

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

Computing-in-Memory XNOR-Bitcount Operation of Binary

Convolutional Neural Networks based on Spin-Transfer Torque

MRAMs

.

Ariana Musello Vásconez

Ingeniería en Electrónica y Automatización

Trabajo de fin de carrera presentado como requisito

para la obtención del título de

Ingeniera en Electrónica

Quito, 13 de diciembre de 2021

2

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

HOJA DE CALIFICACIÓN

 DE TRABAJO DE FIN DE CARRERA

Computing-in-Memory XNOR-Bitcount Operation of Binary

Convolutional Neural Networks based on Spin-Transfer Torque MRAMs

Ariana Musello Vásconez

Ramiro Taco, PhD Luis Miguel Prócel, PhD

Quito, 13 de diciembre de 2021

3

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales

de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad

Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad

intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este

trabajo en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación

Superior del Ecuador.

Nombres y apellidos: Ariana Musello Vásconez

Código: 00200447

Cédula de identidad: 1721742151

Lugar y fecha: Quito, 13 de diciembre de 2021

4

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado

como una publicación, incluso a pesar de estar disponible sin restricciones a través de un

repositorio institucional. Esta declaración se alinea con las prácticas y recomendaciones

presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017)

Discussion document on best practice for issues around theses publishing, disponible en

http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following capstone project is available through Universidad San Francisco de Quito

USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be

considered a publication. This statement follows the recommendations presented by the

Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion

document on best practice for issues around theses publishing available on

http://bit.ly/COPETheses.

http://bit.ly/COPETheses
http://bit.ly/COPETheses

5

RESUMEN

Las redes neuronales binarias (BNN), en las que los pesos y activaciones son

representadas con un solo bit, son una alternativa eficiente en cuanto a almacenamiento y

computación que permite implementar redes neuronales convolucionales en dispositivos con

recursos computacionales limitados. En BNNs, la operación MAC es reemplazada por una

operación de XNOR-bitcount. El uso de arquitecturas de computación en memoria (CIM)

permite un ahorro incluso mayor en energía y tiempo para la implementación de BNNs. En

este contexto, el uso de STT-MRAMs ofrece los beneficios de no-volatilidad, gran velocidad,

consumo bajo de energía, escalabilidad, entre otros. Este trabajo propone optimizaciones a

nivel de hardware y algoritmo para la operación de XNOR-bitcount basada en CIM presentada

por Wang et al. en [1], usando STT-MRAMs. La optimización de hardware reduce a la mitad

el espacio de almacenamiento requerido para cada operación XNOR-bitcount. Asumiendo un

filtro de 9 bits (9 pesos), la optimización algorítmica permite 30% menos tiempo de ejecución

y 26.1% menos consumo energético. Para 5 operaciones XNOR-bitcount secuenciales usando

el mismo filtro, la optimización algorítmica ofrece una reducción de 78% en tiempo de

ejecución y una reducción de 85.1% en consumo energético.

Palabras clave: Redes neuronales binarias (BNN), redes neuronales convolucionales (CNN),

computación en memoria (CIM), transferencia por torque de spin (STT), STT-MRAM,

junturas túnel magnéticas de doble barrera (DMTJ), operación MAC, XNOR-bitcount.

6

ABSTRACT

Binary neural networks (BNN), in which weights and activations are represented with

one single bit, are a storage and computationally efficient alternative that allows convolutional

neural networks to be implemented in devices with limited computational resources. In BNNs

the MAC operation is replaced with a bitwise XNOR-bitcount operation. The use of

computation-in-memory (CIM) architectures allows further energy and time savings for BNN

implementation. In this context, the use of STT-MRAMs provides the benefits of non-

volatility, high speed, low-power consumption, scalability, among others. This work proposes

hardware- and algorithmic-optimizations to the CIM-based XNOR-bitcount method presented

by Wang et al. in [1], using STT-MRAMs. The hardware optimization reduces in half the

storage space required for each XNOR-bitcount operation. Assuming a 9-bit filter (9 weights),

the algorithmic optimization provides 30% less execution time and 26.1% less energy

consumption in a single XNOR-bitcount operation. For 5 sequential XNOR-bitcount

operations using the same filter, the algorithmic optimization allows a 78% reduction in

execution time and 85.1% reduction in energy consumption.

Key words: Binary neural networks (BNN), convolutional neural networks (CNN), compute-

in-memory (CIM), spin-transfer torque (STT), STT-MRAM, double-barrier magnetic tunnel

junction (DMTJ), MAC operation, XNOR-bitcount.

7

TABLE OF CONTENTS

I. Introduction... 10

II. Spintronic devices and STT-MRAMs .. 11

A. MTJ-based MRAM bitcells .. 11

B. STT-MRAM bitcell design... 13

C. Equivalency of operations between VC-SOT MRAMs and STT-MRAMs 14

Writing operation ... 14

Reading operation .. 15

III. Binary convolutional neural networks and XNOR-bitcount 16

IV. XNOR-bitcount methods based on Computing - in - Memory 18

A. XNOR-bitcount method proposed by Wang et al. ... 18

Single-bit XNOR operation .. 19

Multi-bit XNOR-bitcount operation ... 21

B. Hardware-level optimization .. 22

C. Wang et al.’s XNOR-bitcount method with STT-MRAMs and optimized hardware. 24

D. Optimized XNOR-bitcount method with STT-MRAMs and optimized hardware..... 25

Single-bit XNOR-bitcount operation using algorithmic optimization ... 25

Multi-bit XNOR-bitcount operation using algorithmic optimization ... 28

V. Design of STT-MRAM and simulation results of XNOR-bitcount methods 29

A. STT-MRAM bitcell design... 29

VDD selection and access transistor sizing .. 29

B. Implementation of XNOR-bitcount methods and simulation results 33

Logic verification of methods ... 33

Energy consumption and execution time comparison between XNOR-bitcount methods .. 37

VI. Conclusions ... 39

Bibliography ... 40

8

TABLE INDEX

Table 1: Characteristics of DMTJ model ... 14

Table 2: Equivalency of writing operation between VC-SOT MTJs and STT MTJs 15

Table 3: Stored states read from 𝑀𝑇𝐽1 and 𝑀𝑇𝐽1 during last step (simultaneous reading) and

total read current according to activations A and weights W using Wang et al.’s XNOR-

BC method... 20

Table 4: Stored states read from 𝑀𝑇𝐽1 and 𝑀𝑇𝐽1 during last step (simultaneous reading) and

total read current according to activations A and weights W using this work’s XNOR-BC

method ... 27

Table 5: Access transistor widths .. 32

Table 6: Write operation current, delay and energy results at bitcell level 32

Table 7: Read operation current, delay and energy results at bitcell level 32

Table 8: Accumulated currents using Wang’s method corresponding to each XNOR-bitcount

result .. 34

Table 9: Accumulated currents using this work’s method corresponding to each XNOR-

bitcount result .. 34

Table 10: Weights and activations to evaluate XNOR-bitcount methods 34

Table 11: Accumulated currents measured for each XNOR-BC operation 36

Table 12: Worst case energies for each XNOR-bitcount step and total energy consumption . 37

Table 13: Execution times for each XNOR-bitcount step and total execution time 37

Table 14: Energy and execution time results for 5 consecutive XNOR-bitcount operations .. 38

9

FIGURE INDEX

Figure 1: (a) VC-SOT-based bitcell and (b) STT-based bitcell ... 13

Figure 2: Reading operation for a single STT-based bitcell .. 15

Figure 3: Example of multiply-and-accumulate (MAC) operation in CNNs 16

Figure 4: MAC operation equivalency to XNOR-bitcount operation when using binary

weights and activations ... 17

Figure 5: Wang et al.’s complementary STT-bitcell structure. (a) Two-cycle process to write

weights for single-bit XOR operation, (b) Simultaneous read operation for single-bit OR

computation step ... 20

Figure 6: Wang et al.’s complementary bitcell-strips structure using STT-MTJs for multibit

computation with N=9 ... 21

Figure 7: Hardware-level optimization for a pair of complementary bitcells 22

Figure 8: This work’s optimized complementary STT-bitcell structure: (a) Two-cycle process

to write weights for single-bit XOR operation, (b) Simultaneous read operation for

single-bit OR step .. 23

Figure 9: This work’s optimized complementary bitcell strips structure using STT-MTJs for

multibit computation with N=9 ... 24

Figure 10: Wang et al.’s single-bit XOR/XNOR operation using STT-MTJs and optimized

array structure .. 25

Figure 11: This work’s single-bit XOR/XNOR operation using STT-MTJs and optimized

array structure .. 26

Figure 12: Monte Carlo results for read operation considering process variations 32

Figure 13: Memory array section for 9-bit multi-kernel parallel XNOR-BC computations ... 35

Figure 14: Simulation waveforms using Wang’s method of the three parallel XNOR-bitcount

operations in Table 10 ... 35

Figure 15: Simulation waveforms using this work’s method of the three parallel XNOR-

bitcount operations in Table 10 ... 36

10

I. INTRODUCTION

Convolutional neural networks (CNN) are ideal in the fields of image classification,

object detection and object recognition [2] [3]. However, the deep structures that allow them

to provide state-of-the-art results also makes them incredibly computationally and memory

expensive [3], so they require high-performance hardware like GPUs [2]. This makes deep

CNNs unusable in real-world applications and Internet-of-Things (IoT) applications, as they

cannot be integrated in smaller devices with limited storage and computational resources

such as cell-phones, embedded devices and smart portable devices [4] [2].

To address this, several network compression techniques have been proposed, and one

of them is the quantization of the network’s weights and activations: representing their floating-

point values using very low precision [2]. The extreme case is binarization, which gives rise

to binary neural networks (BNNs). In BNNs, the weights and activations are represented with

one bit: data can be ‘-1’ (‘0’) or ‘+1’ (‘1’) [5]. This implies that the costly multiply-and-

accumulate (MAC) operations between neural networks’ activations and weights can be

replaced with bitwise XNOR-bitcount operations [2]. This makes BNNs power-efficient,

computationally faster, and memory-saving [2] [4].

To further optimize BNNs, a compute-in-memory (CIM) architecture can be

considered. The gap in performance between memories and computing units, called the ‘von-

Neumann bottleneck’, causes the data movement between memory and the computing unit to

be even more energy- and time-expensive than the computation itself [6] [7]. The computation-

in-memory (CIM) approach allows data computation to be performed by exploiting the

memory’s internal structure and analog functionality, as well as the peripheral circuitry (sense

amplifiers, decoders, etc.) [7]; the memory array is not modified, but the peripheral circuitry

can be adapted for this purpose.

11

In this matter, spin-transfer torque magnetic random-access memories (STT-MRAMs)

are leading candidates for non-volatile on-chip memory, Internet of Things (IoT) applications,

and logic-in-memory (LIM) applications [8] [9]. This is because they can offer high write/read

speed, small area footprint, non-volatility, low power consumption, easy integration with

CMOS technology, scalability, and high endurance [10] [11].

In the above context, this work investigates hardware- and algorithmic-optimizations

to the XNOR-bitcount (XNOR-BC) operation of binary convolutional neural networks

(BCNNs) using a CIM approach and STT-MRAMs. This work focuses particularly on the

XNOR-BC method proposed in [1], which uses VC-SOT MRAMs for CIM BCNN

implementation.

II. SPINTRONIC DEVICES AND STT-MRAMS

A. MTJ-based MRAM bitcells

The elementary device of spintronic based MRAM is the magnetic tunnel junction

(MTJ) [8]. A single-barrier MTJ is composed by two ferromagnetic (FM) layers with a thin

oxide layer between them. While one FM layer – the reference layer (RL) – has a fixed

magnetic orientation, the magnetization of the other FM layer – the free layer (FL) – can be

either parallel (low resistance state) or anti-parallel (high resistance state) to the RL. The low

resistance state denotes data ‘0’ and the high resistance state denotes data ‘1’ [12] [10].

Among the switching techniques for the MTJ state, there is spin-transfer torque (STT)

[10] and voltage-controlled spin-orbit torque (VC-SOT) [12]. As mentioned before, Wang et

al. [1] propose a BCNN design based on multibit VC-SOT MRAM. In this work, I replicate

their method – and further optimize it – using STT-MRAM.

12

A VC-SOT MTJ device has three terminals, allowing a separation between writing and

reading paths [13]. The MTJ’s RL is connected to a voltage source and the FL is in contact

with an antiferromagnetic layer or heavy metal [12]. Figure 1.a shows the structure for the

MRAM bitcell used in [1] based on a VC-SOT MTJ. When a current (𝐼𝑆𝑂𝑇) flows through the

heavy metal, spins accumulate and torque switching is generated on the MTJ’s FL, changing

its magnetization according to the direction of the current [13]. A bias voltage 𝑉𝑏, related to

the VCMA effect, applied to the RL can modulate the energy barrier of the MTJ and, therefore,

modulate the SOT threshold current [1]. This means that with a positive 𝑉𝑏 – that reaches the

MTJ by activating the access transistor through the wordline (WL) –, the SOT current can

switch the MTJ state, while with 𝑉𝑏 = 0, the current has no effect on said state [1].

On the other hand, a STT-MTJ uses the same path to write and read [13]. STT switching

is based on applying a current 𝐼𝑤𝑟𝑖𝑡𝑒 through the MTJ greater than its critical switching current

𝐼𝑐0, which is the necessary current to write a ‘0’ state [10]. If the current flows from the MTJ’s

FL to the RL, it is configured into parallel state (‘0’ is written), and if the current flows in the

opposite direction (RL to FL), it is configured into anti-parallel state (‘1’ is written). To

generate said current in the appropriate direction, either the bitline (BL) or sourceline (SL) of

the bitcell is charged to VDD, while the other line is grounded [10]. Figure 1.b shows the

structure for the MRAM bitcell based on a STT-MTJ that will be used in this work. It uses a

double-barrier MTJ (DMTJ) and is in 2T1MTJ-SC configuration; this will be further explained

in Section II. B.

13

Figure 1: (a) VC-SOT-based bitcell and (b) STT-based bitcell

B. STT-MRAM bitcell design

The critical switching current 𝐼𝑐0 of a single-barrier MTJ (SMTJ) is generally quite

high, so the use of double-barrier MTJs (DMTJs) is a good alternative that allows a reduced

𝐼𝑐0 due to an additional RL that increases the torque generated over the FL [14]. The reduced

switching current allows DMTJ-based STT-MRAM to have reduced write access times, lower

write and read energy consumption, smaller area, and reduced leakage power, albeit higher

read access times [15]. Moreover, the critical currents for writing ‘0’ and ‘1’ in a DMTJ are

equal. These advantages can be appreciated when the bitcell is in 2T1MTJ-SC configuration:

2 access transistors and 1 MTJ in standard connection (SC), where complementary n-MOS and

p-MOS transistors are used, and they are connected to the top reference layer (𝑅𝐿𝑇) of the

DMTJ [15].

The DMTJ device used in this work is described by macrospin-based Verilog-A

compact models [16]. For the access transistors, TSMC’s commercial 65-nm technology node

was used. The Synopsys Custom-Compiler tool was used for simulations. Table 1 shows the

DMTJ’s characteristics.

14

Parameter Description Value

𝑑 MTJ diameter 32 𝑛𝑚

𝑡𝐹𝐿 Free layer thickness 1.2 𝑛𝑚

𝑡𝑂𝑋,𝑇 Top barrier thickness 0.85 𝑛𝑚

𝑡𝑂𝑋,𝐵 Bottom barrier thickness 0.4 𝑛𝑚

𝑅𝐴 Resistance-area product ~12 Ω μ𝑚2

𝑅𝐻 High resistance state 15.3 𝐾Ω

𝑅𝐿 Low resistance state 6.9 𝐾Ω

𝐼𝑐 Critical switching current 14.1 𝜇𝐴

Δ Thermal stability factor ~71 𝑘𝐵𝑇

Table 1: Characteristics of DMTJ model

C. Equivalency of operations between VC-SOT MRAMs and STT-MRAMs

The equivalency between writing and reading operations using one type of MTJ and

the other must be understood in order to implement Wang et al.’s XNOR-bitcount method

using STT-MRAMs.

Writing operation

The key concept is that both in VC-SOT and STT bitcells, the direction of the current

determines what state is written, and the access transistor gate voltage determines whether that

state is written or not. This is because in VC-SOT MTJs, the control voltage 𝑉𝑏 is applied to

the MTJ by activating the access transistor by using a positive gate voltage 𝑉𝑔 and allowing the

voltage in the BL to pass. In STT-MTJs, the activation of the access transistors using a positive

𝑉𝑔 (for the n-MOS transistor, the p-MOS transistor is always assumed to receive the

complementary signal) allows 𝐼𝑤𝑟𝑖𝑡𝑒 to cross through or not cross through the MTJ.

Table 2 shows the four possible combinations of access transistor activations and

current directions for each device type, and the corresponding MTJ state that is written.

15

VC-SOT bitcell STT-bitcell
MTJ state

𝑰𝑺𝑶𝑻 𝑽𝒈 𝑰𝒘𝒓𝒊𝒕𝒆 𝑽𝒈

⟶ 0 ↓ 0 Previous state

⟶ + ↓ + '0'

 ⟵ 0 ↑ 0 Previous state

 ⟵ + ↑ + '1'

Table 2: Equivalency of writing operation between VC-SOT MTJs and STT MTJs

Reading operation

The reading operation in the VC-SOT MRAM is based on activating the access

transistor and measuring the current in the BL [1]. For the reading operation in the STT-

MRAM, the same concept is used. This work uses a current sensing scheme in which a constant

read voltage 𝑉𝑟𝑒𝑎𝑑 is applied to the SL while the WL is activated (activated access transistors);

the resulting current in the BL is compared to a reference 𝐼𝑟𝑒𝑓 by a SA to determine the stored

bit [17]. Figure 2 shows this process.

Figure 2: Reading operation for a single STT-based bitcell

16

III. BINARY CONVOLUTIONAL NEURAL NETWORKS AND XNOR-BITCOUNT

As in any neural network, the main operation in the forward propagation process is

‘multiply-and-accumulate’ (MAC): the weights and input activations are multiplied element-

wise and the results are added or accumulated – basically, the dot product [4] [5]. This result

is the activation of a neuron in the next layer. Regarding convolutional neural networks

(CNNs), the weights and input activations are represented with 2-D matrixes. This makes them

useful for image recognition and object detection tasks [2]. The 2-D weight matrixes are called

filters or kernels, while the 2-D input activations are called feature maps. Each filter is

convolved with each feature map, which consists on sliding the kernel through the complete

feature map and repeating dot-product operations between the filter and the corresponding part

of the input feature map, thus generating a new feature map for the next layer of the neural

network [4]. This convolution consists of multiple MAC operations, each one between the

𝑘 × 𝑘 kernel and a 𝑘 × 𝑘 portion of the input feature map. Figure 3 shows a simple example

of a single MAC operation in a CNN.

Figure 3: Example of multiply-and-accumulate (MAC) operation in CNNs

Binary convolutional neural networks (BCNNs) are based on binarized weights and

activations: they can have the values ‘-1’ (represented by ‘0’) and ‘+1’ (represented by ‘1’) [5].

This means that the MAC operation can be simplified to a bitwise XNOR-bitcount operation

[2]. The bitcount operation refers to counting the amount of set bits, which is the number of

17

‘1’ bits, that I will refer to as P. An extra operation must be computed: 2P-N, where N is the

size of the filter. In this way, the result is basically the sum between the ‘-1’ and ‘+1’ XNOR

results. Figure 4 shows an example of how the MAC operation using binary weights and

activations is equivalent to XNOR-bitcount, where 𝑃 is the number of ‘+1’s / ‘1’s, 𝑀 is the

number of ‘-1’s / ‘0’s, and 𝑁 is the size of the filter.

Figure 4: MAC operation equivalency to XNOR-bitcount operation when using binary weights and

activations

This work only refers to the process of forward propagation, assuming that the network

has already been trained and that the weights of the filters used have been set. Regardless, full-

precision operations that are necessary for optimal BCNN performance – i.e. batch

normalization, pooling – and the training process can be taken care of through auxiliary process

units [18] and enhancements or modifications to the peripheral circuitry of the memory array.

The STT-MRAM itself is only responsible of performing convolutions through XNOR-

bitcount [18].

In forward propagation, once the output tensor – or feature map – is generated, its

elements have to be binarized as it becomes the activation tensor of the next layer of the BCNN.

Keep in mind that each layer of the BCNN can be made up of multiple filters, such that each

18

one outputs a different feature map; all of those output tensors become the activation tensors

of the next layer, and each one is convolved with each filter of that layer. The binarization is

typically done using the sign activation function [5].

IV. XNOR-BITCOUNT METHODS BASED ON COMPUTING - IN - MEMORY

Wang et. Al [1] propose a method to achieve the XNOR-bitcount operation using

MRAMs based on VC-SOT MTJs. In this work, I replicate this method using STT-MTJs, but

with a hardware-level optimization. I further propose an algorithm-level optimization to the

method presented in [1].

A. XNOR-bitcount method proposed by Wang et al.

Wang et al.’s [1] XNOR-bitcount (XNOR-BC) method uses the write and read

operations of a normal memory to perform multiple Boolean operations in parallel; the bias

voltage on each bitcell’s VC-SOT MTJ and the direction of the SOT current are configured for

this purpose. The implementation of the method in [1] in a STT-MRAM simply requires an

adaptation of the write and read operations, which has been explained in Section II.C. In STT-

MRAMs, the polarization of the shared BL/SL that determines the current direction through

the MTJ, and the activation of the access transistors that allow said current to flow, are

configured to implement Boolean logic.

19

Single-bit XNOR operation

For the XNOR operation in [1], the authors consider that its complementary operation,

XOR, can be expressed through two AND operations and one OR operation, as shown in

Equation 1:

𝑋𝑂𝑅 ⟶ 𝐴 ⊕ 𝑊 = �̅� ∙ 𝑊 + 𝐴 ∙ �̅� (1)

Equation 1

Where 𝐴 is one binary input activation and 𝑊 is one binary filter weight. The single-

bit XOR/XNOR process uses two complementary bitcells or MTJs – 𝑀𝑇𝐽1 and 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅ – and the

basic steps are the following:

1) Write weights. Write kernel weights 𝑊 and �̅� to 𝑀𝑇𝐽1 and 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅, respectively, in

two cycles (see Figure 5.a).

2) AND operation. Apply input activations 𝐴 and �̅� to the gates of the access transistors

for 𝑀𝑇𝐽1 and 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅, respectively, and apply current to write ‘0’ to both bitcells. This

stores �̅� ∙ 𝑊 in 𝑀𝑇𝐽1, and 𝐴 ∙ �̅� in 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅.

3) OR operation. Read both bitcells simultaneously (see Figure 5.b); each sensing current

represents the stored state �̅� ∙ 𝑊 and 𝐴 ∙ �̅�, respectively, and they are added because

of the connected bitlines. The resulting current represents the XOR result �̅� ∙ 𝑊 + 𝐴 ∙

�̅�. Table 3, in the fourth and fifth columns, shows the state that is read from the bitcell

with 𝑀𝑇𝐽1 and the bitcell with 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅, respectively, during this step for all the possible

activation 𝐴 and weight 𝑊 combinations. The last column shows the accumulated read

current values that represent the XOR result.

20

Figure 5: Wang et al.’s complementary STT-bitcell structure. (a) Two-cycle process to write weights

for single-bit XOR operation, (b) Simultaneous read operation for single-bit OR computation step

A W XOR
State read from

𝑀𝑇𝐽1 (�̅� ∙ 𝑊)

State read from

𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅ (𝐴 ∙ �̅�)

Total read current

0 0 0 0 0 2 × 𝐼𝑟𝑒𝑎𝑑(0)

0 1 1 1 0 𝐼𝑟𝑒𝑎𝑑(1) + 𝐼𝑟𝑒𝑎𝑑(0)

1 0 1 0 1 𝐼𝑟𝑒𝑎𝑑(1) + 𝐼𝑟𝑒𝑎𝑑(0)

1 1 0 0 0 2 × 𝐼𝑟𝑒𝑎𝑑(0)

Table 3: Stored states read from 𝑀𝑇𝐽1 and 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅ during last step (simultaneous reading) and total

read current according to activations A and weights W using Wang et al.’s XNOR-BC method

The two-cycle weight-writing process steps are (see Figure 5.a):

a. Apply 𝑊 to the access transistor gates of both bitcells; apply current to write

‘1’ in 𝑀𝑇𝐽1 and current to write ‘0’ in 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅.

b. Apply �̅� to the access transistor gates of both bitcells; apply current to write

‘0’ in 𝑀𝑇𝐽1 and current to write ‘1’ in 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅.

21

Multi-bit XNOR-bitcount operation

To compute the MAC or XNOR-bitcount result between a 𝑘 × 𝑘 kernel with N weights

and a 𝑘 × 𝑘 feature map portion with N input activations, the corresponding N XOR/XNOR

operations can be computed in parallel using the concept of ‘analog majority’ [1]. Two

complementary bitcell strips are used: all the bitcells with 𝑀𝑇𝐽𝑁s are on the same bitline

(𝑠𝑡𝑟𝑖𝑝1), and all the 𝑀𝑇𝐽𝑁
̅̅ ̅̅ ̅̅ ̅s are on another single bitline (𝑠𝑡𝑟𝑖𝑝1̅̅ ̅̅ ̅̅ ̅̅); their BLs are connected to

the same SA. Figure 6 shows this memory-array structure for 𝑁 = 9 using STT-MTJs.

Figure 6: Wang et al.’s complementary bitcell-strips structure using STT-MTJs for multibit

computation with N=9

Keeping in mind that ‘0’ actually represents ‘-1’ in a BCNN and attending to Equation

1, if the majority of XOR results are ‘0’, then the real XOR-BC result would be negative and

after binarization it would be ‘-1’ (‘0’); if the majority are ‘1’, the real XOR-BC result would

be positive and its binary value would be ‘1’. This majority detection and binarization is

performed by reading all of the bitcells simultaneously and comparing the accumulated current

𝐼𝑁−𝑋𝑂𝑅𝑠 to a properly set reference current 𝐼𝑟𝑒𝑓 in the SA. If 𝐼𝑁−𝑋𝑂𝑅𝑠 > 𝐼𝑟𝑒𝑓 then the majority

of XOR results were ‘0’ and the XOR-BC result is ‘0’, and if 𝐼𝑁−𝑋𝑂𝑅𝑠 < 𝐼𝑟𝑒𝑓, then the majority

were ‘1’ and the XOR-BC result is ‘1’. Both the binary XOR-BC result and its complement

XNOR-BC are produced by the SA.

22

B. Hardware-level optimization

The two-cycle process to write the weights and the simultaneous read operation for a

single-bit XOR operation were previously shown in Figure 5.a and Figure 5.b, respectively,

using the complementary bitcell structure proposed by Wang et al. [1] but implemented with

STT-MTJs.

With Wang et al.’s structure, each bitcell in the complementary pair occupies a different

BL, and they don’t share the WL (as seen in Step 2, complementary gate voltages are used).

This means that a single-bit XNOR operation requires 2 BLs and 2 WLs of the memory array;

N parallel XNOR operations – which use two complementary bitcell strips – would require 2

BLs and 2×N WLs. Moreover, this structure requires a connection between the bitlines of

complementary strips to a single SA.

I propose a hardware-level optimization that consists on locating each pair of

complementary bitcells in the same bitline. Figure 7 shows this optimization.

Figure 7: Hardware-level optimization for a pair of complementary bitcells

Regarding storage density, N parallel XNOR operations would require just 1 BL and

2×N WLs, as the complementary bitcell strips would be on the same bitline. Clearly, the BL

Wang et al.

This work

23

would already be “connected” between both strips to the same SA.

This optimization implies a slight modification to the two-cycle weight-writing process:

the same state must be written to both bitcells at the same time, while complementary access

transistor gate voltages are applied. This modification can be taken further by writing ‘0’ to all

the bitcells – “resetting” them – in Step 1, and writing the ‘1’ weights in the second step using

𝑾 and �̅̅̅� as gate voltages. The first step implies an increased energy consumption; however,

in multi-kernel operations in which the kernel weights are written sequentially into the

memory, only one “write ‘0’/‘0’ step” would be necessary at the beginning of the weight-

writing process followed by only “ write ‘1’/ ‘1’ ” steps, instead of sequential “ write ‘0’/ ‘0’ ”

+ “ write ‘1’/ ‘1’ ” steps for every kernel. Figure 8 shows the proposed complementary bitcell

structure for the two-cycle write and simultaneous read operations.

Figure 8: This work’s optimized complementary STT-bitcell structure: (a) Two-cycle process to write

weights for single-bit XOR operation, (b) Simultaneous read operation for single-bit OR step

24

The modified two-cycle weight-writing process steps, shown in Figure 8.a, are:

a. Activate the access transistor of both bitcells; apply current to write ‘0’ to 𝑀𝑇𝐽1

and 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅.

b. Apply 𝑊 and �̅� to the gates of the access transistors to 𝑀𝑇𝐽1 and 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅,

respectively; apply current to write ‘1’ in both bitcells.

Regarding the complementary bitcell strips structure, Figure 6 in Section IV. A showed

it using the array structure proposed in [1]. Keep in mind that each pair of complementary

MTJs does not share the same WL. This array would be used for a XNOR-bitcount operation

of a 9-bit filter (3x3) with a 9-bit feature map portion. Figure 9 shows the complementary strips

using this work’s hardware optimization, in which they share the same BL and SL.

Figure 9: This work’s optimized complementary bitcell strips structure using STT-MTJs for multibit

computation with N=9

C. Wang et al.’s XNOR-bitcount method with STT-MRAMs and optimized hardware

Figure 10 shows Wang et al.’s proposed method [1] using the optimized array structure for

a single-bit XOR/XNOR operation, in which the complementary bit-strips share the BL.

25

Figure 10: Wang et al.’s single-bit XOR/XNOR operation using STT-MTJs and optimized array

structure

Figure 10.1 shows the first step in which the weights are written into the bitcells’ MTJs,

Figure 10.2 shows the AND operation, and Figure 10.3 shows the OR operation in which all

the bitcells are simultaneously read to obtain the accumulated current representative of the

complete XOR-BC operation.

D. Optimized XNOR-bitcount method with STT-MRAMs and optimized hardware.

Single-bit XNOR-bitcount operation using algorithmic optimization

Beyond the memory array structure optimization, this work proposes a more important

algorithmic optimization to the XNOR-BC method proposed by Wang et al. [1]: the second

(AND operation) and third step (OR operations and analog majority) of the XNOR-BC method

26

can be merged together into a single read step based on the input activations. I consider the

expression of the XNOR operation through two AND operations and one OR operation, as

shown in Equation 2:

𝑋𝑁𝑂𝑅 ⟶ 𝐴 ⊕ 𝑊̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = A ∙ 𝑊 + �̅� ∙ �̅� (2)

Equation 2

This methodology allows the direct computation of the XNOR-BC result, instead of the

XOR-BC. The optimized single-bit process is illustrated in Figure 11, in which the exact same

optimized hardware as in Figure 10 is used.

Figure 11: This work’s single-bit XOR/XNOR operation using STT-MTJs and optimized array

structure

27

The optimized method’s basic steps are (see Figure 11):

1) Write weights. Write kernel weights 𝑊 and �̅� to 𝑀𝑇𝐽1 and 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅, respectively, in two

cycles (see Figure 8.a).

2) AND & OR operation. Apply input activations 𝐴 and �̅� to the gates of the access

transistors for 𝑀𝑇𝐽1 and 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅, respectively, and read both bitcells simultaneously (see

Figure 8.b). Only one bitcell is read because of the complementary activations used as

𝑉𝑔. The reading of the bitcell with 𝑀𝑇𝐽1 results in the AND operation A ∙ 𝑊, and the

reading of the bitcell with 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅ results in the AND operation �̅� ∙ �̅�. The OR operation

between them occurs because they share the same bitline and the complementary

bitcells are operated simultaneously, so the resulting current represents the XNOR

result A ∙ 𝑊 + �̅� ∙ �̅�. Table 4, in the fourth and fifth columns, shows the state that is

read from the bitcell with 𝑀𝑇𝐽1 and the bitcell with 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅, respectively, during this step

for all the possible activation 𝐴 and weight 𝑊 combinations. The last column shows

the accumulated read current values that represent the XNOR result.

A W XNOR
State read from

𝑀𝑇𝐽1 (�̅� ∙ 𝑊)

State read from

𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅ (𝐴 ∙ �̅�)

Total read

current

0 0 1 Not read 1 𝐼𝑟𝑒𝑎𝑑(1)

0 1 0 Not read 0 𝐼𝑟𝑒𝑎𝑑(0)

1 0 0 0 Not read 𝐼𝑟𝑒𝑎𝑑(0)

1 1 1 1 Not read 𝐼𝑟𝑒𝑎𝑑(1)

Table 4: Stored states read from 𝑀𝑇𝐽1 and 𝑀𝑇𝐽1
̅̅ ̅̅ ̅̅ ̅ during last step (simultaneous reading) and total

read current according to activations A and weights W using this work’s XNOR-BC method

28

Multi-bit XNOR-bitcount operation using algorithmic optimization

To compute the MAC or XNOR-bitcount result between a 𝑘 × 𝑘 kernel with N weights

and a 𝑘 × 𝑘 feature map portion with N input activations, the N XNOR operations are

computed in parallel using the same two complementary bitcell strips as in Wang et al.’s

method. In Step 1 the weights 𝑾 = [𝑊1, 𝑊2, . . . , 𝑊𝑛] and �̅̅̅� are parallelly written into the

complementary strips. In Step 2 the input activations 𝑨 = [𝐴1, 𝐴2, . . . , 𝐴𝑛] and �̅� are parallelly

applied to the bitcells’ access transistor gates and they are all simultaneously read (although

only half of the bitcells in the two complementary strips are really read); using the same analog

majority approach, the currents produced by each pair of complementary bitcells

(representative of the XNOR results) are accumulated resulting in 𝐼𝑁−𝑋𝑁𝑂𝑅𝑠, and when

compared to a proper reference signal in a SA, the binarized XNOR-bitcount result is obtained.

In this method, if 𝐼𝑁−𝑋𝑁𝑂𝑅𝑠 > 𝐼𝑟𝑒𝑓, then the majority of XNOR results were ‘0’ and the XNOR-

BC result is ‘0’, and if 𝐼𝑁−𝑋𝑁𝑂𝑅𝑠 < 𝐼𝑟𝑒𝑓, then the majority were ‘1’ and the XNOR-BC result

is ‘1’.

The advantages of this optimized XNOR-bitcount method are the following:

• Only two write operations (write ‘0’ and write ‘1’ when writing weights) are needed

instead of three.

• The weights stored in the bitcells are not overwritten during the process. This means

that if consecutive XNOR-bitcount operations are performed using the same filter

(weights) but different feature map portions (activations), the weights do not have to be

re-written and only the reading step (analog majority) has to be performed. This means

that when performing a convolution between a filter and a feature map, the first MAC

or XNOR-bitcount is performed as mentioned earlier, but the XNOR-BCs that follow

29

– between the same filter and other feature map portions –, consist of only the

simultaneous read operation (that computes the AND and OR operations) with specific

access transistor activations (Step 2).

• In Step 2, only half of the 2N bitcells are activated instead of all of them (assuming a

N-bit filter). This means less read current, and therefore less energy consumption.

• The direct result of the SA is XNOR-bitcount, instead of XOR-bitcount.

V. DESIGN OF STT-MRAM AND SIMULATION RESULTS OF XNOR-BITCOUNT

METHODS

A. STT-MRAM bitcell design

As mentioned earlier, the DMTJ device is described by macrospin-based Verilog-A

compact models [16] and the access transistors belong to TSMC’s commercial 65-nm

technology node. The Synopsys Custom Compiler tool was used for simulations.

VDD selection and access transistor sizing

STT-MRAMs have the advantage of being able to operate at relatively low voltages

[9]. Therefore, a polarization voltage of 0.8V was chosen in this work, which can be considered

to be in the upper limit of the low-voltage range:

𝑉𝐷𝐷 = 0.8 𝑉

Lower voltages were not chosen because they required the access transistors to be too

large in order for them to ensure a proper 𝐼𝑤𝑟𝑖𝑡𝑒/𝐼𝑐 ratio and an adequate sense margin in the

reading operation [17]. Bear in mind that in STT-MRAM bitcells, most of the bitcell area is

occupied by the access transistors, not the MTJ [19], so minimizing the transistor sizes is

necessary.

30

Write operation constraints for transistor sizing

To ensure a robust write operation, a write current ratio 𝐼𝑤𝑟𝑖𝑡𝑒/𝐼𝑐 greater than 2 is

desired [15]. The write currents ratios of each switch are set to the same value. The write current

is set to ensure a write-error-rate (WER) of 10−7 [9]. For ‘1’ to ‘0’ switching, the n-MOS

transistor is basically the only driver. For ‘0’ to ‘1’ switching, the p-MOS transistor is the main

driver, but the n-MOS transistor contributes to the write current. Therefore, the sizing process

consists on setting 𝑤𝑝 to the minimum width allowed (𝑤𝑚𝑖𝑛 = 120 𝑛𝑚), and preforming a

sweep to find 𝑤𝑛. With 𝑤𝑛 set, a sweep is performed to find 𝑤𝑝.

Read operation constraints for transistor sizing

For the read operation, both read disturbance and read decision failures must be avoided

[20] [21]. To avoid read disturbance failures, which are accidental switchings of the MTJs

states by too-large read currents [17], an appropriate 𝑉𝑟𝑒𝑎𝑑 should be calculated. Reference

[21] presents the following equation from which 𝐼𝑟𝑒𝑎𝑑 can be determined by setting the read

disturbance rate (RDR) to the common value of 𝑅𝐷𝑅 = 10−9 :

𝑅𝐷𝑅 = 1 − exp [−
𝑡𝑟𝑒𝑎𝑑

𝜏
exp (−Δ (1 −

𝐼𝑟𝑒𝑎𝑑

𝐼𝑐0
))] (3)

Equation 3

𝑡𝑟𝑒𝑎𝑑 is the read pulse width, 𝜏 is the attempt period (~1 𝑛𝑠), and Δ is the thermal stability

factor (see Table 1). 𝐼𝑟𝑒𝑎𝑑 is the current that flows through the DMTJ from the SL to the BL

when a sensing voltage 𝑉𝑟𝑒𝑎𝑑 is applied to the SL. 𝐼𝑐0 is the critical switching current of the

DMTJ (see Table 1). From Equation 3 we get the following result:

𝐼𝑟𝑒𝑎𝑑 = 9.9868 [𝑢𝐴]

31

The largest read current that flows through the DMTJs is the read current for the ‘0’

state 𝐼𝑟𝑒𝑎𝑑(0), given that 𝑅0 corresponds to the lowest resistance state and a constant 𝑉𝑟𝑒𝑎𝑑 is

applied. Therefore, the following condition must be achieved in order to prevent read

disturbances:

𝐼𝑟𝑒𝑎𝑑(0) ≤ 𝐼𝑟𝑒𝑎𝑑 (4)

Equation 4

To avoid read decision failures, which occur when the sensing circuitry cannot

distinguish between the two states of the MTJ [20], the reading operation should be robust

enough. This robustness can be quantified using the read-error-ratio (RER), that refers to the

amount of wrongfully read bits from the total. The RER can be evaluated through the amount

of standard deviations that fit the space between the median 𝜇𝐼𝑟𝑒𝑎𝑑(0)
 of the 𝐼𝑟𝑒𝑎𝑑(0) distribution

and 𝐼𝑟𝑒𝑓, and between the median 𝜇𝐼𝑟𝑒𝑎𝑑(1)
 of the 𝐼𝑟𝑒𝑎𝑑(1) distribution and 𝐼𝑟𝑒𝑓 [17]. A 3𝜎

sensing margin (SM), which allows a RER of approximately 10−3 [21], is chosen for the

design. This means that the distance between 𝜇𝐼𝑟𝑒𝑎𝑑(0)
 and 𝜇𝐼𝑟𝑒𝑎𝑑(1)

 (the nominal SM) should

be:

𝜇𝐼𝑟𝑒𝑎𝑑(0)
− 𝜇𝐼𝑟𝑒𝑎𝑑(1)

≥ 3𝜎𝐼𝑟𝑒𝑎𝑑(0)
+ 3𝜎𝐼𝑟𝑒𝑎𝑑(1)

 (5)

Equation 5

Access transistor sizing

𝐼𝑤𝑟𝑖𝑡𝑒/𝐼𝑐 ≈ 2.6 was chosen. Lower write current ratios allowed smaller transistor

widths, but the associated process variations resulted in worsened sense margins – lower that

3𝜎. Larger access transistor sizes are necessary to minimize said variations [21]. Larger widths

also allow higher write currents and shorter write delays, and the latter allow lower write

energy. However, the area occupied by the transistors should be as small as possible.

Keeping this trade-off in mind, a careful sizing methodology was followed that resulted

in the following access transistor widths:

32

𝒘𝒏 [𝒏𝒎] 310

𝒘𝒑 [𝒏𝒎] 310

Table 5: Access transistor widths

The corresponding current 𝐼, delay 𝑡 and energy 𝐸 nominal results for the writing

operation (𝑊𝐸𝑅 = 10−7) and the reading operation (𝑅𝐷𝑅 = 10−9, 3𝜎 𝑆𝑀) are shown in

Table 6 and Table 7, respectively.

State switch 𝑰𝒘𝒓𝒊𝒕𝒆 [𝝁𝑨] 𝒕𝒘𝒓𝒊𝒕𝒆 [𝒏𝒔] 𝑬𝒘𝒓𝒊𝒕𝒆 [𝒇𝑱]

(𝟎 → 𝟏) 37.22 2.577 76.80

(𝟏 → 𝟎) 37.19 2.580 76.80

Table 6: Write operation current, delay and energy results at bitcell level

𝑽𝒓𝒆𝒂𝒅 = 95 [𝑚𝑉]

State 𝑰𝒓𝒆𝒂𝒅 [𝝁𝑨] 𝒕𝒓𝒆𝒂𝒅 [𝒏𝒔] 𝑬𝒓𝒆𝒂𝒅 [𝒇𝑱]

‘0’ 7.853
1

0.7461

‘1’ 4.599 0.4369

Table 7: Read operation current, delay and energy results at bitcell level

The Monte Carlo analysis results for the reading operation are shown in Figure 12. For

DMTJs, Gaussian-distributed process variations are considered for the area, FL and top/bottom

oxide layers [9]. For the transistors, the technology node’s Monte Carlo library was used.

Figure 12: Monte Carlo results for read operation considering process variations

33

Considering the read current means and standard deviations depicted in Figure 12, the

spacing between read currents medians – nominal SM – is:

𝜇𝐼𝑟𝑒𝑎𝑑(0)
− 𝜇𝐼𝑟𝑒𝑎𝑑(1)

= 3.226 𝜇𝐴

And the minimum spacing is:

3𝜎𝐼0 + 3𝜎𝐼1 = 2.883 𝜇𝐴

Even though there is a slight overlap between 𝐼𝑟𝑒𝑎𝑑(0) and 𝐼𝑟𝑒𝑎𝑑(1) distributions, the

chosen transistor sizes allow a reliable differentiation between the parallel and antiparallel MTJ

states. To improve the reading operation robustness, the transistor sizes can be increased [21],

albeit larger bitcell area, or peripheral circuitry (SAs) with specific designs can be used [22].

B. Implementation of XNOR-bitcount methods and simulation results

To test the XNOR-bitcount method proposed in [1] implemented with STT-MTJs and

optimized hardware, as well as this work’s optimized XNOR-bitcount method, Synopsys’

Custom Compiler was used to build the hardware and simulate said methods using vector files.

Logic verification of methods

Using the 𝐼𝑟𝑒𝑎𝑑(0) and 𝐼𝑟𝑒𝑎𝑑(1) values in Table 7, and considering the total read currents

produced in each XOR/XNOR operation shown in Table 3 and Table 4, the following tables

can be built that show the expected accumulated current 𝐼9−𝑋𝑂𝑅𝑠 and 𝐼9−𝑋𝑁𝑂𝑅𝑠 for each number

of ‘1’ XOR and XNOR results in a 9-bit XOR/XNOR-bitcount operation (i.e. 3x3 filter and

3x3 feature map portion). Table 8 shows the expected results using Wang et al.’s method. Keep

in mind that the number of stored ‘1’s in the 18 MTJs is the number of ‘1’s of the XOR-BC

operation, which is the number of ‘0’s in the XNOR-BC operation. Table 9 shows the expected

results using this work’s method. The approximate reference currents 𝐼𝑟𝑒𝑓 that could be used

are shown in both tables, calculated using the 3𝜎 rule presented in Section V. A.

34

'1' XORs 0 1 2 3 4 5 6 7 8 9

𝑰𝟗−𝑿𝑶𝑹𝒔 [𝝁𝑨] 141.36 138.11 134.8523 131.60 128.34 125.09 121.84 118.58 115.33 112.07

XOR-BC result 0 0 0 0 0 1 1 1 1 1

XNOR-BC result 1 1 1 1 1 0 0 0 0 0

Table 8: Accumulated currents using Wang’s method corresponding to each XNOR-bitcount result

'1' XNORs 0 1 2 3 4 5 6 7 8 9

𝑰𝟗−𝑿𝑵𝑶𝑹𝒔 [𝝁𝑨] 70.68 67.42615 64.17 60.92 57.66 54.41 51.16 47.90 44.65 41.39

XOR-BC result 1 1 1 1 1 0 0 0 0 0

XNOR-BC result 0 0 0 0 0 1 1 1 1 1

Table 9: Accumulated currents using this work’s method corresponding to each XNOR-bitcount result

Multi-kernel XNOR-bitcount simulation

To test the correct functioning of both methods applied to STT-MRAMs and to show

their parallelism and high-throughput, the same three XNOR-bitcount operations as in a

example provided in [1] were used: three 3x3 filters are operated with a single 3x3 feature map

portion (activations). Table 10 presents the weights and activations. XNOR-BC 1 has 4 ‘1’

XNOR results, XNOR-BC 2 has 5 ‘1’s, and XNOR-BC 1 has 2 ‘1’s.

W (filter

weights)

A (feature

map portion)
XNOR

XNOR-

bitcount

XNOR-BC 1 010100001

010001110

111010000 0

XNOR-BC 2 101011110 000101111 1

XNOR-BC 3 101010101 000100100 0

Table 10: Weights and activations to evaluate XNOR-bitcount methods

The three filters presented in Table 10 are simultaneously operated with a single set of

9 activations. The memory array section (using this work’s optimized structure) that would

allow this multi-kernel parallel computation is presented in Figure 13.

𝐼𝑟𝑒𝑓 ≈ 126.5 [𝜇𝐴]

𝐼𝑟𝑒𝑓 ≈ 55.8 [𝜇𝐴]

35

Figure 13: Memory array section for 9-bit multi-kernel parallel XNOR-BC computations

The simulation waveforms, that show the complete parallel XNOR-bitcount operations

of the three examples given in Table 10, are presented in Figure 14 and Figure 15.

Figure 14: Simulation waveforms using Wang’s method of the three parallel XNOR-bitcount

operations in Table 10

(1) Write weights

(3) OR +

‘Analog majority’
(2) AND

36

Figure 15: Simulation waveforms using this work’s method of the three parallel XNOR-bitcount

operations in Table 10

The write pulse is 3 𝑛𝑠 long (to approximate 𝑡𝑤𝑟𝑖𝑡𝑒 in Table 6) and the read pulse is

1 𝑛𝑠 long. By measuring the accumulated current in the last step of each XNOR-BC for both

methods, Table 11 is built.

Expected

XNOR-BC

result

Wang’s

𝑰𝟗−𝑿𝑶𝑹𝒔
[𝝁𝑨]

Wang’s

XNOR-BC

result

This work’s

𝑰𝟗−𝑿𝑵𝑶𝑹𝒔
[𝝁𝑨]

This work’s

XNOR-BC

result

XNOR-BC 1 0 125.09 0 57.66 0

XNOR-BC 2 1 128.34 1 54.41 1

XNOR-BC 3 0 118.58 0 64.17 0

Table 11: Accumulated currents measured for each XNOR-BC operation

If the measured currents are compared with the 𝐼9−𝑋𝑂𝑅𝑠 and 𝐼9−𝑋𝑁𝑂𝑅𝑠 values in Table 8

and Table 9, the XNOR-BC result obtained by each method can be found. As can be observed

(1) Write weights

(2) AND + OR +

‘Analog majority’

37

in Table 11, the obtained results by Wang et al.’s method and this work’s method are correct.

This verifies the correct functioning of this work’s proposed method and the parallelism that it

allows for multi-kernel operations.

Energy consumption and execution time comparison between XNOR-bitcount methods

Worst-case energy and time comparison for single XNOR-BC with 3x3 filter

In order to compare the methods in terms of execution time and energy consumption,

the necessary time to execute the whole operation and the worst case energy 𝐸𝑛𝑒𝑟𝑔𝑦𝑊𝐶

corresponding to a XNOR-bitcount operation between a 3x3 kernel/filter and a 3x3 portion of

a feature map are calculated from the results presented in Table 6. These results are shown in

Table 12 and Table 13.

 𝑬𝒏𝒆𝒓𝒈𝒚 𝑾𝑪 [fJ]

STEP 1
Write weights

STEP 2
AND (write ‘0’)

STEP 3
Read & analog

majority
TOTAL

XNOR-BC

Wang et al. 2355.96 832.39 10.65 3199.00
This work 2355.96 - 6.71 2362.68

Table 12: Worst case energies for each XNOR-bitcount step and total energy consumption

 Execution time [ns]

STEP 1
Write weights

STEP 2
AND (write ‘0’)

STEP 3
Read & analog

majority
TOTAL

XNOR-BC

Wang et al. 6 3 1 10
This work 6 - 1 7

Table 13: Execution times for each XNOR-bitcount step and total execution time

Given that overwriting 0 in half of the 18 bitcells is not performed in this work’s method

(step 2), and that only 9 bitcells are read instead of 18 in the last step, there is a clear advantage

in energy consumption and execution time.

38

Sequential XNOR-BC operations: energy and time comparison

 These advantages are enhanced when multiple consecutive XNOR-bitcounts are

performed between the same 3x3 filter and multiple 3x3 portions of a feature map (representing

multiple steps of the convolution process between said filter and the feature map). This is

because this work’s method doesn’t require re-writing the filter weights in the bitcell in each

XNOR-bitcount operation if the same filter is being used. The results are shown in Table 14,

assuming that 5 consecutive XNOR-bitcount operations are performed using the same filter

(which means that the same pair of complementary 9-bitcell strips are used).

 𝑬𝒏𝒆𝒓𝒈𝒚 𝑾𝑪 [fJ] Execution time [ns]

1st

XNOR-

BC
Following

XNOR-BCs
Total of 5

consecutive

XNOR-BCs

1st

XNOR-

BC
Following

XNOR-BCs
Total of 5

consecutive

XNOR-BCs
Wang et al. 3199.00 3199.00 15995.00 10 10 50
This work 2362.68 6.71 2389.54 7 1 11

Table 14: Energy and execution time results for 5 consecutive XNOR-bitcount operations

This work’s method allows almost one order of magnitude reduction to the total energy

consumption of 5 consecutive XNOR-bitcount operations, and almost a 78% reduction in total

execution time.

39

VI. CONCLUSIONS

In this work, an optimized method to implement the XNOR-bitcount operation of

BCNNs using compute-in-memory with STT-MRAMs was proposed. The STT-MRAM

bitcells were carefully designed to allow optimal energy consumption and performance, as well

as robust writing and reading operations. The XNOR-bitcount method presented in [1] was

optimized algorithmically and at hardware-level. The hardware-level optimization of the

memory array structure allowed a decrease in the storage density necessary to compute the

XNOR-BC operation. This structure was used to implement both the original XNOR-BC

method and the proposed algorithmically optimized method using STT-MRAM. The

algorithmic optimization allowed a 30% reduction in execution time and a 26.1% reduction in

energy consumption for a single XNOR-BC operation when using a 3x3 (9-bit) filter.

Considering 5 sequential XNOR-BC operations with a single filter, the optimized method

allowed a 78% decrease in execution time and a 85.1% reduction in energy consumption.

40

BIBLIOGRAPHY

[1] H. Wang, W. Kang, B. Pan, H. Zhang, E. Deng and W. Zhao, "Spintronic Computing-in-

Memory Architecture Based on Voltage-Controlled Spin–Orbit Torque Devices for

Binary Neural Networks," IEEE Transactions on Electron Devices, vol. 68, no. 10, pp.

4944-4950, Oct. 2021.

[2] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe, "Binary Neural Networks: A

Survey," Pattern Recognition, vol. 105, no. 107281, September 2020.

[3] A. Biswas and A. P. Chandrakasan, "Conv-RAM: An Energy-Efficient SRAM with

Embedded Convolution Computation for Low-Power CNN-Based Machine Learning

Applications," 2018 IEEE International Solid-State Circuits Conference (ISSCC), 2018.

[4] M. Rastegari et al., "XNOR-Net: ImageNet Classification Using Binary Convolutional

Neural Networks," Computer Vision – ECCV 2016, vol. 9908, 2016.

[5] M. Courbariaux et al., "Binarized Neural Networks: Training Neural Networks with

Weights and Activations Constrained to +1 or −1," 2016.

[6] O. Mutly et al., "Processing data where it makes sense: Enabling in-memory

computation," Microprocessors and Microsystems, vol. 67, pp. 28-41, 2019.

[7] G. Santoro et al., "New Logic-In-Memory Paradigms: An Architectural and

Technological Perspective," Micromachines, vol. 10, no. 368, 2019.

[8] P. Barla, V. Kumar and S. Bhat, "Spintronic devices: a promising alternative to CMOS

devices," Journal of Computational Electronics, 2021.

[9] E. Garzón et al., "Ultralow Voltage FinFET-Versus TFET-Based STT-MRAM Cells for

IoT Applications," Electronics, vol. 10, no. 15, p. 1756, 2021.

41

[10] X. Fong et al., "Spin-Transfer Torque Memories: Devices, Circuits, and Systems,"

Proceedings of the IEEE, vol. 104, no. 7, pp. 1449-1488, 2016.

[11] K. Asifuzzaman, R. Sánchez and P. Radojkovic, "Enabling a Reliable STT-MRAM Main

Memory Simulation".

[12] H. Wang, W. Kang, L. Zhang, H. Zhang, B. K. Kaushik, and W. Zhao, "High-Density,

Low-Power Voltage-Control Spin Orbit Torque Memory with Synchronous Two-Step

Write and Symmetric Read Techniques," 2020 Design, Automation & Test in Europe

Conference & Exhibition (DATE), pp. 1217-1222, 2020.

[13] N. Maciel et al., "Magnetic Tunnel Junction Applications," Sensors, vol. 20, no. 1, p.

121, 2020.

[14] G. Hu et al., "STT-MRAM with double magnetic tunnel junctions," 2015 IEEE IEDM,

p. pp. 26.3.1–26.3.4, 2015.

[15] E. Garzón et al., "Assessment of STT-MRAM performance at nanoscaled technology

nodes using a device-to-memory simulation framework," Microelectronic Engineering,

vol. 215, p. 111009, 2019..

[16] R. De Rose et al., "Compact modeling of perpendicular STT-MTJs with double reference

layers," IEEE Transaction on Nanotechnology, vol. 18, p. 1063–1070, 2019.

[17] A. V. Khvalkovskiy et al., "Basic principles of STT-MRAM cell operation in memory

arrays," Journal of Physics D: Applied Physics, vol. 46, no. 7, January 2013.

[18] Y. Pan et al., "A Multilevel Cell STT-MRAM-Based Computing In-Memory Accelerator

for Binary Convolutional Neural Network," IEEE Transactions on Magnetics, vol. 54,

no. 11, pp. 1-5, November 2018.

42

[19] S. Arcaro et al., "Integration of STT-MRAM model into CACTI simulator," 2014 9th

International Design and Test Symposium (IDT), pp. 67-72, 2014.

[20] R. Bishnoi et al., "Read Disturb Fault Detection in STT-MRAM," 2014 International

Test Conference, pp. 1-7, 2014.

[21] K. T. Quang, S. Ruocco and M. Alioto, "Boosted sensing for enhanced read stability in

STT-MRAMs," 2016 IEEE International Symposium on Circuits and Systems (ISCAS),

pp. 1238-1241, August 2016.

[22] Z. Bian, X. Hong, Y. Guo, L. Naviner, W. Ge, and H. Cai, "Investigation of PVT-Aware

STT-MRAM Sensing Circuits for Low-VDD Scenario," Micromachines, vol. 12, no. 5,

2021.

[23] Y. Wang, H. Tang, Y. Xie, et al., "An in-memory computing architecture based on two-

dimensional semiconductors for multiply-accumulate operations," Nature

Communications, vol. 12, no. 3347, June 2021.

