

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

Quantum Computing

MARÍA GABRIELA ZUMÁRRAGA DÁVILA

Ingeniería en Ciencias de la Computación

Trabajo de fin de carrera presentado como requisito

para la obtención del título de

Ingeniera en Ciencias de la Computación

Quito, 17 de diciembre de 2021

2

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

HOJA DE CALIFICACIÓN

 DE TRABAJO DE FIN DE CARRERA

Quantum Computing

MARÍA GABRIELA ZUMÁRRAGA DÁVILA

Nombre del profesor, Título académico Daniel Riofrío, PhD

Quito, 17 de diciembre de 2021

3

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales

de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad

Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad

intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este

trabajo en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación

Superior del Ecuador.

Nombres y apellidos: María Gabriela Zumárraga Dávila

Código: 200457

Cédula de identidad: 1717210742

Lugar y fecha: Quito, 17 de diciembre de 2021

4

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado

como una publicación, incluso a pesar de estar disponible sin restricciones a través de un

repositorio institucional. Esta declaración se alinea con las prácticas y recomendaciones

presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017)

Discussion document on best practice for issues around theses publishing, disponible en

http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following capstone project is available through Universidad San Francisco de Quito

USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be

considered a publication. This statement follows the recommendations presented by the

Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion

document on best practice for issues around theses publishing available on

http://bit.ly/COPETheses.

http://bit.ly/COPETheses
http://bit.ly/COPETheses

5

RESUMEN

La Computación cuántica es un campo relativamente nuevo dentro de las ciencias

computacionales el cual se ha venido explorando desde hace algunos años por empresas

grandes tales como Google e IBM. Sin embargo su potencial es bastante prometedor; posee

áreas emergentes en estudio tales como la teletransportación cuántica, la criptografía, machine

learning, entre otros. Esta, al basar su procesamiento en el uso de propiedades físicas como el

entrelazamiento cuántico y la superposición, nos permite desarrollar algoritmos y sistemas que

sean capaces de solucionar problemas complejos que no han podido ser resueltos aún con las

computadoras actuales. Este estudio explora áreas tanto de la computación clásica como de la

computación cuántica mediante una aproximación tanto teórica como práctica utilizando los

recursos que IBM y Google ponen a disposición del público.

Palabras clave: Computación Clásica, Computación Cuántica, Circuitos Lógicos,

Circuitos Cuánticos, Compuertas Lógicas, Compuertas Cuánticas, Sistema Cuántico

IBM, Sistema Cuántico Google, Qiskit, Cirq, Teletransportación Cuántica, Deutsch-

Jozsa.

6

ABSTRACT

Quantum Computing is a relatively new field in computing which has been explored

for ears by large companies such as Google and IBM. However, its potential is quite promising

and any emerging areas are under study such as quantum teleportation, quantum cryptography,

quantum machine learning, amongst others. Quantum Computing is based on principles from

physics such as quantum entanglement and superposition. This allows us to develop algorithms

and systems capable of solving complex problems that have not been able to be solved even

with current computers. This study explores areas of both classic and quantum computing with

the use of theoretical and practical assumptions by using IBM and Google public resources.

Key words: Classic Computing, Quantum Computing, Logic Circuits, Quantum Circuits,

Logic Gates, Quantum Gates, Quantum IBM, Quantum Google, Qiskit, Cirq, Quantum

Teleportation, Deutsch-Jozsa.

7

CONTENTS

RESUMEN .. 5

ABSTRACT .. 6

CONTENTS.. 7

ÍNDICE DE TABLAS .. 8

ÍNDICE DE FIGURAS .. 9

INTRODUCTION ... 10

CLASSICAL COMPUTING .. 12

Programming Language ... 12

Compilers and Interpreters:.. 12

Logic Gates: ... 13

QUANTUM COMPUTING .. 14

Qubit .. 14

Quantum Gates: ... 15

Quantum Computers: ... 18

Qiskit and Cirq ... 18

ALGORITHMS ... 19
Quantum Teleportation .. 20

Implementation .. 21

Deutsch-Jozsa .. 26

Implementation .. 26

RESULTS AND DISCUSSIONS ... 32

REFERENCES .. 35

8

ÍNDICE DE TABLAS

Table 1: Gates Comparison .. 17

Table 2: Tools .. 19

Table 3: Teleportation Algorithm: Step #1 .. 22

Table 4: Teleportation Algorithm: Step #2 .. 22

Table 5: Teleportation Algorithm: Step #3 .. 23

Table 6: Teleportation Algorithm: Step #4 .. 23

Table 7: Teleportation Algorithm: Step #5 .. 24

Table 8: Teleportation Algorithm: Step #6 .. 25

Table 9: Teleportation Algorithm: Step #7 .. 26

Table 10: Deutsch-Jozsa Algorithm: Step #1 .. 28

Table 11: Deutsch-Jozsa Algorithm: Step #2 .. 28

Table 12: Deutsch-Jozsa Algorithm: Step #2 .. 29

Table 13: Deutsch-Jozsa Algorithm: Step #2 .. 30

Table 14: Deutsch-Jozsa Algorithm: Step #3 .. 30

Table 15: Deutsch-Jozsa Algorithm: Step #4 .. 31

Table 16: Deutsch-Jozsa Algorithm: Step #5 .. 31

Table 17: Deutsch-Jozsa Algorithm: Step #6 .. 32

9

ÍNDICE DE FIGURAS

Figure 1: Bloch Sphere .. 15

10

INTRODUCTION

Nowadays, computers play an important role in our daily lives. Almost everybody uses

a smartphone or a computer to get or send information. Yet, do you know how that information

is processed? Computers process information every second by using logic gates that work with

a binary system i.e. 1's and 0's (Vogt, 2021). Likewise, the same happens in quantum

computers. These computers process information by using quantum circuits and quantum gates

which are equivalent to classic systems. In these circuits computers use Qubits to make

operations based on probabilities.

Despite today’s computers have great processing power there are algorithms that

require large amounts of time to compute. But, since quantum computers depend on quantum

properties, it is possible to solve some of these complex problems faster. Quantum Computing

is a field which has been explored for years by large companies such as Google and IBM

(Carrascal, del Barrio, & Botella, 2020). In fact, its potential is quite promising; it has emerging

areas under study like cryptography, machine learning, amongst others where we can develop

algorithms and systems capable of solving complex problems that have not been able to be

solved even with current computers.

It is a relatively new field although their studies began half way through the 20𝑡ℎ

century because quantum computers did not appear until the end of the century. This allowed

to begin some practical studies that continue to this day. In those studies, it was discovered that

there exists physical elements that allows us to represent more than two states by using

quantum superposition and also to share states by using entanglement between two qubits.

These special characteristics allow machines to have greater capacity and processing power to

simulate complex systems. Nevertheless, there are still a lot of challenges in this field because

finding a practical application is hard. Current architectures do not have remarkable

11

computational power to solve on-demand problems due to memory and/or computing time

limitations. And, although it is a field that still has many barriers to overcome, it is important

to continue exploring it as it can help model and solve new problems. That is why this study

analyzes how both classical and quantum computing work and focuses on two well-known

algorithms, Quantum Teleportation and Deutsch-Jozsa, which are implemented in public

available quantum computers from IBM and Google.

12

CLASSICAL COMPUTING

In order to understand how quantum computers work, we must first understand some

concepts about classical computing that allows us to use them.

Programming Language

Classical computers use a binary system which is represented by 1’s and 0’s. These

symbols are then interpreted by the computer. The computer uses logic gates and circuits to

make basic operations with the symbols and a set of instructions for them to follow.

Nonetheless, this system becomes complex to human understanding and even more so to

program in it. That is why another language is needed, in which we can work in an less abstract

upper layer and thus developing programs becomes easier (Patterson & Hennessy, 2014).

That language is known as a programming language, which is nothing more than a

mixture of syntactic symbols that allows us to build any type of system, program or even an

application. High-level programs (“the high-level term is used to distinguish these from low-

level assembler languages, which are basically thin wrappers around machine code”)

(Raymond, 2010) use well-known and easy-to-understand syntax like English so that the

programmer can easily give instructions to the machine. Therefore, those instructions have to

be translated into machine code, using the binary system, so that the computer can execute

them (Patterson & Hennessy, 2014).

Compilers and Interpreters:

Now, usually the programmer is the one who writes those instructions in the preferred

high-level language that then will be translated by an interpreter or a compiler (depending on

the language that has been chosen). After the instructions are written, the source file is then

passed to the compiler or interpreter so it can be translated and then turn into an executable

program.

13

The most traditional thing to use are compiled languages which translate source code

into machine code before executing it. Only then the processor executes the software, obtaining

all the instructions in a binary code before starting so it can determine the order of execution

of each instruction.

On the other hand, there are interpreted languages which translate the source code

during execution time by using system calls.

Logic Gates:

We have already discussed how programs are built and how they are translated for

computers to understand. But what happens after they is translated? Once source code is

translated by an interpreter or a compiler, every program executes the stream of bytes sent as

instructions translated to computer's machine language in the steps before. Programming

language translates a symbolic version of an instruction into the binary version” (Patterson &

Hennessy, 2014). Now we can consider the process in a lower level which is the hardware.

At this level, computers understand only a binary language, so the processor receives a

set of instructions to do the operations required. As we have seen, this binary language has 1’s

and 0’s that will be interpreted by electronic devices known as transistors and semiconductors

arranged in circuits. Those circuits use logic gates that will work with voltage letting the bit

pass (1) or not (0) to perform calculations (Patterson & Hennessy, 2014).

These bits will go through the logic gates that implement basic logic functions to build

logic blocks where computation of bits will take place (Stallings, 2013). In classical computers,

we have three types of logic gates which are AND, OR and NOT gate. The first one, the AND

gate, returns a 1 only when both of the entries are 1. The OR gate returns a 1 only when one of

the entries has a high voltage, that is to say it has a 1. Finally, the NOT gate returns the inverse

signal; in other words, when the entry is 1, it returns a 0. When the entry is 0, it returns a 1

14

(Vogt, 2021). One important property of classic logic gates is that some of them are not

reversible, which will let us know what the initial entries were.

QUANTUM COMPUTING

Now we can explore more about the quantum field. Quantum computers appeared in

1981 after the physicist Richard Feynman studied the atoms in quantum mechanics and

encouraged scientists to build one (Angara, Stege, & MacLean, 2020). In those studies, he

discovered that in the quantum world, elements work differently and do not follow rules of

traditional physics. Here, elements do not necessarily have defined states since they can exist

in two or more places at once.

Then, we can define Quantum Computing as the act of performing computation by

making use of quantum mechanics, where “quantum” refers to the atomic or subatomic units

that the system uses to calculate different (Carrascal, del Barrio, & Botella, 2020). This means

that we will be making quantum operations on quantum data using qubits but also some

resources in real time of classical computation.

Qubit

In this quantum world, computers need qubits to process information. They are

considered the elementary units of quantum computing information as the quantum

generalization of a classic bit.

Representation of qubits is summarized in being an orthonormal basis, which describes

a set of unitary elements (0 and 1). To denote them, we use a mathematical notation which is

in form of matrices and space vectors. So, we have a vector |𝑞 > where q represents the value

of the quantum state. Those values can be either 1 or 0 and are represented by |0 > and |1 >.

15

Classical bits use the binary system while qubits are a two-level system. Qubits based

their calculations on probabilities as they have a “third” state called superposition. This “third”

state can be seen as a set of states represented by a linear combination, in which they can hold

both states at the same time before it is measured. This means that the qubit can have every

state possible. But, those space vectors, also known as state vectors, will eventually “point to

a specific direction in space that will correspond to a particular quantum state”. This can be

seen using a Bloch Sphere (Qiskit Development Team, 2021). For example, in Figure 1 we can

see a qubit in state |0 >.

Figure 1: Bloch Sphere

Now, qubits have a second important property called entanglement that will allow them

to work together as a system. This means that, when two qubits are entangled, they will form

a relationship that will not only contain more information but will also keep their states linked.

Then, no matter how far qubits are from each other, any change we make on one particle will

trigger immediately a change of state in the other one (Carrascal, del Barrio, & Botella, 2020).

Quantum Gates:

As we have seen in classical computing, we use transistors in circuits to build logic

gates that will represent bits so that we can make operations with the computer. In quantum

computing, we cannot use the same system; therefore, quantum gates are required to create

quantum circuits. This quantum circuit will manipulate qubits to perform operations. This

16

means that quantum gates, unlike logic gates, can take advantage of some of the qubit’s

properties that we have seen before like superposition and entanglement. In addition to this,

the concept of reversibility must be taken into consideration because quantum gates will never

lose information and laws of quantum physics will be reversible in time. The “qubits that are

entangled on their way into the quantum gate remain entangled on the way out, keeping their

information safely sealed throughout the transition” (Roell, 2018).

But how does this system works? A quantum circuit is made up of equal number of

output and input wires that will carry the qubits between gates from outputs to inputs and gates

where the qubit processing will take place. This system is based on a two level system where

the qubits states are represented by vectors as a superposition shown in Equation 1.

|0 > = (
1
0

) |1 > = (
0
1

)

Equation 1: Qubit States

Now, to perform calculations over these states, unitary matrices are used. These

matrices receive input vectors with a certain number of qubits (n qubit) and since each wire

carries a two-state quantum bit, a circuit of n qubits performs a unit operation represented by a

unit matrix of 2𝑛 × 22 (Bengtsson, 2005).

Table 1 shows some of the quantum gates provides by Google and IBM in their

quantum computers (Qiskit Development Team, 2021).

Type Gate Description IBM Google

Classic

NOT - X

Gate

Pauli gate: flips states x x

CNOT - CX

Gate

Acts wits two qubits (one as control, and the

other as target) performing a NOT-gate on target

when control qubit is in state 1. Used to create an

entanglement when control qubit is in

superposition.

x x

Toffoli -

CCX Gate

acts with 3 qubits (2 as control, 1 as target) to

apply a not gate on target when controls are in

state 1

x x

Swap swap states of 2 qubits x x

17

Identity - I

Gate / Wait

Gate

Ensure that nothing is applied to a qubit. Does

not change the qubit state. Known as the absence

of a gate.

x x

Phase

T - RZ (pi/4) Rotates the qubit in pi/4 x x

S - RZ (pi/2) Rotates the qubit in pi/2. Applies this phase to 1

state

x x

Z Pauli gate: acts as identity on state 0 and

multiplies the sign of the 1 state by -1 so the

states are flipped.

x x

T* Inverse T x x

S* Inverse S x x

Phase - P

Gate

Applies an specific phase to |1> state to rotate the

qubit. For certain values its equivalent to other

phase gates.

x x

RZ Rotates the qubit around the z axis by the given

phase

x x

Non

Unitary

Reset Returns a qubit to state |0> x

Measurement Used to make measurements in the circuit x x

Control

Modifier

Yields a gate. x

If Applies a conditional on a gate depending on the

state of the qubit

x

Barrier Prevents combination of gates to gain efficiency.

Useful for visualizing steps of the circuit.

x

Matrix A gate defined by its unitary matrix in the form

of a NumPy ND array.

x

Qubit

Permutation

Performs a permutation on a given set of qubits

x

Hadamard

H Rotates the states to make superpositions

(considered as the universal gate of quantum

computers)

x x

Quantum

sqrt(x) Implements a square. By applying this gate twice

we implement the standard X gate. Creates a

superposition with a pi/2 phase

x

sqrt(x)* Inverse of sqrt(x) x

Y Pauli Gate: flips states x x

RX Rotates the qubit around the x axis with the

given angle

x x

RY Rotates the qubit around the y axis with the

given angle

x x

RXX Ion -trap system. Implements exponent x x

RZZ Requires a single parameter: an angle expressed

in radians. This gate is symmetric; swapping the

two qubits it acts on doesn’t change anything.

x x

U Allows construction of any single qubit gate x

Table 1: Gates Comparison

18

Quantum Computers:

As we know, this field has been in studies for not so long, but since then some large

companies, like Google, IBM, amongst others, have built quantum computers that are available

to anyone that is interested in quantum computing. In the case of IBM, its Quantum Computer

has public access since 2016 and Google’s since 2018.

These computers take advantage of quantum physics to process information which they

do by using quantum processors built with superconducting Josephson junction-based quantum

chips and superconducting asymmetric oscillators (Carrascal, del Barrio, & Botella, 2020).

IBM's quantum computer uses 65 qubits and Google's quantum computer uses 54.

Actual quantum architecture built by these companies allows us to explore, study the

field and develop some basic algorithms with quantum circuits. To use quantum computers,

we just have to create an account on Google or IBM platforms and get into their quantum

section. These enterprises have also developed some quantum development kits that run in

their computers, such as Cirq and Qiskit respectively. We will see them on the following

section.

Qiskit and Cirq

These environments allow us to design quantum circuits where we can manipulate

quantum gates and qubits to develop algorithms (Qiskit Development Team, 2020). Both Qiskit

and Cirq are Python-based frameworks for quantum computing (Google, 2021). Both are open-

source software used to simulate quantum circuits using the gates we have seen previously. In

essence, they have the same gates; however, the way to use them syntactically is different even

though the same programming language is used in both environments.

Qiskit is the IBM quantum framework, which works with noisy quantum computers at

different levels (Qiskit Development Team, 2020). That is to say that it provides the necessary

19

tools for developing quantum algorithms at the lowest level which includes circuits and gates.

At this level, Qiskit is “optimizing [circuits and pulses] for the constraints of a particular

physical quantum processor, and managing the batched execution of experiments on remote-

access backends” (Qiskit Development Team, 2020). This framework has 4 packages (Terra,

Ignis, Aer, Ibmq) for working with the different levels (from high level to low level pulses).

The description of the functionality of each one is in Table 2 (Carrascal, del Barrio, & Botella,

2020).

Package Description

Terra
Imports translation functionality to be able to

communicate with quantum computers

Ignis
Provides tools for noise characterization &

parametrization

Aer Implements a simulator

Ibmq Allows remote access to IBM computer

Table 2: Tools

On the other hand, we have Cirq, which is Google's quantum framework. It also works

with noisy quantum computers using Noisy Intermediate-Scale Quantum (NISQ) circuits at

different levels. But, as IBM's framework, it provides a high-level library for working with

quantum circuits.

ALGORITHMS

In this section, we discuss two different quantum algorithms: Quantum Teleportation

Deutsch-Jozsa algorithm. We implemented these algorithms using both Google and IBM

quantum computers and compared working in both environments. Both algorithms were

implemented following the Qiskit documentation (Qiskit Development Team, 2020).

20

Quantum Teleportation

Quantum Teleportation is a process used to transfer information between two entangled

qubits that are in different places. Because of this relationship the information will be shared

by the particles (sender and receiver) regardless of the distance. An interesting thing to notice

here is that none so the qubits need to know the location of its pair, but they still share their

state. This has been demonstrated by a team of scientists at Fermi National Accelerator

Laboratory in collaboration with Argonne National Laboratory, Caltech, Northwestern

University and industry partners an some partner institutions (Chicago News, 2020). As stated

in a paper published in PRX Quantum (Valivarthi, et al., 2020), researchers were able to use

teleport information over a distance of 44 [km], demonstrating that long-distance teleportation

is possible with fidelity greater than 90%.

In this case, we will be moving the information between qubits on the same computer.

To demonstrate it, we will build the circuit and make some measurements on the qubits.

To build Quantum Teleportation algorithm we need three qubits: the message that will be send,

the sender and the receiver. With both, sender, and receiver, we need to create the entanglement

to establish the communication channel for receiving some classical bits of information. These

classical bits, at the end of the experiment, will be used to recover the teleported state. So, first

we must set the message which in this case means to initialize q0 in the state we want to send.

Then we will apply some quantum gates to create the entanglement and send the information

which are: H-Gate, CNOT-Gate, X-Gate and Z-Gate. By using them we will be able to copy

the state of the message on q1 and send it through the channel. Finally, and once, we have sent

the state, we apply some measurements on the receiver, and we will store its state in the

classical bits to get the results. It’s important to emphasize that, after the message was sent, the

receiver will have it but the sender won't; that’s why it is called “Teleportation”.

21

Implementation

 In this section we will see how to build the Quantum Teleportation algorithm in

Qiskit and Cirq. The steps will be the same but we will note some differences in the

syntax.

To use Google's computer, we need to use Google Collab to implement the

circuit. So the first thing we need to do is install Cirq and also qutip for plotting results.

Then we will import, in both cases the necessary modules so we can run the code and

initialize the circuit. For this, we will use 3 qubits were Q0 is the qubit that is going to

be sent, q1 will send the information and q2 the one that will receive it. In Google's

environment, we will use LineQubits because they will help use represent the circuit

with qubits as in line, but in IBM's we just declare qubits as Quantum registers. We

also need to add 2 classical bits to the circuit so we can get the results, by applying

measurements later, and to check if teleportation worked correctly. This step is shown

in Table 3.

Qiskit Cirq

.

.

.

22

Table 3: Teleportation Algorithm: Step #1

The next thing to do, shown in Table 4 is to initialize the qubit that is going to

be sent with the message we want. In this case, we initialize q0 in the state |0 >.

Qiskit Cirq

Table 4: Teleportation Algorithm: Step #2

 Now, in Table 5 we will create an entanglement between q1 and q2 applying a

Bell State so we can create the channel to send the information through it. After

23

establishing the teleportation channel, both qubits can be physically separated and no

matter how far the are they will still share the connection.

Qiskit Cirq

Table 5: Teleportation Algorithm: Step #3

Then, for the teleportation of the state, we will apply a CNOT gate on q1 that

will be controlled by q0 (qubit that is going to be sent) and we also apply an H gate on

this same qubit shown in Table 6.

Qiskit Cirq

Table 6: Teleportation Algorithm: Step #4

24

 Now teleportation is done, we make measurements on q0 and q1 and store the

results in the classical bits. But we must consider that since q1 and q2 are entangled,

the measurement will also affect the state of q2 Table 7 shows this.

Qiskit Cirq

Table 7: Teleportation Algorithm: Step #5

Since the transfer of the information was in classical bits, in Table 8 we need to

apply some gates depending on the state that is being received. At this point q0 and q1

can be in one of the following states: |00 >, |01 >, |10 >, |11 >, so the gates will

encode the possible phases and bit flip errors in q2. The state can then be established in

qubit 2 by applying an X operation (to correct a bit flip) and/or a Z operation (to correct

a phase flip).

Qiskit Cirq

25

Table 8: Teleportation Algorithm: Step #6

Finally, we can get and see the results by plotting them in Table 9. In case of

Cirq, we get the results as a state vector of the three qubits. Since we imported the

library qutip, we can plot the Bloch spheres to visualize the states. We can note that q0

and q1 will not change but q2 will. The state at this point of the experiment, the receiver,

q2, must be identical to the state we sent previously on the message, q0.

Qiskit Cirq

26

Table 9: Teleportation Algorithm: Step #7

Deutsch-Jozsa

Deutsch-Jozsa algorithm was the first algorithm to demonstrate that quantum

computers can provide better performance than classical computers. This algorithm is used to

determine if a function is balance or constant. The algorithm receives a function containing an

n-bit string and after evaluating it, the algorithm should return a string of 0 or 1 that will let us

know the result. For a balanced function will return 0’s at least for the half of the inputs and

1’s for the rest. On the other hand, for a constant function, the algorithm will return a string

with only just 1’s or just 0’s.

Usually for solving this problem we must consider the worst case in a classical

computer, so the time it will take to solve will increase as entries do. This means that in the

worst case, at least half of the inputs plus one will have to be evaluated in order to know whether

or not it is constant. That is to say that the cost of solving the algorithm will be 2𝑛−1 + 1 in

order to have 100% confidence in the algorithm. This, however, can be solved faster by taking

advantage of the resources of a quantum computer by making a single call to the function.

Implementation

In this section we will see how to build the Deutsch-Jozsa algorithm in Qiskit

and Cirq. For this, we will need two quantum registers initialized in |0 > and |1 >.

27

For the next step we will have to apply an H-Gate to each qubit and then create an

oracle that will evaluate the function. When the oracle is constant, it will make no

changes on qubits and since H-gate is its inverse we can get the initial state. On the

other hand, if the oracle is balanced, will change the qubits by adding a negative phase

to them. After the oracle has made the evaluation, we will ignore the first qubit and

we will apply an H-gate to each qubit on the first register. Finally, we can make

measurements to the circuit and we will get the probability of the function being

balanced or constant.

Table 10 describes the steps to build the Deutsch-Jozsa algorithm in Qiskit and

Cirq. The first thing we need to do is to initialize the modules that we are going to use.

Then we will initialize the circuit with 2 oracles: balanced and constant. Both will

receive 3 bit as an input. For the constant one, as the input has no effect on the output

we will set a random output between 0 and 1.

Qiskit Cirq

28

Table 10: Deutsch-Jozsa Algorithm: Step #1

For the balance oracle, in Table 11 we will use CNOT gates for each input qubit

and X-Gates so we can vary the input. Also we are going to use a bit string of length 3

to be evaluated: 101. Now as being evaluated, when the function detects a 0 will do

nothing, but if the function detects a 1, we will place an X-Gate to the corresponding

qubit.

Qiskit Cirq

Table 11: Deutsch-Jozsa Algorithm: Step #2

29

Then, in Table 12 we will place the NOT gates using each input qubit as a

control, and the output qubit as a target. This will guarantee that the circuit is balanced.

Qiskit Cirq

Table 12: Deutsch-Jozsa Algorithm: Step #2

To finish the balance oracle we need to make the same evaluation that we made

before to apply the X-Gates. This can be seen in Table 13.

Qiskit Cirq

30

Table 13: Deutsch-Jozsa Algorithm: Step #2

Once we have the two oracles that will predict the result. We can build the

complete circuit in Table 14. For this we need to initialize input qubits in a |+> state

and output qubits in |−> state.

Qiskit Cirq

Table 14: Deutsch-Jozsa Algorithm: Step #3

Then, we will apply the balance oracle we just created. Table 15.

31

Qiskit Cirq

Table 15: Deutsch-Jozsa Algorithm: Step #4

And, in Table 16 we will apply H-Gates on the n-input qubits to finally makes

measurements on the input register.

Qiskit Cirq

Table 16: Deutsch-Jozsa Algorithm: Step #5

Finally, in Table 17 we can get the results by using the simulator. Here we can

observe that the model predicted that the function is balanced.

32

Qiskit Cirq

Table 17: Deutsch-Jozsa Algorithm: Step #6

RESULTS AND DISCUSSIONS

In this study, we have seen how both, classical and quantum computers work. Based

on quantum theory, we have also built the circuits for two algorithms in different environments

that not only demonstrated the potential of this technology but also allowed us to see the

differences between them.

By analyzing both environments we could see that in a general view, they are good

tools for creating and using quantum circuits. However, if you are about to start exploring this

field, I personally recommend using Qiskit as IBM has more documentation that guides you

through, which makes it easier to understand. It also has libraries included that help to visualize

the states of the qubits and results. Even if you still do not know how to create the circuits using

code, IBM has a section (Quantum Composer) with visual tools in which you build the circuit

only by dragging the gates and you can easily visualize the results. On the other hand, if you

33

are an experienced user in this field, using Cirq should not be a difficult challenge. Even with

Google platform you could take advantage of some hardware details that allows to maximize

the effective utilization of processors but if you want to visualize the results you will have to

import some additional libraries. As we have seen, both are a Python based environment, so

the syntax is and easy to learn and understand. But, in comparison between them, Cirq and

Qiskit differ in the use of quantum gates, measures and variables as we saw in the previous

table.

In addition, quantum computing has a great advantage over classical computing. I will

mention a few examples. They can solve problems that grow exponentially so they have a

better performance (Carrascal, del Barrio, & Botella, 2020). They compute difficult factoring

large numbers in few times so it not only simplifies mechanisms used in cryptography, but they

could be more secure. Also, and if appropriate networks for quantum computers are built, they

could be able to share information at incredible fast speeds. With a quantum network we could

also distribute easily qubits between different locations (despite the distance), which is a an

essential thing for quantum cryptography, distributed quantum computing, communications

and sensing (Valivarthi, et al., 2020). “But keeping this information flow stable over long

distances has proven extremely difficult due to changes in the environment including noise.

Researchers are now hoping to scale up such a system, using both entanglements to send

information and quantum memory to store it as well” (Banafa, 2021). This will make

communications faster than they are known and may reach greater distances.

However, we could see that quantum computing is still very limited and they are not

yet at the level of classical computing. We still need the use of classical computers to make

some simulations and get the results but, this will change over time. If quantum computers

keep developing steadily, they will eventually take over classical computers (Qiskit

Development Team, 2020), we expect that quantum hardware and software will keep

34

improving as it is still under study and research. For now, this field is under study and is

basically used for testing, random sampling. Nevertheless, scientists are still looking for better

techniques to control quantum states and building architectures that will let use this technology

in an easier way. But this is not the only thing necessary to continue developing this area. First,

environments, compilers and programming languages that allow us to manage the gates,

prepare the states and make measurements must be made so it can be easier to understand, and

developers could make programs from a higher level.

With this, and because of its potential, it will lead us to new things that will probably

make a huge difference in society. Just as before they did not imagine the influence of the

classical computer in our lives, so it is with quantum computing. The technological advances

that can be made with it are unimaginable. We are moving towards this little by little, and we

must prepare for this change. We have seen how vapor machines led us to the first big change

in the first industrial revolution, electricity to the second, energy to the next one and now, that

we are in the fourth revolution, we cannot live without computing. Will quantum technology

become the next big technological revolution in human history?

35

REFERENCES

Angara, P. P., Stege, U., & MacLean, A. (2020). Quantum Computing for High-School

Students. International Conference on Quantum Computing and Engineering.

Banafa, A. (2021, 02 01). Quantum Teleportation: Facts and Myths. Open Mind BBVA.

Retrieved from https://www.bbvaopenmind.com/en/technology/digital-

world/quantum-teleportation-facts-and-myths/

Bengtsson, A. K. (2005). Quantum Computation: A Computer Science Perspective.

Carrascal, G., del Barrio, A. A., & Botella, G. (2020, 07 06). First experiences of teaching

quantum computing. The Journal of Supercomputing.

Chicago News. (2020, 12 28). Fermilab and partners achieve sustained, high-fidelity quantum

teleportation. Chicago News.

Google. (2021). Quantum AI. Explore the possibilities of quantum. Retrieved from

https://quantumai.google/

Holton, W. C. (2021, 08 17). Quantum Computer. (E. Britannica, Ed.) Retrieved from

https://www.britannica.com/technology/quantum-computer

IBM Corporation. (2016). Operations Glossary. IBM Quantum Composer. Retrieved from

https://quantum-computing.ibm.com/composer/docs/iqx/operations_glossary

LaRose, R. (2021). Review of the Cirq Quantum Software Framework. Quantum Computin

Report. Retrieved from https://quantumcomputingreport.com/review-of-the-cirq-

quantum-software-framework/

Marchenkova, A. (2019, 10 7). Programming for Quantum Computing: What language should

you learn? Retrieved from https://www.linkedin.com/pulse/programming-quantum-

computing-what-language-should-you-marchenkova/

36

Microsoft. (2021, 11 30). Understanding quantum computing. Azure Quantum Documentation.

Retrieved from https://docs.microsoft.com/en-us/azure/quantum/overview-

understanding-quantum-computing

Patterson, D. A., & Hennessy, J. L. (2014). Computer Organization and Design (5 ed.). Morgan

Kaufmann.

Qiskit Development Team. (2020). Introduction to Quantum Computing. Retrieved from

https://qiskit.org/textbook-beta/course/introduction-course/

Qiskit Development Team. (2021, 10 08). Learn Quantum Computation using Qiskit. Qiskit.

Retrieved from https://qiskit.org/textbook/ch-states/single-qubit-gates.html

QuTech. (2021). Qubit basis states. Quantum Inspire. Retrieved from https://www.quantum-

inspire.com/kbase/qubit-basis-states/

Raymond, E. (2010, 07 31). The Unix and Internet Fundamentals HOWTO. Retrieved 09 15,

2021, from https://tldp.org/HOWTO/Unix-and-Internet-Fundamentals-

HOWTO/index.html

Roell, J. (2018, 02 18). Demystifying Quantum Gates — One Qubit At A Time. Towards Data

Science. Retrieved from https://towardsdatascience.com/demystifying-quantum-gates-

one-qubit-at-a-time-54404ed80640

Shaik, E. h. (2020). Implementation of Quantum Gates based Logic. Pondicherry University.

Stallings, W. (2013). Computer Organization and Architecture. New Jersey: Pearson.

Sutter, P. (2021, 05 26). What is quantum entanglement? Live Science. Retrieved from

https://www.livescience.com/what-is-quantum-entanglement.html

Valivarthi, R., Davis, S. I., Peña, C., Xie, S., Lauk, N., Narváez, L., . . . Ginn, Y. (2020, 12 4).

Teleportation Systems Toward a Quantum Internet. PRX QUANTUM.

Vogt, J. A. (2021). An Introduction to Quantum Computing. University of Applied Sciences.

37

Yanosfsky, N., & Mannucci, M. (2012). Quantum Computing for Computer Scientists.

Cambridge University Press.

