R=R_o+alpha*(T-T_o)

R=V/I

q_joule=V*I

"Resistencia de contacto"

 $\begin{array}{l} R_t = (1,64*10^{-4}) \left[((m^2) - ^{\circ}C)/W \right] \\ R_t = (T_placa - T_i_biom)/q_resistencia \end{array}$

"tiempo biomasa"

"DATOS"

time_biomasa=((rho_biom*V_biom*c_biom)/(q_biomasa))*(T_placa-T_i_biom)+time_joule

Inducción electromagnética

"Induction Heater"

u_o= 4*pi*10^(-7) "permeabilidad del vacio" long= 25 [mm]*convert(mm;m) A= pi*D^2/4 "Area interior bobina" D= 15 [mm]*convert(mm;m) "Diametro interior bobina" N= 4,5 "# de vueltas bobinado" i= 10 [amp] "Corriente" f= 150000 [Hz] "Frecuencia" V= 31 [V] "Voltaje" m= 1 [g]*convert(g;kg) T=250 [°C] c_heat=SpecHeat(Stainless_AISI304; T=T) T_o=15 [°C] T_f= 500 [°C] D_copa= 4,7 [mm] {P_w= 868}

c=(5*10^(-6)) [F]

"INDUCTANCIA"

X_L= 2*pi*f*L "reactancia inductiva (para pasar de Henry a ohm)"

"CAPACITORES"

X_C=1/(2*pi*f*c) "reactancia capacitiva (para pasar de Faraday a ohm)" {f=1/(2*pi*(L*C)^(0,5)) {Para que esten en resonanciaw}}

 $Z_eq=((1/X_L)+(1/X_C))^{-1}$

"Power" time=m*c_heat*(T_f-T_o)/(P_w) time= 2 [s]

 $c_microF=c*10^{(6)}$

"Penetration Depth" rho_e_inox=ElectricalResistivity(Stainless_AISI316; T=T)*10^6

mu_r_inox=850 delta_inox=503*((rho_e_inox)/(mu_r_inox*(f/1000)))^(0,5) "en mm"

Planos de ingeniería

En esta sección del anexo A se detallan los planos del sistema de pirólisis rápida. Estos se rigen de acuerdo con la norma INEN MC 01.01-601 de dibujos mecánicos.

Selección de diseño

La selección de los componentes de los subsistemas se realizó mediante el método de criterio ponderados para cada caso.

Los criterios y su relevancia en la selección de los componentes es la siguiente:

Criterio de selección	Código	Descripción	
Reproducibilidad	R	Que las pruebas sean replicables en el tiempo	
Precio	Р	Moderado debido a que existe un presupuesto limitado	
Mantenimiento	М	Fácil de limpiar una vez terminada la prueba.	
Interfaz	Ι	Fácil interpretación del funcionamiento	
Montaje	MontajeMoQue sea fácil de manejar, transportar el cromatógrafo de gases		

Tabla 23. Criterios de selección

Tabla 24. Metodología de selección de los criterios ponderados

Reproducibilidad > Precio > Mantenimiento = Interfaz > Montaje

	Tabla de parámetros									
	Reproducibilidad	Precio	Mantenimiento	Interfaz	Montaje					
R	-	1	1	1	1	5	33.3%			
Р	0	-	1	1	1	4	26.7%			
Μ	0	0	-	0.5	1	2.5	16.7%			
Ι	0	0	0.5	-	1	2.5	16.7%			
Mo	0	0	0	0	-	1	6.7%			
						15	100.0%			

Método de calentamiento

Soluciones planteadas

- Efecto Joule + Convección (J + C)
- Resistencias (R)
- Láser + Convección (L + C)
- Inducción + Convección (I + C)

Evaluación del peso específico del criterio: Reproducibilidad									
	J + C	R	L + C	I + C					
J + C		1	1	0,5	3,5	35,0%			
R	0		1	0	2	20,0%			
L + C	0	0		0	1	10,0%			
I + C	0,5	1	1		3,5	35,0%			
					10				

Tabla 25. Evaluación del peso específico para método de calentamiento del criterio: Reproducibilidad

Joule + Convección = Inducción + Convección > Resistencia > Láser + Convección

Tabla 26. Evaluación del peso específico para método de calentamiento del criterio: Precio

	Inducción + Convección > Resistencia > Láser + Convección = Joule + Convección
--	--

Evaluación del peso específico del criterio: Precio								
	J + C	R	L + C	I + C				
J + C		0	0,5	0	1,5	15,0%		
R	1		1	0	3	30,0%		
L + C	0,5	0		0	1,5	15,0%		
I + C	1	1	1		4	40,0%		
					10			

Evaluación del peso específico del criterio: Mantenimiento							
	J + C	R	L + C	I + C			
J + C		0,5	1	0,5	3	30,0%	
R	0,5		1	0,5	3	30,0%	
L + C	0	0		0	1	10,0%	
I + C	0,5	0,5	1		3	30,0%	
					10		

Tabla 27. Evaluación del peso específico para método de calentamiento del criterio: Mantenimiento

Joule + Convección = Inducción + Convección = Resistencia > Láser + Convección

Tabla 28. Evaluación del peso específico para método de calentamiento del criterio: Interfaz

Evaluación del peso específico del criterio: Interfaz								
	J + C	R	L + C	I + C				
J + C		0,5	1	0,5	3	30,0%		
R	0,5		1	0,5	3	30,0%		
L + C	0	0		0	1	10,0%		
I + C	0,5	0,5	1		3	30,0%		
					10			

Joule + Convección = Inducción + Convec	ción = Resistencia > Láser + Convección

Evaluacion del peso específico del criterio: Montaje							
	J + C	R	L + C	I + C			
J + C		0	1	0,5	2,5	25,0%	
R	1		1	1	4	40,0%	
L + C	0	0		0	1	10,0%	
I + C	0,5	0	1		2,5	25,0%	
					10		

Tabla 29. Evaluación del peso específico para método de calentamiento del criterio: Montaje

Resistencia > Joule + Convección = Inducción + Convección > Láser + Convección

Tabla 30. Tabla de conclusiones para método de calentamiento

Tabla de conclusiones									
Opción	Reproducibilidad	Precio	Mantenimiento	Interfaz	Suma	Prioridad			
J + C	0,117	0,040	0,050	0,050	0,257	2			
R	0,067	0,080	0,050	0,050	0,247	3			
L + C	0,033	0,040	0,017	0,017	0,107	4			
I + C	0,117	0,107	0,050	0,050	0,323	1			

Control de flujo

Soluciones planteadas:

- Flujómetro
- Controlador de flujo (Alicat)

Tabla 31. Evaluación del peso específico para control de flujo del criterio: Reproducibilidad

Controlador de flujo > Flujómetro								
Evaluación del peso específico del criterio: Reproducibilidad								
	Flujómetro	Control de flujo (Alicat)						
Flujómetro		0	1	33,3%				
Control de flujo (Alicat)	1		2	66,7%				
			3					

Tabla 32. Evaluación del peso específico para control de flujo del criterio: Precio

Flujómetro > Controlador de flujo								
Evaluación del peso específico del criterio: Precio								
	Flujómetro	Control de flujo (Alicat)						
Flujómetro		1	2	66,7%				
Control de flujo (Alicat)	0		1	33,3%				
<u> </u>			3					

Tabla 33. Evaluación del peso específico para control de flujo del criterio: Mantenimiento

Flujómetro > Controlador de flujo							
Evaluación del p	peso específico	del criterio: Mantenimient	to				
	Flujómetro	Control de flujo (Alicat)					
Flujómetro		1	2	66,7%			
Control de flujo (Alicat)	0		1	33,3%			
			3				

Flujómetro = Controlador de flujo								
Evaluación	del peso espec	cífico del criterio: Interfaz						
	Flujómetro	Control de flujo (Alicat)						
Flujómetro		0,5	1,5	50,0%				
Control de flujo (Alicat)	0,5		1,5	50,0%				
			3					

Tabla 34. Evaluación del peso específico para control de flujo del criterio: Interfaz

Tabla 35. Evaluación del peso específico para control de flujo del criterio: Montaje

Flujómetro = Controlador de flujo									
Evaluación	Evaluación del peso específico del criterio: Montaje								
	Flujómetro	Control de flujo (Alicat)							
Flujómetro		0,5	1,5	50,0%					
Control de flujo (Alicat)	0,5		1,5	50,0%					
			3						

Tabla 36. Tabla de conclusiones pa	ara control de fluj	o
------------------------------------	---------------------	---

Tabla de conclusiones									
Opción	Reproducibilidad	Precio	Mantenimiento	Interfaz	Montaje	SUMA	Prioridad		
Flujómetro	0,111	0,178	0,111	0,083	0,033	0,517	1		
Control de	0,222	0,089	0,056	0,083	0,033	0,483	2		
flujo (Alicat)									

Materiales inertes

Soluciones planteadas:

- Pasivación
- Material inerte

Material inerte = Pasivación								
Evaluación del peso específico del criterio: Reproducibilidad								
	Pasivación	Material inerte						
Pasivación		0,5	1,5	50,0%				
Material inerte	0,5		1,5	50,0%				
			3					

Tabla 37. Evaluación del peso específico para materiales inertes del criterio: Reproducibilidad

Tabla 38. Evaluación del peso específico para materiales inertes del criterio: Precio

Pasivación > Material inerte								
Evaluación del peso específico del criterio: Precio								
	Pasivación	Material inerte						
Pasivación		1	2	66,7%				
Material inerte	0		1	33,3%				
			3					

Tabla 39. Evaluación del peso específico para materiales inertes del criterio: Mantenimiento

Material inerte = Pasivación Evaluación del peso específico del criterio: Mantenimiento							
Pasivación		0,5	1,5	50,0%			
Material inerte	0,5		1,5	50,0%			
			3				

Tabla 40. Evaluación del peso específico para materiales inertes del criterio: Interfaz

Material inerte = Pasivación								
Evaluación del peso específico del criterio: Interfaz								
	Pasivación	Material inerte						
Pasivación		0,5	1,5	50,0%				
Material inerte	0,5		1,5	50,0%				
			3					

Pasivación > Material inerte							
Evaluación del peso específico del criterio: Montaje							
	Pasivación	Material inerte					
Pasivación		1	2	66,7%			
Material inerte	0		1	33,3%			
			3				

Tabla 41. Evaluación del peso específico para materiales inertes del criterio: Montaje

Tabla 42. Tabla de conclusiones para control de flujo

Tabla de conclusiones									
Opción	Reproducibilidad	Precio	Mantenimiento	Interfaz	Montaje	SUMA	Prioridad		
Pasivación	0,167	0,178	0,083	0,083	0,044	0,556	1		
Material	0,167	0,089	0,083	0,083	0,022	0,444	2		
inerte									

A continuación, se presenta la configuración de la prueba para verificación de la tasa de calentamiento mediante el uso de una cámara térmica.

Figura 30. Configuración de prueba de verificación de tasa de calentamiento de la copa

Este anexo especifica el conjunto de actividades realizadas a lo largo del proyecto para alcanzar todos los objetivos planteados. Se realizó un diagrama que muestra la distribución del proyecto, dividido en diferentes actividades relacionadas con la investigación, selección, consolidación y construcción del reactor.

Figura 31. Diagrama de Gantt de Investigación

Figura 32. Diagrama de Gantt de Construcción

Figura 34. Diagrama de Gantt de Prueba de Prototipos

Ítem	Cantidad	Materiales	Proveedor	Precio Unit.	Precio	%
1.1	2	Heating tape	Amazon	\$ 61,63	\$ 123,26	16,35%
1.2	2	Thermocouple probe for solid type K	McMaster	\$ 21,19	\$ 42,38	5,62%
1.3	1	Programmable power supply	Amazon	\$ 99,99	\$ 99,99	13,27%
1.4	6	Conector recto ¼" H NPT ¼" OD UL	Ferrituvalco	\$ 11,05	\$ 66,30	8,80%
1.5	3	Tee de acero inoxidable 316 de $\frac{1}{4}$ "	Ferrituvalco	\$ 19,00	\$ 57,00	7,56%
1.6	3	Válvulas de bola de acero inoxidable 316 de ¼"	Ferrituvalco	\$ 10,45	\$ 31,35	4,16%
1.7	1	PID temperatura	Donación	-	-	0,00%
1.8	2	Adaptador 150M NPT 304 ¼" X ¼" MANG	Ferrituvalco	\$ 1,05	\$ 2,10	0,28%
1.9	1	Abrazadera ¹ / ₂ '' - ³ / ₄ ''	Ferrituvalco	\$ 2,37	\$ 2,37	0,31%
1.10	1	316L Ferrul largo ³ /4''	Ferrituvalco	\$ 2,00	\$ 2,00	0,27%
1.11	1	Unión de reductor ¹ /4'' x 1/8'' OD	BIS	\$ 16,61	\$ 16,61	2,20%
1 P	RECALEN	ΓΑΜΙΕΝΤΟ DE	L GAS		\$ 420,28	55,76%
2.1	1	Soldadora inverter	Kywi	\$ 99,99	\$ 99,99	13,27%
2.2	10	Resistencia de nicrom	Omega Resistencias	\$ 1,00	\$ 10,00	1,33%
2.3	1	Componentes electrónicos	APM Eléctronica	\$ 102,00	\$ 102,00	13,53%
2.4	5	Cápsula de vidrio	Saigon	\$ 2,50	\$ 12,50	1,66%
2 II	NDUCCIÓN	ELECTROMA	GNÉTICA (RI	EACTOR)	\$ 224,49	29,79%

Tabla 43. Detalle de compras de componentes

		Gel RFS	ROCHEM			
3.1	1	Liquid	DEL	\$ 22 16	\$ 33,46	4 4 4 07
	1	Decapante de	ECUADOR	\$ 33,40		4,44%
		Inox	S. A			
		Acido	TOLEDO			
		Limniador	RIOS			
3.2	1		DIANA	\$ 17,49	\$ 17,49	2,32%
		ACEIO INOA	DEL			
		п-300	CARMEN			
3	PASIVACIÓN				\$ 50,95	6,76%
		Gabinete	REDI			
4.1	1	metálico	Suministro	\$ 57,98	\$ 57,98	7,69%
		liviano	Eléctrico			
4	SISTEMA DE	CONTROL			\$ 57,98	7,69%
				TOTAL	\$ 753,70	

• Procesos de fabricación

Figura 35. Diagrama de flujo del proceso de fabricación de la copa metálica

Figura 36. Diagrama de flujo del proceso de fabricación de la tubería

Figura 37. Diagrama de flujo del proceso de fabricación del soporte de vidrio

(Groover, 1997).

Anexo C

En esta sección del anexo se muestran la minuta de reuniones, bocetos de las alternativas planteadas para el sistema de pirólisis rápida y los cálculos de transferencia de calor a la biomasa en estado transitorio, y movimiento de la biomasa.

```
Recomendaciones:
    Criterios:
    Problemas comunes:
Cosous por nacer:
```

Figura 38. Minuta de primera reunión por Teams (30/08/2021)

<u>13</u>	<u>/09</u>
•	Frontier Labs
•	Micropirolizadores
<u>20</u>	<u>/09</u>
•	Calentamiento mediante láser
11/	10
•	Efecto Joule: ventajas y desventajas.
	Reactores con efectos Joule
18,	/10
•	Efecto Joule como método de
	calentamiento.
25	/10
•	Flujómetro para controlar el caudal
•	Controlador PID con disipador de calor
٠	Considerar el caudalímetro del laboratorio
	para regular el flujo de gas.
8/1	1
•	Materiales inertes usados en el reactor:
	vidrio y acero inoxidable pasivado.
15,	/11
•	Pasivación de muestra de acero inoxidable mediante verificación de metalografía en el microscopio óptico.

Figura 40. Resumen de reuniones con el cliente

K Notes

15/11

 Pasivación de muestra de acero inoxidable mediante verificación de metalografía en el microscopio óptico.

 \odot

22/11

• Considerar la compra de otro PID para controlar la temperatura de la segunda cinta calefactora.

29/11

 Circuitos electrónicos para aumentar la frecuencia de la fuente de poder para la inducción.

Figura 41. Resumen de reuniones

Figura 42. Sketch de pirolizador

Figura 43. Sketch de calentamiento por resistencias

Fluio	Colontomiento				uctecturos	
V -						
· Tuberia	· Ponta		Control	•7	Sent monthing	
	KEULIM		Is totalas			
According Moots	1) Como		5 INTERDE CON			
ACCEDUIS : Regular	hacerlo		er www.			
· Almorenamiento			Faul moderie		,WIONO	
and inpite			- (cee) monue		31 es posible,	
			(MURIHS)			
·Parala	tobilasto.					
oer g	۵					
· K · Ano of any late · C ·	1					
+ CODISTINUCION EN C	DASEND					
* Diferenter tipe	de juntaj · · ·					
* Interfore · de · contro	1. eon el ajud	10				
· · br · · · · ·						
. 150						

Figura 44. Sketch de condiciones de diseño

Figura 45. Sketch de copa metálica

Figura 46. Sketch de resistencia de contacto

Figura 47. Sketch de micropirolizador

Figura 48. Skecth de pirolizador con precalentamiento y control de flujo

Figura 49. Sketch de pirolizador por caída libre

Figura 50. Sketch de cálculos

En esta sección se presenta el registro de facturas de los componentes del proyecto:

Figura 51. Factura 1

R.U.C: 1791743164001 NÚMERO DE AUTORIZACIÓN 1712202106179174316400120010010000102374316400112 FECHA DE AUTORIZACIÓN 17/12/2021 AMBIENTE: PRODUCTION NORMAL DELIVERY CLAVE DE ACCESO		
AMBIENTE: PRODUCTION NORMAL DELIVERY CLAVE DE ACCESO		
D NORMAL DELIVERY CLAVE DE ACCESO		
17/0000100171215-0010000100071215-000110		
1/122021051/91/431640012001000102514510406710		
vo Traslado: Envio		
echa Fin Transnorte 30/12/2021		
00122021		
AN PROAÑO Email: jsproano@usfg.edu.ec		
Referencia:		
SS-400-6-2		
Almacén: T		

Figura 52. Factura 2

Figura 53. Factura 3

SAIGON DEL ECUADOR SAIZVALLE CIA LTDA SAIGON DEL ECUADOR

Factura

001 - 002 - 000002559

RUC: 1792259223001 Dir. Matriz: Ecuador , Pichincha , Quito Av. Versalles y Diego de Atienza Dir. Sucursal: Ecuador , Pichincha , Quito Teléfono: 0990879887 Obligado a Ilevar Contabilidad: SI Contribuyente Régimen Microempresas Agente de Retención NAC-DNCRASC20-0000001

Fecha de Emisión.: 13/12/2021 Fecha de Autorización: 2021-12-13 15:43:50 No. de Autorización: 1312202101179225922300120010020000025594123534112 Ambiente: PRODUCCIÓN	Clave de Acceso				
Emisión: EMISIÓN NORMAL RUC/CED/PASS: 1803882727	13122021011702250223001200100	200000255941235341	112		
Cliente: JUAN SEBASTIAN PROANO Dirección: TUMBACO Observación: N/A	Teléfono: 0998251225	Email: jsproano@u	usfq.edu.ec		
Fecha de Vencimiento: 13/12/2021 Codigo Cantidad Descripción	P.Unitario US\$	Descuento US\$	Valor Total US\$		
FRC00005 1.00 FABRICACION SEGUN MUESTRA 9	5.58	0.0	5.58		

Subtotal 12%:	5.58
Subtotal 0%:	0.00
Subtotal No Sujeto%:	0.00
Descuento:	0.00
Subtotal:	5.58
I.V.A. 12%:	0.67
Servicio 10%:	0.00
Tasa Servicio Turistico:	0.00
Propina:	0.00
Valor Total US\$:	6.25

Forma de pago SIN UTILIZACION DEL SISTEMA FINANCIERO Valor US 6.25

Figura 54. Factura 4

ELECTRO CROMO MATERIAL ELECTRICO	R. FA	U.C. : CTURA	1790024733001	0027392			
CALLE GUAYAQUIL N3-114			NÚ	ÚMERO DE AU	TORIZACIÓN		
TLF 2584440			251	020210117900	247330012001100	000027392000	2739215
ELECTR	O CROMO S A		FE	CHAY HORA	DE 25/10/202	21	
ELECTR	O CROMO S A		AL	JTORIZACION	: 17:41		
Dirección Matriz : GUAYAQ	QUIL N3-114 Y ESPEJO		AN	MBIENTE :	PRODUCCIC	N	
Dirección Sucursal : GUAYAQ	QUIL N3-114 Y ESPEJO		CL	AVE DE ACCI	NORMAL ESO		
OBLIGADO A LLEVAR CONTABI	LIDAD : SI						
CONTRIBUYENTE REGIN Agente de Retención Resoluci	VEN MICROEMPRESAS	i	251	020210117900	247330012001100	000027392000	2739215
Razón Social : JUAN SEBAS Fecha de Emisión : 25/10/2	TIAN PROANO	lde	entificación :	1803882727	,		
	021	Gu	ía de Remisión				
Código	021 Descripción	Gu	ía de Remisión	: Cantidad	Precio Unitario	Descuento	Precio Total
Código ENCCAU10AT.TIC	Descripción ENCHUFE CAUCHO TI (E050)(4000099-B)(EN	Gu /TIC 1C017)	ía de Remisión	Cantidad	Precio Unitario 0,4464286	Descuento 0,00	Precio Total 0,4484
Código ENCCAU10AT.TIC GEM2X18X1MFB	021 Descripción ENCHUFE CAUCHO T/ (E050)(4000099-B)(EN CABLE GEM 2X18 BL(Gu /TIC 4C017) (X1MTS)(CG04)	ía de Remisión	: Cantidad 1,0000 3,0000	Precio Unitario 0,4484286 0,4484286	Descuento 0,00 0,00	Precio Total 0,4464 1,3393
Código ENCCAU10AT.TIC GEM2X18X1MFB IC1SPTPBCH	021 Descripción ENCHUFE CAUCHO T (E050)(4000099-B)(EN CABLE GEM 2X18 BL(INTERRUPTOR COLGA (1080)(1008)	Gu /TIC /C017) (X1MTS)(CG04) ANTE TECLA PAS	ía de Remisión	: Cantidad 1,0000 3,0000 1,0000	Precio Unitario 0,4484288 0,4484288 0,7142857	Descuento 0,00 0,00 0,00	Precio Total 0.4484 1.3393 0.7143
Código ENCCAU10AT.TIC GEM2X18X1MFB IC1SPTPBCH Información Adicional	021 Descripción ENCHUFE CAUCHO TI (E050)(4000099-B)(EN CABLE GEM 2X18 BL(INTERRUPTOR COLGA (1080)(1008)	Gu /TIC /CO17) (X1MTS)(CG04) ANTE TECLA PAS	ía de Remisión	: Cantidad 1,0000 3,0000 1,0000 SUBTO	Precio Unitario 0,4464286 0,4464286 0,7142857 TAL 12 % :	Descuento 0,00 0,00	Precio Total 0,4464 1,3393 0,7143 2,50
Código ENCCAU10AT.TIC GEM2X18X1MFB IC1SPTPBCH Información Adicional Dirección : TUMBACO	021 Descripción ENCHUFE CAUCHO TI (E050)(4000099-B)(EN CABLE GEM 2X18 BL(INTERRUPTOR COLGA (1080)(1006)	Gu /TIC /C017) (X1MTS)(CG04) ANTE TECLA PAS	ía de Remisión	: Cantidad 1,0000 3,0000 1,0000 1,0000 SUBTO	Precio Unitario 0,4484288 0,4484288 0,7142857 TAL 12 % : TAL 0% :	Descuento 0,00 0,00 0,00	Precio Total 0,4484 1,3393 0,7143 2,50 0,00
Código ENCCAU10AT.TIC GEM2X18X1MFB IC1SPTPBCH Información Adicional Dirección : TUMBACO Teléfono : 0998251225	021 Descripción ENCHUFE CAUCHO T (E050)(4000099-B)(EN CABLE GEM 2X18 BL INTERRUPTOR COLGA (1080)(1008)	Gu /TIC (C017) (X1MTS)(CG04) ANTE TECLA PAS	ía de Remisión	: Cantidad 1,0000 3,0000 1,0000 SUBTO SUBTO	Precio Unitario 0,4464286 0,4464286 0,7142857 TAL 12 % : TAL 2% : TAL 0% : TAL 5IN IMPUEST	Descuento 0,00 0,00 0,00	Precio Total 0,4464 1,3393 0,7143 2,50 0,00 2,50
Código ENCCAU10AT.TIC GEM2X18X1MFB IC1SPTPBCH Información Adicional Dirección : TUMBACO Teléfono : 0998251225 Email : irrecono@unfo co	021 Descripción ENCHUFE CAUCHO TI (E050)(4000099-B)(EN CABLE GEM 2X18 BL(INTERRUPTOR COLGA (1080)(1006)	Gu /TIC (CO17) (X1MTS)(CG04) ANTE TECLA PAS	ia de Remisión	: Cantidad 1,0000 3,0000 1,0000 1,0000 SUBTO SUBTO SUBTO TOTAL I	Precio Unitario 0,4484288 0,4484288 0,7142857 TAL 12 % : TAL 0% : TAL 0% : TAL SIN IMPUESTO DESCUENTO :	Descuento 0,00 0,00 0,00 0,00	Precio Total 0,4464 1,3393 0,7143 2,50 0,00 2,50 0,00
Código ENCCAU10AT.TIC GEM2X18X1MFB IC1SPTPBCH Información Adicional Dirección : TUMBACO Teléfono : 0998251225 Email : jsproano@usfq.ec	021 Descripción ENCHUFE CAUCHO T. (E050)(4000099-B)(EN CABLE GEM 2X18 BL(INTERRUPTOR COLGA (1080)(1008) du.ec	Gu /TIC /C017) (X1MTS)(CG04) ANTE TECLA PAS	ia de Remisión	: Cantidad 1,0000 3,0000 1,0000 1,0000 SUBTO SUBTO SUBTO TOTAL I ICE :	Precio Unitario 0,4484288 0,4484288 0,7142857 FAL 12 % : FAL 0% : FAL 5NI IMPUESTO DESCUENTO :	Descuento 0,00 0,00 0,00 DS :	Precio Total 0,4484 1,3393 0,7143 2,50 0,00 2,50 0,00 0,00
Código ENCCAU10AT.TIC GEM2X18X1MFB IC1SPTPBCH Información Adicional Dirección : TUMBACO Teléfono : 0998251225 Email : jsproano@usfq.ec Observ. :	021 Descripción ENCHUFE CAUCHO T. (E050)(4000099-B)(EN CABLE GEM 2X18 BL(INTERRUPTOR COLGA (1080)(1008) du.ec	Gu /TIC (C017) (X1MTS)(CG04) ANTE TECLA PAS	ia de Remisión	: Cantidad 1,0000 3,0000 1,0000 1,0000 SUBTO SUBTO TOTAL I ICE : IVA 12 %	Precio Unitario 0,4464286 0,4464286 0,7142857 TAL 12 % : TAL 3N IMPUEST DESCUENTO :	Descuento 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	Precio Total 0,4464 1,3393 0,7143 2,50 0,00 2,50 0,00 0,00 0,00 0,30
Código ENCCAU10AT.TIC GEM2X18X1MFB IC1SPTPBCH Información Adicional Dirección : TUMBACO Teléfono : 0998251225 Email : jsproano@usfq.ec Observ. :	021 Descripción ENCHUFE CAUCHO T. (E050)(4000099-B)(EN CABLE GEM 2X18 BL(INTERRUPTOR COLGA (1080)(1006) du.ec	Gu /TIC /C017) (X1MTS)(CG04) ANTE TECLA PAS	ia de Remisión	: Cantidad 1,0000 3,0000 1,0000 SUBTO SUBTO SUBTO TOTAL I ICE : IVA 12 % IRBPNR	Precio Unitario 0,4464286 0,4464286 0,7142857 TAL 12 % : TAL 3% : TAL 3% : TAL 5% :	Descuento 0,00 0,00 0,00 0 0 0 0 0 0 0 0 0 0 0 0	Precio Total 0,4464 1,3393 0,7143 2,50 0,00 2,50 0,00 0,00 0,30 0,00
Código ENCCAU10AT.TIC GEM2X18X1MFB IC1SPTPBCH Información Adicional Dirección : TUMBACO Teléfono : 0998251225 Email : jsproano@usfq.ec Observ. :	021 Descripción ENCHUFE CAUCHO T. (E050)(4000099-B)(EN CABLE GEM 2X18 BL(INTERRUPTOR COLGA (1080)(1008) du.ec	Gu /TIC /C017) (X1MTS)(CG04) ANTE TECLA PAS	ia de Remisión	: Cantidad 1,0000 3,0000 1,0000 1,0000 SUBTO SUBTO SUBTO SUBTO ICE : IVA 12 % IRBPNR PROPIN	Precio Unitario 0,4484288 0,4484288 0,7142857 FAL 12 % : FAL 0% : FAL 5N IMPUESTO DESCUENTO : DESCUENTO : A :	Descuento 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	Precio Total 0,4484 1,3393 0,7143 2,50 0,00 2,50 0,00 0,00 0,00 0,00 0,00
Código ENCCAU10AT.TIC GEM2X18X1MFB IC1SPTPBCH Información Adicional Dirección : TUMBACO Teléfono : 0998251225 Email : jsproano@usfq.ec Observ. :	021 Descripción ENCHUFE CAUCHO T, (E050)(4000099-B)(EN CABLE GEM 2X18 BL(INTERRUPTOR COLG4 (1080)(1008) du.ec Valor	Gu //TIC /C017) (X1MTS)(CG04) ANTE TECLA PAS	ia de Remisión	: Cantidad 1,0000 3,0000 1,0000 1,0000 SUBTO SUBTO SUBTO TOTAL I ICE : IVA 12 % IRBPNR PROPIN VALOR	Precio Unitario 0,4484286 0,4484286 0,7142857 TAL 12 % : TAL 0% : TAL 0% : TAL SIN IMPUESTO DESCUENTO : S : A : TOTAL :	Descuento 0,00 0,00 0,00 0 0 0 0 0 0 0 0 0 0 0 0	Precio Total 0,4464 1,3393 0,7143 2,50 0,00 2,50 0,00 0,00 0,00 0,00 0,00

Figura 55. Factura 5

AV Electronics

Andrade Marín E7-76 y Av. Diego de Almagro. Web: www.avelectronics.cc | Teléfono: 099 920 0997 | E-mail: ventas@avelectronics.cc Quito – Ecuador

FACTURA

Juan Sebastian Proaño	Número de factura:	22274
Tumbaco	Fecha de factura:	16 noviembre, 2021
Quito	Número de pedido:	22274
Pichincha	Fecha de pedido:	16 noviembre, 2021
Jsproano@ustq.edu.ec 0998251225	Método de pago:	Deuna!

Producto	Cantidad	Precio
Transistor MOSFET - IRFZ44N N-channel SKU: EA013-2	4	\$5.00
Disipador de calor PI51 TO220 SKU: MI057	2	\$1.78
Capacitor Cerámico 50V - 470 pF SKU: EP007-6	2	\$0.18
Capacitor Poliéster - 101 100V SKU: EP020-1	5	\$1.10
Protoboard 830 Puntos SKU: MI004	1	\$4.38
Circuito oscilador NE555 sku: ci005	1	\$0.45
	Subtatal	¢10 00

Total	\$14.43
IVA	\$1.55
Εηνίο	Recogida local
Subtotal	\$12.88

Figura 56. Factura 6

LEON REA VICTOR HUMBERTO

Dir Matriz: AV. DE LA PRENSA N 42-50 Y MARIANO ECHEVERRIA

Dir Sucursal:

OBLIGADO A LLEVAR CONTABILIDAD: SI

Agente de Retención Resolución No. 1

Razón Social / Nombres y Apellidos: PROAÑO JUAN SEBASTIAN Fecha Emisión: 28/10/2021 Identificación: 1803882727 Guía Remisión:

Cod. Principal	Cod. Auxiliar	Cantidad	Descripción	Precio Unitario	Descuento	Precio Total
007.02.04. 006X102	007.02.04. 006X102	2.000000	NEPLO/INOX.304 1/4" X 4"	1.671000	0.00	3.34
007.02.04. 012X102	007.02.04. 012X102	1.000000	NEPLO/INOX.304 1/2" X 4"	2.388000	0.00	2.39
007.02.04. 010X102	007.02.04. 010X102	1.000000	NEPLO/INOX.304 3/8" X 4"	1.909000	0.00	1.91

Informació	n adicional			SUBTOTAL 12%	7.64
direccion	TUMBACO			SUBTOTAL 0%	0
correo	jsproano@usfq.edu.ec		u.ec	SUBTOTAL No objeto de IVA	0
telefono	0998251225			SUBTOTAL SIN IMPUESTOS	7.64
descarga	www.sacianex.com		n	DESCUENTO	0.00
elaborado_por	SaciJava ERP			ICE	0
				IVA12%	0.92
Forma de pago	Valor	Plazo	Tiempo	VALOR TOTAL	8.56
TARJETA DE CREDITO	8.56	0	dias		

Figura 57. Factura 7

Razón Social : JUAN SEBASTIAN PROANO Identificación : 1803882727									
Fecha de Emisión : 15/11/2021 Guía de Remisión :									
Código	Descripción	Cantidad	Precio Unitario	Descuento	Precio Total				
114505	COND CERAM 47PF-50V(CERAMIC CAP)	4,0000	0,0893	-0,00	0,3571				
114506	COND CERAM /82PF-50V(CERAMIC CAP)	2,0000	0,0893	-0,00	0,1786				
114051	COND CERAM 102 0.001UF/1NF/1000PF-50V	3,0000	0,0893	-0,00	0,2679				
126147	C.I. LM358N AMPLIFICADOR OPERACIONAL	1,0000	0,6250	0,00	0,6250				
712001	RESISTENCIAS 1/2W - 5% CARBON FILM(H&B)	1,0000	0,0357	0,00	0,0357				
350656	CONTROL TRIMER 1K PRECISION AZUL (102)	1,0000	0,7143	0,00	0,7143				
350655	CONTROL TRIMER 10K PRECISION AZUL (103)	1,0000	0,7143	0,00	0,7143				

Figura 58. Factura 8

	R.U.C.: 1707874408001			
	FACTURA			
	No.: 002 011 000021571			
	NÚMERO DE AUTORIZACIÓN			
ELECTRONICA_DEL_NORTE	0211202101170787440800120020110000215710002157114			
RIVEROS VALENZUELA RODOLFO	FECHA Y HORA DE 02/11/2021 AUTORIZACION :			
Dirección Matriz : AV. COLON OE1-42 Y 10 DE AGOSTO	15:01 AMBIENTE : PRODUCCION			
Dirección AV. COLON OE1-42 Y 10 DE Sucursal : AGOSTO	EMISION : NORMAL			
	CLAVE DE ACCESO			
OBLIGADO A LLEVAR CONTABILIDAD : SI				
Agente de Retención Resolución No. : 1				
	0211202101170787440800120020110000215710002157114			

Razón Social : JUAN SEBASTIAN PROANO Identificación : 1803882727								
Fecha de Emisión : 02/11/2021 Guía de Remisión :								
Código	Descripción	Cantidad	Precio Unitario	Descuento	Precio Total			
745007	SUELDA X MT 1.0MM CALIDAD 60% (CASAT)	2,0000	0,5357	0,00	1,0714			
777341	TERM PLANO MACHO ROJO (RM187-5)	3,0000	0,0893	-0,00	0,2679			
777186	TERM RIEL HEM ROJO 1/4" 1-25-250(34568)	3,0000	0,0893	-0,00	0,2679			
208030	BORN 3A NEGRA 12 CONT (FC-CIRM-101BK)(FT005-01)	1,0000	0,6250	0,00	0,6250			
514005	FUS. VIDRIO 0.5A 30MM	1,0000	0,0893	-0,00	0,0893			
745014	ALAMBRE ESMALTADO 2MM- # 16 N.16(RLL-AL12)	3,0000	0,6250	0,00	1,8750			
114501	COND CERAM 104 0.1UF/100NF/100000PF-50V	58,0000	0,0804	0,00	4,6607			

Figura 59. Factura 9
ROCHEM DEL ECUADOR S.A. QUÍMICOS, GASES Y EQUIPOS PARA MANTENIMIENTO NAVAL E INDUSTRIAL			Matriz Guayaquil: El Oro 1301 y Guaranda - Navai Sur Centen PBX: (593)4 2442610 Cel: 099 126 5479 E-mail: doto-ventas@rochem.com.ec			
RUC No	0990650403001	FACTURA No 001-001- AUTORIZACION S.R.I. No.: 1127697	000056709			
LUGAR Y FECHA CLIENTE	Guayaquil, 10hovlembre PROAÑO JUAN SEBAST	/2021 AAN	CODIGO : 3,103 C.I./R.U.C. : 1903982727 ORDEN No:			
DIRECCION	TUMBACO Quilo		ZONA Officina			

CODIGO	D	ESCRIPCION	N			CANT.	UND.	PRECIO		TOTAL
1097 1057	SERVICIO DE LOGISTICA			1 X	1	1	LTS Servic	24.5200 8.0000		24.6. 6.0(
	- 1640 °									
									30.52	
ESTA FACTURA TIÈNE LA VALIDEZ DE UNA LETRA DE CAM TODOS SUS EFECTOS LEGALES Y DE NO SER CANCELADA I CONVENIDA SE COBRARAN INTERESES Y GASTOS DE CO FAVOR CANCELAR CON CHEQUE CRUZADO A LA ORD ROCHEM DEL ECUADOR S.A.			MBIO PARA LEN LA FECHA OBRANZAS. DESCUER DEN DE LVA. LVA. LVA.		LOR BRUTO SCUENTOS BTOTAL A. 0% A.12 %			0.00 24.52 6.00 2.54	0.9	
UNA	IMPORTANTI VEZ SALIDA LA MERCADERÍA NO S	E: E ACEPTAN DEVO	LUCION	ES	COSTO DE	ENTREG	^		0.00 33.46	
	FORMA DE PAGO	TOTAL	PLAZO	TIEMPO	VALOR A	PAGAR:				
OTROS O	CON UTILIZACION DEL	33.46	0	Dia(s)	TRENTAY	TRES	r46/100 Dói	ares USA		
GUIA D	E REMISION No: 001-001-	3054349	FI	ECHA:	10-000	-2021				
OBSER	RVACIONES:									
							and the second second	VALIDO HASTA Ererol		_
ENCIA VEROEZ	OTO JORGE VINCIO (UNORAF OFFSET - TELF.) 23	research with the average of the second seco	No. Warr 1	198 Black	(58 x 4) - (85455 - 3	NERSON 2 - KING				
ENCIA VERDEZ phul: ADQUINE	IOTO JORGE VINICIO (UNORAP OFFIET - TELE, 2) CVITE / Copie Verde: EMISCRI / Copie Amerika: CONT 4	ABLIDAD SN DERICHD A1	CREDITO T	MIRUTANO / Co	pio Celeste: S.P.1	VENTAS CON	PLA SIN DERECHO A O	NEDITO TRIBUTARIO	-	
ENCIA VERDEZ gevel ACICLIPIE	COTO JORGE VINCIO (UNICIPAL OFFICE I TELE) 2 (VITE I Duple Vinde: EMISCH Copie Amarille: CONT 6	ABLIDAD SAI DEHECHO A	CREDITO T	Helles	Rolla.	Pentas con	DEL EC	He He	llen B	J7. 4
	OTO JORGE VINCO (JARORA OFFSET - TELF) 2 DITE / Duple Wede: EMISOF / Gupte Amerika: CONT 	ABLIDAD SEI DEMECHD A 1	CHEDRTO	Heller		B	DEL EC	HE HE	HEN B	UTZ V

Figura 60. Factura 10

IMPORTADORE	Cia Ilda
INFORTADORE	S INDUSTRIALES
AGENTE DE RETENCIÓN	RESOLUCIÓN NRO

JUAN SEBASTIAN PROAÑO

CLIENTE:

CORREO:

TELÉFONO:

RUC:

DIRECCIÓN: TUMBACO

1803882727

jsproano@usfq.edu.ee 0998251225

R.U.C.: 1792073898001	
atriz: Av.Diego de Vásquez N72-72 /Prados del Oeste PB (Po	onceano)
Teléfonos: 2479-692 2478-536	
Quito-Ecuador	
AMBIENTE PRODUCCIÓN	
EMISION NORMAL	
Obligado a llevar contabilidad: SI	
FACTURA	
No. 001-002-000011268	
Fecha y hora de Au	orización

FERRITUVALCO Cia Ltda

2021-11-24T13:03:05-05:00 Número de Autorización SRI

FECHA: LUGAR:	24 de noviembre de 2021 QUITO	24112021011792073	89800120010020000	112680001126810
CÒDIGO	DESCRIPCIÓN	CANT.	V. UNIT.	TOTAL
10974	SS ADAPTADOR 150 M NPT 304 1/4" X 1/4" MANG	1.00	0.95	0.95
2167	SSS 304 ABRAZADERA 1/2"-3/4" PARA FERRUL	1.00	2.12	2.12
2539	SSS 316L FERRUL LARGO 3/4"	1.00	1.78	1.78
9046	SS CONECT RECTO 1/4" H NPT 1/4" OD UL	1.00	9.86	9.86

FORMA DE PAGO-		SUBTOTAL:	14.71
OTROS CON UTILIZACIÓN DEL SISTEMA FINANCIERO	16.48	SUBTOTAL 0%:	0.00
		DSCTO.	0.00
		IMPONIBLE:	14.71
		IVA 12%	1.7
OBSERVACIONES:		PROPINA:	0.00
		TOTAL:	16.48
Duban and investigation of a second as EEDDITTIN	ALCO CIA LTDA an a	L house as factor and an anomalian a	Lunder tota

Debo y pagaré incondicionalmente a la orden de FERRITUVALCO CIA LTDA, en el lugar y fecha que se reconvenga el valor total expresado en este documento, más el máximo interés legal por mora autorizado. Sin protesto eximase de presentación para el pago así como de aviso por falta de este hecho. Renuncio domicilio y me someto a los jueces competentes de la ciudad de Quito y al trámite ejecutivo o verbal sumario a elección de FERRITUVALCO. Se recibirán retenciones máximo hasta 5 días después de emitida esta factura

Figura 61. Factura 11

AG	IMPORTADORES INDUSTRIALES ENTE DE RETENCIÓN RESOLUCIÓN NI NAC-DNCRASC20-00000001	FERRITUVALCO Cia Ltda R.U.C.: 1792073898001 Matriz: Av. Diego de Vácquez N72-72. Prados del Oeste PB (Ponceano) Teléfonos: 2479-692 2478-536 Quito-Ecuador AMBIENTE PRODUCCIÓN 80. EMISION NORMAL Obligado a llevar contabilidad: SI
CLIENTE:	JUAN SEBASTIAN PROAÑO	FACTURA
DIRECCIÓN:	TUMBACO	No. 001-002-000011187
CORREO:	1803882727 Isproano@usfo.edu.ec	Fecha y hora de Autorización
TELÉFONO:	0998251225	2021-11-18T14:36:36-05:00
FECHA:	18 de noviembre de 2021	Numero de Autorización SRI
LUGAR:	QUITO	
CÓDIGO	DESCRIP	CIÓN CANT V IDUT TOTAL
1200 5	S VAL DE BOLA 1000 3C NPT 316 1/4"	CON CANI. V. UNIT. TOTAL 3.00 / 9.33 27.90
		CUDTOTAL. NO. CO
FORMA DE F	AGO:	0 99.37 SUBTOTAL 98-
UTKOS CON	OTICICACIÓN DEL SISTEMA FINANCIER	DSCT0. 0.00
		IMPONIBLE: 78.90
		IVA 12% 9.47
OBSERVACIO	ONES:	PROPINA: 0.00
		TOTAL: 88.37
Debo y pagar expresado en como de avise ejecutivo o v factura	é incondicionalmente a la orden de FERI este documento, más el máximo interés l o por falta de este hecho. Renuncio domi erbal sumario a elección de FERRITUV.	UTUVALCO CIA. LTDA, en el lugar y fecha que se reconvenga el valor total gal por mora autorizado. Sin protesto eximase de presentación para el pago asi cilio y me someto a los jueces competentes de la ciudad de Quito y al trámite MLCO. Se recibirán retenciones máximo hasta 5 días después de emitida esta

Figura 62. Factura 12

AG	IMPORTADORES INDUSTRIALES ENTE DE RETENCIÓN RESOLUCIÓN NRO. NAC-DNCRASC20-00000001	FERRITUVALCO Cia Ltda R.U.C.: 1792073898001 Matriz: Av.Diego de Vásquez N72-72 (Prados del Oeste PB (Ponceano) Teléfonos: 2479-692 2478-536 Quito-Ecuador AMBIENTE PRODUCCIÓN EMISION NORMAL Obligado a llevar contabilidad: SI
CLIENTE: DIRECCIÓN: RUC: CORREO: TELÉFONO: FECHA: LUGAR:	JUAN SEBASTIAN PROAÑO TUMBACO 1803882727 jsproano@usfq.edu.ee 0998251225 18 de noviembre de 2021 QUITO	FACTURA No. 001-002-000011188 Fecha y hora de Autorización 2021-11-18T14:34:05-05:00 Número de Autorización SRI
CÓDIGO	DESCRIPCIÓN	CANT. V. UNIT. TOTAL
10974 1 13001 1 9046 3	SS ADAPTADOR 150 M NPT 304 1/4* X 1/4* MANK SS CONECT RECTO 1/4* M NPT 1/4* OD UL SS CONECT RECTO 1/4* H NPT 1/4* OD UL	60 5.93 35.58 1.00 9.86 9.86
FORMA DE	PAGO:	SUBTOTAL: 46.3 51.90 SUBTOTAL 0% 0.0
OTROS CO	UTILIZACION DEL 515 TEMA PRANCIERO	DSCTO. 0.0. IMPONIBLE: 46.3 IVA 12% 5.3 PROPINA. 0.0

Debo y pagaré incondicionalmente a la orden de FERRITUVALCO CIA. LIDA, en el rugar y teura que u rugar y reas expresado en este documento, más el máximo interés legal por mora autorizado. Sin protesto eximase de presentación para el pago as como de aviso por falta de este hecho. Renuncio domicilio y me someto a los jueces competentes de la ciudad de Quito y al trámitu ejecutivo o verbal sumario a elección de FERRITUVALCO. Se recibirán retenciones máximo hasta 5 días después de emitida est

Figura 63. Factura 13