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RESUMEN 

Las redes neuronales binarias (BNN), en las que los pesos y activaciones son 

representadas con un solo bit, son una alternativa eficiente en cuanto a almacenamiento y 

computación que permite implementar redes neuronales convolucionales en dispositivos con 

recursos computacionales limitados. En BNNs, la operación MAC es reemplazada por una 

operación de XNOR-bitcount. El uso de arquitecturas de computación en memoria (CIM) 

permite un ahorro incluso mayor en energía y tiempo para la implementación de BNNs. En 

este contexto, el uso de STT-MRAMs ofrece los beneficios de no-volatilidad, gran velocidad, 

consumo bajo de energía, escalabilidad, entre otros. Este trabajo propone optimizaciones a 

nivel de hardware y algoritmo para la operación de XNOR-bitcount basada en CIM presentada 

por Wang et al. en [1], usando STT-MRAMs. La optimización de hardware reduce a la mitad 

el espacio de almacenamiento requerido para cada operación XNOR-bitcount. Asumiendo un 

filtro de 9 bits (9 pesos), la optimización algorítmica permite 30% menos tiempo de ejecución 

y 26.1% menos consumo energético. Para 5 operaciones XNOR-bitcount secuenciales usando 

el mismo filtro, la optimización algorítmica ofrece una reducción de 78% en tiempo de 

ejecución y una reducción de 85.1% en consumo energético. 

 

Palabras clave: Redes neuronales binarias (BNN), redes neuronales convolucionales (CNN), 

computación en memoria (CIM), transferencia por torque de spin (STT), STT-MRAM, 

junturas túnel magnéticas de doble barrera (DMTJ), operación MAC, XNOR-bitcount. 
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ABSTRACT 

Binary neural networks (BNN), in which weights and activations are represented with 

one single bit, are a storage and computationally efficient alternative that allows convolutional 

neural networks to be implemented in devices with limited computational resources. In BNNs 

the MAC operation is replaced with a bitwise XNOR-bitcount operation. The use of 

computation-in-memory (CIM) architectures allows further energy and time savings for BNN 

implementation. In this context, the use of STT-MRAMs provides the benefits of non-

volatility, high speed, low-power consumption, scalability, among others. This work proposes 

hardware- and algorithmic-optimizations to the CIM-based XNOR-bitcount method presented 

by Wang et al. in [1], using STT-MRAMs. The hardware optimization reduces in half the 

storage space required for each XNOR-bitcount operation. Assuming a 9-bit filter (9 weights), 

the algorithmic optimization provides 30% less execution time and 26.1% less energy 

consumption in a single XNOR-bitcount operation. For 5 sequential XNOR-bitcount 

operations using the same filter, the algorithmic optimization allows a 78% reduction in 

execution time and 85.1% reduction in energy consumption. 

 

Key words: Binary neural networks (BNN), convolutional neural networks (CNN), compute-

in-memory (CIM), spin-transfer torque (STT), STT-MRAM, double-barrier magnetic tunnel 

junction (DMTJ), MAC operation, XNOR-bitcount.  
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I.   INTRODUCTION 

 

Convolutional neural networks (CNN) are ideal in the fields of image classification, 

object detection and object recognition [2] [3]. However, the deep structures that allow them 

to provide state-of-the-art results also makes them incredibly computationally and memory 

expensive [3], so they require high-performance hardware like GPUs [2]. This makes deep 

CNNs unusable in real-world applications and Internet-of-Things (IoT) applications, as they 

cannot be integrated in smaller devices with limited storage and computational resources 

such as cell-phones, embedded devices and smart portable devices [4] [2].  

To address this, several network compression techniques have been proposed, and one 

of them is the quantization of the network’s weights and activations: representing their floating-

point values using very low precision [2]. The extreme case is binarization, which gives rise 

to binary neural networks (BNNs). In BNNs, the weights and activations are represented with 

one bit: data can be ‘-1’ (‘0’) or ‘+1’ (‘1’) [5]. This implies that the costly multiply-and-

accumulate (MAC) operations between neural networks’ activations and weights can be 

replaced with bitwise XNOR-bitcount operations [2]. This makes BNNs power-efficient, 

computationally faster, and memory-saving [2] [4]. 

To further optimize BNNs, a compute-in-memory (CIM) architecture can be 

considered. The gap in performance between memories and computing units, called the ‘von-

Neumann bottleneck’, causes the data movement between memory and the computing unit to 

be even more energy- and time-expensive than the computation itself [6] [7]. The computation-

in-memory (CIM) approach allows data computation to be performed by exploiting the 

memory’s internal structure and analog functionality, as well as the peripheral circuitry (sense 

amplifiers, decoders, etc.) [7]; the memory array is not modified, but the peripheral circuitry 

can be adapted for this purpose. 
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In this matter, spin-transfer torque magnetic random-access memories (STT-MRAMs) 

are leading candidates for non-volatile on-chip memory, Internet of Things (IoT) applications, 

and logic-in-memory (LIM) applications [8] [9]. This is because they can offer high write/read 

speed, small area footprint, non-volatility, low power consumption, easy integration with 

CMOS technology, scalability, and high endurance [10] [11]. 

In the above context, this work investigates hardware- and algorithmic-optimizations 

to the XNOR-bitcount (XNOR-BC) operation of binary convolutional neural networks 

(BCNNs) using a CIM approach and STT-MRAMs. This work focuses particularly on the 

XNOR-BC method proposed in [1], which uses VC-SOT MRAMs for CIM BCNN 

implementation. 

 

 

II.   SPINTRONIC DEVICES AND STT-MRAMS 

A. MTJ-based MRAM bitcells 

The elementary device of spintronic based MRAM is the magnetic tunnel junction 

(MTJ) [8]. A single-barrier MTJ is composed by two ferromagnetic (FM) layers with a thin 

oxide layer between them. While one FM layer – the reference layer (RL) – has a fixed 

magnetic orientation, the magnetization of the other FM layer – the free layer (FL) – can be 

either parallel (low resistance state) or anti-parallel (high resistance state) to the RL. The low 

resistance state denotes data ‘0’ and the high resistance state denotes data ‘1’ [12] [10].  

Among the switching techniques for the MTJ state, there is spin-transfer torque (STT) 

[10] and voltage-controlled spin-orbit torque (VC-SOT) [12]. As mentioned before, Wang et 

al. [1] propose a BCNN design based on multibit VC-SOT MRAM. In this work, I replicate 

their method – and further optimize it – using STT-MRAM. 
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A VC-SOT MTJ device has three terminals, allowing a separation between writing and 

reading paths  [13]. The MTJ’s RL is connected to a voltage source and the FL is in contact 

with an antiferromagnetic layer or heavy metal [12]. Figure 1.a shows the structure for the 

MRAM bitcell used in [1] based on a VC-SOT MTJ. When a current (𝐼𝑆𝑂𝑇) flows through the 

heavy metal, spins accumulate and torque switching is generated on the MTJ’s FL, changing 

its magnetization according to the direction of the current [13]. A bias voltage 𝑉𝑏, related to 

the VCMA effect, applied to the RL can modulate the energy barrier of the MTJ and, therefore, 

modulate the SOT threshold current [1]. This means that with a positive 𝑉𝑏 – that reaches the 

MTJ by activating the access transistor through the wordline (WL) –, the SOT current can 

switch the MTJ state, while with 𝑉𝑏 = 0, the current has no effect on said state [1]. 

 

On the other hand, a STT-MTJ uses the same path to write and read [13]. STT switching 

is based on applying a current 𝐼𝑤𝑟𝑖𝑡𝑒 through the MTJ greater than its critical switching current 

𝐼𝑐0, which is the necessary current to write a ‘0’ state [10]. If the current flows from the MTJ’s 

FL to the RL, it is configured into parallel state (‘0’ is written), and if the current flows in the 

opposite direction (RL to FL), it is configured into anti-parallel state (‘1’ is written). To 

generate said current in the appropriate direction, either the bitline (BL) or sourceline (SL) of 

the bitcell is charged to VDD, while the other line is grounded [10]. Figure 1.b shows the 

structure for the MRAM bitcell based on a STT-MTJ that will be used in this work. It uses a 

double-barrier MTJ (DMTJ) and is in 2T1MTJ-SC configuration; this will be further explained 

in Section II. B. 
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Figure 1: (a) VC-SOT-based bitcell and (b) STT-based bitcell 

 

B. STT-MRAM bitcell design 

The critical switching current 𝐼𝑐0 of a single-barrier MTJ (SMTJ) is generally quite 

high, so the use of double-barrier MTJs (DMTJs) is a good alternative that allows a reduced 

𝐼𝑐0 due to an additional RL that increases the torque generated over the FL [14]. The reduced 

switching current allows DMTJ-based STT-MRAM to have reduced write access times, lower 

write and read energy consumption, smaller area, and reduced leakage power, albeit higher 

read access times [15]. Moreover, the critical currents for writing ‘0’ and ‘1’ in a DMTJ are 

equal. These advantages can be appreciated when the bitcell is in 2T1MTJ-SC configuration: 

2 access transistors and 1 MTJ in standard connection (SC), where complementary n-MOS and 

p-MOS transistors are used, and they are connected to the top reference layer (𝑅𝐿𝑇) of the 

DMTJ [15].  

The DMTJ device used in this work is described by macrospin-based Verilog-A 

compact models [16]. For the access transistors, TSMC’s commercial 65-nm technology node 

was used. The Synopsys Custom-Compiler tool was used for simulations. Table 1 shows the 

DMTJ’s characteristics. 



14 
 

 

Parameter Description Value 

𝑑 MTJ diameter 32 𝑛𝑚 

𝑡𝐹𝐿 Free layer thickness 1.2 𝑛𝑚 

𝑡𝑂𝑋,𝑇 Top barrier thickness 0.85 𝑛𝑚 

𝑡𝑂𝑋,𝐵 Bottom barrier thickness 0.4 𝑛𝑚 

𝑅𝐴 Resistance-area product ~12  Ω μ𝑚2 

𝑅𝐻 High resistance state 15.3 𝐾Ω 

𝑅𝐿 Low resistance state 6.9 𝐾Ω 

𝐼𝑐 Critical switching current 14.1 𝜇𝐴 

Δ Thermal stability factor ~71 𝑘𝐵𝑇 

Table 1: Characteristics of DMTJ model 

 

C. Equivalency of operations between VC-SOT MRAMs and STT-MRAMs 

The equivalency between writing and reading operations using one type of MTJ and 

the other must be understood in order to implement Wang et al.’s XNOR-bitcount method 

using STT-MRAMs.  

Writing operation 

The key concept is that both in VC-SOT and STT bitcells, the direction of the current 

determines what state is written, and the access transistor gate voltage determines whether that 

state is written or not. This is because in VC-SOT MTJs, the control voltage 𝑉𝑏 is applied to 

the MTJ by activating the access transistor by using a positive gate voltage 𝑉𝑔 and allowing the 

voltage in the BL to pass. In STT-MTJs, the activation of the access transistors using a positive 

𝑉𝑔 (for the n-MOS transistor, the p-MOS transistor is always assumed to receive the 

complementary signal) allows 𝐼𝑤𝑟𝑖𝑡𝑒 to cross through or not cross through the MTJ.  

Table 2 shows the four possible combinations of access transistor activations and 

current directions for each device type, and the corresponding MTJ state that is written. 
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VC-SOT bitcell STT-bitcell 
MTJ state 

𝑰𝑺𝑶𝑻 𝑽𝒈 𝑰𝒘𝒓𝒊𝒕𝒆 𝑽𝒈 

⟶ 0 ↓ 0 Previous state 

⟶ + ↓ + '0' 

 ⟵ 0 ↑ 0 Previous state 

 ⟵ + ↑ + '1' 

Table 2: Equivalency of writing operation between VC-SOT MTJs and STT MTJs 

 

Reading operation 

The reading operation in the VC-SOT MRAM is based on activating the access 

transistor and measuring the current in the BL [1]. For the reading operation in the STT-

MRAM, the same concept is used. This work uses a current sensing scheme in which a constant 

read voltage 𝑉𝑟𝑒𝑎𝑑 is applied to the SL while the WL is activated (activated access transistors); 

the resulting current in the BL is compared to a reference 𝐼𝑟𝑒𝑓 by a SA to determine the stored 

bit [17]. Figure 2 shows this process. 

 

Figure 2: Reading operation for a single STT-based bitcell 
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III.   BINARY CONVOLUTIONAL NEURAL NETWORKS AND XNOR-BITCOUNT 

As in any neural network, the main operation in the forward propagation process is 

‘multiply-and-accumulate’ (MAC): the weights and input activations are multiplied element-

wise and the results are added or accumulated – basically, the dot product [4] [5]. This result 

is the activation of a neuron in the next layer. Regarding convolutional neural networks 

(CNNs), the weights and input activations are represented with 2-D matrixes. This makes them 

useful for image recognition and object detection tasks [2]. The 2-D weight matrixes are called 

filters or kernels, while the 2-D input activations are called feature maps. Each filter is 

convolved with each feature map, which consists on sliding the kernel through the complete 

feature map and repeating dot-product operations between the filter and the corresponding part 

of the input feature map, thus generating a new feature map for the next layer of the neural 

network [4]. This convolution consists of multiple MAC operations, each one between the 

𝑘 × 𝑘 kernel and a 𝑘 × 𝑘 portion of the input feature map. Figure 3 shows a simple example 

of a single MAC operation in a CNN. 

Figure 3: Example of multiply-and-accumulate (MAC) operation in CNNs 

Binary convolutional neural networks (BCNNs) are based on binarized weights and 

activations: they can have the values ‘-1’ (represented by ‘0’) and ‘+1’ (represented by ‘1’) [5]. 

This means that the MAC operation can be simplified to a bitwise XNOR-bitcount operation 

[2]. The bitcount operation refers to counting the amount of set bits, which is the number of 
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‘1’ bits, that I will refer to as P. An extra operation must be computed: 2P-N, where N is the 

size of the filter. In this way, the result is basically the sum between the ‘-1’ and ‘+1’ XNOR 

results. Figure 4 shows an example of how the MAC operation using binary weights and 

activations is equivalent to XNOR-bitcount, where 𝑃 is the number of ‘+1’s / ‘1’s, 𝑀 is the 

number of ‘-1’s / ‘0’s, and 𝑁 is the size of the filter. 

 

Figure 4: MAC operation equivalency to XNOR-bitcount operation when using binary weights and 

activations 

This work only refers to the process of forward propagation, assuming that the network 

has already been trained and that the weights of the filters used have been set. Regardless, full-

precision operations that are necessary for optimal BCNN performance – i.e. batch 

normalization, pooling – and the training process can be taken care of through auxiliary process 

units [18] and enhancements or modifications to the peripheral circuitry of the memory array. 

The STT-MRAM itself is only responsible of performing convolutions through XNOR-

bitcount [18].  

In forward propagation, once the output tensor – or feature map – is generated, its 

elements have to be binarized as it becomes the activation tensor of the next layer of the BCNN. 

Keep in mind that each layer of the BCNN can be made up of multiple filters, such that each 
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one outputs a different feature map; all of those output tensors become the activation tensors 

of the next layer, and each one is convolved with each filter of that layer. The binarization is 

typically done using the sign activation function [5]. 

 

IV.   XNOR-BITCOUNT METHODS BASED ON COMPUTING - IN - MEMORY 

Wang et. Al [1] propose a method to achieve the XNOR-bitcount operation using 

MRAMs based on VC-SOT MTJs. In this work, I replicate this method using STT-MTJs, but 

with a hardware-level optimization. I further propose an algorithm-level optimization to the 

method presented in [1].  

A. XNOR-bitcount method proposed by Wang et al. 

Wang et al.’s [1] XNOR-bitcount (XNOR-BC) method uses the write and read 

operations of a normal memory to perform multiple Boolean operations in parallel; the bias 

voltage on each bitcell’s VC-SOT MTJ and the direction of the SOT current are configured for 

this purpose. The implementation of the method in [1] in a STT-MRAM simply requires an 

adaptation of the write and read operations, which has been explained in Section II.C. In STT-

MRAMs, the polarization of the shared BL/SL that determines the current direction through 

the MTJ, and the activation of the access transistors that allow said current to flow, are 

configured to implement Boolean logic. 
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Single-bit XNOR operation 

For the XNOR operation in [1], the authors consider that its complementary operation, 

XOR, can be expressed through two AND operations and one OR operation, as shown in 

Equation 1: 

𝑋𝑂𝑅 ⟶  𝐴 ⊕ 𝑊 =  �̅� ∙ 𝑊 + 𝐴 ∙ �̅� (1) 

Equation 1  

Where 𝐴 is one binary input activation and 𝑊 is one binary filter weight. The single-

bit XOR/XNOR process uses two complementary bitcells or MTJs – 𝑀𝑇𝐽1 and 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅ – and the 

basic steps are the following: 

1) Write weights. Write kernel weights 𝑊 and �̅� to 𝑀𝑇𝐽1 and 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅, respectively, in 

two cycles (see Figure 5.a). 

2) AND operation. Apply input activations 𝐴 and �̅� to the gates of the access transistors 

for 𝑀𝑇𝐽1 and 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅, respectively, and apply current to write ‘0’ to both bitcells. This 

stores �̅� ∙ 𝑊 in 𝑀𝑇𝐽1, and 𝐴 ∙ �̅� in 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅. 

3) OR operation. Read both bitcells simultaneously (see Figure 5.b); each sensing current 

represents the stored state �̅� ∙ 𝑊 and 𝐴 ∙ �̅�, respectively, and they are added because 

of the connected bitlines. The resulting current represents the XOR result �̅� ∙ 𝑊 + 𝐴 ∙

�̅�. Table 3, in the fourth and fifth columns, shows the state that is read from the bitcell 

with 𝑀𝑇𝐽1 and the bitcell with 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅, respectively, during this step for all the possible 

activation 𝐴 and weight 𝑊 combinations. The last column shows the accumulated read 

current values that represent the XOR result. 
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Figure 5: Wang et al.’s complementary STT-bitcell structure. (a) Two-cycle process to write weights 

for single-bit XOR operation, (b) Simultaneous read operation for single-bit OR computation step 

 

 

A W XOR 
State read from 

𝑀𝑇𝐽1 (�̅� ∙ 𝑊) 

State read from 

𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅ (𝐴 ∙ �̅�) 

Total read current 

0 0 0 0 0 2 × 𝐼𝑟𝑒𝑎𝑑(0) 

0 1 1 1 0 𝐼𝑟𝑒𝑎𝑑(1) +  𝐼𝑟𝑒𝑎𝑑(0) 

1 0 1 0 1 𝐼𝑟𝑒𝑎𝑑(1) +  𝐼𝑟𝑒𝑎𝑑(0) 

1 1 0 0 0 2 × 𝐼𝑟𝑒𝑎𝑑(0) 
 

Table 3: Stored states read from 𝑀𝑇𝐽1 and 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅ during last step (simultaneous reading) and total 

read current according to activations A and weights W using Wang et al.’s XNOR-BC method 

 

The two-cycle weight-writing process steps are (see Figure 5.a): 

a. Apply 𝑊 to the access transistor gates of both bitcells; apply current to write 

‘1’ in 𝑀𝑇𝐽1 and current to write ‘0’ in 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅. 

b. Apply �̅� to the access transistor gates of both bitcells; apply current to write 

‘0’ in 𝑀𝑇𝐽1 and current to write ‘1’ in 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅. 
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Multi-bit XNOR-bitcount operation 

To compute the MAC or XNOR-bitcount result between a 𝑘 × 𝑘 kernel with N weights 

and a 𝑘 × 𝑘 feature map portion with N input activations, the corresponding N  XOR/XNOR 

operations can be computed in parallel using the concept of ‘analog majority’ [1]. Two 

complementary bitcell strips are used: all the bitcells with 𝑀𝑇𝐽𝑁s are on the same bitline 

(𝑠𝑡𝑟𝑖𝑝1), and all the 𝑀𝑇𝐽𝑁
̅̅ ̅̅ ̅̅ ̅s are on another single bitline (𝑠𝑡𝑟𝑖𝑝1̅̅ ̅̅ ̅̅ ̅̅ ); their BLs are connected to 

the same SA. Figure 6 shows this memory-array structure for 𝑁 = 9 using STT-MTJs. 

Figure 6: Wang et al.’s complementary bitcell-strips structure using STT-MTJs for multibit 

computation with N=9  

Keeping in mind that ‘0’ actually represents ‘-1’ in a BCNN and attending to Equation 

1, if the majority of XOR results are ‘0’, then the real XOR-BC result would be negative and 

after binarization it would be ‘-1’ (‘0’); if the majority are ‘1’, the real XOR-BC result would 

be positive and its binary value would be ‘1’. This majority detection and binarization is 

performed by reading all of the bitcells simultaneously and comparing the accumulated current 

𝐼𝑁−𝑋𝑂𝑅𝑠 to a properly set reference current 𝐼𝑟𝑒𝑓 in the SA. If 𝐼𝑁−𝑋𝑂𝑅𝑠 > 𝐼𝑟𝑒𝑓 then the majority 

of XOR results were ‘0’ and the XOR-BC result is ‘0’, and if 𝐼𝑁−𝑋𝑂𝑅𝑠 < 𝐼𝑟𝑒𝑓, then the majority 

were ‘1’ and the XOR-BC result is ‘1’. Both the binary XOR-BC result and its complement 

XNOR-BC are produced by the SA. 
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B. Hardware-level optimization 

The two-cycle process to write the weights and the simultaneous read operation for a 

single-bit XOR operation were previously shown in Figure 5.a and Figure 5.b, respectively, 

using the complementary bitcell structure proposed by Wang et al. [1] but implemented with 

STT-MTJs. 

With Wang et al.’s structure, each bitcell in the complementary pair occupies a different 

BL, and they don’t share the WL (as seen in Step 2, complementary gate voltages are used). 

This means that a single-bit XNOR operation requires 2 BLs and 2 WLs of the memory array; 

N parallel XNOR operations – which use two complementary bitcell strips – would require 2 

BLs and 2×N WLs. Moreover, this structure requires a connection between the bitlines of 

complementary strips to a single SA. 

I propose a hardware-level optimization that consists on locating each pair of 

complementary bitcells in the same bitline. Figure 7 shows this optimization. 

Figure 7: Hardware-level optimization for a pair of complementary bitcells 

Regarding storage density, N parallel XNOR operations would require just 1 BL and 

2×N WLs, as the complementary bitcell strips would be on the same bitline. Clearly, the BL 

Wang et al. 

This work 
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would already be “connected” between both strips to the same SA. 

This optimization implies a slight modification to the two-cycle weight-writing process: 

the same state must be written to both bitcells at the same time, while complementary access 

transistor gate voltages are applied. This modification can be taken further by writing ‘0’ to all 

the bitcells – “resetting” them – in Step 1, and writing the ‘1’ weights in the second step using 

𝑾 and �̅̅̅� as gate voltages. The first step implies an increased energy consumption; however, 

in multi-kernel operations in which the kernel weights are written sequentially into the 

memory, only one “write ‘0’/‘0’ step” would be necessary at the beginning of the weight-

writing process followed by only “ write ‘1’/ ‘1’ ” steps, instead of sequential “ write ‘0’/ ‘0’ ” 

+ “ write ‘1’/ ‘1’ ” steps for every kernel. Figure 8 shows the proposed complementary bitcell 

structure for the two-cycle write and simultaneous read operations. 

 

Figure 8: This work’s optimized complementary STT-bitcell structure: (a) Two-cycle process to write 

weights for single-bit XOR operation, (b) Simultaneous read operation for single-bit OR step 

 



24 
 

 

The modified two-cycle weight-writing process steps, shown in Figure 8.a, are: 

a. Activate the access transistor of both bitcells; apply current to write ‘0’ to 𝑀𝑇𝐽1 

and 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅. 

b. Apply 𝑊 and �̅� to the gates of the access transistors to 𝑀𝑇𝐽1 and 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅, 

respectively; apply current to write ‘1’ in both bitcells.  

Regarding the complementary bitcell strips structure, Figure 6 in Section IV. A showed 

it using the array structure proposed in [1]. Keep in mind that each pair of complementary 

MTJs does not share the same WL. This array would be used for a XNOR-bitcount operation 

of a 9-bit filter (3x3) with a 9-bit feature map portion. Figure 9 shows the complementary strips 

using this work’s hardware optimization, in which they share the same BL and SL.  

 
Figure 9: This work’s optimized complementary bitcell strips structure using STT-MTJs for multibit 

computation with N=9 

 

 

 

C. Wang et al.’s XNOR-bitcount method with STT-MRAMs and optimized hardware 

Figure 10 shows Wang et al.’s proposed method [1] using the optimized array structure for 

a single-bit XOR/XNOR operation, in which the complementary bit-strips share the BL. 
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Figure 10: Wang et al.’s single-bit XOR/XNOR operation using STT-MTJs and optimized array 

structure 

Figure 10.1 shows the first step in which the weights are written into the bitcells’ MTJs, 

Figure 10.2 shows the AND operation, and Figure 10.3 shows the OR operation in which all 

the bitcells are simultaneously read to obtain the accumulated current representative of the 

complete XOR-BC operation. 

 

 

 

D. Optimized XNOR-bitcount method with STT-MRAMs and optimized hardware. 

Single-bit XNOR-bitcount operation using algorithmic optimization 

Beyond the memory array structure optimization, this work proposes a more important 

algorithmic optimization to the XNOR-BC method proposed by Wang et al. [1]: the second 

(AND operation) and third step (OR operations and analog majority) of the XNOR-BC method 
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can be merged together into a single read step based on the input activations. I consider the 

expression of the XNOR operation through two AND operations and one OR operation, as 

shown in Equation 2: 

𝑋𝑁𝑂𝑅 ⟶  𝐴 ⊕ 𝑊̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  A ∙ 𝑊 + �̅� ∙ �̅� (2) 

Equation 2  

This methodology allows the direct computation of the XNOR-BC result, instead of the 

XOR-BC. The optimized single-bit process is illustrated in Figure 11, in which the exact same 

optimized hardware as in Figure 10 is used. 

 

Figure 11: This work’s single-bit XOR/XNOR operation using STT-MTJs and optimized array 

structure 
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The optimized method’s basic steps are (see Figure 11): 

1) Write weights. Write kernel weights 𝑊 and �̅� to 𝑀𝑇𝐽1 and 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅, respectively, in two 

cycles (see Figure 8.a). 

2) AND & OR operation. Apply input activations 𝐴 and �̅� to the gates of the access 

transistors for 𝑀𝑇𝐽1 and 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅, respectively, and read both bitcells simultaneously (see 

Figure 8.b). Only one bitcell is read because of the complementary activations used as 

𝑉𝑔. The reading of the bitcell with 𝑀𝑇𝐽1 results in the AND operation A ∙ 𝑊, and the 

reading of the bitcell with 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅ results in the AND operation �̅� ∙ �̅�. The OR operation 

between them occurs because they share the same bitline and the complementary 

bitcells are operated simultaneously, so the resulting current represents the XNOR 

result A ∙ 𝑊 +  �̅� ∙ �̅�. Table 4, in the fourth and fifth columns, shows the state that is 

read from the bitcell with 𝑀𝑇𝐽1 and the bitcell with 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅, respectively, during this step 

for all the possible activation 𝐴 and weight 𝑊 combinations. The last column shows 

the accumulated read current values that represent the XNOR result. 

A W XNOR 
State read from 

𝑀𝑇𝐽1 (�̅� ∙ 𝑊) 

State read from 

𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅ (𝐴 ∙ �̅�) 

Total read 

current 

0 0 1 Not read 1 𝐼𝑟𝑒𝑎𝑑(1) 

0 1 0 Not read 0 𝐼𝑟𝑒𝑎𝑑(0) 

1 0 0 0 Not read 𝐼𝑟𝑒𝑎𝑑(0) 

1 1 1 1 Not read 𝐼𝑟𝑒𝑎𝑑(1) 

 

Table 4: Stored states read from 𝑀𝑇𝐽1 and 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅ during last step (simultaneous reading) and total 

read current according to activations A and weights W using this work’s XNOR-BC method 
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Multi-bit XNOR-bitcount operation using algorithmic optimization 

To compute the MAC or XNOR-bitcount result between a 𝑘 × 𝑘 kernel with N weights 

and a 𝑘 × 𝑘 feature map portion with N input activations, the N  XNOR operations are 

computed in parallel using the same two complementary bitcell strips as in Wang et al.’s 

method. In Step 1 the weights 𝑾 = [𝑊1, 𝑊2, . . . , 𝑊𝑛] and �̅̅̅� are parallelly written into the 

complementary strips. In Step 2 the input activations 𝑨 = [𝐴1, 𝐴2, . . . , 𝐴𝑛] and �̅� are parallelly 

applied to the bitcells’ access transistor gates and they are all simultaneously read (although 

only half of the bitcells in the two complementary strips are really read); using the same analog 

majority approach, the currents produced by each pair of complementary bitcells 

(representative of the XNOR results) are accumulated resulting in 𝐼𝑁−𝑋𝑁𝑂𝑅𝑠, and when 

compared to a proper reference signal in a SA, the binarized XNOR-bitcount result is obtained. 

In this method, if 𝐼𝑁−𝑋𝑁𝑂𝑅𝑠 > 𝐼𝑟𝑒𝑓, then the majority of XNOR results were ‘0’ and the XNOR-

BC result is ‘0’, and if 𝐼𝑁−𝑋𝑁𝑂𝑅𝑠 < 𝐼𝑟𝑒𝑓, then the majority were ‘1’ and the XNOR-BC result 

is ‘1’.  

The advantages of this optimized XNOR-bitcount method are the following: 

• Only two write operations (write ‘0’ and write ‘1’ when writing weights) are needed 

instead of three. 

• The weights stored in the bitcells are not overwritten during the process. This means 

that if consecutive XNOR-bitcount operations are performed using the same filter 

(weights) but different feature map portions (activations), the weights do not have to be 

re-written and only the reading step (analog majority) has to be performed. This means 

that when performing a convolution between a filter and a feature map, the first MAC 

or XNOR-bitcount is performed as mentioned earlier, but the XNOR-BCs that follow 
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– between the same filter and other feature map portions –, consist of only the 

simultaneous read operation (that computes the AND and OR operations) with specific 

access transistor activations (Step 2). 

• In Step 2, only half of the 2N bitcells are activated instead of all of them (assuming a 

N-bit filter). This means less read current, and therefore less energy consumption. 

• The direct result of the SA is XNOR-bitcount, instead of XOR-bitcount. 

 

V.   DESIGN OF STT-MRAM AND SIMULATION RESULTS OF XNOR-BITCOUNT 

METHODS 

A. STT-MRAM bitcell design 

As mentioned earlier, the DMTJ device is described by macrospin-based Verilog-A 

compact models [16] and the access transistors belong to TSMC’s commercial 65-nm 

technology node. The Synopsys Custom Compiler tool was used for simulations. 

VDD selection and access transistor sizing 

STT-MRAMs have the advantage of being able to operate at relatively low voltages 

[9]. Therefore, a polarization voltage of 0.8V was chosen in this work, which can be considered 

to be in the upper limit of the low-voltage range: 

𝑉𝐷𝐷 = 0.8 𝑉 

Lower voltages were not chosen because they required the access transistors to be too 

large in order for them to ensure a proper 𝐼𝑤𝑟𝑖𝑡𝑒/𝐼𝑐 ratio and an adequate sense margin in the 

reading operation [17]. Bear in mind that in STT-MRAM bitcells, most of the bitcell area is 

occupied by the access transistors, not the MTJ [19], so minimizing the transistor sizes is 

necessary. 
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Write operation constraints for transistor sizing 

To ensure a robust write operation, a write current ratio 𝐼𝑤𝑟𝑖𝑡𝑒/𝐼𝑐 greater than 2 is 

desired [15]. The write currents ratios of each switch are set to the same value. The write current 

is set to ensure a write-error-rate (WER) of 10−7 [9]. For ‘1’ to ‘0’ switching, the n-MOS 

transistor is basically the only driver. For ‘0’ to ‘1’ switching, the p-MOS transistor is the main 

driver, but the n-MOS transistor contributes to the write current. Therefore, the sizing process 

consists on setting 𝑤𝑝 to the minimum width allowed (𝑤𝑚𝑖𝑛 = 120 𝑛𝑚), and preforming a 

sweep to find 𝑤𝑛. With 𝑤𝑛 set, a sweep is performed to find 𝑤𝑝. 

Read operation constraints for transistor sizing 

For the read operation, both read disturbance and read decision failures must be avoided 

[20] [21]. To avoid read disturbance failures, which are accidental switchings of the MTJs 

states by too-large read currents [17], an appropriate 𝑉𝑟𝑒𝑎𝑑 should be calculated. Reference 

[21] presents the following equation from which 𝐼𝑟𝑒𝑎𝑑 can be determined by setting the read 

disturbance rate (RDR) to the common value of 𝑅𝐷𝑅 = 10−9 : 

𝑅𝐷𝑅 = 1 − exp [−
𝑡𝑟𝑒𝑎𝑑

𝜏 
exp (−Δ (1 −

𝐼𝑟𝑒𝑎𝑑

𝐼𝑐0
))]  (3) 

Equation 3  

𝑡𝑟𝑒𝑎𝑑 is the read pulse width, 𝜏 is the attempt period (~1 𝑛𝑠), and Δ is the thermal stability 

factor (see Table 1). 𝐼𝑟𝑒𝑎𝑑 is the current that flows through the DMTJ from the SL to the BL 

when a sensing voltage 𝑉𝑟𝑒𝑎𝑑 is applied to the SL. 𝐼𝑐0 is the critical switching current of the 

DMTJ (see Table 1). From Equation 3 we get the following result: 

 

𝐼𝑟𝑒𝑎𝑑 = 9.9868 [𝑢𝐴] 
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The largest read current that flows through the DMTJs is the read current for the ‘0’ 

state 𝐼𝑟𝑒𝑎𝑑(0), given that 𝑅0 corresponds to the lowest resistance state and a constant 𝑉𝑟𝑒𝑎𝑑 is 

applied. Therefore, the following condition must be achieved in order to prevent read 

disturbances: 

𝐼𝑟𝑒𝑎𝑑(0) ≤ 𝐼𝑟𝑒𝑎𝑑 (4) 

Equation 4  

To avoid read decision failures, which occur when the sensing circuitry cannot 

distinguish between the two states of the MTJ [20], the reading operation should be robust 

enough. This robustness can be quantified using the read-error-ratio (RER), that refers to the 

amount of wrongfully read bits from the total. The RER can be evaluated through the amount 

of standard deviations that fit the space between the median 𝜇𝐼𝑟𝑒𝑎𝑑(0)
 of the 𝐼𝑟𝑒𝑎𝑑(0) distribution 

and 𝐼𝑟𝑒𝑓, and between the median 𝜇𝐼𝑟𝑒𝑎𝑑(1)
 of the 𝐼𝑟𝑒𝑎𝑑(1) distribution and 𝐼𝑟𝑒𝑓 [17]. A 3𝜎 

sensing margin (SM), which allows a RER of approximately 10−3 [21], is chosen for the 

design. This means that the distance between 𝜇𝐼𝑟𝑒𝑎𝑑(0)
 and 𝜇𝐼𝑟𝑒𝑎𝑑(1)

 (the nominal SM) should 

be: 

𝜇𝐼𝑟𝑒𝑎𝑑(0)
− 𝜇𝐼𝑟𝑒𝑎𝑑(1)

≥ 3𝜎𝐼𝑟𝑒𝑎𝑑(0)
+ 3𝜎𝐼𝑟𝑒𝑎𝑑(1)

 (5) 

Equation 5  

Access transistor sizing 

𝐼𝑤𝑟𝑖𝑡𝑒/𝐼𝑐 ≈ 2.6 was chosen. Lower write current ratios allowed smaller transistor 

widths, but the associated process variations resulted in worsened sense margins – lower that 

3𝜎. Larger access transistor sizes are necessary to minimize said variations [21]. Larger widths 

also allow higher write currents and shorter write delays, and the latter allow lower write 

energy. However, the area occupied by the transistors should be as small as possible. 

Keeping this trade-off in mind, a careful sizing methodology was followed that resulted 

in the following access transistor widths: 
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𝒘𝒏 [𝒏𝒎] 310 

𝒘𝒑 [𝒏𝒎] 310 

Table 5: Access transistor widths 

The corresponding current 𝐼, delay 𝑡 and energy 𝐸 nominal results for the writing 

operation (𝑊𝐸𝑅 = 10−7) and the reading operation (𝑅𝐷𝑅 = 10−9, 3𝜎 𝑆𝑀) are shown in 

Table 6 and Table 7, respectively. 

State switch 𝑰𝒘𝒓𝒊𝒕𝒆 [𝝁𝑨] 𝒕𝒘𝒓𝒊𝒕𝒆 [𝒏𝒔] 𝑬𝒘𝒓𝒊𝒕𝒆 [𝒇𝑱] 

(𝟎 → 𝟏) 37.22 2.577 76.80 

(𝟏 → 𝟎) 37.19 2.580 76.80 

Table 6: Write operation current, delay and energy results at bitcell level 

 

𝑽𝒓𝒆𝒂𝒅 = 95 [𝑚𝑉] 

State 𝑰𝒓𝒆𝒂𝒅 [𝝁𝑨] 𝒕𝒓𝒆𝒂𝒅 [𝒏𝒔] 𝑬𝒓𝒆𝒂𝒅 [𝒇𝑱] 

‘0’ 7.853 
1 

0.7461 

‘1’ 4.599 0.4369 

 
Table 7: Read operation current, delay and energy results at bitcell level 

 

The Monte Carlo analysis results for the reading operation are shown in Figure 12. For 

DMTJs, Gaussian-distributed process variations are considered for the area, FL and top/bottom 

oxide layers [9]. For the transistors, the technology node’s Monte Carlo library was used. 

 

Figure 12: Monte Carlo results for read operation considering process variations 
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Considering the read current means and standard deviations depicted in Figure 12, the 

spacing between read currents medians – nominal SM – is: 

𝜇𝐼𝑟𝑒𝑎𝑑(0)
− 𝜇𝐼𝑟𝑒𝑎𝑑(1)

=  3.226 𝜇𝐴 

And the minimum spacing is: 

3𝜎𝐼0 + 3𝜎𝐼1 = 2.883 𝜇𝐴 

Even though there is a slight overlap between 𝐼𝑟𝑒𝑎𝑑(0) and 𝐼𝑟𝑒𝑎𝑑(1) distributions, the 

chosen transistor sizes allow a reliable differentiation between the parallel and antiparallel MTJ 

states. To improve the reading operation robustness, the transistor sizes can be increased [21], 

albeit larger bitcell area, or peripheral circuitry (SAs) with specific designs can be used [22]. 

B. Implementation of XNOR-bitcount methods and simulation results 

To test the XNOR-bitcount method proposed in [1] implemented with STT-MTJs and 

optimized hardware, as well as this work’s optimized XNOR-bitcount method, Synopsys’ 

Custom Compiler was used to build the hardware and simulate said methods using vector files. 

Logic verification of methods 

Using the 𝐼𝑟𝑒𝑎𝑑(0) and 𝐼𝑟𝑒𝑎𝑑(1) values in Table 7, and considering the total read currents 

produced in each XOR/XNOR operation shown in Table 3 and Table 4, the following tables 

can be built that show the expected accumulated current 𝐼9−𝑋𝑂𝑅𝑠 and 𝐼9−𝑋𝑁𝑂𝑅𝑠 for each number 

of ‘1’ XOR and XNOR results in a 9-bit XOR/XNOR-bitcount operation (i.e. 3x3 filter and 

3x3 feature map portion). Table 8 shows the expected results using Wang et al.’s method. Keep 

in mind that the number of stored ‘1’s in the 18 MTJs is the number of ‘1’s of the XOR-BC 

operation, which is the number of ‘0’s in the XNOR-BC operation. Table 9 shows the expected 

results using this work’s method. The approximate reference currents 𝐼𝑟𝑒𝑓 that could be used 

are shown in both tables, calculated using the 3𝜎 rule presented in Section V. A. 



34 
 

 

# '1' XORs  0 1 2 3 4 5 6 7 8 9 

𝑰𝟗−𝑿𝑶𝑹𝒔 [𝝁𝑨] 141.36 138.11 134.8523 131.60 128.34 125.09 121.84 118.58 115.33 112.07 

XOR-BC result 0 0 0 0 0 1 1 1 1 1 

XNOR-BC result 1 1 1 1 1 0 0 0 0 0 

Table 8: Accumulated currents using Wang’s method corresponding to each XNOR-bitcount result 

 

 

# '1' XNORs  0 1 2 3 4 5 6 7 8 9 

𝑰𝟗−𝑿𝑵𝑶𝑹𝒔 [𝝁𝑨] 70.68 67.42615 64.17 60.92 57.66 54.41 51.16 47.90 44.65 41.39 

XOR-BC result 1 1 1 1 1 0 0 0 0 0 

XNOR-BC result 0 0 0 0 0 1 1 1 1 1 

Table 9: Accumulated currents using this work’s method corresponding to each XNOR-bitcount result 

  

Multi-kernel XNOR-bitcount simulation 

To test the correct functioning of both methods applied to STT-MRAMs and to show 

their parallelism and high-throughput, the same three XNOR-bitcount operations as in a 

example provided in [1] were used: three 3x3 filters are operated with a single 3x3 feature map 

portion (activations). Table 10 presents the weights and activations. XNOR-BC 1 has 4 ‘1’ 

XNOR results, XNOR-BC 2 has 5 ‘1’s, and XNOR-BC 1 has 2 ‘1’s.  

  

W (filter 

weights) 

A (feature 

map portion) 
XNOR 

XNOR- 

bitcount 

XNOR-BC 1 010100001 

010001110 

111010000 0 

XNOR-BC 2 101011110 000101111 1 

XNOR-BC 3 101010101 000100100 0 

 
Table 10: Weights and activations to evaluate XNOR-bitcount methods 

  
The three filters presented in Table 10 are simultaneously operated with a single set of 

9 activations. The memory array section (using this work’s optimized structure) that would 

allow this multi-kernel parallel computation is presented in Figure 13. 

𝐼𝑟𝑒𝑓 ≈ 126.5 [𝜇𝐴] 

𝐼𝑟𝑒𝑓 ≈ 55.8 [𝜇𝐴] 
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Figure 13: Memory array section for 9-bit multi-kernel parallel XNOR-BC computations 

 

The simulation waveforms, that show the complete parallel XNOR-bitcount operations 

of the three examples given in Table 10, are presented in Figure 14 and Figure 15.  

Figure 14: Simulation waveforms using Wang’s method of the three parallel XNOR-bitcount 

operations in Table 10 

(1) Write weights 

(3) OR + 

‘Analog majority’ 
(2) AND 
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Figure 15: Simulation waveforms using this work’s method of the three parallel XNOR-bitcount 

operations in Table 10 

 

The write pulse is 3 𝑛𝑠 long (to approximate 𝑡𝑤𝑟𝑖𝑡𝑒 in Table 6) and the read pulse is 

1 𝑛𝑠 long. By measuring the accumulated current in the last step of each XNOR-BC for both 

methods, Table 11 is built.  

  

Expected 

XNOR-BC 

result 

Wang’s 

𝑰𝟗−𝑿𝑶𝑹𝒔  
[𝝁𝑨] 

Wang’s 

XNOR-BC 

result 

This work’s 

𝑰𝟗−𝑿𝑵𝑶𝑹𝒔  
[𝝁𝑨] 

This work’s 

XNOR-BC 

result 

XNOR-BC 1 0 125.09 0 57.66 0 

XNOR-BC 2 1 128.34 1 54.41 1 

XNOR-BC 3 0 118.58 0 64.17 0 

 
Table 11: Accumulated currents measured for each XNOR-BC operation 

 

If the measured currents are compared with the 𝐼9−𝑋𝑂𝑅𝑠 and 𝐼9−𝑋𝑁𝑂𝑅𝑠 values in Table 8 

and Table 9, the XNOR-BC result obtained by each method can be found. As can be observed 

(1) Write weights 

(2) AND + OR + 

‘Analog majority’ 
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in Table 11,  the obtained results by Wang et al.’s method and this work’s method are correct. 

This verifies the correct functioning of this work’s proposed method and the parallelism that it 

allows for multi-kernel operations. 

 

Energy consumption and execution time comparison between XNOR-bitcount methods 

Worst-case energy and time comparison for single XNOR-BC with 3x3 filter 

In order to compare the methods in terms of execution time and energy consumption, 

the necessary time to execute the whole operation and the worst case energy 𝐸𝑛𝑒𝑟𝑔𝑦𝑊𝐶 

corresponding to a XNOR-bitcount operation between a 3x3 kernel/filter and a 3x3 portion of 

a feature map are calculated from the results presented in Table 6. These results are shown in 

Table 12 and Table 13. 

 𝑬𝒏𝒆𝒓𝒈𝒚 𝑾𝑪 [fJ] 

  

STEP 1 
Write weights 

STEP 2 
AND (write ‘0’) 

STEP 3 
Read & analog 

majority 
TOTAL 

XNOR-BC 

Wang et al. 2355.96 832.39 10.65 3199.00 
This work 2355.96 - 6.71 2362.68 

Table 12: Worst case energies for each XNOR-bitcount step and total energy consumption 

 

 Execution time [ns] 

  

STEP 1 
Write weights 

STEP 2 
AND (write ‘0’) 

STEP 3 
Read & analog 

majority 
TOTAL 

XNOR-BC 

Wang et al. 6 3 1 10 
This work 6 - 1 7 

Table 13: Execution times for each XNOR-bitcount step and total execution time 

 

Given that overwriting 0 in half of the 18 bitcells is not performed in this work’s method 

(step 2), and that only 9 bitcells are read instead of 18 in the last step, there is a clear advantage 

in energy consumption and execution time. 
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Sequential XNOR-BC operations: energy and time comparison 

 These advantages are enhanced when multiple consecutive XNOR-bitcounts are 

performed between the same 3x3 filter and multiple 3x3 portions of a feature map (representing 

multiple steps of the convolution process between said filter and the feature map). This is 

because this work’s method doesn’t require re-writing the filter weights in the bitcell in each 

XNOR-bitcount operation if the same filter is being used. The results are shown in Table 14, 

assuming that 5 consecutive XNOR-bitcount operations are performed using the same filter 

(which means that the same pair of complementary 9-bitcell strips are used). 

 𝑬𝒏𝒆𝒓𝒈𝒚 𝑾𝑪 [fJ] Execution time [ns] 

  

1st 

XNOR-

BC 
Following 

XNOR-BCs 
Total of 5 

consecutive 

XNOR-BCs 

1st 

XNOR-

BC 
Following 

XNOR-BCs 
Total of 5 

consecutive 

XNOR-BCs 
Wang et al. 3199.00 3199.00 15995.00 10 10 50 
This work 2362.68 6.71 2389.54 7 1 11 

 

Table 14: Energy and execution time results for 5 consecutive XNOR-bitcount operations 

 

This work’s method allows almost one order of magnitude reduction to the total energy 

consumption of 5 consecutive XNOR-bitcount operations, and almost a 78% reduction in total 

execution time. 
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VI.   CONCLUSIONS 

In this work, an optimized method to implement the XNOR-bitcount operation of 

BCNNs using compute-in-memory with STT-MRAMs was proposed. The STT-MRAM 

bitcells were carefully designed to allow optimal energy consumption and performance, as well 

as robust writing and reading operations. The XNOR-bitcount method presented in [1] was 

optimized algorithmically and at hardware-level. The hardware-level optimization of the 

memory array structure allowed a decrease in the storage density necessary to compute the 

XNOR-BC operation. This structure was used to implement both the original XNOR-BC 

method and the proposed algorithmically optimized method using STT-MRAM. The 

algorithmic optimization allowed a 30% reduction in execution time and a 26.1% reduction in 

energy consumption for a single XNOR-BC operation when using a 3x3 (9-bit) filter. 

Considering 5 sequential XNOR-BC operations with a single filter, the optimized method 

allowed a 78% decrease in execution time and a 85.1% reduction in energy consumption. 
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