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RESUMEN 

Las lesiones cerebrales son uno de los problemas médicos más graves que pueden sufrir las 

personas. Estas lesiones tienen una amplia gama; sin embargo, las hemorragias intracraneales 

son algunas de las más críticas. Si no se tratan a tiempo, pueden provocar daños cerebrales 

irreparables, discapacidad, cambios en el estilo de vida del paciente y la muerte. Sin embargo, 

dado el tiempo que tarda un radiólogo en analizar imágenes cerebrales, no siempre se ofrece 

un diagnóstico y tratamiento en el momento adecuado. En este contexto, este estudio se centra 

en ayudar a los médicos a diagnosticar una hemorragia intracraneal a tiempo mediante el uso 

de redes neuronales convolucionales para procesar estas imágenes cerebrales. Dado que la 

tomografía computarizada es una de las tecnologías más asequibles debido a su precio y 

disponibilidad, se utilizó este tipo de exploración cerebral. Inspirándose en el modelo U-Net, 

se entrenaron y evaluaron dos modelos de arquitectura profunda. Estos modelos tenían como 

objetivo segmentar la región de la imagen en la que estaba presente una lesión y resaltar como 

una máscara superpuesta sobre la imagen cerebral. Se utilizaron tomografías computarizadas 

de 82 pacientes para entrenamiento, validación y pruebas. Las imágenes se escalaron a 

256x256 píxeles antes de usarse como entrada para los modelos. Cada una de las arquitecturas 

se entrenó con diferentes tamaños de lote y el número de épocas. El mejor modelo obtuvo un 

valor de 0,85 en la intersección sobre la métrica de unión, 0,89 en el coeficiente de dados y 

99,91% en precisión. 

Palabras clave: Aprendizaje profundo, U-Net, Red neuronal convolucional, Segmentación de 

imágenes, Hemorragia intracerebral, Tomografía computarizada. 
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ABSTRACT 

Brain injuries are one of the most severe medical problems that people can suffer. These 

injuries have a wide range; however, intracranial hemorrhages are some of the most critical. If 

not treated in time, they can lead to irreparable brain damage, disability, patient lifestyle 

changes, and death. However, given the time it takes for a radiologist to analyze brain images, 

a diagnosis and treatment are not always offered at the right time. In this context, this study 

focuses on helping doctors diagnose an intracranial hemorrhage earlier through the use of 

convolutional neural networks to process these brain images. Since computed tomography is 

one of the most affordable technologies due to its price and availability, this type of brain scan 

was used. Inspired by the U-Net model, two deep architecture models were trained and 

evaluated. These models aimed to segment the region of the image in which a lesion was 

present and highlight as a mask superimposed over the brain image. CT scans of 82 patients 

were used for training, validation, and testing. The images were scaled to 256x256 pixels 

before being used as input for the models. Each of the architectures was trained with different 

batch sizes and the number of epochs. The best model obtained a value of 0.85 in the 

intersection over the union metric, 0.89 in Dice coefficient, and 99.91% in accuracy. 

Key words: Deep learning, U-Net, Convolutional neural network, Image segmentation, 

Intracerebral hemorrhage, Computerized tomography.  
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INTRODUCTION 

According to the United States Centers for Disease Control and Prevention, in 2018, 

one in every six deaths from cardiovascular disease was due to stroke. After heart disease, brain 

stroke is the leading cause of mortality worldwide (Centers for Disease Control and Prevention, 

2021). Furthermore, even if the person survives, most survivors are forced to live with a 

constant or long-term injury that affects their living standards considerably. This is because 

strokes cause brain tissue to die, leading to brain damage, disability, and death. To avoid these 

consequences, people with a stroke should receive treatment as fast as possible. However, due 

to lengthy doctor diagnoses, time-consuming tests and scans, and not-so-identifiable 

symptoms, people do not receive treatment on time. For this reason, any tool that allows brain 

strokes and hemorrhages to be diagnosed easier or faster is considered to be highly relevant 

nowadays. 

Despite several existing imaging technologies, Computerized Tomography is the 

diagnosing tool that doctors most widely used for patients with possible strokes or 

hemorrhages. Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are the 

two most prevalent brain imaging technologies that allow doctors to identify and diagnose 

strokes and hemorrhages in a patient. MRI is widely used; however, due to the higher cost and 

unavailability in some hospitals and clinics, this technology is surpassed by CT since this one 

is non-invasive and the least expensive. Other technologies are SPECT or XENON 

tomographies, Positron Emission Tomography (PET), Magnetic Resonance Spectroscopy 

(MRS), Functional Magnetic Resonance Imaging (f-MRI), and Carotid Ultrasound (CU). 

However, these imaging modalities necessitate a high operational cost and a well-trained 

operator, so they may not be available in many clinics and hospitals (Harpaz, D., Eltzov, E., 

Seet, R. et al, 2017). Additionally, almost every hospital has the service of CT scans and is one 
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of the fastest methods of diagnosing brain strokes and hemorrhages. This makes Computerized 

Tomography scans one of the most used brain imaging technology for this procedure. 

Doctors need additional technological tools to help them make a faster and more 

reliable diagnosis when checking brain images of potential strokes or hemorrhages. Identifying 

stroke from CT scan pictures is the first step toward a patient’s accurate diagnosis. Initially, 

the images are sent to a radiology specialist to determine the sort of stroke. Following that, 

patients are examined physically and manually, and therapy is initiated depending on the results 

of the manual examination. When a significant number of patients with stroke symptoms arrive 

at the hospital on the same day, it might be difficult to give proper therapy on time. As a result, 

because this manual diagnosis technique is exhausting, error-prone, and lengthy, it may result 

in a patient’s death or a higher chance of future disability. In order to counter this problem, 

some effective automated systems have arisen. These solutions try to recognize stroke medical 

emergencies automatically and assist clinicians in initiating treatment procedures at the earliest 

possible stage of stroke onset. As a result, a new approach is presented for detecting a stroke 

or hemorrhage in CT scan pictures of a patient in this study. 

Even though many academics have developed computeraided diagnostic (CAD) 

systems for stroke, no clinically recognized CAD works with CT brain images as input. Many 

of these technologies use Machine Learning and specifically Deep Neural Networks to train 

models that help doctors diagnose strokes faster and more accurately. Gao et al., in 2017, 

worked with a dataset of brain images from people with Alzheimer’s Disease, injuries, and 

healthy brains. They used 2D Convolutional Neural Networks (CNNs), 2D SIFT, 2D KAZE, 

3D SIFT, and 3D KAZE models to classify the images in the three mentioned categories. The 

average results were 88.8%, 76.7% y 95% for the precision metric in the classification task 

(Gao, X. W., Hui, R., Tian, Z., 2017). Gautam et al., in 2021, used real brain CT images from 
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the Himalayan Institute of Medical Sciences (HIMS) to train a model based on image fusion 

and CNN approaches. By doing so, a mean classification accuracy of 95% was achieved. The 

proposed model was a 13 layer CNN architecture, and was compared to AlexNet and ResNet50 

in the same task (Gautam, A., Raman, B, 2021). These are classifying tools, so it is not possible 

for doctors to see and evaluate the region where the brain image is abnormal. Some authors 

have tackled this problem by implementing models that segment the region of the image in 

which an abnormality can be found. An example of this is the study made by Yahiaoui et al. 

(2016), in which the brain CT images were enhanced using Laplacian Pyramid (LP). Then the 

ischemic area was extracted by using the Fuzzy C-Means clustering algorithm. 

Given the improvement of accuracy when using CNNs and specifically the U-Net 

structure for the segmentation of medical images, the purpose of this study is to apply this 

model to develop the primary function of a CAD tool that helps doctors identify strokes and 

hemorrhages in CT images of the brain of patients. This function is precisely the ability of the 

program to segment the region of the brain image in which an injury is present. In order to 

achieve this objective, several tasks have to be completed. First, it is vital to understand the 

way CNNs work, including the different operations like convolution, pooling, flatting, 

deconvolution, and concatenating. Additionally, it is essential to comprehend the structure of 

the U-Net model and how images are passed layer through layer until the output of a mask that 

shows the area in which there is a higher chance of finding a stroke, and in consequence, the 

doctor should pay more attention. Finally, the evaluation of the developed model is crucial for 

comparing previous and future studies related to brain image segmentation. All these tasks will 

be discussed in the subsequent sections of this paper 
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MATERIALS AND METHODS 

A. Database 

The database that was used for the training of the models consisted of brain images of 

Computerized Tomography scans that are publicly available. The dataset, which Hssayeni 

published in 2019, contains 82 CT scans collected between February and August 2018 in the 

Al Hilla Teaching Hospital, Iraq. Each CT scan included 30 brain image slices with a separation 

of 5 mm between them. The mean age of the patients was 27.8 years, with a standard deviation 

was 19.5 years. 46 of the patients were males, and 36 were females. The personal information 

of each patient was anonymized before the dataset was published. Two radiologists that did 

not have access to the patient’s history determined the presence of an intracranial hemorrhage, 

the type of intracranial hemorrhage if existing, and the occurrence of a fracture. Both 

radiologists got to a consensus before emitting the final judgment over each image of the study. 

Out of the 82 CT scans, 36 were diagnosed with intracranial hemorrhage. The radiologists 

delineated the intracranial hemorrhage regions in each image if there was an injury. This was 

saved as a white region in a black 650x650 image. Additionally, brain and bone grayscale 

650x650 images were saved for each CT slide (Hssayeni, M., 2019). The dataset included all 

the information already mentioned. However, since the purpose of the study is to segment the 

region of the image that contains the intracranial hemorrhage, just the brain window images 

and the injury masks were used (see Figure 1). 
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Figure 1: Sample of images in database: original brain CT scan images (first row) and the associated intracerebral 

hemorrhage ground truth 

B. Deep learning models 

According to IBM, deep learning is a subset of machine learning that mimics the human 

brain to attain impressively accurate predictions. Specifically, deep learning models can be 

defined as neural network models with three or more layers. These models try to imitate the 

way humans learn and build knowledge by analyzing large volumes of data (IBM Cloud 

Education, 2020). Some of the advantages of this type of empirical model are its unbiased 

nature and the ability to process different kinds of information. For example, linear regression 

is a model with a strong bias because an assumption about the data structure is assumed. On 

the other hand, deep neural networks are less biased since the training defines the behavior of 

the model. Additionally, neural networks can process raw, unstructured data as inputs, such as 

images, audio, and video. This includes the fact that deep neural networks process all this 

information and determine their relevant features without the intervention of a human 

experimenter (Yang, C., 2020). These advantages and several more come to a cost. Training 

these models may require enormous amounts of computational work. Deep learning, despite 

this disadvantage, has been used more and more frequently due to the use of GPUs in the 

process of training these models. Clusters of GPUs have been used to decrease the training 

time by processing the information in a paralleled architecture (Najafabadi, M., Villanustre, F., 

Khoshgoftaar, T. et al., 2015). The applications of this type of neural network include natural 
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language processing, scene understanding, character recognition, driverless vehicles operation, 

medical image processing, marine species recognition, gene expression modeling, gaming, 

among others (Shinde, P. & Shah, S., 2018). 

A subset of deep learning models that are especially recognized for their performance in 

machine learning tasks is the Convolutional Neural Networks (CNNs) (Saha, S., 2018). This 

type of network is characterized by layers that implement a linear mathematical operation 

between matrixes called convolution. CNN models have multiple layers, including 

convolutional, pooling, fully connected, and non-linearity layers (Albawi, S., Mohammed, T. 

& Al-Zawi, S., 2017). These layers are combined strategically to obtain the essential data 

features and fulfill the machine learning tasks. CNNs have had astounding performance in 

medical image processing, facial recognition, natural language processing, among other 

applications (Kim, P., 2017). In the image processing field, before the use of these networks, 

feature extraction was a manual, extensive process that was used to identify objects in the 

images (Albawi, S., Mohammed, T. & Al-Zawi, S., 2017). Convolutional neural networks 

solve this problem by automatizing this process and creating a more scalable approach to image 

classification and object recognition tasks. However, the training stage of these models requires 

a lot of computational processing time, and for this reason, it is said that CNNs can be 

computationally demanding. A solution for this issue has been found in using GPUs to train 

models and reduce the time that this process requires (IBM Cloud Education., 2020). 

Among CNNs, several architectures have been created through the years in order to solve 

different tasks and challenges. One of the very first successful architectures created was 

Alexnet, created by Alex Krizhevsky, winner of the ImageNet Large Scale Visual Recognition 

Challenge in 2012 (Wei, J., 2020). Since then, new models have been proposed that have 

outperformed their predecessors. One of the most important architectures in the medical field 
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currently is UNET. This model is mainly used for achieving improved performance in image 

segmentation (Ronneberger, O., Fischer, P., & Brox, T., 2015) and has attained several 

recognitions, including the victory in the BraTS competition (University of Pennsylvania, 

2017). Its architecture consists of three important parts, shaping a letter ‘U,’ from which it is 

named is derived. The three sections are contraction, bottleneck, and expansion. The 

contraction section takes as input the image. Inside this section, each contraction block has two 

convolutional layers of 3x3 as kernel size, followed by a 2x2 max-pooling layer. The number 

of filters between each block doubles, so the layer can learn high complexity features from the 

image in each convolution. The second block consists of two convolutional layers of 3x3, each 

followed by a max-pooling layer, and at the end of the block, a 2x2 up convolutional layer 

appears (Lamba, H., 2019). This last layer is essential because it is the one that gives the 

information to start the last section of the network. Finally, the expansion section is the real 

heart of this UNET architecture (Sankesara, H., 2019). The expansion section must have as 

many blocks as the contraction section. However, the slight difference is that each block in the 

expansion section halves the number of filters to maintain symmetry with the other sections. 

The most exciting part of this section is that, in each block, the input is also appended with 

feature maps of its corresponding contraction layer. With this, the network guarantees that the 

features learned during the contraction steps are also used to reconstruct the image during the 

expansion step. Each block in this section has convolutional layers of 3x3 and a transposed 

convolutional layer with a kernel size of 2x2. This layer is responsible for the upsampling 

process that converts the smaller-sized map to the upper-level map size (double of height and 

double of width) to be concatenated to the resulting map of the symmetric convolutional block 

in the contraction path. At the end of the expansion section, a traditional 3x3 convolutional 

layer appears with the same number of filters as the number of classes desired. The contraction 

path is responsible for discovering the features or getting information about what is in the 
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image. However, by doing so, it losses information about the ‘where’ since the image reduction 

causes a loss of resolution. The purpose of the expansion part is to recover the information of 

the spatial location of the features, the ‘where,’ to combine this information with the identified 

feature and segment the image (Lamba, H., 2019). This UNET architecture was used as starting 

point to personalize our model to solve the initial problem. 

C. Proposed method 

The traditional U-Net architecture is a great model that has outperformed many other 

famous CNN models in brain image segmentation competitions, which is the task that the 

proposed model must solve. However, this architecture does not match the exact requirements 

of the current study. As mentioned previously, the database used for this study did not have a 

large number of images for training. This is an issue for the U-Net architecture since it needs 

numerous images for training to avoid overfitting. This is an issue for many other studies since 

large datasets are not always available. Taking the original U-Net model as a baseline, two 

proposed architectures were developed and tested to compare their performance. In terms of 

architecture, they are very similar. However, they vary on the depth of the model, the dropout 

layers, and the number of filters that their convolutional blocks used. These models were 

developed using Python version 3.6.9 and well-known deep learning libraries such as 

Tensorflow version 1.14. 

In order to explain better how both proposed models were created, Figure 2 shows a 

diagram of the architecture that was defined for one of them. This figure shows that the input 

of the model is a 256x256 px image of the brain. This image is fed to the first convolutional 

block. The block comprises a convolutional layer with 64 3x3 filters, an activation layer with 

a rectified linear function, another convolutional layer with 64 3x3 filters, a batch 

normalization layer, and an activation layer with a rectified linear function. The job of this 
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convolutional block is to discover the features that are present in the image by applying the 

different filters that extract this information. After the convolutional block, a max-pooling layer 

is added with kernel size 2x2. The purpose of this layer is to choose the most relevant features 

and create a more specialized map with them. This new map is fed to a new convolutional 

block, similar to the previous one, but with 128 filters in each convolutional layer. This block 

is again followed by a max-pooling layer with kernel size 2x2. Another convolutional block is 

added with 256 filters in each convolutional layer, then a max-pooling layer and a new 

convolutional block with 512 filters in each convolutional layer. The contraction path and the 

bottleneck were created until this point, so the next steps correspond to the expansion path. A 

transposed convolutional layer with a 2x2 kernel and a 2x2 stride was added. This layer has 

the job of upscaling the map from a deeper level to create a bigger map that can be concatenated 

with the resulting map of the convolutional block in the symmetrical contraction path level. 

This ensures that the feature information is selected and combined with the spatial information 

of the upper-level map (Anwar, A., 2021). After the concatenation, a convolutional block was 

added with 256 filters in each convolutional layer. Then, another transposed convolutional 

layer was added, and the output was concatenated with the resulting map of the symmetrical 

convolutional block of the contraction path. A convolutional block was added, with 128 filters 

in each convolutional layer. The upsampling, concatenation, and convolution (with 64 filters) 

were repeated once again, and the output was fed to a convolutional layer with one filter that 

corresponded to the prediction of the model. This final layer had a 1x1 kernel and a sigmoid 

activation function. This function allows the model to output a value between 0 and 1 for each 

pixel in the resulting map or mask. 
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Figure 2: Diagram of the first proposed model that is based on the U-Net architecture. 

The second proposed model included additional Dropout layers to avoid the overfitting and 

the vanishing gradient problem (Tan, H., & Lim, K., 2019). These are issues that deep neural 

networks models that use gradient-based backpropagation suffer. The Dropout layer randomly 

changes the input and sets it to 0, depending on the frequency defined as a parameter. This 

helps to prevent overfitting by adding variation to the model (Keras Team, 2021). The 

architecture described for the first proposed model was modified by adding these dropout 

layers in the convolutional block. Specifically, a dropout layer with a frequency rate of 0.1 was 

added between the convolutional layers in the same convolutional block. This was done to see 

the effect of the inclusion of these layers in the solution of the overfitting problem. 

Concerning the output of the model, it is a map with the same size as the input image 

(256x256 px) that represents the region of the image in which the model predicts there is an 

injury. This predicted map was compared with the original mask that the radiologists created 

by manually delineating the region where they identified the injury. Each of the pixels in the 

predicted map has a probability of being part of the region of the injury. The output has the 
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exact size of the input image since its purpose is to superimpose the predicted mask over an 

image that a radiologist wants to analyze with this program. 

D. Experimental setup 

The experimental setup was organized in several stages to explain this process.  

1) Data preprocessing:  As explained in the previous dataset section, the original database 

consisted of CT scans of 82 patients, with an average of 30 brain images for each scan. 

The total amount of images was 2500. However, just 318 of these images contained an 

injury. This evidenced that the database was unbalanced. To solve this issue, all the 

images that contained a proven injury were selected along the same amount of 

randomly selected images from those that did not have an injury. This was done to 

balance the dataset and avoid biasing the models in their segmentation task. This 

process left a dataset of 636 images. The dataset balancing created a new issue. Deep 

learning models tend to need many data for the training process, so 636 images may 

not have been enough to train the models adequately. For this reason, a process of data 

augmentation was added. The process that was included for the data augmentation was 

the reflection of the image over the y axis so that the image would be flipped 

horizontally. The reflection over the x-axis was also included to flip the image 

vertically. It should be mentioned that different image enhancement methods were also 

tried, for example, CLAHE histogram equalization. However, when the image was 

visually evaluated, it could be seen that the lesions were more easily confused with the 

bone tissue in the image. For this reason, it was decided not to use histogram 

equalization even though it is a common practice in the processing of other medical 

images. Finally, all the images were resized to a smaller dimension. This was done to 
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decrease the time and memory required for training. The original dimension of the 

images was 650x650 pixels and was resized to 256x256 pixels.  

2) Training and test sets:  The dataset was separated into training, validation, and test sets. 

The proportions of the data used for each set were 80% for training, 10% for validation, 

and 10% for testing. This was done to have as much data as possible for training and 

so that the model could perform adequately. Additionally, it should be mentioned that 

although there are indeed other recommended methods for partitioning the data, such 

as the k-fold cross-validation, this type of procedure requires training numerous models 

prior to obtaining the metrics. Since the proposed model has a deep architecture, the 

training time can be extended considerably and thus making the training step more 

timeconsuming. Considering this, it was decided to use a stratified partition method 

that would maintain the proportion of images with lesions and without lesions within 

each set.  

3) Model configuration:  For both proposed models, some of the hyperparameters were 

modified in order to fine tune the models with these parameters and obtain the best 

results. The hyperparameters that were varied specifically for the experiments were the 

epochs for which the model was trained, and the batch size that was used. Regarding 

the epochs, the models were trained in a range of 200 to 1,400 epochs with steps of 200. 

This was done in order to determine the point at which overfitting began to occur in the 

data, if any existed, or if at some point the model no longer improved considerably 

despite training it with even more epochs. The models were trained also varying the 

batch sizes in two levels: 16 and 32. The optimizer that was used was Adam, which is 

one of the most popular optimizers due to its computational efficiency, little memory 

requirement, and adequate performance with large datasets. It is important to mention 

that this optimizer receives as a parameter a learning rate that was set to 0.0001; 
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however, due to its operation, this optimization algorithm varies the learning rate so 

that training is more efficient (Kingma, D., & Ba, J., 2017). Moreover, the dropout 

layers that were added to the second model had a set frequency rate of 0.1 in order to 

reduce the overfitting. This affects the model only during the training phase. Each 

dropout layer deactivates the input of the following layer based on the defined 

frequency. In this way, some randomness is added to the model, and thus, overfitting is 

avoided.  

4) Assessment metrics:  Several metrics were used to evaluate and compare the models’ 

performance. The metrics most commonly used in neural networks evaluation are the 

area under the ROC curve, precision, recall, the F1- score, and accuracy. However, the 

segmentation task requires slightly different metrics to communicate the performance 

more objectively and straightforwardly. For this study, the first metric that was used 

was accuracy. Since it is a segmentation task, accuracy can also be understood as pixel 

accuracy. This metric represents the proportion of pixels in the prediction classified 

correctly according to the ground truth mask. This metric is too loose and biased 

because the model can obtain very high scores almost without segmenting the image 

correctly. [24] For instance, let us consider a ground truth mask in which the region 

with a lesion represents 5% of the total amount of pixels. If the model predicts a mask 

with no injury, the pixel accuracy metric would be 95%. Even though this is not a very 

efficient metric for the evaluation of the model, it is straightforward to understand, and 

that was why it was kept as one of the metrics for this study. Nonetheless, additional 

metrics were defined for this study, and the loss component was bound to one of these 

metrics.  

First, the Jaccard distance was calculated, also called Intersection over Union. 

This metric corresponds to the intersection or area of overlap between the predicted 
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mask and the ground truth mask, divided by the area of the union of both masks (Wang, 

Z., Wang, E. & Zhu, Y., 2020). The IoU was calculated in the following way. The 

intersection was calculated by summing the product of each pixel in the ground truth 

mask and the pixel with the exact coordinates in the predicted mask. The union was 

calculated by summing the number of pixels that the ground truth had classified as 

lesion and the number of pixels that the prediction had classified as a lesion and 

subtracting the intersection. This was also done for the case in which both the ground 

truth and the prediction had a pixel classified as background, and then the result was 

averaged. This metric can take values from 0 to 1 (0 to 100%) with 0, meaning that the 

model predicted precisely the opposite of the ground truth (the background as the lesion 

and vice versa) and 1 meaning that the prediction is the same as the ground truth (Tiu, 

E., 2020). 

Another metric that was defined was the Dice Coefficient. This metric is very 

similar to the Jaccard distance; however, this metric was used to develop a loss function 

that the optimizer would try to minimize and thus make the model performs better. The 

Dice Coefficient, also known as the F1 score, is equal to two times the area of overlap 

of the masks divided by the sum of the total pixels in both masks (Wang, Z., Wang, E. 

& Zhu, Y., 2020). This metric can also take values from 0 to 1, so to make this a loss 

function, this value was multiplied by -1. In this way, the Adam optimizer would try to 

minimize this negative value and thus maximize the overlap between the predicted and 

the ground truth masks. 
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RESULTS AND DISCUSSION  

The experiments were run using an NVidia DGX workstation using a GPU for faster 

training of the models. Despite this, it is important to note that, on average, it took a day of 

processing to run 300 epochs of the process. The results are shown and discussed in the next 

section. 

A. Performance evaluation 

Table I shows the performance results for the two models developed, trained, and used for 

experimentation, including the different levels of the factors modified in each run. Epochs were 

variated from 200 to 1000 in 200 steps, and batch sizes of 16 and 32 were used. For the first 

model, it can be seen that the pixel accuracy metric is, as it was mentioned earlier, very high 

even in the first experiments with fewer training epochs. This is because of the existing bias, 

so that we will focus the discussion on the other metrics. For instance, it is interesting to notice 

the evolution of the IoU score. Let us suppose that there is a 10% region of the image that 

contains a lesion. However, if the model only predicts an empty mask (indicating no injury), 

the IoU would be 0.45. This is because it has intersected correctly 90% of the pixels without 

an injury and 0% of the pixels with an injury, giving an average of 45% or 0.45. It was taking 

this idea in mind. In its lower point, with 200 epochs and a batch size of 16, model 1 obtains 

an IoU of 0.56. This is a relatively low value since it conveys that the model predicts a mask 

that intersects the ground truth mask only in a 56%. However, as the model is trained for more 

epochs, the IoU improves considerably. The best combination of hyperparameters was attained 

when model 1 was trained for 1000 epochs with a batch size of 16. The IoU during the model 

testing was 0.79, and the Dice Coefficient was 0.83. It is important to notice that the evolution 

of the model from 800 epochs to 1000 epochs is just three percentual points in the IoU and one 

percentual point in the Dice Coefficient, showing therefore that the model is not improving as 



25 
 

 

much in the first experiments, since the evolution from 200 epochs to 400 epochs is 12 and 13 

percentual points in the same metrics. Moreover, the maximum performance results are 

improvable since it can be understood that, on average, 80% of the predicted mask intersects 

correctly with the ground truth. 

The second model has better performance results in all the metrics and better generalization 

power. Since the first experiments with 200 epochs, the model presented slightly better results 

than the previous one. This tendency continued for all the experiments. The best results of this 

model showed that this architecture outperformed the first one by several percentual points in 

both metrics, obtaining an intersection over union metric of 0.85 and a dice coefficient metric 

of 0.89. These are excellent results for a segmentation model because it indicates that a 

significant part of the lesion has been detected. The difference between the second model and 

the first one was the presence of dropout layers. These layers alter the model’s behavior during 

the training phase by randomly deactivating some of the layer’s inputs that go after the dropout 

layer. This is done to avoid overfitting and give the model a better generalization power. By 

having an additional random factor, the model does not memorize the same patterns to segment. 

However, it learns in a more general way. This is shown in this case because the results 

obtained by the second model in the testing phase were substantially better than the ones 

attained by the first model that did not include these layers. 

Moreover, Figure 3 shows the model’s behavior during the training and validation phases 

across the different epochs. This graph shows the learning process and its effect on the 

evolution of the intersection over union metric and the loss. The training curves show that the 

model learns correctly to develop the task of segmenting the image since the IoU increases in 

the first epochs very fast and then progressively slower. However, it reaches an asymptote that 

could be defined as the maximum that this model can attain.  
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Table 1: Performance results of the deep learning proposed models with different hyperparameters. 

Arch. Conv. Layer (f) Kernel 

Size 

Pool size 

per Layer 

Dropout 

Layers 

Batch 

Size 

Epochs 

(u) 

IoU 

(u) 

Dice 

Cf. 

ACC 

(%) 

Model 

1 

(64,128,256,512) (3x3) (2x2) 

Not 

included 

16 200 0.56 0.65 99.74 

32 200 0.57 0.65 99.75 

16 400 0.68 0.78 99.77 

32 400 0.67 0.77 99.77 

16 600 0.72 0.80 99.78 

32 600 0.73 0.81 99.78 

16 800 0.76 0.82 99.81 

32 800 0.77 0.82 99.80 

16 1000 0.79 0.83 99.82 

32 1000 0.78 0.83 99.82 

Model 

2 
(64,128,256,512) (3x3) (2x2) 

Yes, 

between the 

conv.  

layers of 

each conv. 

block 

16 200 0.60 0.69 99.73 

32 200 0.61 0.70 99.75 

16 400 0.72 0.81 99.82 

32 400 0.72 0.81 99.82 

16 600 0.80 0.85 99.87 

32 600 0.79 0.85 99.86 

16 800 0.84 0.88 99.90 

32 800 0.84 0.88 99.90 

16 1000 0.84 0.88 99.90 

32 1000 0.85 0.89 99.91 



27 
 

 

Conv.- convolutional; f- number of filters per layer; u- units; IoU- Intersection over Union metric; Cf- coefficient; ACC- 

pixel accuracy metric. 

The loss curve is very similar, with the difference that it decreases until it stabilizes and does 

not decrease substantially even though more training epochs pass. On the other hand, the 

behavior of the validation curves can be seen as more unstable, with a broader range of 

variation; however, it can be identified the same tendency of increasing (IoU) or deceasing 

(loss) until a certain level in which the rest of variations are explicable due to the difference of 

the data. CT scan images are a type of data that can be different. The image has a grayscale, 

making it harder for the model to segment the lesion correctly because it can not use a change 

of color as a feature. Additionally, since there are several slices in a CT scan, the amount of 

bone tissue and other organs that appear in a tomography adds variability to the images. These 

could be the reasons behind the unstable behavior of the validation curves. Despite this, it could 

be said that the model learns correctly and validly fulfills its task. 

 

Figure 3: Performance of the best proposed deep learning model (model 1) on segmentation task during the training and the 

validation stages 

Finally, a table with some examples of the lesions and the comparison of the ground truth 

segmentation versus the model prediction segmentation is presented in Figure 4. This image 

shows that the model has a great capacity to segment the image and identify the region of the 

image where a lesion is located. It is interesting to see that the model can work with lesions 

that are present as a single mass together but of correctly segmenting different regions within 



28 
 

 

the same image. Similarly, it can be shown that segmentation has an excellent ability to 

determine the correct shape of the region in which the lesion is located. This is a crucial 

difference with the models with bounding boxes and ROIs. In this way, the neural network is 

already in charge of identifying the contour of the lesion, which can provide more valuable 

information for the doctors who read the images that this model processes. Finally, it is worth 

mentioning that the mask predicted by the best-proposed model works with probabilities that 

are graphed on a scale that shows areas that are close to 0.5 in white. Progressively it assigns 

a more intense red color as it approaches 1. This is important as only the edges of the lesion 

have a white color, which is correct because getting closer to the edge makes it more difficult 

to distinguish between the lesion and the normal tissue in the image. However, there are no 

white dots within the segmented area, which also shows more of the desired capabilities of the 

model. 

 

Figure 4: Examples of successful segmentation performance of the best model. The original CT scan images (first row), lesion 

ground truth 
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CONCLUSIONS AND FUTURE WORK 

The purpose of this research was to propose several models that could be used as the 

heart of a CAD tool. This was done by defining two different CNN architectures based on a 

wellknown U-Net model. In the end, the second proposed model was the one that performed 

better, and thus the selected model at the end of this study. It is essential to mention that the 

task of this model was to segment the image and show through a mask the region in which 

the image presented a lesion. For this reason, the metrics that the model used were slightly 

different, and excellent results were achieved in the intersection over union and the dice 

coefficient by the best model architecture that was trained for 1000 epochs using a batch size 

of 32. This model attained a 0.85 value for the IoU and a 0.89 for the dice coefficient. 

One of the most important things that could be noticed with this study is that the 

dropout layers included in the second model gave it a better generalizing power that the first 

model because of the improvement in the performance results in the testing phase. For the 

testing, 10% of the total images were separated, and the model did not contact these images 

during the validation and the training phases. The fact that the second model had better 

results with these images shows that the dropout layers fulfilled their purpose during the 

training phase by avoiding the overfitting of the model. This architecture could segment in a 

better manner the lesion region in these unknown images, and the results were excellent. The 

only other difference with the best configuration of the first model was the batch size. 

However, as it was seen in Table 1, the results for the same model using the same number of 

epochs but different batch sizes were very similar. For this reason, it is not considered a 

relevant factor. However, as a further work proposal, the extension of this conclusion could 

be expanded by implementing a different partition of the data. With more runs, more 

statistical data could be used in ANOVA or means difference tests in order to determine the 
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relevance of each of the factors that were manipulated in the study (batch size and epochs) or 

additional factors such as dropout frequency rates, number of filters, optimizers and size of 

the kernels and strides in the convolutional and max-pooling layers. 

Finally, as shown in Figure 4, the selected model performs adequately and segments 

the region of the image in which there is a lesion. Moreover, the model returned empty masks 

correctly for all the images that did not present any lesion. From this, it could be inferred that 

the model performs very well in a classification task; however, no formal procedure was 

defined so that the model could return a classification tag in which it mentioned if the image 

contained a lesion and determined the type of intracranial hemorrhage that was each one of 

the lesions. For this reason, a proposal for future work is to implement another procedure, 

module, or part of the model that uses the identified features and return information about the 

typology of the lesions and the presence or absence of them in the image. 
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