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Resumen

Teniendo en mente aplicaciones en termoplasmónica, en este trabajo estudiamos el
calor disipado por una nanoparticula nano-shell, formada por un nucleo de silica cu-
bierto por un cascaron de oro. Utilizamos la aproximación cuasiestática para estudiar
las densidades de campo electrico y de polarización del sistema. Además, aplicamos
un tratamiento clásico para describir la interación entre el metal y los campos. Con-
sideramos el calor disipado del sistema desde un punto de vista electromagnético,
tomando en cuenta la energía electrostática total en un medio lineal. Obtuvimos que
el calor disipado adimensional por la nanopartícula está en el orden de 1016, asi como
también que es necesario que el cascaron de oro sea fino para que su resonancia se
encuentre en la parte infraroja del espectro.

Palabras clave: Termoplasmónica, nanopartícula nano-shell, aproximación cuasi-
estática, calor disipado.
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Abstract

Keeping in mind applications in thermoplasmonics, in this work we studied the heat
dissipated by a nano-shell nanoparticle, which is formed by a gold shell coating a sil-
ica core.We used the quasistatic approximation to study the electric and polarization
density fields of the system. Furthermore, we used a classical treatment to describe
the interaction between the metal and the fields. We approached the heat dissipated
by the system from a electromagnetic point of view, considering the total electro-
static energy in a linear medium. Obtained that the adimensional heat dissipated by
the nanoparticle is in the order of 1016, also that is necessary to use thin gold shell to
obtain a resonance in the infrared part of the spectrum.

Keywords: Thermoplasmonics, nano-shell nanoparticle, quasistatic approxima-
tion, heat dissipated.
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Chapter 1

Introduction

1.1 Plasmonics

Plasmonics is the study of the interactions between free electrons in metal an elec-
tromagnetic fields at the nanoscale [15]. While it has been used by humanity since
centuries, as it was the physical phenomenon behind the colors of the stained glass
windows of medieval cathedrals and the magic of roman artifacts, it is only after the
full development of the classical electromagnetic theory that the mechanisms under-
ling Plasmonic phenomena where finally understood [3].

Figure 1.1: Chartres Cathedral: stained-glass rose window
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After that, at the end of the last century, plasmonics emerged as an uprising field
of research, but it was only in the last twenty years, with the development of a variety
of new nano-technological methods [3], allowing to synthetize custom nanoparticles
with nano scale precision that the interest of the scientific community on these phe-
nomena begun growing at an exponential rate.

The main advantage of using metal nanoparticle to manipulate electromagnetic
fields is their ability to confine an enormous light intensity in at a size much smaller
than the wavelength when these nanoparticles while are being illuminated at their
plasmonic resonance. This allows for an incredibly wide range of applications rag-
ing from bio-sensing to photovoltaics, plasmon-enhanced spectroscopy and cancer-
therapy [2]. Additionally, what makes interesting the electromagnetic confinement
produced through plasmonics is that all of the information that can be encoded in
the impinging light is transduced in this smaller-than-the-wavelength volume. This
is obtained because when light incident on a metal can excite resonant coherent os-
cillations of the free electrons, thus information carried by a beam with a wavelength
of some hundreds nanometers (e. g. information traveling in a optical fiber) can be
stored and/or analyzed in a few nanometers.

In general, when discussing "plasmons", one can refer to three specific phenom-
ena. 3D oscillation of the electron density which are referred as bulk plasmons;
propagating surface plasmon polaritons (SPPs) which are oscillations that propagate
across surfaces or along waveguides; and finally the electron oscillations that take
place in illuminated metal nanoparticles which are called localized surface plasmon
(LSPs) [11] and are the ones we will discuss in this Thesis .

1.1.1 Localized surface plasmon resonances

It exists a plethora of geometries that allows a metal nanoparticle to support a LSP,
and all of them come with their strengths and flaws. As an example, spherical nanopar-
ticles are more stable and allows for easier theoretical modelling, but they sports
lower electromagnetic fields, while triangle or particles with spikes tends to produce
more intense plasmonic fields, but can collapse easily when heated, etc. What is com-
mon in between all of the possible geometries is that, when the plasmon resonance
is activated, a superficial electron density begins to oscillate through the skin of the
particle creating a local electromagnetic field. Since metals have large electron den-
sities, this field can be, in principle, very large. We will show in the following that
this is a resonance phenomenon, so that in order to produce a plasmon the metal
nanoparticle has to be excited at the right wavelength.
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The frequency of the Localized Surface Plasmon Resonance (LSPR) can cover
a range between the visible ultraviolet and near the infrared part of the spectrum.
It depends of some geometrical parameters such as the shape and the size of the
nanoparticle and it is influenced by the environment of the nanoparticle (i. e. the
index of refraction of the solvent hosting the nanoparticles or, in the case of more
convoluted structures on the index of refraction of dielectric inclusions).

If one wants to produce a LSPR in the visible range, the most viable plasmonic
metals are silver and gold, which again comes with their advantages and disadvan-
tages. Silver, as an example, shows low ohmic losses and thus is a better candidate
for realizing plasmonic emitters [1], while gold nanoparticles are better suited for
biological applications such as biolabels, because gold is biological compatible and
its surface can be easily functionalized with different kind of molecules. Both metals
are resistant to photo-damage and robust in terms of optical, chemical an thermal
denaturation, however gold nanoparticles are stronger absorbers and therefore better
suited for photothermal therapies [11].

1.2 Thermoplasmonic Nanoparticles

1.2.1 Identifying the right thermoplasmonic nanoparticles

It is not a trivial task to find the most suitable thermoplasmonic nanoparticle for a
specific application, often is restricted to physical, chemical or biological constraints.
For these reason we can adjust: the nanoparticle size, shape and composition. For
example, we can maximize the light-to-heat conversion of the nanoparticles by in-
creasing its size. Also, biological and biomedical applications require combining sizes
of a few tens of nanometers in order to stimulate cellular uptake, with low toxicity and
resonances in the NIR biological transparency window. Moreover, applications like
catalysis and thermophotovoltaics emphasize high structural thermal stability [2].

1.3 Plasmonic Photothermal Therapy

Conventional cancer therapies such as surgery, chemotherapy or radiation, lack can-
cer cell specificity, meaning that they attack the overall cellular complex and harm
the cancer cells more only because they tends to grow faster. While this is widely
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recognized as a very effective approach, it also affect dramatically the growth of hair
and fingernails. Moreover, some of them have actual deleterious side affects and are
harmful and adversely impact the patient’s overall well being [6].

In between the proposed alternatives to overcome these major problems, the use
gold nanoparticles as photo-thermal agents stands out as one of one of the best candi-
date currently under consideration. The United States Food and Drug Administra-
tions has, in fact, approved gold-based nanostructures as drug carriers or therapeutic
agents for various phase-I clinical trials. Gold nanoparticles are of easy fabrication,
have low cytotoxicity, offer tunable optical properties and can be surface modified in
several ways. This last propriety allows them to be functionalized with antibodies,
ligands, and other useful molecules that bind receptors on the membrane of cancer
cells making them more easily absorbed from cancer cells, this is possible due to the
presence of large gaps in the irregular vascular system of cancerous tissue, which are
absent in health cells. This process leads to accumulation of gold particles in the
tumor without affecting health tissue in the same area, this way allowing a target-
ing therapy. The accumulated gold nanoparticles are subsequently illuminated with
a laser light with the wavelength within the tissue transparency window, in another
words near the infrared spectrum. This light can usually penetrate 1-3[cm], which is
sufficient for skin and breast cancers. Other cancer types can be addressed through
endoscopy. The illumination and subsequent heating cause localized hyperthermia
to the cancerous tissue, barely affecting the surrounding healthy tissue. Hyperther-
mia for cancer therapy has been successfully demonstrated in vivo in mouse, cat and
dog. Moreover, it has been proceeded to clinical trials on human.

In this Thesis we will focus on nano-shell spherical particles, where an internal
dielectric core is coated with a metal shell. The advantage of this geometry is that
one can modulate the resonance frequency by varying the shell thickness (i. e. the
ratio between the internal and the external radius) [5]. We will calculate the capacity
of this structures of producing heat at different frequency, and we will show how
throughout this characterization is possible, as an example, to identify the best radius
ratio for Photothermal Therapy.
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Chapter 2

Preliminaries

2.1 Drude’s Permittivity

Before entering in the details of the geometry of the nanoparticle under study, let’s
discuss how the metal permittivity can be modeled by means of a a free electron
model describing the interaction between the electrons in the metal with the internal
electric field.

Figure 2.1: Drude’s Model: the presence of an electric field drives the electrons in
the opposite direction, the flux of electrons is slowed down because of the collision
with the ions.

Let’s consider a single electron of mass me and charge Qe. When an optical field
E(t) is acting on it, the electric force produced is given by:

Fe(t) = QeẼ(t). (2.1)
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because the electron moves in the metal, we will model the collision with the ions
trough a collisions friction force (not different from the dragging friction force which
act on a body moving trough a viscose fluid). For this reason we define the friction
coefficient η so that, using v(t) as the velocity of the electron. The collision friction
force will be:

Fr(t) = −2ηv(t). (2.2)

If we now call to be the displacement of the electronic cloud within the metal with
respect to the equilibrium position r(t), we can write the Newton’s second law as:

mea(t) = QeẼ(t)− ηv(t) (2.3)

which can be rearranged in the following second order differential equation:

d2r(t)

dt2
+ 2γ

dr(t)

dt
=

Qe

me

Ẽ(t) (2.4)

where γ =
η

2me

.

If we now define the polarization produced in the metal as the sum of its passive
and active part where the passive/dielectric part is due to the ions grid and the active
to the electrons, we get:

P̃ = ε0χ∞Ẽ(t) + Π̃(t) (2.5)

where Π(t) = neQer(t) and χ∞ is the dielectric susceptibility of the ion’s grid.

d2Π̃(t)

dt2
+ 2γ

dΠ̃(t)

dt
=

neQ
2
e

me

Ẽ(t) (2.6)

Since, within the rotating wave approximation we have:

Ẽ(t) =
1

2

[
E(t)e−iωt + E∗(t)eiωt

]
(2.7)

Π̃(t) =
1

2

[
Π(t)e−iωt +Π∗(t)eiωt

]
, (2.8)

here E(t) and Π(t) are, respectively the complex envelopes of the real electric field
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Ẽ(t) and the real active polarization Π̃(t). We can conclude that

dΠ(t)

dt
=

dΠ(t)

dt
e−iωt − iωΠ(t)e−iωt (2.9)

d2Π(t)

dt2
=

d2Π(t)

dt2
e−iωt − 2iω

dΠ(t)

dt
e−iωt − ω2Π(t)e−iωt (2.10)

which yields

d2Π(t)

dt2
+ 2(γ − iω)

dΠ(t)

dt
− (2iγω + ω2)Π(t) =

neQ
2
e

me

E(t) (2.11)

As the complex envelope Π(t) does not change very quickly, we can safely assume

that
d2Π(t)

dt2
≈ 0.

neQ
2
e

me

E(t)

2(γ − iω)
=

dΠ(t)

dt
− ω(2iγ + ω)

2(γ − iω)
Π(t) (2.12)

By (2.5) , if we can find the steady state solution, then we can use the approximation
dΠ(t)

dt
≈ 0, which leads us to

neQ
2
e

me

E(t)

2(γ − iω)
= −ω(2iγ + ω)

2(γ − iω)
Π(t) (2.13)

Let the plasma frequency be defined as ω2
pl =

neQ
2
e

ε0me

. Thus we got

Π(t) = −
ε0ω

2
pl

ω(2iγ + ω)
E(t) (2.14)

Replacing (2.14) in (2.5) we obtain that

P(t) = ε0

[
χ∞ −

ω2
pl

ω(2iγ + ω)

]
E(t) (2.15)

where the Drude’s permittivity is

εm(ω) = ε∞ −
ω2
pl

ω(2iγ + ω)
. (2.16)
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2.1.1 Accounting for the losses due to interband transitions

The Drude permittivity calculated in the previous section, tends to underestimate the
losses due to interband transitions. These are particularly important when evaluating
the heat produced in a nanoparticle, for this reason, we will account for the additional
losses calculating a ε∞(ω) as:

ε∞(ω) = εJCm (ω) +
ω2
pl

ω(ω + 2iγ)
(2.17)

where is the dielectric permittivity of the metal calculated by interpolating the ex-
perimental data of Johnson and Christy [10], and using this one instead the static ε∞
of the Drude model in formula 2.15.

The metal permittivity for gold, as calculated with formula 2.15 and including
the additional losses, as discussed in this section, is presented in figure. 2.2 were
the frequency dependence is measured in terms of the Energy per photon ℏω and
presented in electronvolts.
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Figure 2.2: Complex permittivity for gold, calculated using a free electron model and
including additional losses trough the interpolation of the data measured by Johnson
and Christy.
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It is worth noting that, while the metal permittivity has required a suitable mod-
eling to be discussed in a physically sound way; all the other materials that we will
use in this characterization are dielectrics so, their electromagnetic response can be
described as real constant numbers (e. g. water εW = 1.7689 , silica εS = 2.1316,
etc). Consequently, we can now focus on the effects due to the nanoparticle geome-
try which, due to the interface nature of the plasmons are as relevant as the material
composing the nanostructure.

We will show in the following chapter that these shape effects can be modeled as
the boundary conditions of a second order partial differential equation problem.
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Chapter 3

Geometry of the Nanoparticle

3.1 The Electromagnetic Problem

The model in which we shall develop our theory is based on an optical approxima-
tion. Thus, we define the magnetic permittivity as µ = µ0µr (with µr ∼ 1). Although
we are interested in time-dependent effects, we can omit the induction terms and
the displacement current, as long as we consider the nanoparticle much smaller than
the wavelength. This approximation called the quasi static limit is widely used when
discussing small metal particles [19, 20, 5] and it is possible because, in this situation
the exciting electric field can be considered uniform in the region of interest. In this
approximation, the Maxwell’s equations for reduces to:

∇ · E(r, t) = 0 (3.1)
∇× E(r, t) = 0 (3.2)

which means there are no free charges, that is because of having two different medi-
ums there is an electron migration in the opposite direction of the field. In other
words, there is no net charge on the sphere, but there is polarization charge.
Knowing that ∇× (∇f) = 0, if ∇× E = 0 it follows that E = ∇f .
Hence there exist Φ(r, t) such that

E(r, t) = −∇Φ(r, t) (3.3)

replacing in (3.1) we get
∇2Φ(r, t) = 0 (3.4)
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where (3.4) is the Laplace equation.

This means that one can calculate the electric potential in any region of the con-
sidered space using Laplace equation and describe the presence of different materials
by reconnecting Laplace equation’s solution at the boundary in between the two ma-
terials. Specifically if, as in the example presented in figure 3.1 (i. e. a material
inclusion in a solvent), one can solve equation 3.4 independently in the region of
permittivity ε1 and ε2 and then evaluate the arbitrary coefficients of the general solu-
tion by imposing the boundary condition in between the two materials and at infinite.

ε1

ε2

Figure 3.1: A material inclusion of permittivity ε1 is dissolved in a host of permit-
tivity ε2.

From a mathematical standpoint, the two-dimensional Laplace and its inhomo-
geneous version Poisson equations describe equilibrium configurations so they al-
ways appear in the context of boundary value problems. We seek a solution u(x, y)
defined at points belonging to a bounded, open domain, Ω ⊂ R2. The solution is
required to satisfy suitable conditions on the boundary of the domain, ∂Ω, which
will consist of one or more simple closed curves. The Dirichlet boundary condi-
tions specify the value of the function u on the boundary u(x, y) = h(x, y) for
(x, y) ∈ ∂Ω. Under mild regularity conditions on the domain Ω, the boundary values
h, and the forcing function f , these conditions serve to uniquely specify the solution
u(x, y) to the Laplace or the Poisson equation. The Neumann boundary conditions
∂u

∂n
= ∇u · n = k(x, y) on ∂Ω in which the normal derivative of the solution u is

prescribed. In general, n denotes the unit outwards normal to the boundary ∂Ω, that
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is the vector of unit length which is orthogonal to the tangent to the boundary and
points away from the domain. [17].

Returning to our problem, we can divide space in a internal volume 1 (the one
where the material inclusion is) and an external volume 2 (the complementary space),
in both cases we have to solve a second order differential equation which has a well
defined solution in a closed space if boundary conditions of Neumann or Dirichlet
are known on the enclosing surface [17]. It is important to mention here that, while
region 1 is evidently a section of space enclosed by a surface, in the case of region 2
this is not as much evident. The way to face this apparent incongruity is to deal with
the exciting field as a boundary condition set on a spherical surface of infinite radius.
Being the electric field related to the gradient of the potential this corresponds to
a Neumann condition on the external boundary which is enough to overcome the
empasse.

3.2 Spherical Nanoparticle

“Everything is a sphere, if you’re brave enough approximating”

— Anonymous Physicist

The more complex the shape of the surface identifying the boundary between the
inclusion and the solvent, the more advanced has to be the mathematical tool to allow
its description. While advanced methods such as the T-Matrix [14] exists to manage
nanoparticles with extremely exotic shapes (up to complex agglomerate of different
particles); we will focus our study on the simplest configuration of the spherical par-
ticle. This not only represent a first approximation of a vast variety of shapes, it also
constitute a class of very stable nanoparticles suitable for thermal applications (that
will be the focus of the last part of this Thesis) because, when heated over a threshold,
most of the metal nanoparticles tends collapse into spheres.

Let’s consider a spherical nanoparticle of radius a with electric permittivity ε1
embedded in a solvent with electric permittivity ε2. The whole system is excited
through a local uniform electric field E0. For the sake of simplicity we position the
center of the spherical nanoparticle in the origin of the system of reference and the
exciting field alongside the z-axis, so that the surface S identifying the boundary in
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a

2

1

z

r ϑ

E0
φ

ε2

ε1

Figure 3.2: A spherical inclusion of permittivity ε1 is dissolved in a host of permit-
tivity ε2.

between the two media given by the equation:

r = a, (3.5)

where r =
√

x2 + y2 + z2 is the radial spherical coordinate, while the exciting field
is given by

E0 = E0k̂, (3.6)

Now our problem turns into solving the Laplace equation inside (region 1) and out-
side the sphere (region 2). As mentioned in the previous section, the reconnection
with the excitation field can be treated as a given boundary condition on a spherical
surface of infinite radius. Considering that the relation between the electric field and
the electric potential is given by:

E(r) = −∇Φ(r), (3.7)

it is trivial to show that the electric field presented in equation 3.6 correspond to the
potential:

Φ0 = −E0z, (3.8)
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in spherical coordinate:
Φ0 = −E0r cos θ. (3.9)

Using the Laplace operator in spherical coordinates, which is given by

∇2 =
1

r2 sin(θ)

[
sin(θ)

∂

∂r

(
r2

∂

∂r

)
+

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

sin(θ)

∂2

∂φ2

]
(3.10)

in equation 3.4 and noting that the system has azimuthal symmetry and that time
dependence can be treated in the rotating wave approximation, then

Φ(r, θ, φ, t) = Φ(r, θ)e−iωt, (3.11)

Which leads us to the following equation:

∂

∂r

[
r2

∂

∂r
Φ(r, θ)

]
+

1

sin(θ)

∂

∂θ

[
sin(θ)

∂

∂θ
Φ(r, θ)

]
= 0. (3.12)

This last equation has to be solved independently for Φ1 and Φ2. However, both
will be solution of the same homogeneous differential equation, so we can build the
same base of solution and then specify the differences in between them by adjusting
the coefficients of the linear combination by means of the boundary conditions.

Equation 3.12 can be solved by separation of variables since its boundary condi-
tions are homogeneous [17].

Φ(r, θ) = R(r)Θ(θ) (3.13)

Replacing (3.13) in (3.12) we get

Θ(θ)
∂

∂r

(
r2

∂

∂r
[R(r)]

)
+R(r)

1

sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ
[Θ(θ)]

)
= 0 (3.14)

Dividing by (3.12)

1

R(r)

∂

∂r

(
r2

∂

∂r
[R(r)]

)
+

1

Θ(θ)

1

sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ
[Θ(θ)]

)
= 0 (3.15)
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Defining

ℓ(ℓ+ 1) =
1

R(r)

∂

∂r

(
r2

∂

∂r
[R(r)]

)
(3.16)

−ℓ(ℓ+ 1) =
1

Θ(θ)

1

sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ
[Θ(θ)]

)
(3.17)

We can rewrite (3.16) to obtain

R′′(r) +
2

r
R′(r)− 1

r2
ℓ(ℓ+ 1)R(r) = 0 (3.18)

We can solve this using Frobenius’s method. Taking y(x) =
∞∑
j=0

ajx
s+j and replacing

it on (3.18) we get

∞∑
j=0

ajr
s+j−2[(s+ j)(s+ j + 1)− ℓ(ℓ+ 1)] = 0 (3.19)

Therefore for j = 0 and rs−2 we get the following indicial equation

a0[s(s+ 1)− ℓ(ℓ+ 1)] = 0 (3.20)

And knowing that a ̸= 0 we obtain as solutions s = −(ℓ + 1) and s = ℓ. Therefore
our general solution for the coordinate r is

R(r) = Arℓ +B
1

rℓ+1
(3.21)

Back to the second equation (3.17) doing the change of variable u = cos(θ), we got
the following Legendre equation

(1− u2)
d2P (u)

du2
− 2u

dP (u)

du
+ P (u)ℓ(ℓ+ 1) = 0 (3.22)

whose solution is P (u) = Pℓ(u). Reapplying the change of variable we obtain the
general solution for the coordinate θ

Θ(θ) = Pℓ(cos(θ)) (3.23)
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Multiplying the solutions for the coordinates r and θ and expressing it as a linear
combination we get the general solution for the electric potential

Φ(r, θ) =
∞∑
ℓ=0

(
Aℓr

ℓ +Bℓ
1

rℓ+1

)
Pℓ(cos(θ)) (3.24)

We can now use the boundary conditions to determine the coefficients Aℓ and Bℓ

specifying the two solution inside and outside the metal nanoparticle.

It can be worth mentioning that, since we are working with two spherical sur-
faces: the internal one, on which the value of the electric potential is known, and its
derivative (i. e. the radial component of the electric field) is discontinuous, which
can be identified as a Dirichlet and the external one where it was the field that was
known and that consequently can be identified as a Neumann one.

In region 1, since we have r = 0, to avoid divergence we have to set B1ℓ = 0.

Φ1(r, θ) =
∞∑
ℓ=0

A1ℓr
ℓPℓ(cos(θ)) (3.25)

As discussed at the beginning of this section, in region 2, since we have to satisfy

lim
r→∞

Φ2(r, θ) = −E0r cos(θ), (3.26)

for doing this, we set A2ℓ = 0∀ℓ ̸= 1. Knowing that Pℓ(cos(θ)) = cos(θ) therefore

Φ2(r, θ) =
∞∑
ℓ=0

B2ℓ
1

rℓ+1
Pℓ(cos(θ))− E0r cos(θ). (3.27)

Considering the boundary condition for r = a, which means that

Φ1(a, θ) = Φ2(a, θ); (3.28)

applying the uniqueness of power series we got that:

A1ℓ =
B2ℓ

a2ℓ+1
− δℓ1E0, (3.29)
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then

Φ1(r, θ) =
∞∑
ℓ=0

[
B2ℓ

a2ℓ+1
− δℓ1E0

]
rℓPℓ(cos(θ)) (3.30)

and

Φ2(r, θ) =
∞∑
ℓ=0

B2ℓ

rℓ+1
Pℓ(cos(θ))− E0r cos(θ). (3.31)

Now considering the boundary condition about the radial continuity, which means
that

ε1E1r

∣∣∣
r=a

= ε2E2r

∣∣∣
r=a

; (3.32)

using the fact that

E1r = −∂Φ1

∂r
= −

∞∑
ℓ=0

ℓ

[
B2ℓ

a2ℓ+1
− δℓ1E0

]
rℓ−1Pℓ(cos(θ)), (3.33)

and

E2r = −∂Φ2

∂r
=

∞∑
ℓ=0

(ℓ+ 1)
B2ℓ

rℓ+2
Pℓ(cos(θ)) + E0 cos(θ), (3.34)

and, applying the uniqueness of power series we got that:

B2ℓ = aℓ+2 ℓε1a
ℓ−1 − ε2

ε1ℓ+ (ℓ+ 1)ε2
E0δℓ1. (3.35)

Notice that the Kronecker delta δℓ1 is equal to 0 when ℓ ̸= 1, meaning that this
configuration will only activate the term with ℓ = 1 (i. e. the dipolar one). Moreover,
by taking this into account in equation 3.35 we get:

B21 = a3
ε1 − ε2
ε1 + 2ε2

; (3.36)

Which finally leads to the solutions:

Φ1(r, θ) = − 3ε2
ε1 + 2ε2

E0r cos(θ) (3.37)

and

Φ2(r, θ) =

[
a3

r3
ε1ε2

ε1 + 2ε2
− 1

]
E0r cos(θ). (3.38)
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We will now use this result to find the polarizability α. This physical quantity is
related to all the optical proprieties of the nananoparticle and it is defined as the com-
plex constant of proportionality in between the dipole moment of the nanoparticle
and the exciting field:

p = α(ω)E0. (3.39)

In order to recover α(ω) we only focus on the potential for the region 2, which is the
one where the nanoparticle dipolar field is.

Recalling that the dipole moment of the nanoparticle is related to its electric po-
tential, through the formula:

Φdip(r, θ) =
r̂ · p
4πεr2

=
p cos(θ)

4πεr2
, (3.40)

and noticing that for the potentialΦ2 there are two terms: One (the first) correspond-
ing to the field that affects the nanoparticle and another (the second) corresponding
to the dipolar field produced around the nanoparticle, one can identify:

B21 cos(θ)

r2
=

p cos(θ)

4πε2r2
, (3.41)

which corresponds to the dipolar potential as presented in equation 3.40 , when, as
in the described case the dipole is oriented along the z-axis

p = pk̂. (3.42)

Therefore, solving equation 3.41 for p, and knowing that α =
p

E
we obtain:

α =
B21(4πε2)

E0

(3.43)

Finally, replacing the value obtained for the coefficientB21 in equation 3.36 we finally
get an expression for the nanoparticle polarizability:

α(ω) = 4πε2a
3 ε1(ω)− ε2
ε1(ω) + 2ε2

. (3.44)

It is very important to mention here, that because metals can show a negative real
part of their permittivity (see figure 2.2 in the previous chapter), one can choose an
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appropriate dielectric so that a resonant ωR exist such that:

Re[ε1(ωR)] + 2ε2 = 0 (3.45)

which produces a resonant peak at ωR. It might worth mentioning that this will
not be a singularity because of the imaginary part of ε1(ω), which as one can see in
equation 2.16 is related to γ and thus to the losses due to the collisions with the ions.

It is also possible, by looking at figure 2.2 and comparing the range of ε1(ω) pro-
vided by gold inclusions, that common dielectrics such as water (ε2 = 1.7689), silica
(ε2 = 2.1316) and glass (ε2 = 1.2247) can provide localized plasmonic resonances in
the visible range.

3.2.1 Using Math (and Physics) to unravel an ancient Magic

The oldest known instance making use of Localized Surface Plasmons Resonances
is a roman artifact dating from the 4th-century : the Lycurgus Cup (fig. 3.3). It is a
Cup surrounded by a frieze showing the myth of Lycurgus, a king who defied god
Dionysus by killing his follower Ambrosia. Dionysus avenges Ambrosia by turning
her corpse in a vine who tears apart the body of the scornful king. When the cup

Figure 3.3: Lycurgus Cup is a 4th-century Roman glass cage cup

is illuminated from the outside, it shows a deep green color recalling the vines Am-
brosia’s body was turned into. However, if a candle is lowered into it, it turns in a
shining red, echoing the blood of King Lycurgus.
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It has been suggested that, this not very common scene, was meant to evoke the
ripening of red grapes, which can be easily related with Dionysus being the god of
Wine.

Figure 3.4: Nanoparticle
found in the cup by TEM

The cup itself is made of glass, but Analytical Trans-
mission electron Microscopy revealed the presence of
minute particles of metal, typically 50 – 100 nm in di-
ameter. X-ray analysis showed that these nanoparticles
were silver-gold alloy (see figure 3.4). Approximating the
metal inclusions with spherical nanoparticles and assum-
ing that the silver component in the alloy is negligible,
we can use the results developed in the previous section
to explain the mysteries of this ancient cup.

We will use the metal permittivity as calculated in equation 2.16, taking into ac-
count the additional losses due to interband transitions as described in equation 2.17
to evaluate the permittivity ε1(ω) in equation 3.44, while we will use ε2 = 1.2247 to
account that the matrix in which, this inclusions are embedded is made of glass. The
result of this calculation is presented in figure 3.5 as a plot of the real and the imag-
inary part of the reduced polarizability

α

4πε2a3
.
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Figure 3.5: Real and Imaginary parts of the Reduced Polarizability for a gold inclu-
sion in glass.
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Here one can appreciate that the Localized Plasmon Resonance occurs around
ℏω ∼ 2.4 eV corresponding to the green section of the visible spectrum.

As mentioned before, the polarizability is related to all of the relevant optical
proprieties of an inclusion and it is possible to show [4] that the absorption and the
scattering cross-section of a nanoparticle are respectively:

σa = 2π
α′′

λε2
, (3.46)

σs =

(
2π

λ

)2 |α|2

6πε22
. (3.47)

the absorption cross-section σa is proportional to the imaginary part of the polariz-
ability α′′, while the scattering cross section σs is proportional to the norm of the po-
larizability |α|2. Both are thus their maximum at the LSPR, meaning that a medium
realized in glass including gold impurities will absorb and scatter the green part of
the spectrum.

Therefore, when the cup is illuminated from the outside, the scattered green light
will make it look green, while, when a light source is put inside of it, all the green
section of the spectrum will be absorbed letting pass only is complementary color
which is red.

3.3 Core-shell Nanoparticle

Figure 3.6: A sphere of per-
mittivity ε1 in a shell of per-
mittivity ε2, in a host 3 of per-
mittivity ε3

We will now extend our problem to an spherical
core-shell nanoparticle formed by a central core
with permittivity ε1 and radius a1 and a shell with
permittivity ε2 and external radius a2 (see fig 3.6).
The outside of the core-shell has an electric permit-
tivity ε3.

As before we will consider to be in te quasi static
limit so the core-shell sphere is excited by a uniform
electric field. We will again put the origin of our
system of coordinated in the center of the spheres
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and consider the exciting fiels along the z-axis

E0 = E0k̂

As in the nanoparticle problem we are in optical approximation, we have a system
with azimuthal symmetry and the time dependence is discussed separately. Solving
the Laplace equation in spherical coordinates in any of the three considered regions,
we got the general solution for the electric potential demonstrated in section 3.2:

Φ(r, θ) =
∞∑
ℓ=0

(
Aℓr

ℓ +Bℓ
1

rℓ+1

)
Pℓ(cos(θ)). (3.48)

To obtain the coefficients we will, once again make use the boundary conditions. As
with the nanoparticle system we have Dirichlet boundary conditions, since we are
working with a core-shell sphere in a constant electric field we have to specify the
solutions for the potential in three regions:

In region 1, since we have r = 0, to avoid divergence let B1ℓ = 0:

Φ1(r, θ) =
∞∑
ℓ=0

A1ℓr
ℓPℓ(cos(θ)). (3.49)

In region 2, we haven’t any specifics yet, because the solution in this region needs to
reconnect to the other two: In region 3, since we have to satisfy

lim
r→∞

Φ3(r, θ) = −E0r cos(θ) (3.50)

we will set A3ℓ = 0∀ ℓ ̸= 1. Knowing that Pℓ(cos(θ)) = cos(θ) therefore

Φ3(r, θ) =
∞∑
ℓ=0

B3ℓ
1

rℓ+1
Pℓ(cos(θ))− E0r cos(θ). (3.51)

We will now take into account the continuity on the two interfaces at r = a1 and
r = a2. The boundary condition for r = a1 means that:

Φ1(a1, θ) = Φ2(a1, θ), (3.52)

Applying the uniqueness of power series we got that:

A1ℓ =
B2ℓ

a2ℓ+1
1

+ A2ℓ, (3.53)
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thus

Φ1(r, θ) =
∞∑
ℓ=0

[
B2ℓ

a2ℓ+1
1

+ A2ℓ

]
rℓPℓ(cos(θ)) (3.54)

and

Φ2(r, θ) =
∞∑
ℓ=0

(
A2ℓr

ℓ +B2ℓ
1

rℓ+1

)
Pℓ(cos(θ)). (3.55)

When considering the boundary condition at r = a2, we have:

Φ2(a2, θ) = Φ3(a2, θ), (3.56)

again, applying the uniqueness of power series we get:

A2ℓ =
B3ℓ −B2ℓ

a2ℓ+1
2

− E0δ1ℓ, (3.57)

thus

Φ2(r, θ) =
∞∑
ℓ=0

(
A2ℓr

ℓ +

[
B3ℓ −B2ℓ

a2ℓ+1
2

− E0δ1ℓ

]
1

rℓ+1

)
Pℓ(cos(θ)) (3.58)

and

Φ3(r, θ) =
∞∑
ℓ=0

B3ℓ
1

rℓ+1
Pℓ(cos(θ))− E0r cos(θ) (3.59)

We have now to impose the radial continuity, which means that

ε1E1r

∣∣∣
r=a1

= ε2E2r

∣∣∣
r=a1

, (3.60)

ε2E2r

∣∣∣
r=a2

= ε3E3r

∣∣∣
r=a2

; (3.61)
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therefore using the fact that Er = −∂Φ

∂r
we get:

E1r = −
∞∑
ℓ=0

ℓ

[
B2ℓ

a2ℓ+1
1

+ A2ℓ

]
rℓ−1Pℓ(cos(θ)) (3.62)

E2r = −
∞∑
ℓ=0

(
ℓA2ℓr

ℓ−1 + (ℓ+ 1)

[
B3ℓ −B2ℓ

a2ℓ+1
2

− E0δ1ℓ

]
1

rℓ+2

)
Pℓ(cos(θ)) (3.63)

E3r = −
∞∑
ℓ=0

(ℓ+ 1)
B3ℓ

rℓ+2
Pℓ(cos(θ)) + E0 cos(θ) (3.64)

Once again, applying the uniqueness of power series, and defining the radius ratio
ρ =

a1
a2

, we obtain

B2ℓ =
aℓ+2
1 (ε1 − ε2)E0δ1ℓ − ℓρ2ℓ+1(ε1 − ε2)B3ℓ

ℓε1 − ℓρ2ℓ+1(ε1 − ε2) + (ℓ+ 1)ε2
(3.65)

B3ℓ = aℓ+2
2

(ε2 − ε3)[ℓε1 + (ℓ+ 1)ε2] + ρ2ℓ+1(ε1 − ε2)[ℓε3 + (ℓ+ 1)ε2]

[ℓε2 + (ℓ+ 1)ε3][ℓε1 − (ℓ+ 1)ε2] + ℓ(ℓ+ 1)ρ2ℓ+1(ε1 − ε2)(ε3 − ε2)
E0δ1ℓ (3.66)

Notice that the Kronecker delta δℓ1 is equal to 0 when ℓ ̸= 1 therefore

A11 =
B21

a31
+ A21 (3.67)

A21 =
B31 −B21

a32
− E0 (3.68)

B21 =
a31(ε1 − ε2)E0 − ρ3(ε1 − ε2)B31

ε1 − ρ3(ε1 − ε2) + 2ε2
(3.69)

B31 = a32
(ε2 − ε3)(ε1 + 2ε2) + ρ3(ε1 − ε2)(ε3 + 2ε2)

(ε2 + 2ε3)(ε1 − 2ε2) + 2ρ3(ε1 − ε2)(ε3 − ε2)
E0 (3.70)

To find the polarizability α we proceed as in the end of section 3.2, focusing only on
the potential of the region 3, so that we obtain:

α = 4πε3a
3
2

(ε2 − ε3)(ε1 + 2ε2) + ρ3(ε1 − ε2)(ε3 + 2ε2)

(ε2 + 2ε3)(ε1 − 2ε2) + 2ρ3(ε1 − ε2)(ε3 − ε2)
(3.71)
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3.3.1 Nano-shells: tuning the resonance frequency

The formula for polarizability calculated in the previous section and presented in
equation 3.71 can be used for two different kind of metal nanoparticles: the proper
core-shell nanoparticles, where a metal core is coated with a dielectric shell, and the
nano-shell nanoparticles, where a dielectric core is coated with a metal shell.

Mathematically, this corresponds to choosing which one of the permittivities
present in equation 3.71 is a complex metal permittivity which is function of the
frequency (as the one we calculated in section 2.1 and presented in equation 2.16).

Specifically, when ε1 is a metal permittivity and ε2 a real constant dielectric per-
mittivity, equation 3.71 represents a proper core-shell nanoparticle, while, when ε1a
real constant dielectric permittivity and ε2 is a metal permittivity, equation 3.71 rep-
resents a nano-shell.

Both configurations comes with vantages and disadvantages depending to the ap-
plication they are tailored to. While the calculation for the heat production, we will
present in the following chapter, can be used in both cases, in our characterization
we will focus on nano-shell particles, because, their Localized Plasmon Resonance is
a function of the radius ratio ρ =

a1
a2

. This effect is shown in figure 3.7 where the
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Figure 3.7: Real and Imaginary parts of the Reduced Polarizability for a gold
nanoshell with a silica core coated with a gold shell and dissolved in water. The
polarizability is presented for different radius ratio: (a) ρ = 0.35; (b) ρ = 0.5; (c)
ρ = 0.75;

real and the imaginary parts of the reduced polarizability for gold nano-shells with



38

a silica core and dissolved in water, with different radius ratio. In fig 3.7a we have
ρ = 0.35 corresponding to a resonance at ℏωR = 2.32 eV, in fig 3.7b we have ρ = 0.5
corresponding to a resonance at ℏωR = 2.26 eV, finally in fig 3.7, we have ρ = 0.75
corresponding to a resonance at ℏωR = 2.01 eV.

This characteristics is particularly useful for thermal therapy applications, be-
cause it allows to choose a configuration resonating in the near infrared, which is the
frequency range at which human bodies are more “transparent” to electromagnetic
radiation, that is (as mentioned in the introduction) an important factor to optimize
the effectiveness of these techniques.
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Chapter 4

Heat

We will now enter at the heart of our work: the evaluation of the heat produced in a
nano-shell when illuminated by an external source of light.

In general, metal nanoparticles acts as local heat sources when illuminated at
any frequency, however when the exciting energy for photon matches the localized
surface plasmons resonance the heat generation is amplified by the enhancement of
the local fields and currents.

A formula for the heat produced by a spherical nanoparticle is known in the lit-
erature [7],

Q(ω) = kα”(ω)I0 (4.1)

where k =
ω

c
, I0 =

cε0|E0|2

2
and c is the speed of light.

However, despite nano-shell particles are a very interesting candidate for thermal
therapy and are already under scrutiny [8], a proper formula allowing to calculated
the heat produced by illuminating a nano-shell particle is, at the best of our knowl-
edge, missing.

In this chapter we will use the results obtained in for the description of the electric
potential in a metal nano-shell to calculate an exact formula for the heat produced in
these structures. We will also present a characterization, showing how this calculation
gives a better insight on how to realize the perfect design of a nano-shell synthesized
for thermal therapy applications.



40

4.1 Back to the Electromagnetic Problem

By [9], we know that in a linear medium the total electrostatic energy is given by:

W =
1

2

ˆ
V

J · E d3r (4.2)

If we consider the nano-shell particle, by the model described in section 3.3 the
polarization currents to be found are

J = ωε0ε
′′
mE (4.3)

therefore the heat dissipation of our nanoparticle is given by

W =
ω

2
ε0ε

′′
m

ˆ
Vm

|Em|2 d3r (4.4)

where Vm is the volume occupied by the metal.

Recalling that the potential in the region enclosed by the metal is given by

Φm(r, θ, ω) = A21(ω)r cos(θ) +B21(ω)
cos(θ)

r2
(4.5)

where A21(ω) and B21(ω) where defined in equations 3.67-3.70. We can now define:

p3 =
B31

a32E0

(4.6)

this way, we have that:

B21(ω) = a32
ρ3(1− p3)(εh − εm)E0

(εh + 2εm)− ρ3(εh − εm)
(4.7)

so that we can now define:

p2 =
B21

a32E0

= − ρ3(p3 − 1)(εh − εm)

(εh + 2εm)− ρ3(εh − εm)
(4.8)

which allows us to rewrite A21 as:

A21(ω) = (p3 − p2 − 1)E0 (4.9)

If now we consider the coefficient p3 − 1 − p2 and the definition of p2 given in 4.8,
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it’s easy to show that:

p3 − 1− p2 = (p3 − 1)

[
1 +

ρ3(εh − εm)

(εh + 2εm)− ρ3(εh − εm)

]
which simplifies into:

p3 − 1− p2 =
(p3 − 1)(εh + 2εm)

(εh + 2εm)− ρ3(εh − εm)
. (4.10)

Replacing in 4.5 we get:

Φm(r, θ, ω) =
(p3 − 1)(εh + 2εm)

(εh + 2εm)− ρ3(εh − εm)
E0r cos(θ)+

− a32
ρ3(p3 − 1)(εh − εm)

(εh + 2εm)− ρ3(εh − εm)
E0

cos(θ)

r2

(4.11)

This last we can recast as:

Φm(r, θ, ω) =
(p3 − 1)E0

(εh + 2εm)− ρ3(εh − εm)

[
(εh+2εm)r cos(θ)−a32ρ

3(εh−εm)
cos(θ)

r2

]
(4.12)

Let

ζ(ω) =
(p3 − 1)

(εh + 2εm)− ρ3(εh − εm)
(4.13)

therefore

Φm(r, θ, ω) = ζ(ω)E0

[
(εh + 2εm)r cos(θ)− a32ρ

3(εh − εm)
cos(θ)

r2

]
. (4.14)

Now we proceed to find the radial and the angular components of the electric field

Er
m =− ∂Φm

∂r
= −ζ(ω) cos(θ)E0

[
(εh + 2εm)− 2a32ρ

3(εh − εm)
1

r3

]
(4.15)

Eθ
m =− 1

r

∂Φm

∂θ
= ζ(ω) sin(θ)E0

[
(εh + 2εm)− a32ρ

3(εh − εm)
1

r3

]
(4.16)
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Therefore

|Er
m|

2 =|ζ(ω)|2(ω) cos2(θ)|E0|2
(
|εh + 2εm|2 + 4a62ρ

6|εh − εm|2
1

r6

−2a32ρ
3
[
(εh + 2εm)(εh − εm)

∗ + (εh − εm)(εh + 2εm)
∗
] 1
r3

) (4.17)

and

∣∣Eθ
m

∣∣2 =|ζ(ω)|2 sin2(θ)|E0|2
(
|εh + 2εm|2 + a62ρ

6|εh − εm|2
1

r6

−a32ρ
3
[
(εh + 2εm)(εh − εm)

∗ + (εh − εm)(εh + εm)
∗
] 1
r3

)
.

(4.18)

We notice that

(εh + 2εm)(εh − ε∗m) + (εh − εm)(εh + 2ε∗m) = 2
(
ε2h − 2|εm|2 + εhε

′

m

)
, (4.19)

knowing that |Em|2 = |Er
m|

2 +
∣∣Eθ

m

∣∣2 we can write:

|Em|2 =|ζ(ω)|2|E0|2
(
|εh + 2εm|2 + a62ρ

6|εh − εm|2[1 + 3 cos2(θ)]
1

r6

−2a32ρ
3
[
ε2h − 2|εm|2 + εhε

”
m

] 1
r3

)
.

(4.20)

Thus we have to solve

W =ωπε0ε”m|ζ(ω)|2|E0|2
(
|εh + 2εm|2

ˆ π

0

ˆ a2

a1

r2 sin(θ)drdθ

+a62ρ
6|εh − εm|2

ˆ π

0

ˆ a2

a1

1

r4
[1 + 3 cos(θ)] sin(θ)drdθ

−2a32ρ
3
(
ε2h − 2|εm|2 + εhε

′
m

)ˆ π

0

ˆ a2

a1

1

r
[1 + cos2(θ)] sin(θ)drdθ

) (4.21)



43

which leads to:

W (ω) =
2

3
a32πε0ωε”m(ω)|ζ(ω)|

2

[
(1− ρ3)

(
|εh + 2εm|2 + 2ρ3|εh + εm|2

)

−8ρ3 ln

(
1

ρ

)(
ε2h − 2|εm|2 + εhε

′
m

)]
|E0|2.

(4.22)

If we now define:

Θ(ω) =(1− ρ3)

(
|εh + 2εm|2 + 2ρ3|εh + εm|2

)
−8ρ3 ln

(
1

ρ

)(
ε2h − 2|εm|2 + εhε

′
m

)
;

(4.23)

we can compact expression 4.22 into:

W (ω) =
2

3
a32πε0 ωε”m(ω)|ζ(ω)|

2Θ(ω)|E0|2. (4.24)

If we now use that the Intensity of the exciting electromagnetic field is:

I0 =
c ε0
2

|E0|2

equation 4.24 recast into

W (ω) =
4

3
πa32

ωε”m(ω)

c
I0|ζ(ω)|2Θ(ω), (4.25)

where one can recognize the volume of the nanoparticle:

V =
4

3
πa32

So that we can finally recast our formula into:

W (ω) =
V I0
c

ωε”m(ω)|ζ(ω)|2Θ(ω). (4.26)

This is a heat dissipation for unit of time. If we now define a typical time:

τ0 =
1

ωpl

,

where ωpl is the metal plasma frequency as defined in section 2.1. So that, the energy
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absorbed from the nano-shell every τ0 will be:

W (ω)

τ0
=

V I0
c

ω

ωpl

ε”m(ω)|ζ(ω)|2Θ(ω). (4.27)

Allowing us to define a dimensionless quantity:

Ω(ω) =
ω

ωpl

ε”m(ω)|ζ(ω)|2Θ(ω). (4.28)

Including all of the dependency over frequency of the dissipated heat. We will use
this last quantity in all of our characterization.
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4.2 Results

In figure 4.1(a), we show the dependency over frequency Ω(ω) (as defined in the
previous section) for a gold nano-shell with silica core and a radius ratio ρ = 0.5;
In figure 4.1(a) we report the real and the imaginary part of the Reduced polariz-
ability for the same nanoparticle. As one can see in figure 4.1, most of the heat is
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Figure 4.1: (a) Adimensional Dissipated Heat for a gold nano-shell with a silica core
and ρ = 0.5; (b) Real and imaginary part of the Reduced Polarizability for the same
nanoparticle.

dissipated by the nanoparticle around its LSPR which is ℏω ∼ 2.25 eV and falls in
the green region of the visible spectrum. As in the simpler case of a metal sphere,
the heat dissipation looks strongly correlated with the imaginary part of the particle
polarizability.
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It might worth noting that the Adimensional Dissipated Heat is apparently gi-
gantic, showing a order of magnitude of around 1016. This very high value might be
misleading if one does not take into account that, in order to be converted into actual
heat it has to be multiplied by the nanoparticle volume V which is very small, and
divided by the speed of light in vacuum c which is very big.

In figure 4.2 we present the Adimensional Dissipated Heat Ω as a function of the
radius ratio ρ and the energy for photon ℏω. Here one can clearly see that, in order

Figure 4.2: Adimensional Dissipated Heat Ω as a function of the radius ratio ρ and
the energy for photon ℏω.

to synthetize nano-shell particles, resonating in the near infrared (i. e. ℏω < 1.8 eV),
it is important that the design include a very thin gold shell ρ > 0.8.

Although it is known to be more difficult to synthetize thin-shells nanoparticles,
so this result might not be saluted with a cheers by the particle-makers, the map
presented in figure 4.2 is harbinger of additional and unexpected good news: in the
region in which the gold nano-shells resonate in the right corner of the spectrum, the
produced heat is an order of magnitude larger than what we find for a thick nano-
shell (e. g. for ρ ∼ 0.5 Ω ∼ 1016, while for ρ > 0.8 Ω ∼ 1017).
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Chapter 5

Conclusions

The heat dissipated by a gold nano-shell nanoparticle with silica core, illuminated
by an external excitation field, was studied. Using the quasistatic approximation,
obtaining the Drude’s model with a classical treatment and using an electromagnetic
point of view to describe the nanoparticle’s potential and electrostatic total energy.
We obtained that the nanoparticle has an adimensional heat dissipated in order of
magnitude of around 1016 and a resonance near the infrared part of the spectrum.
This result is useful for photothermal cancer therapy since gold is bio-compatible
element with low toxicity and its plasmonic frequency is in the infrared that is the
NIR biological transparency window also it can be applied to hyperthermia for cancer
therapy to treat skin and breast cancer. Even through we have to consider that a
nano-shell nanoparticle that suits this features is very thin, and it makes it difficult
to be fabricated. Furthermore, is important to mention that the heat produced by a
thick nanoparticle is larger the obtained from the thin ones.
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