UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

Diseño de Pórtico Especial Resistente a Momento Considerando Conexiones RBS y 4ES

Juan Sebastian Paredes Chandi Y Ana Amnelise Imbaquingo Andrade

INGENIERÍA CIVIL

Trabajo de fin de carrera presentado como requisito para la obtención del título de Ingeniero Civil

Quito, 07 de diciembre de 2021

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

HOJA DE CALIFICACIÓN DE TRABAJO DE FIN DE CARRERA

Diseño de Pórtico Especial Resistente a Momento Considerando Conexiones RBS y 4ES

Juan Sebastian Paredes Chandi

Y

Ana Amnelise Imbaquingo Andrade

Nombre del profesor, Título académico

Pablo Andrés Torres Rodas, Ph.D

Quito, 07 de diciembre de 2021

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este trabajo en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación Superior del Ecuador.

Nombres y apellidos:	Juan Sebastian Paredes Chandi, Ana Amnelise Imbaquingo Andrade
Código:	00203032, 00200562
Cédula de identidad:	1724593775, 1723730691
Lugar y fecha:	Quito, 06 de diciembre de 2021

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado como una publicación, incluso a pesar de estar disponible sin restricciones a través de un repositorio institucional. Esta declaración se alinea con las prácticas y recomendaciones presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017) Discussion document on best practice for issues around theses publishing, disponible en http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following capstone project is available through Universidad San Francisco de Quito USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be considered a publication. This statement follows the recommendations presented by the Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion document on best practice for issues around theses publishing available on http://bit.ly/COPETheses.

RESUMEN

Los pórticos especiales resistentes a momento por lo general poseen conexiones detalladas para resistir fuerzas internas de flexión, axial y cizallamiento; que resultan del movimiento causado por sismo, viento o cualquier otro tipo de carga.

En el presente trabajo de titulación se realizó el

diseño de un edificio de acero con pórticos especiales resistentes a momento, considerando conexiones RBS y conexiones 4ES. El diseño se desarrolló considerando los parámetros de cargas no sísmicas de la NEC-SE-CG, las limitaciones por peligro sísmico y diseño sismo resistente de la NEC-SE-DS, especificaciones de la AISC 341, AISC 358, AISC 360 y demás normas aplicables al diseño de columnas, vigas y conexiones.

Palabras clave: Pórtico resistente a momento, análisis sísmico, diseño estructural, conexión RBS, conexión 4ES.

ABSTRACT

Special moment resisting frames usually have detailed connections to resist internal bending, axial and shear forces resulting from movement caused by earthquake, wind or any other type of load.

This study corresponds to the design of a steel building with special moment resisting frames, considering RBS and 4ES connections. The design was developed considering the non-seismic load parameters of the NEC-SE-CG, seismic limitations and seismic resistant design of the NEC-SE-DS, specifications of the AISC 341, AISC 358, AISC 360 and other standards applicable to the design of columns, beams and connections.

Key words: Special moment resisting frames, seismic design, structural design, RBS connection, 4ES connection.

TABLA DE CONTENIDO

Introducción	11
Antecedentes	11
Pórticos especiales a momento (PEM)	
Conexiones	
Conexiones precalificadas para pórticos especiales a momento	15
Desarrollo del Tema	16
Descripción del edificio considerado para el diseño	16
Diseño del Pórtico Resistente a Momento	21
Cargas	21
Cortante Basal	26
Chequeo de derivas	27
Diseño de Viga	29
Verificación del estado límite de fluencia	34
Verificación del pandeo lateral torsional	35
Diseño a Cortante	35
Diseño de Columna	
Chequeo de esbeltez local de la columna	
Resistencia de diseño a flexo-compresión	
Chequeo de la ecuación de interacción	
Resistencia de diseño a cortante	
Chequeo de limitaciones de la sección de columna para las conexiones	
Diseño de Conexiones	45
Conexión RBS	45
Procedimiento de Diseño	
Conexión 4ES	54
Procedimiento de Diseño	56
Diseño del lado de la columna	62
Columna fuerte- viga débil	65
Demanda en zona de panel	66
Conclusiones	69
Referencias bibliográficas	70
Anexo A: Detalle conexión RBS	71
Anexo B: Detalle conexión 4ES	72

ÍNDICE DE TABLAS

Tabla 1:Comparación de aspectos financieros entre estructuras de acero y estructuras de	
hormigón	11
Tabla 2: Comparación de aspectos técnicos entre estructuras de acero y estructuras de	
hormigón	12
Tabla 3: Ventajas y desventajas de conexiones soldadas.	14
Tabla 4:Ventajas y desventajas de conexiones empernadas	14
Tabla 5:Valore del factor Z en función de la zona adoptada.	17
Tabla 6: Tipos de uso , destino e importancia de la estructura	17
Tabla 7: Tipo de suelo factores de sitio Fa	21
Tabla 8: Tipo de suelo factores de sitio Fd	22
Tabla 9: Tipo de sueloy factores del comportamiento inelástico del subsuelo Fs	22
Tabla 10:Factores Ct y α según el tipo de estructura.	23
Tabla 11: Coeficiente R para sistemas estructurales dúctiles	24
Tabla 12:Factores de sismorresistente para la estructura considerada	25
Tabla 13:coeficiente k relacionado con el periodo de vibración de la estructura	26
Tabla 14:Periodo, factores fX, fY y cortante basal de la estructura, obtenido del modelo de	;
ETABS.	26
Tabla 15:Distribución lateral de fuerzas sísmicas laterales.	27
Tabla 16: Deriva elástica e inelástica de la estructura en sentido X y Y	28
Tabla 17: Carga en la viga de análisis obtenida del Etabs	29
Tabla 18:Cortante y momento en función de la combinación de carga 1	30
Tabla 19:Cortante y momento en función de la combinación de carga 2	30
Tabla 20:Cortante y momento en función de la combinación de carga 3	30
Tabla 21:Datos de la sección de la viga	31
Tabla 22: Estabilidad local del patín	31
Tabla 23. Chequeo de estabilidad del alma.	32
Tabla 24: Requerimientos de la viga según AISC 358 para conexión RBS (Sección 5.3.1).	33
Tabla 25: Requerimientos de la viga segun AISC 358 para conexion 4ES (Seccion 6.3.1).	
Tabla 26: Verificación de esbeltez del patin.	
Tabla 27: Verificación de esbeltez del alma.	
Tabla 28: Momentos, cortantes y carga axial de la columna	31
Tabla 29: Cortante y momento en función de la combinación de carga 1	3/
Tabla 30: Cortante y momento en función de la combinación de carga 2	
Tabla 31: Cortante y momento en funcion de la combinación de carga 5	
Tabla 32: Dato de la sección de la columna.	
Tabla 55. Establilluau segui tabla D1.1 AISC 541 para el patili.	40
Tabla 34. Ketacion ancho-espesor para el anna	40
Tabla 35. Clasificación de la longitud arriestrada para columnas	45
Tabla 30. Vernicación de la fongitud arnostrada para columnas	43
Tabla 37. Resistencia de diseño a flexion de la columna.	43
Tabla 30. Segun AISC 358 para conevión BBS (sección 5.3.2)	45
Tabla 40: Segun AISC 358 para conexión AES (sección 6.3.)	45
Tabla 41. Dimensiones de la sección RRS	Δ7
Tabla 47: Calculo de Z_{DDS}	Δ7
Tabla 43: Calculo del momento máximo probable en la sección reducida	48
Tabla 44: Combinación de cargas mayoradas gravitatorias según ecuación 35	

Tabla 45:Cálculo V _{RBS}	49
Tabla 46: Momento actuante en las caras de las columnas	49
Tabla 47: Calculo de momento plástico en la viga según la fluencia esperada	50
Tabla 48:Comprobacion de resistencia a flexión de la viga en cara de columna	50
Tabla 49: Cortantes actuantes en la rótula plástica de cada viga	50
Tabla 50: Momentos producidos en el nodo por acción de cargas en las vigas	51
Tabla 51: Cargas axiales mayoradas en columna	51
Tabla 52: Momentos producidos en el nodo por acción de las columnas	51
Tabla 53: Fuerzas y momentos actuantes en la zona panel	52
Tabla 54:Limitaciones paramétricas para conexiones precalificadas	55
Tabla 55:Geometría de la conexión utilizada.	56
Tabla 56: Datos de los pernos a usar en la conexión 4ES	56
Tabla 57: Parámetros geométricos de la conexión con rigidizadores	57
Tabla 58:Momento máximo probable	57
Tabla 59:Cortante al final de la viga AB.	57
Tabla 60: Cortante al final de la viga BC.	58
Tabla 61:Momento en la cara de la columna por viga AB.	58
Tabla 62:Momento en la cara de la columna por viga BC.	58
Tabla 63: Espesor de placa requerido	59
Tabla 64: Verificación del espesor de la placa de conexión	60
Tabla 65: Verificación de esbeltez del rigidizador.	60
Tabla 66: Verificación de corte en pernos	60
Tabla 67: Parámetros geométricos para la verificación del arrancamiento entre placa y	
columna	61
Tabla 68: Verificación de falla de arrancamiento del perno de la placa	61
Tabla 69: Verificación de falla del rodamiento del perno de la columna	61
Tabla 70: Chequeo de espesor del ala de la columna	63
Tabla 71:Fuerza del rigidizador	63
Tabla 72: Chequeo de resistencia de fluencia en el alma de la columna no rigidizada	63
Tabla 73: Chequeo de resistencia de pandeo en el alma de la columna no rigidizada	64
Tabla 74: Chequeo de resistencia de desgarre en el alma de la columna no rigidizada	65
Tabla 75:Resistencia requerida de las placas rigidizadoras	65
Tabla 76: Cortantes actuantes en la rótula plástica de cada viga	65
Tabla 77: Momentos producidos en el nodo por acción de cargas en las vigas	66
Tabla 78: Fuerzas y momentos actuantes en la zona panel	67

ÍNDICE DE FIGURAS

 Figura 2:Zonas sísmicas para propósitos de diseño y valor del factor de zona Z Figura 3: Vista Isométrica Figura 4: Vista en planta de un piso tipo Figura 5:Vista en elevación eje X Figura 6: Vista en elevación eje Y Figura 7:Vista en planta del pórtico resistente a momento Figura 8:Pórtico considerado para diseño Figura 9:Espectro sísmico elástico de aceleraciones que representa el sismo de diseño Figura 10:Configuraciones estructurales recomendadas. Figura 11: Espectro de diseño en aceleraciones; Tr=475 años. Figura 13:Deriva elástica máxima en sentido x. Figura 14:Deriva elástica máxima en sentido y. Figura 15: Viga a diseñar. Figura 16: Propiedades de la sección de la viga-IPE500. Figura 17: Columna a diseñar. 	.16 .18 .19 .19 .20 .20 .22 .24 .25
 Figura 3: Vista Isométrica Figura 4: Vista en planta de un piso tipo Figura 5: Vista en elevación eje X Figura 6: Vista en elevación eje Y Figura 7: Vista en planta del pórtico resistente a momento Figura 8: Pórtico considerado para diseño Figura 9: Espectro sísmico elástico de aceleraciones que representa el sismo de diseño Figura 10: Configuraciones estructurales recomendadas. Figura 11: Espectro de diseño en aceleraciones; Tr=475 años. Figura 12: Espectro de diseño en desplazamientos; Tr=475 años. Figura 13: Deriva elástica máxima en sentido x. Figura 14: Deriva elástica máxima en sentido y. Figura 15: Viga a diseñar	.18 .19 .19 .20 .20 .22 .24 .25
 Figura 4: Vista en planta de un piso tipo Figura 5:Vista en elevación eje X Figura 6: Vista en elevación eje Y Figura 7:Vista en planta del pórtico resistente a momento Figura 8:Pórtico considerado para diseño Figura 9:Espectro sísmico elástico de aceleraciones que representa el sismo de diseño Figura 10:Configuraciones estructurales recomendadas. Figura 11: Espectro de diseño en aceleraciones; Tr=475 años. Figura 12: Espectro de diseño en desplazamientos; Tr=475 años. Figura 13:Deriva elástica máxima en sentido x. Figura 14:Deriva elástica máxima en sentido y. Figura 15: Viga a diseñar. Figura 16: Propiedades de la sección de la viga-IPE500. Figura 17: Columna a diseñar. 	.18 .19 .20 .20 .22 .24 .25
 Figura 5:Vista en elevación eje X Figura 6: Vista en elevación eje Y Figura 7:Vista en planta del pórtico resistente a momento Figura 8:Pórtico considerado para diseño Figura 9:Espectro sísmico elástico de aceleraciones que representa el sismo de diseño Figura 10:Configuraciones estructurales recomendadas. Figura 11: Espectro de diseño en aceleraciones; Tr=475 años. Figura 12: Espectro de diseño en desplazamientos; Tr=475 años. Figura 13:Deriva elástica máxima en sentido x Figura 14:Deriva elástica máxima en sentido y. Figura 15: Viga a diseñar. Figura 17: Columna a diseñar. 	.19 .19 .20 .20 .22 .24 .25
 Figura 6: Vista en elevación eje Y Figura 7:Vista en planta del pórtico resistente a momento Figura 8:Pórtico considerado para diseño Figura 9:Espectro sísmico elástico de aceleraciones que representa el sismo de diseño Figura 10:Configuraciones estructurales recomendadas. Figura 11: Espectro de diseño en aceleraciones; Tr=475 años. Figura 12: Espectro de diseño en desplazamientos; Tr=475 años. Figura 13:Deriva elástica máxima en sentido x. Figura 14:Deriva elástica máxima en sentido y. Figura 15: Viga a diseñar. Figura 17: Columna a diseñar. 	.19 .20 .20 .22 .24 .25
 Figura 7:Vista en planta del pórtico resistente a momento. Figura 8:Pórtico considerado para diseño. Figura 9:Espectro sísmico elástico de aceleraciones que representa el sismo de diseño. Figura 10:Configuraciones estructurales recomendadas. Figura 11: Espectro de diseño en aceleraciones; Tr=475 años. Figura 12: Espectro de diseño en desplazamientos; Tr=475 años. Figura 13:Deriva elástica máxima en sentido x. Figura 14:Deriva elástica máxima en sentido y. Figura 15: Viga a diseñar. Figura 16: Propiedades de la sección de la viga-IPE500. Figura 17: Columna a diseñar. 	.20 .20 .22 .24 .25
 Figura 8:Pórtico considerado para diseño Figura 9:Espectro sísmico elástico de aceleraciones que representa el sismo de diseño Figura 10:Configuraciones estructurales recomendadas Figura 11: Espectro de diseño en aceleraciones; Tr=475 años Figura 12: Espectro de diseño en desplazamientos; Tr=475 años Figura 13:Deriva elástica máxima en sentido x Figura 14:Deriva elástica máxima en sentido y Figura 15: Viga a diseñar Figura 16: Propiedades de la sección de la viga-IPE500 	.20 .22 .24 .25
 Figura 9:Espectro sísmico elástico de aceleraciones que representa el sismo de diseño Figura 10:Configuraciones estructurales recomendadas. Figura 11: Espectro de diseño en aceleraciones; Tr=475 años. Figura 12: Espectro de diseño en desplazamientos; Tr=475 años. Figura 13:Deriva elástica máxima en sentido x. Figura 14:Deriva elástica máxima en sentido y. Figura 15: Viga a diseñar. Figura 16: Propiedades de la sección de la viga-IPE500. Figura 17: Columna a diseñar. 	.22 .24 .25
 Figura 10:Configuraciones estructurales recomendadas. Figura 11: Espectro de diseño en aceleraciones; Tr=475 años. Figura 12: Espectro de diseño en desplazamientos; Tr=475 años. Figura 13:Deriva elástica máxima en sentido x. Figura 14:Deriva elástica máxima en sentido y. Figura 15: Viga a diseñar. Figura 16: Propiedades de la sección de la viga-IPE500. Figura 17: Columna a diseñar. 	.24 .25
 Figura 11: Espectro de diseño en aceleraciones; Tr=475 años. Figura 12: Espectro de diseño en desplazamientos; Tr=475 años. Figura 13:Deriva elástica máxima en sentido x. Figura 14:Deriva elástica máxima en sentido y. Figura 15: Viga a diseñar. Figura 16: Propiedades de la sección de la viga-IPE500. Figura 17: Columna a diseñar. 	.25
Figura 12: Espectro de diseño en desplazamientos; Tr=475 años Figura 13:Deriva elástica máxima en sentido x Figura 14:Deriva elástica máxima en sentido y Figura 15: Viga a diseñar Figura 16: Propiedades de la sección de la viga-IPE500 Figura 17: Columna a diseñar.	20
Figura 13:Deriva elástica máxima en sentido x Figura 14:Deriva elástica máxima en sentido y Figura 15: Viga a diseñar Figura 16: Propiedades de la sección de la viga-IPE500 Figura 17: Columna a diseñar.	.20
Figura 14:Deriva elástica máxima en sentido y Figura 15: Viga a diseñar Figura 16: Propiedades de la sección de la viga-IPE500 Figura 17: Columna a diseñar.	.27
Figura 15: Viga a diseñar Figura 16: Propiedades de la sección de la viga-IPE500 Figura 17: Columna a diseñar	.28
Figura 16: Propiedades de la sección de la viga-IPE500 Figura 17: Columna a diseñar	.29
Figura 17: Columna a diseñar	.30
	.37
Figura 18: Propiedades de la sección de la columna -HEB600	.38
Figura 19: Nomograma para obtener K en un pórtico a momento	.41
Figura 20:Conexión RBS	.46
Figura 21:Diagrama de cuerpo libre entre el centro de la conexión RBS y la cara de la	
columna	.49
Figura 22: Diagrama de fuerzas actuantes en zona de panel	.52
Figura 23: Configuraciones de conexiones 4ES	.54
Figura 24:Geometría de placa de extremo extendida reforzada con 4 pernos (4ES)	.55
Figura 25: Mecanismo de fluencia de conexión 4ES	.59
Figura 26: Parámetros de fluencia para patín de columna	.62

INTRODUCCIÓN

Antecedentes

En el ámbito de la construcción siempre se ha buscado la manera de satisfacer las necesidades de infraestructura de manera eficaz, procurando reducir el tiempo de ejecución de obra, materiales y precios. En el Ecuador se ha hecho cada vez más común la implementación de estructuras de acero para la ejecución de obras, desde simples viviendas hasta edificaciones esenciales (NEC, 2016). Aunque las estructuras de concreto estadísticamente siguen siendo más comunes, en el futuro se prevé un mayor impulso para las estructuras de acero ya que con estas se pueden optimizar mayor cantidad de recursos y agilitar el tiempo de entrega de obra finiquitada.

HORMIGÓN ARMADO (o Estructural)	ACERO ESTRUCTURAL
El costo de la mano de obra no está	El costo asociado con la mano de obra está
relacionado con la especialización, es decir, la	relacionado con la especialización, es decir,
mano de obra no es calificada.	debe ser personal formado técnicamente.
La mano de obra calificada es ofrecida en el	La mano de obra por ser especializada es
mercado laboral generalmente.	necesario buscarla.
El costo del material utilizado es el resultado	El costo del material es producto del
de la interacción de los insumos ofrecidos en	mercado externo controlado por oferta y
el mercado en abundancia	demanda ajena.
Los costos de inversión al inicio de la	Los costos de inversión y los costos
ejecución son determinantes en la obra	operacionales ayudan a tomar la decisión
En economías de escala es de fácil utilización para disminuir costos	No disminuye costos relativamente en economías de escala, pero incrementa el rendimiento
La calidad del material impone relaciones altas entre longitudes de las piezas y su sección transversal	La mejor calidad permite obtener menores relaciones entre longitud y la sección
EL tiempo es más largo en la construcción	El tiempo es menor por su fácil aplicación en
por ser fruto de varias etapas	la obra
Aumenta costos en mano de obra por	Los costos en mano de obra con relación al
requerir más tiempo	tiempo son menores

Tabla 1: Comparación de aspectos financieros entre estructuras de acero y estructuras de hormigón.

HORMIGÓN ARMADO	ACERO ESTRUCTURAL
Material monolítico producido con material	Material producido industrialmente bajo
de cantera	explotación en minas
Se fabrica en obra	Se obtienen perfiles normalizados. En la
and the second sec	mayoría de los casos se fabrica en planta.
El control de calidad se debe hacer en obra.	El control de la calidad de la materia prima se
Depende de la calidad del material y de la	efectúa en taller. La certificación de origen
habilidad de los operarios. Se requieren	satisface los requerimientos del interventor.
ensayos para certificar la calidad.	
El resultado es una construcción maciza. La	La forma es un esqueleto. La acción
simulación de la acción estructural es	estructural se aproxima a las idealizaciones
incierta.	lineales
Las piezas son rígidas	Las piezas son esbeltas.
No hay limitaciones en cuanto a las formas y	No hay límites en las formas y tamaños. La
tamaños que se pueden obtener.	única limitación se encuentra en las
	facilidades de transporte entre la planta y la
	obra.
Al aumentar la exigencia se aumenta el	Al aumentar la exigencia se puede controlar
tamaño o la calidad de los materiales.	la respuesta mediante variación en la
	proporción general.
Los asentamientos diferenciales son	Es menos sensible a los asentamientos
perjudiciales	diferenciales.
La acción sísmica es de cuidado debido a su	Tolera la acción sísmica debido a su
rigidez	flexibilidad
La conducta del comportamiento es más	Se conoce mejor la conducta y es más
desconocida y su respuesta es aleatoria	conocido su comportamiento
Una falla de estabilidad puede llevar al	Una falla de estabilidad puede llevar a
colapso	deformación permanente
La disponibilidad generalizada de materia	El uso de algunos elementos puede ser
prima lo nace facil de usar en cualquier lugar	pronibido en algunas partes.
La conducta en tracción es deficiente. Se	La capacidad bruta en todos los estados de
debe nacer refuerzos para mejoraria.	tension es equivalente. Debe controlarse la
Flatate de la constant de constant de la constant	espeitez para la comprension
El ajuste de la estructura en condición de	La estructura es propicia a redistribuir cargas
talla es impredecible.	en condición de falla
ino influye por separado la resistencia en las	La resistencia de las uniones afecta la
uniones	capacidad general
La reducción de capacidad por espeitez es	La reducción de capacidad por espeitez es
moderada.	apreciable.
El limite de resistencia puede estar entre 200	El limite de resistencia puede estar entre 200
y 400 MPa.	y 600 <u>MPa</u> .

Tabla 2: Comparación de aspectos técnicos entre estructuras de acero y estructuras de hormigón.

Por esta razón es esencial considerar y poner en práctica el procedimiento de diseño adecuado de este tipo de estructuras, tomando en cuenta todas las verificaciones estructurales pertinentes y prestando principal atención al comportamiento ante eventos de sismo puesto que el Ecuador es un territorio con gran incidencia sísmica. Para este proyecto de titulación se decidió diseñar los elementos estructurales de un edificio con pórticos especiales a momento y analizar simultáneamente los beneficios de diseño al usar conexiones RBS o 4ES.

Pórticos especiales a momento (PEM)

Se considera a un pórtico como *pórtico especial a momento* cuando este es capaz de soportar deformaciones inelásticas de gran magnitud, cuando este se ve expuesto a fuerzas producidas por sismo. Por lo general, se espera que estas deformaciones inelásticas se den en las articulaciones plásticas de las vigas y en las bases de las columnas (NEC, 2016).

Figura 1: Zonas en las que se esperan deformaciones inelásticas.

Conexiones

Se define como conexión al conjunto de elementos que une el perfil de acero a la junta (zona donde se intersecan los elementos estructurales).

Existen algunos tipos de conexiones:

- Conexión viga-columna (1 extremo).
- Conexión viga-columna (2 extremos).
- Conexión viga primaria-viga secundaria.
- Empalme de columna.

- Conexión placa base.

Además, puede clasificarse a las conexiones según el tipo de conector:

- Soldadura

	Ventajas		Desventajas
-	Tiene mayor rigidez a los	-	Se induce altas temperaturas a los
	elementos conectados.		elementos que estamos
-	Son sencillas		conectando.
-	Son económicas	-	Requieren mayor supervisión en
			obra.
		-	Requieren mano de obra calificada.
		-	Las condiciones climáticas afectan
			la calidad.
		-	La revisión es costosa.

Tabla 3: Ventajas y desventajas de conexiones soldadas.

Se debe tener en cuenta que la temperatura de la soldadura afecta al pandeo local en el perfil, lo que quiere decir que el elemento no va a llegar al límite plástico y afecta a su resistencia.

- Pernos o Empernados

Ventajas			Desventajas
-	Rapidez en el montaje	-	Mayor trabajo en taller.
-	No requiere mano de obra	-	Requiere más elaboración de los
	especializada.		detalles.
-	Inspección sencilla de la conexión.	-	Requiere precisión en el tamaño de
-	Facilidad en cambio de elementos.		los pernos, comúnmente se deja
-	Mayor calidad de la obra.		una holgura de 3 [mm]
		-	Incrementa el peso de la estructura
			por lo que afecta a la carga lateral
			sísmica.

Tabla 4: Ventajas y desventajas de conexiones empernadas.

Conexiones en función de la rigidez:

- Flexible o simple cortante (VP-VS)
- Semi-Rígida/ Parcialmente restringidas
- Rígida/Totalmente restringida

Conexiones precalificadas para pórticos especiales a momento

La necesidad de definir conexiones precalificadas surge luego de que en el sismo de Northridge en 1994, gran parte de las estructuras de acero con pórticos especiales resistentes a momento experimentaron fracturas frágiles (NEC-SE-DS, 2014). Este tipo de fracturas produce un efecto distinto al de la fluencia dúctil que suele esperarse en las vigas ya que impide la formación de articulaciones plásticas dúctiles que son útiles ante la presencia de sismo. Por esta razón se definieron conexiones precalificadas que son capaces de tener la ductilidad adecuada.

Para que una conexión pueda considerarse precalificada se debe ensayar y se debe cumplir que:

- La rotación es de 0.04 [rad].
- Alcanza al menos el 80% del momento plástico de la viga.

Se debe considerar además que si la conexión no es adecuada, no se puede coger un valor de R=8. Si no se va a dar una conexión dúctil lo mejor es poner otro valor de R.

Las conexiones son un punto vulnerable que tiene una falla tipo frágil por lo tanto, si no se trata de manera correcta puede conducir al colapso del edificio por lo que se debe dar principal importancia a los detalles.

DESARROLLO DEL TEMA

Descripción del edificio considerado para el diseño

Para el desarrollo del presente trabajo de titulación se consideró un edificio localizado en la ciudad de Quito, provincia de Pichincha, en una zona cercana a Cumbayá. Considerando la ubicación de la estructura se tomó un tipo de perfil de suelo tipo D que corresponde a suelos rígidos que cumplen con el criterio de velocidad de la onda de cortante o alguna de las condiciones detalladas en la Sección 3.2.2 de la NEC-SE-DS. Además, de acuerdo al mapa de zonificación sísmica para diseño, Quito pertenece a una zonificación V por lo que tiene un factor de zona Z de 0.4.

Figura 2: Zonas sísmicas para propósitos de diseño y valor del factor de zona Z.

Valor factor Z	0.15	0.25	0.30	0.35	0.40	0.50
Zona sísmica	Ι	II	III	IV	V	VI
Caracterización del peligro sísmico	Intermedia	Alta	Alta	Alta	Alta	Muy alta

Tabla 5: Valore del factor Z en función de la zona adoptada.

El edificio tiene un uso netamente residencial; por lo tanto no entra en la categoría de edificaciones esenciales o de ocupación especial. De acuerdo a la Tabla 2 de Tipo de uso de la estructura, su factor de importancia "I" es de 1.

Categoría	Coeficiente I	
Edificaciones esenciales	Hospitales, clínicas, centros de salud o emergencia sanitaria, instalaciones militares de policía, bomberos, defensa civil. Garajes o estacionamientos para vehículos y aviones que atiendan emergencias. Torres de control aéreo. Estructuras de centros de telecomunicaciones u otros centros de atención de emergencias. Estructuras que albergan equipos de generación y distribución eléctrica. Tanques u otras estructuras utilizadas para depósito de agua u otras substancias anti-incendio. Estructuras que albergan depósitos tóxicos, químicos u otras substancias peligrosas.	1.5
Estructuras de ocupación especial	Museos, iglesias, escuelas y centros de educación o deportivos que albergan más de trescientas personas. Todas las estructuras que albergan más de cinco mil personas. Edificios públicos que requieren operar continuamente.	1.3
Otras estructuras	Todas las estructuras de edificación y otras que no clasifican dentro de las categorías anteriores.	1.0

Tabla 6: Tipos de uso, destino e importancia de la estructura.

La estructura consta de 5 pisos con una altura de entrepiso de 3 metros en todos los

niveles, y una salida a la terraza con una altura de 2.60 metros. La altura total del edificio es

de 17.60 metros.

Figura 3: Vista Isométrica

Figura 4: Vista en planta de un piso tipo

Figura 5:Vista en elevación eje X

Figura 6: Vista en elevación eje Y

Figura 7: Vista en planta del pórtico resistente a momento.

La Figura 6 muestra la configuración de los pórticos que van a soportar únicamente cargas gravitatorias y los pórticos que vas a resistir cargas sísmicas. Se usó pórticos especiales de momento para resistir la carga sísmica. La distribución de estos pórticos es simétrica con el propósito de minimizar el fenómeno de torsión accidental.

La viga, columna y conexión que se diseñó con la del pórtico 1, piso 1, eje B; como se señala en la siguiente imagen:

Figura 8: Pórtico considerado para diseño

Diseño del Pórtico Resistente a Momento

Cargas

Carga Muerta

La carga muerta se tomó considerando una losa tipo deck de 50 milímetros con un hormigón de 24 [MPa] de resistencia a la compresión, piso terminado, instalaciones eléctricas, instalaciones sanitarias, fachada y particiones de mampostería; dando un total de 300 [kgf/m2] que equivalen a 3.0[kN/m2] por metro cuadrado de área en planta (NEC-SE-CG, 2014).

Carga Viva

La carga viva considerada para el análisis fue tomada de la NEC-SE-CG, Tabla 9 del Apéndice 4 para valores de cargas muertas y vivas, en la cual se muestran valores de sobrecargas mínimas de acuerdo con la ocupación o uso de la estructura. Como el edificio es de uso residencial la carga uniforme mínima es de 2.0 [kN/m2] (NEC-SE-CG, 2014).

Carga sísmica

Para implementar los criterios de sismo resistencia se debe obtener el espectro elástico de aceleraciones como fracción de la aceleración de la gravedad. Para esto se considera los coeficientes de amplificación de suelo F_a , F_d , F_s , obtenidos de las siguientes tablas:

	0.15	0.25	0.3	0.35	0.4	>=0.50	
Tipo de perfil del subsuelo	Ι	II	III	IV	V	VI	
А	0.90	0.90	0.90	0.90	0.90	0.90	
В	1.00	1.00	1.00	1.00	1.00	1.00	
С	1.40	1.30	1.25	1.23	1.20	1.18	
D	1.60	1.40	1.30	1.25	1.20	1.12	
Е	1.80	1.40	1.25	1.10	1.00	0.85	
F	Véase Tabla 2: Clasificación de los perfiles de suelo y la sección 10.5.4						

Tabla 7: Tipo de suelo factores de sitio Fa

0.15	0.25	0.3	0.35	0.4	>=0.50
Ι	II	III	IV	V	VI
0.90	0.90	0.90	0.90	0.90	0.90
1.00	1.00	1.00	1.00	1.00	1.00
1.36	1.28	1.19	1.15	1.11	1.06
1.62	1.45	1.36	1.28	1.19	1.11
2.10	1.75	1.70	1.65	1.60	1.50
Véase Tabla 2: Clasificación de los perfiles de suelo y la sección 10.6.4					
	0.15 I 0.90 1.00 1.36 1.62 2.10 Véase Tab	0.15 0.25 I II 0.90 0.90 1.00 1.00 1.36 1.28 1.62 1.45 2.10 1.75 Véase Table 2: Clasific	0.15 0.25 0.3 I II III 0.90 0.90 0.90 1.00 1.00 1.00 1.36 1.28 1.19 1.62 1.45 1.36 2.10 1.75 1.70 Véase Tabla 2: Clasificación de los	0.15 0.25 0.3 0.35 I II III IV 0.90 0.90 0.90 0.90 1.00 1.00 1.00 1.00 1.36 1.28 1.19 1.15 1.62 1.45 1.36 1.28 2.10 1.75 1.70 1.65 Véase Tabla 2: Clasificación de los perfiles de su 1.11	0.15 0.25 0.3 0.35 0.4 I II III IV V 0.90 0.90 0.90 0.90 0.90 1.00 1.00 1.00 1.00 1.00 1.36 1.28 1.19 1.15 1.11 1.62 1.45 1.36 1.28 1.19 2.10 1.75 1.70 1.65 1.60 Véase Tabla 2: Clasificación de los perfiles de suelo y la secci 1.15 1.16

Tabla 8: Tipo de suelo factores de sitio Fd

	0.15	0.25	0.3	0.35	0.4	>=0.50
Tipo de perfil del subsuelo	Ι	II	III	IV	V	VI
А	0.75	0.75	0.75	0.75	0.75	0.75
В	0.75	0.75	0.75	0.75	0.75	0.75
С	0.85	0.94	1.02	1.06	1.11	1.23
D	1.02	1.06	1.11	1.19 (1.28	1.40
Е	1.50	1.60	1.70	1.80	1.90	2.00
F	Véase Tabla 2: Clasificación de los perfiles de suelo y la sección 10.5.4					

FVéase Tabla 2: Clasificación de los perfiles de suelo y la sección 10.5.4Tabla 9: Tipo de sueloy factores del comportamiento inelástico del subsuelo Fs

Figura 9: Espectro sísmico elástico de aceleraciones que representa el sismo de diseño.

Este espectro se obtiene a partir de los periodos de vibración de la estructura y considera 2 rangos:

 $S_a = \eta Z F_a$ para $0 \le T \le T_c$

Ecuación 1

$$S_a = \eta Z F_a \left(\frac{T_c}{T}\right)^r \qquad para \ T > T_c$$

Ecuación 2

Donde:

 η es la razón entre la aceleración espectral y el PGA para un periodo de retorno de 475 años;

este valor depende de la región de Ecuador:

 $\eta = 1.80$ Provincias de la Costa (excepto Esmeraldas)

 $\eta = 2..48$ Provincias de la Sierra, Emeralda y Galápagos

 $\eta = 2..48$ Provincias del Oriente

r es un factor que depende de la ubicación geográfica del proyecto:

$$r = 1$$
 Para todo lo suelo con excepción del tipo E

r = 1.5 Para tipo de suelo E

Por las características estructurales se consideran los siguientes factores:

Tipo de estructura				
	Ct	α		
Estructuras de acero				
Sin arriostramiento	0.072	0.8		
Con arriostramientos	0.073	0.75		
pórticos especiales de hormigón armado				
Sin muros estructurales ni diagonales rigidizadoras	0.055	0.9		
Con muros estructurales o diagonales rigidizadoras y para estructuras basadas en muros estructurales y mampostería estructural	0.055	0.75		

Tabla 10: Factores Ct y a según el tipo de estructura.

Sistemas Estructurales Dúctiles				
Sistemas Duales				
Pórticos especiales sismo resistentes de H.A. con vigas descolgadas y con muros estructurales de H.A. o con diagonales rigidizadoras (sistemas duales)	8			
Pórticos especiales sismo resistentes de acero laminado en caliente, sea con diagonales rigidizadoras (excéntricas o concéntricas) o con muros estructurales de H.A.	8			
Pórticos con columnas de H.A. y vigas de acero laminado en caliente con diagonales rigidizadoras (excéntricas o concéntricas)	8			

Pórticos especiales sismo resistentes de H.A. con vigas banda, con muros estructurales de H.A. con diagonales rigidizadoras			
Pórticos resistentes a momentos			
Pórticos especiales sismo resistentes de H.A. con vigas descolgadas	8		
Pórticos especiales sismo resistentes de acero laminado en caliente o con	8		
elementos armados de placas.	0		
Pórticos con columnas de H.A. y vigas de acero laminado en caliente.	8		
Otros sistemas estructurales para edificaciones			
Sistemas de muros estructurales dúctiles de H.A.	5		
Pórticos especiales sismo resistentes de H.A. con vigas banda	5		

Tabla 11: Coeficiente R para sistemas estructurales dúctiles

Figura 10: Configuraciones estructurales recomendadas.

De todas las tablas anteriores se obtienen los siguientes factores, aplicables a esta estructura

Datos				
Ciudad	Quito			
Provincia	Pichincha			
Z (g)	0.4			
Zona sísmica	V			
Tipo de suelo	D			
η	2.48			
r	1			
Datos suelo				

por su ubicación y características:

Fa	1.2	
Fd	1.19	
Fs	1.28	
R	8	
Ι	1	
Фр	1	
Фе:	1	
Periodo)S	
To (seg)	0.13	
Tc (seg)	0.70	
Ct	0.072	
alpha	0.8	
hn (m) 17.60		
T (s)	0.71	
Treal (s)	0.70	
k	1.10	
Sa(g)	1.19	
Cc	0.148	
W (Ton)	648.050	
Vb (Ton)	96.173	

Tabla 12: Factores de sismorresistente para la estructura considerada.

Con estos valores se obtuvo el especto de aceleraciones y el espectro de desplazamientos:

Figura 11: Espectro de diseño en aceleraciones; Tr=475 años.

Figura 12: Espectro de diseño en desplazamientos; Tr=475 años.

Cortante Basal

Para sacar la distribución lateral de fuerzas se debe determinar el valor de k:

Valores de T (s)	k
≤ 0.5	1
0.5 < T ≤ 2.5	0.75 + 0.50 T
> 2.5	2

Tabla 13:coeficiente k relacionado con el periodo de vibración de la estructura.

Del modelo de Etabs se tiene la siguiente información:

Periodo	0.696
V basal est	95.0641
V basal din X	74.9435
V basal din Y	77.5587
f X	1.268
fY	1.226

Tabla 14:Periodo, factores fX, fY y cortante basal de la estructura, obtenido del modelo de ETABS.

Los factores fX y fY se usan para garantizar que el cortante basal dinámico, obtenido de

Etabs, sea al menos el 80% del estático obtenido con las ecuaciones de la norma NEC.

El periodo de la estructura es de 0.696 [s], y está en el rango de $0.5 < T \le 2.5$,por lo tanto, el valor de k será de:

$$k = 0.75 + 0.507$$

Ecuación 3

$$k = 0.75 + 0.50(0.696)$$

$$k = 1.10$$

N piso	hx (m)	Wx (Ton)	Wx*Hx^k	Fi (Ton)
6	17.6	108.01	2532.37	28.10
5	15	108.01	2124.05	23.57
4	12	108.01	1661.74	18.44
3	9	108.01	1210.96	13.44
2	6	108.01	775.23	8.60
1	3	108.01	361.66	4.01
			8666.01	96.16

Tabla 15: Distribución lateral de fuerzas sísmicas laterales.

Chequeo de derivas

Se obtuvo las derivas máximas para el sentido "x" y "y" con sus respectivos sismos,

los cuales se muestran en las siguientes figuras:

Figura 13:Deriva elástica máxima en sentido x.

Figura 14:Deriva elástica máxima en sentido y.

Con estas derivas elásticas se obtuvo las inelásticas, aplicando la ecuación de la NEC que no

debe sobrepasar el 2%.

$$\Delta_{\text{inelástica}} = 0.75 R \Delta_{elástica}$$

Ecuación 4

	Elástica	Inelástica	Pasa
Deriva X	0.00245	0.0147	Ok
Deriva Y	0.001641	0.009846	Ok

Tabla 16: Deriva elástica e inelástica de la estructura en sentido X y Y

Diseño de Viga

La viga que se va a diseñar es:

Figura 15: Viga a diseñar.

Con ayuda del ETABS se obtuvo los momentos y cortantes de la viga bajo acción de carga

viva, carga muerta y carga sísmica:

Cargas segun ETABS								
M _{dead}	2.573	[T-m]	V_{dead}	3.162	[T]	Pdead	0.000	[T]
M _{live}	0.856	[T-m]	V _{live}	1.036	[T]	Plive	0.000	[T]
M _{sis}	17.673	[T-m]	V _{sis}	7.434	[T]	P _{sis}	0.000	[T]

Tabla 17: Carga en la viga de análisis obtenida del Etabs

Con los valores obtenidos de corte y momento se calculó los cortantes y momentos en

función de las combinaciones de carga:

1.2D + 1.6L			
М	4.404	[T-m]	
V	5.296	[T]	
Р	0.000	[T]	

Tabla 18: Cortante y momento en función de la combinación de carga 1.

	(1.2+0.2Sds)D+pE+0.5L			
М	19.048	[T-m]		
V	11.199	[T]		
Р	0.000	[T]		

Tabla 19: Cortante y momento en función de la combinación de carga 2.

(0.9-0.2Sds)D-pE				
Μ	-13.316	[T-m]		
V	-4.284	[T]		
Р	0.000	[T]		

Tabla 20: Cortante y momento en función de la combinación de carga 3.

Las propiedades de la sección transversal de la columna son las siguientes:

Properly Name IPE500 Material A36 Display Color Change Notes Modify/Show Notes hape Section Shape Steel I Mide Flange source: Euro Source: Convert To User Defined ection Property Source source: Source: Source: Source: for Plange Width 20 Top Range Width 20 Top Range Width 20 Neb Thickness 1 Souron Range Width 20 Botom Range Thickness 1.6 Show Section Properties Note Show Section Properties Note Show Section Properties Note Show Section Properties Property Modifiers Connet Connet Material Source: Source: <tr< th=""><th>eneral Data</th><th></th><th></th><th></th><th>Base Material A36</th><th></th></tr<>	eneral Data				Base Material A36	
Display Color Change Notes Modify/Show Notes hape section Shape Steel IWide Flange iection Property Source Source: Euro Convert To Laer Defined iection Dimensions Total Depth 50 Top Range Width 20 Top Range Thickness 1.6 Top Range Thickness 1.6 Sottom Range Width 20 Bottom Range Thickness 1.6 Itel Radus 2.1 Show Section Properties Cancel	Property Name Material	IPE500 A36		24	Properties	
Notes Modify/Show Notes Infe shape Section Shape Steel Wide Flange 51 Section Shape Steel Wide Flange 51 Section Property Source Source: Euro Convert To User Defined 533 Section Dimensions Froperty Modifiers 533Neg. cm3 1928 Total Depth 50 cm 522Pos. cm3 214.2 Total Depth 20 cm 333 214.2 Top Flange Width 20 cm 433 233, cm3 2194 Editor Flange Width 20 cm 336 3	Display Color	Change		2	Item	Value
Shape Section Shape Section Property Source Source: Euro Convert To User Defined Sages, cm3 133, cm4 44200 Section Dimensions Source: Euro Convert To User Defined Sages, cm3 1928 Source: Euro Source: Source Modify/Show Modifiers. Sages, cm3 214.2 Total Depth 50 cm Surce: Currently Default Surce: Currently D	Notes	Modify/Show Notes	i	→	Area, cm2	116
Shape Steel IWide Flange 53.3 Section Shape Steel IWide Flange 133, cm4 48200 Section Property Source Source: Euro Convert To User Defined 533 133, cm4 48200 Section Dimensions Froperty Modifiers S33Neg. cm3 1928 522Pos. cm3 214.2 Total Depth 50 cm Currently Default Modify/Show Modifiers S22Neg. cm3 214.2 Total Depth 20 cm Currently Default 723, cm3 214.2 Modify/Show Modifiers 1.6 cm 222, cm3 214.2 Soltom Flange Thickness 1.6 cm 223, cm3 2194 Soltom Flange Thickness 1.6 cm 222, cm3 336 Bottom Flange Thickness 1.6 cm 222, cm3 336 Filet Radius 2.1 cm 21 CG Offset 3 Dir, cm 0 CG Offset 2 Dir, cm 0 CG Offset 3 Dir, cm 0 0 Show Section Properties Cancel PNA Offset 3 Dir, cm 0		Houry/ Show Hous			AS2, cm2	51
Section Shape Steel IWide Flange 133. cm4 48200 Section Property Source Source: Euro Convect To User Defined 533Neg. cm3 1928 Source: Euro Convect To User Defined S33Neg. cm3 1928 Source: Euro Source: Modifiers S33Neg. cm3 1928 Total Depth 50 cm S22Pos. cm3 214.2 Total Depth 20 cm Currently Default S22Neg. cm3 214.2 Total Pange Thickness 1.6 cm Currently Default S22.0 S33.0 214.2 Source: Source S3. cm4 48200 S33Neg. cm3 1928 Source: Source Source S22Pos. cm3 214.2 Source: Source S3.0 Cont S3.0 214.2 Source: Source Source S22.0 S3.0 214.2 Source: Source Source S22.0 S3.0 214.2 Source: Source Source Source Source Sou	Shape				AS3, cm2	53.3
Section Property Source Source: Euro Convert To User Defined S33Pos. cm3 1928 Section Dimensions Source: Euro S33Neg. cm3 1928 Total Depth 50 cm S22Pos. cm3 214.2 Total Depth 20 cm S22Neg. cm3 214.2 Total Depth 20 cm S22Neg. cm3 214.2 Total Pange Wuth 20 cm S22Neg. cm3 214.2 Source: I.6 cm S22Neg. cm3 214.2 Source: S22Neg. cm3 214.2 S33.0m 20.4 R32, cm 4.3 22.2 S33.0m 214.2 Source: I.6 cm S22Neg. cm3 214.2 R33, cm 20.4 S22Neg. cm3 214.2 S10 Gamma S22 S22Neg. cm3 214.2 S22, cm3 336 Junet S22 S22Neg. cm3 214.2 S22, cm3 S33.0m S22 S22 S22 S22 S22 S22 <t< td=""><td>Section Shape</td><td>Steel I/Wide Flange</td><td></td><td></td><td>133, cm4</td><td>48200</td></t<>	Section Shape	Steel I/Wide Flange			133, cm4	48200
Section Property Source SagPos. cm3 1928 Source: Euro Convert To User Defined 533Neg. cm3 1928 Section Dimensions Total Depth 50 cm 522Pos. cm3 214.2 Total Depth 20 cm Currently Default 733.cm 20.4 Top Range Thickness 1.6 cm 222, cm3 2194 Bottom Range Width 20 cm 336 1, cm4 89.1 Bottom Range Thickness 1.6 cm 222, cm3 336 1, cm4 89.1 Fillet Radius 2.1 cm OK Cancel CG Offset 3 Dir, cm 0 CG Offset 3 Dir, cm 0 0 CG Offset 3 Dir, cm 0 0					122, cm4	2142
Source: Euro Convert To User Defined S33Neg. cm3 1928 Section Dimensions 50 cm S22Pos. cm3 214.2 Total Depth 50 cm S22Neg. cm3 214.2 Total Depth 20 cm S22Neg. cm3 214.2 Tota Pange Width 20 cm S22Neg. cm3 214.2 Modify/Show Modifiers Currently Default S22Neg. cm3 214.2 S23. cm3 219.4 S22Neg. cm3 214.2 S23. cm3 219.4 S22Neg. cm3 214.2 S23. cm3 219.4 S22.0 S22Neg. cm3 214.2 S23. cm3 219.4 S22.0	Section Property Source				S33Pos, cm3	1928
Section Dimensions Property Modifiers S22Pos, cm3 214.2 Total Depth 50 cm S22Neg, cm3 214.2 Total Depth 20 cm S22Neg, cm3 214.2 R33, cm 20.4 R33, cm 20.4 Top Range Thickness 1.6 cm S22, cm3 2194 Bottom Range Width 20 cm S22, cm3 336 Bottom Range Thickness 1.6 cm S22, cm3 336 J. cm4 89.1 Cw cm6 1243965.3 Fillet Radius 2.1 cm Cancel CG Offset 3 Dir, cm 0 CG Offset 2 Dir, cm 0 CG Offset 3 Dir, cm 0 CG Offset 3 Dir, cm 0	Source: Euro	Convert To User Defined			S33Neg, cm3	1928
Section Dimensions Modify/Show Modifiers S22Neg. cm3 214.2 Total Depth 50 cm Currently Default R33, cm 20.4 Top Range Width 20 cm Currently Default R32, cm 4.3 Web Thickness 1 cm 222, cm3 2194 Botom Range Width 20 cm 4.3 Botom Range Width 20 cm 1.6 2.2, cm3 336 Botom Range Thickness 1.6 cm 2.2, cm3 336 3.6 J. cm4 89.1 Cw cm6 1243365.3 RHet Radius, cm 2.1 Filet Radius 2.1 cm Cancel CG Offset 3 Dir, cm 0 CG Offset 3 Dir, cm 0 CG Offset 3 Dir, cm 0 PNA Offset 3 Dir, cm 0			-	Property Modifiers	S22Pos, cm3	214.2
Total Depth 50 cm Modaly/Show Modules R33, cm 20.4 Top Range Width 20 cm Currently Default R22, cm 4.3 Top Range Thickness 1.6 cm Z22, cm3 336 Web Thickness 1 cm J, cm4 89.1 Botom Range Thickness 1.6 cm Cwrently Default Cwrently Default Botom Range Thickness 1.6 cm 12439365.3 Fillet Radius 2.1 cm Cancel CG Offset 3 Dir, cm 0 CG Offset 3 Dir, cm 0 CG Offset 3 Dir, cm 0 CG Offset 3 Dir, cm 0	Section Dimensions			Modify (Show Modifier	S22Neg, cm3	214.2
Top Range Width 20 cm R22, cm 4.3 Top Range Thickness 1.6 cm 233, cm3 2194 Web Thickness 1 cm 222, cm3 336 Bottom Range Width 20 cm 34 249455.3 Bottom Range Thickness 1.6 cm 1249365.3 Fillet Radius, cm 2.1 Fillet Radius 2.1 cm OK CG Offset 3 Dir, cm 0 Show Section Properties Cancel PNA Offset 3 Dir, cm 0	Total Depth	50	cm	Currently Default	R33, cm	20.4
Top Range Thickness 1.6 cm Web Thickness 1 cm 222, cm3 336 Bottom Range Width 20 cm J, cm4 89.1 Bottom Range Thickness 1.6 cm Cw, cm6 1243965.3 Fillet Radius 2.1 cm OK CG Offset 3 Dir, cm 0 Show Section Properties Cancel PNA Offset 3 Dir, cm 0	Top Flange Width	20	cm	Contently Dorden	R22, cm	4.3
Web Thickness 1 cm Z22, cm3 336 Bottom Flange Width 20 cm J, cm4 89,1 Bottom Flange Thickness 1.6 cm Cw, cm6 1249365.3 Fillet Radius 2.1 cm OK CG Offset 3 Dir, cm 0 Show Section Properties Cancel PNA Offset 3 Dir, cm 0	Top Flange Thickness	1.6	cm		Z33, cm3	2194
Number of the constraints Constraints J. cm4 89.1 Bottom Range Width 20 cm Cw, cm6 1249365.3 Bottom Range Thickness 1.6 cm Fillet Radius, cm 2.1 Show Section Properties Cancel CG Offset 3 Dir, cm 0	Web Thickness	1	-		Z22, cm3	336
Bottom Range Width ZU cm Cw, cm6 1249365.3 Bottom Range Thickness 1.6 cm Fillet Radius, cm 2.1 Fillet Radius 2.1 cm OK CG Offset 3 Dir, cm 0 Show Section Properties Cancel PNA Offset 3 Dir, cm 0	Web Thickness	'	-		J, cm4	89.1
Bottom Range Thickness 1.6 cm Fillet Radius, cm 2.1 Fillet Radius 2.1 cm OK CG Offset 3 Dir, cm 0 Show Section Properties Cancel CG Offset 3 Dir, cm 0	Bottom Flange Width	20	cm		Cw, cm6	1249365.3
Fillet Radius 2.1 cm OK CG Offset 3 Dir, cm 0 Show Section Properties Cancel CG Offset 3 Dir, cm 0 NA Offset 3 Dir, cm 0 0 0	Bottom Flange Thickness	1.6	cm		Fillet Radius, cm	2.1
Show Section Properties Cancel CG Offset 2 Dir, cm 0 PNA Offset 3 Dir, cm 0	Fillet Radius	2.1	cm	ОК	CG Offset 3 Dir, cm	0
Show Section Properties Cancel PNA Offset 3 Dir, cm 0	Chara Car			Creat	CG Offset 2 Dir, cm	0
	Show Sec	ction Properties		Cancel	PNA Offset 3 Dir, cm	0

Figura 16: Propiedades de la sección de la viga-IPE500

Datos de la sección				
R	2.1	[cm]		
d	50	[cm]		
bf	20	[cm]		
tf	1.6	[cm]		
h	42.6	[cm]		
tw	1	[cm]		
ho	48.4	[cm]		
Α	116	[cm ²]		
Ixx	48200.00	[cm ⁴]		
Sxx	1928	[cm ³]		
Zxx	2194.00	[cm ³]		
rx	20.384	[cm]		
Iyy	2142	[cm ⁴]		
Syy	214.2	[cm ³]		
Zyy	336.00	[cm ³]		
ry	4.30	[cm]		
J	89.10	[cm ⁴]		
Cw	1.25E+06	[cm ⁶]		
Peso	90.70	[kg/m]		
yc	25.00	[cm]		
yt	25.00	[cm]		

Tabla 21:Datos de la sección de la viga

Se debe verificar la estabilidad local del patín y del alma de la sección de la viga. Para esto se utilizará la TablaD1.1 de la AISC341 donde se debe verificar que los miembros cumplan los límites para la estabilidad de miembros altamente dúctiles. Para el patín se debe verificar que:

$$\frac{b}{2t_f} < 0.32 \sqrt{\frac{E}{R_y F_y}}$$

Patín		
bf/2 tf	6.250	
$\operatorname{Lim} \lambda_{hd}$	7.419	
Verificación	OK	

Tabla 22: Estabilidad local del patín.

Para el alma se debe verificar que dependiendo del factor C_a :

Donde
$$C_a = \frac{P_u}{\phi_c R_y F_y A_g}$$

Ecuación 5

Si $C_a \leq 0.114$ se deben cumplir la siguiente condición:

$$\frac{h}{t_w} < 2.57 \sqrt{\frac{E}{R_y F_y}} (1 - 1.04C_a)$$

Ecuación 6

Si $C_a > 0.114$ se deben cumplir la siguiente condición:

$$\frac{h}{t_w} < \max\left[\left(0.88 \sqrt{\frac{E}{R_y F_y}} \left(2.68 - C_a \right) \right), \left(1.57 \sqrt{\frac{E}{R_y F_y}} \right) \right]$$

Ecuación 7

Como se está analizando el caso de vigas y según la Tabla 22 el $P_u = 0$, por lo tanto $C_a = 0$.

Entonces se usa la Ecuación 6 y se obtiene los siguientes resultados:

Alma	Alma		
h/tw	42.600		
Ca	0.000		
$\operatorname{Lim} \lambda_{hd}$	59.586		
Verificación	OK		

Tabla 23. Chequeo de estabilidad del alma.

A continuación, se debe verificar las condiciones propuestas por la norma AISC-358 de conexiones precalificadas; la cual detalla los requerimientos de la viga para su uso en las conexiones RBS y 4ES.

Para conexión RBS:

				Verificación
1)	Cumple la secciói	n 2.3 de AISC	C 358	OK
2)	d max	91.44	[cm]	ОК
3)	Peso máximo	447	[kg/m]	OK
4)	tf b max	4.4	[cm]	OK
5)	Ln/d min	7		OK

6)	b/t y h/tw cumplen con AISC 341		OK	
7)	Lb max	219.44	[m]	OK

Tabla 24: Requerimientos de la viga según AISC 358 para conexión RBS (Sección 5.3.1)

Para conexión 4ES:

				Verificación
1)	Cumple	e la sección 2.3 de A	ISC 358	OK
2)	Verificació	n de parámetros seg	ún tabla 6.1	
		Max [cm]	Min [cm]	
	tf b	1.90	1.00	OK
	bf b	22.90	15.2	OK
	d b	61.00	34.9	OK
3)	Peso máxi	mo de la viga	Ilimitado	OK
4)	Ln/d min	7		OK
5)	b/t y h	/tw cumplen con AI	SC 341	OK
6)	Lb max	219.44	[m]	OK

Tabla 25: Requerimientos de la viga según AISC 358 para conexión 4ES (Sección 6.3.1)

Posteriormente se debe verificar la capacidad a flexión de la sección utilizando el

procedimiento de la Sección F de la AISC-360.

Se debe verificar si la sección es compacta, no compacta o esbelta; verificando los siguientes

límites propuestos en la TablaB4.1b.

Donde para el patín:

$$\lambda = \frac{b_f}{2t_f}$$

Ecuación 8

Para que sea compacta tiene que ser menor a:

$$\lambda_p = 0.38 \sqrt{\frac{E}{F_y}}$$

Ecuación 9

Y para que no sea esbelta debe se igual o menor a:

$$\lambda_r = \sqrt{\frac{E}{F_y}}$$

Ecuación 10

Con los datos de la sección se tiene que para el patín:

	Patín			
	λf	6.250		
	λpf 10.7904			
	λrf 28.3958			
2	26. Varifiagaión de ashaltar del			

Tabla 26: Verificación de esbeltez del patín.

Como se observa en la Tabla 29, el patín es compacto.

Para el alma:

$$\lambda = \frac{h}{t_w}$$

Ecuación 11

Para que sea compacta tiene que ser menor a:

$$\lambda_p = 3.76 \sqrt{\frac{E}{F_y}}$$

Ecuación 12

Y para que no sea esbelta debe ser igual o menor a:

$$\lambda_r = 5.70 \sqrt{\frac{E}{F_y}}$$

Ecuación 13

Con los datos de la sección se tiene que para el alma:

	Alma			
λw 42.600				
λpw	λpw 106.768			
λrw	161.856			

Tabla 27: Verificación de esbeltez del alma.

Como se observa en la Tabla 30, el alma es compacta. Por lo tanto, la sección es compacta y

se debe verificar los estados límites de fluencia y pandeo lateral torsional.

Verificación del estado límite de fluencia

El momento nominal de la sección es igual al momento de plastificación de la sección, el cual es igual a:

$$M_n = M_p = F_y Z_x$$

Ecuación 14

$$M_n = M_p = \left(2530 \frac{kgf}{cm^2}\right) (2194 \ cm^3)$$

 $M_n = M_p = 55.51 \ Ton - m$

Verificación del pandeo lateral torsional

Se debe verificar la longitud arriostrada. La longitud no arriostrada $L_b = 1.05 \ [m]$. Esta longitud debe ser menor a $L_p = 1.76 r_y \sqrt{\frac{E}{F_y}} = 2.15 \ [m]$.

Ecuación 15

Ya que:

$$L_b < L_r$$

Entonces, no aplica el pandeo lateral torsional. Por lo tanto, la capacidad a momento de la sección es:

$$M_n = M_n = 55.51 Ton - m$$

Y se debe verificar que:

$$\phi M_n \ge M_u$$

Se utilizará un
$$\phi = 0.9$$
 como lo indica la AISC y se utilizará el mayor momento factorado de las tablas 21, 22 y 23. De las cuales:

$$M_u = 19.048 \, Ton - m$$

Como este es menor a $\phi M_n = 49.96 [Ton - m]$, la sección es adecuada para resistir a momento.

Diseño a Cortante

Para el diseño a cortante se necesita que $\phi V_n \ge V_u$. La demanda de cortante de la viga se obtiene con el mayor de los cortantes factorados obtenidos en las tablas 21, 22 y 23. Siendo este:

$V_u = 11.199 [Ton]$

La capacidad a cortante se obtiene según el capítulo G del AISC-360. Donde la capacidad nominal de cortante reducida es:

$$\phi V_n = 0.6 F_y A_w C_v$$

Ecuación 16

Donde:

$$A_w = d * t_w$$

Ecuación 17

Y C_v depende de la esbeltez del alma , si $\frac{h}{t_w} \le 2.24 \sqrt{\frac{E}{F_y}}$

Ecuación 18

entonces:

$$C_v = 1$$
 $\phi = 1$

Dado que $\frac{h}{t_w}$ = 42.60 y 2.24 $\sqrt{\frac{E}{F_y}}$ = 63.61; se cumple la condición y se tomará estos valores.

Obteniendo que $\phi V_n = 75.9[Ton]$. Ya que $\phi V_n \ge V_u$, la sección es adecuada para el cortante de demanda.
Diseño de Columna

La columna que se va a diseñar es:

Figura 17: Columna a diseñar.

Con ayuda del ETABS se obtuvo los momentos, cortantes y carga axial de la columna bajo

acción de carga viva, carga muerta y carga sísmica:

Cargas segun ETABS								
M _{dead} 0.365 [T-m] V _{dead} 0.151 [T] P _{dead} 44.780 [T]								
M _{live}	0.132	[T-m]	Vlive	0.049	[T]	Plive	13.325	[T]
M _{sis}	33.548	[T-m]	V _{sis}	13.350	[T]	Psis	10.281	[T]

Tabla 28: Momentos, cortantes y carga axial de la columna

Con estos valores se calculó las combinaciones de carga descritas para el proyecto.

1.2D + 1.6L				
P _{D+L}	75.056	Tonf		
M _{D+L}	0.650	Tonf-m		
V _{D+L}	0.259	Tonf		

Tabla 29: Cortante y momento en función de la combinación de carga 1.

(1.2+0.2Sds)D+pE+0.5L					
P _{D+L+E}	81.340	Tonf			
M _{D+L+E}	34.139	Tonf-m			
V _{D+L+E}	13.591	Tonf			

Tabla 30: Cortante y momento en función de la combinación de carga 2.

(0.9-0.2Sds)D-pE				
Pd-e	19.360	Tonf		
Md-e	-33.306	Tonf-m		
VD-E	-13.250	Tonf		

Tabla 31: Cortante y momento en función de la combinación de carga 3.

Las propiedades de la sección transversal de la columna son las siguientes:

rame Section Property Data			×	Property Name	
				Section Name	HE600B
General Data				Base Material	A36
Property Name	HE600B				
Material	A36		2	Properties	
Display Color	Channe			Item	Value
Natas			3	Area, cm2	270
Inotes	Modify/Show Notes			AS2, cm2	93
Shape				AS3, cm2	150
Section Shane	Steel I/Wide Flance			133, cm4	171000
occion onapo	Steel invide Hange			122, cm4	13530
Section Property Source				S33Pos, cm3	5700
Source: Euro	Convert To User Defined			S33Neg, cm3	5700
			Descate Maddan	S22Pos, cm3	902
Section Dimensions			Property Modifiers	S22Neg, cm3	902
Total Depth	60	cm	Modify/Show Modifiers	R33, cm	25.2
Top Flange Width	30	cm	Currently Default	R22, cm	7.1
Top Flange Thickness	3	-		Z33, cm3	6425
Top Hange Thickness	10	-		Z22, cm3	1391
Web Thickness	1.6	cm		J, cm4	677
Bottom Flange Width	30	cm		Cw, cm6	10965375
Bottom Flange Thickness	3	cm		Fillet Radius, cm	2.7
Fillet Radius	2.7	cm	ОК	CG Offset 3 Dir, cr	m 0
				CG Offset 2 Dir, cr	m 0
Show S	action Properties		Cancel	PNA Offset 3 Dir,	cm 0
				PNA Offset 2 Dir.	cm 0

Figura 18: Propiedades de la sección de la columna -HEB600

Datos de la sección				
R	2.7 [cm]			
d	60 [cm]			
bf	30 [cm]			
tf	3 [cm]			
h	48.6 [cm]			
tw	1.6 [cm]			

ho	57.0	[cm]
Α	270	$[cm^2]$
Ixx	171000	[cm ⁴]
Sxx	5700	[cm ³]
Zxx	6425	[cm ³]
rx	25.2	[cm]
Iyy	13530	[cm ⁴]
Syy	902	[cm ³]
Zyy	1391	[cm ³]
ry	7.1	[cm]
J	677	[cm ⁴]
Cw	10965375	[cm ⁶]
Peso	217	[kg/m]
yc	30.00	[cm]
yt	30.00	[cm]
rts	8.22	[cm]
Aw	96.00	$[cm^2]$

 Tabla 32:Dato de la sección de la columna.

Chequeo de esbeltez local de la columna

Se requiere que los elementos que forman la columna sean sísmicamente compactos, de manera que las relaciones ancho-espesor no superen los máximos establecidos en la Sección 6.2 de la NEC-SE-AC. Para flexión esta relación se calcula de la siguiente manera:

$$\lambda = \frac{b_f}{2t_f}$$

Ecuación 19

El límite de la relación ancho-espesor para los patines de las columnas es:

$$\lambda_{hd} = 0.32 \sqrt{\frac{E}{F_y}}$$

Ecuación 20

La sección cumple con el chequeo de esbeltez del patín si se cumple que:

$$\lambda < \lambda_{hb}$$

Patín	
bf/2 tf	5.000
Lim λhd	7.419
Verificación	OK

Tabla 33:Estabilidad según tabla D1.1 AISC 341 para el patín.

El límite de la relación ancho-espesor para el alma de las columnas es:

$$C_a = \frac{P_u}{\Phi_c R_y F_y A_g}$$

Ecuación 21

La relación ancho-espesor para el alma de las columnas es igual al de vigas:

$$\lambda = \frac{h}{t_w}$$

El límite de la relación ancho-espesor para el alma de la columna es:

$$\lambda_{hd} = 2.57 \sqrt{\frac{E}{F_y}}$$

Ecuación 22

La sección cumple con el chequeo de esbeltez del alma si se cumple que:

 $\lambda < \lambda_{hb}$

Alma	
h/tw	30.375
Ca	0.088
Lim λhd	54.120
Verificación	OK

Tabla 34:Relación ancho-espesor para el alma.

Resistencia de diseño a flexo-compresión

Para el diseño a flexo-compresión se deberá obtener la longitud efectiva para el pandeo alrededor del eje fuerte de la columna. Para esto se obtendrá el valor del factor de la longitud efectiva K, haciendo comparación de las rigideces entre el empotramiento de la columna y el nodo superior; esto se utilizará con el nomograma de la Figura 19. De donde:

$$G_a = \frac{\sum \frac{EI_c}{L_c}}{\sum \frac{EI_b}{L_b}}$$

Ecuación 23

Ya que se asume empotramiento en la base de la columna:

$$G_a = 1.0$$

Usando estos valores en el nomograma de la figura 19, se obtiene que el valor del factor K es igual a:

Fig. C-A-7.2. Alignment chart—sidesway uninhibited (moment frame).

Figura 19: Nomograma para obtener K en un pórtico a momento.

K = 1.7

Con este valor se calcula la esbeltez del eje fuerte de la columna, obteniendo

$$K * \frac{L_{entrepiso}}{r_x} = 20.27$$

La esbeltez limite es:

$$\lambda_{lim} = 4.71 * \sqrt{\frac{E}{fy}} = 133.74$$

Ecuación 25

Como la esbeltez de la columna es menor a la limite, se considera que la columna no es esbelta y que tiene un pandeo inelástico, por lo que el esfuerzo critico (f_{cr}) y elástico (f_e) son:

$$f_e = \frac{\pi^2 E}{\left(K * \frac{L_{entrepiso}}{r_x}\right)^2} = 49025.49 \frac{kg}{cm^2}$$

Ecuación 26

$$f_{cr} = \left(0.658 \frac{f_y}{f_e}\right) f_y = 2475.94 \ \frac{kg}{cm^2}$$

Ecuación 27

Ya que es una sección no esbelta, la capacidad a compresión es:

 $\phi_c P_n = \phi_c f_{cr} A_g = (0.9) * 668.50$ Ton

Ecuación 28

De acuerdo con la AICS 360 la resistencia de diseño a compresión debe cumplir que $\phi P_n >$

 P_u .

Posteriormente se determina la capacidad a flexión de la columna con el mismo procedimiento del diseño para viga, obteniendo primero los parámetros de esbeltez del alma y de los patines para clasificar la sección:

Patín					
λf	5.000				
λpf	10.7904				
λrf	28.3958				
n	• /				

Sección compacta

Alma				
λw	30.375			
λpw	106.768			
λrw	161.856			

Sección compacta *Tabla 35: Clasificación para flexión de la columna*

Así como para la viga, se obtuvo que esta sección de columna es compacta para flexión, se debe verificar los estados límite de fluencia y pandeo lateral torsional, siendo este último no aplicable ya que la longitud no arriostrada de la columna es menor al límite, obtenido con la ecuación 15:

Lentrepiso	3.00	[m]
Lb	275	[cm]
Lp	353.78	[cm]
Lr	1325.806	[cm]

Tabla 36: Verificación de la longitud arriostrada para columnas

Por lo tanto:

Fluencia			
Мр	16255250	[kg-cm]	
Mn	162.55	[T-m]	
φb Mn	146.30	[T-m]	

Tabla 37: Resistencia de diseño a flexión de la columna.

Chequeo de la ecuación de interacción

Se chequea la capacidad a flexo compresión:

Mu	34.139	[Ton-m]
Pu	81.340	[Ton]
Pu/ φP n	0.14	
Ec. interacción	0.301	Sección adecuada

Tabla 38: Chequeo de la ecuación de interacción.

Resistencia de diseño a cortante

Para el diseño a cortante se necesita que cumpla $\phi V_n \ge V_u$, se utiliza el mismo análisis que para el diseño de corte para vigas. La demanda de cortante de la columna se obtiene con el mayor de los cortantes factorados obtenidos en las tablas 32, 33 y 34. Siendo este:

$$V_u = 13.591 [Ton]$$

La capacidad a cortante se obtiene según el capítulo G del AISC-360. Donde la capacidad nominal de cortante reducida es:

$$\phi V_n = 0.6 F_y A_w C_v$$

Donde:

$$A_w = d * t_w$$

Y C_v depende de la esbeltez del alma.

Si
$$\frac{h}{t_w} \le 2.24 \sqrt{\frac{E}{F_y}}$$
, entonces:

$$C_v = 1$$
 $\phi = 1$

Dado que $\frac{h}{t_w} = 30.38$ y 2.24 $\sqrt{\frac{E}{F_y}} = 63.61$; se cumple la condición y se tomará estos valores.

Obteniendo que $\phi V_n = 145.73[Ton]$. Ya que $\phi V_n \ge V_u$, la sección es adecuada para el cortante de demanda.

Chequeo de limitaciones de la sección de columna para las conexiones

A continuación, se debe verificar las condiciones propuestas por la norma AISC-358 de conexiones precalificadas; la cual detalla los requerimientos de la columna para su uso en las conexiones RBS y 4ES.

				Verificación
1)	Cumple l	OK		
2)	Viga conectada al ala de columna			OK
3)	d max	91.44	[cm]	OK
	Peso máxi	mo de la		
4)	colun	nna	Ilimitado	OK
5)	Espesor	del ala	Ilimitado	OK
6)	b/t y h/tw cumplen?			OK
7)	Lb	2.75	[m]	OK
	11 20 0			

Tabla 39:Segun AISC 358 para conexión RBS (sección 5.3.2)

				Verificación
1)	Cumple	OK		
2)	Placa co	a de columna	OK	
3)	d max	91.44	[cm]	OK
	Peso máxi	mo de la		
4)	colun	nna	Ilimitado	OK
5)	Espesor	del ala	Ilimitado	OK
6)	b	/t y h/tw cum	plen?	OK
7)	Lb	2.75	[m]	OK
	T 11 (0 C	1 10 0 2 50		

Tabla 40:Segun AISC 358 para conexión 4ES (sección 6.3.)

Por lo tanto, la sección escogida para la columna es adecuada.

Diseño de Conexiones

Conexión RBS

Las conexiones de sección de viga reducida o RBS son aquellas en las que las alas de la viga se recortan selectivamente en la región adyacente a la conexión viga columna. La formación de la rótula plástica se espera por tanto que sea dentro del área reducida. Estas conexiones están precalificadas para su uso en pórticos especiales resistentes a momento (SMF) y marcos de momento intermedio (IMF).

Figura 20: Conexión RBS

Para poder usar estas conexiones prefabricadas se debe cumplir con las limitaciones de: viga, columna, relación viga-columna, soldadura, conexión viga-columna y de fabricación que se encuentran detalladas de la Sección 5.1 a la Sección 5.7 de la AISC 358.

Procedimiento de Diseño

Para diseñar este tipo de conexiones primero se debe elegir valores de prueba de las

dimensiones de RBS que estén dentro de los siguientes límites:

$$0.5b_{bf} \le a \le 0.75b_{bf}$$

Ecuación 29

$$0.65d \le b \le 0.85d$$

Ecuación 30

$$0.1b_{bf} \le c \le 0.25b_{bf}$$

a	10	<	14	<	15	[cm]
b	32.5	\leq	42	<	42.5	[cm]
с	2	<	5	\leq	5	[cm]

Donde:

a es la distancia horizontal desde la cara del ala de la columna hasta el inicio del corte de la conexión.

b es la longitud del corte RBS.

 b_f es el ancho del ala de la viga.

c es la profundidad de corte en el centro de la sección reducida de la viga.

d es la profundidad de la viga

Luego se calcula el módulo de la sección plástica en el centro de la sección de viga reducida a partir de la siguiente expresión:

$$Z_{RBS} = Z_x - 2 c t_{bf} (d - t_{bf})$$

Ecuación 32

Z _{RBS}	1419.6	[cm ³]	
Z _{RBS} /Zxx	0.647	OK	
Tabla 42:Calculo de Z _{RBS}			

Una vez obtenido Z_{RBS} , y verificando que este cumple en ser menor que el módulo de sección plástica de la sección no reducida, se calcula el momento probable máximo en el centro de la sección de viga reducida, donde se prevé que se formara la rótula plástica, de la siguiente manera:

$$M_{pr} = C_{pr}R_yF_yZ_{RBS}$$

Ecuación 33

Donde:

$$C_{pr} = \frac{F_y + F_u}{2 F_y} \le 1.2$$

 R_y es el factor de relación entre el esfuerzo de fluencia esperado con el esfuerzo de fluencia mínimo, este factor esta especificado en la AISC 341.

Con estos datos se obtuvo que el momento probable es:

CPR	1.200		
Mpr	64.65 [T-m]		

Tabla 43: Calculo del momento máximo probable en la sección reducida.

Se calcula la fuerza cortante de la sección reducida (rótula plástica).

Este cálculo asume el momento en el centro de cada sección reducida de la viga e incluye las cargas de gravedad, viva y muerta, que actúan sobre la viga en función de la combinación de carga:

$$U = 1.2D + fL + 0.2S$$

Ecuación 35

Donde f es el factor de carga aplicable para cargas vivas, que para este caso es de f = 0.5. Y S = 0, ya que no hay cargas por nieve en la losa.

Qdead	0.3	[T/m ²]
Qlive	0.2	[T/m ²]
Qu	0.531	[T/m2]
b	2.38	[m]
qu	1.265	[T/m]

Tabla 44: Combinación de cargas mayoradas gravitatorias según ecuación 35

Con esto se obtiene el cortante por cargas gravitatorias y el cortante producido en la rótula plástica, debido al equilibrio del momento probable, se obtuvo los datos para las vigas que conectan con la columna analizada:

$$S_h = a + \frac{b}{2}$$

$$L_h = L_{viga} - 2 * S_h$$

 $V_g = \frac{q_U L_h}{2}$

Ecuación 38

$$V_{PR} = 2 * \frac{M_{PR}}{L_h}$$

Ecuación 39

$$V_{RBS} = V_u = V_g + V_{PR}$$

Ecuación 40

Vg	2.498	[T]		Vg BC	1.99	[T]
VPR	32.733	[T]		VPR BC	41.05	[T]
$\mathbf{V}_{\mathbf{RBS}} = \mathbf{V}_{\mathbf{U}}$	35.231	[T]		VRBS BC	43.04	[T]
Tabla 45:Cálculo V _{RBS}						

Luego se calcula el momento máximo probable en las caras de la columna, en base al

diagrama de cuerpo libre mostrado en la figura 21,

Figura 21:Diagrama de cuerpo libre entre el centro de la conexión RBS y la cara de la columna.

$$M_f = M_{pr} + V_{RBS} S_h$$

Ecuación 41

M _f AB	76.98	[T-m]
M _f BC	79.71	[T-m]

Tabla 46: Momento actuante en las caras de las columnas

Luego se calcula el momento plástico de la viga basado en la fluencia esperada.

$$M_{pe} = R_y F_y Z_x$$

Tabla 47: Calculo de momento plástico en la viga según la fluencia esperada

Se verifica la resistencia a flexión de la viga en la cara de la columna:

$$M_f \leq \phi_d M_{pe}$$

Ecuación 43

Mf		<	Φd*M _{pe}
	76.98	>	83.26
		OK	

Tabla 48: Comprobacion de resistencia a flexión de la viga en cara de columna

Como cumple esta comprobación, los valores de la geometría de la conexión se pueden utilizar para el diseño.

Se determinó a continuación si la resistencia a corte de la viga, obtenido en la sección del

diseño a cortante de la viga, es mayor que el cortante en la rótula plástica (V_{RBS}).

$$\phi V_n = 75.9[Ton] > V_{RBS} = 43.04 [Ton]$$

A continuación, se realiza el chequeo de columna fuerte-viga débil, según los lineamientos de

la AISC 341, capitulo E3:

Primero se analizarán la sumatoria de momentos precedentes de las vigas que conectan a la

columna. Para esto se obtiene el cortante de demanda en las rotulas plásticas de las

conexiones en las vigas que llegan a la columna, V_{RBS}, siendo estos:

V _U b1	35.23	[T]
V _U b2	39.05	[T]

Tabla 49: Cortantes actuantes en la rótula plástica de cada viga

Con estos cortantes se obtienen los momentos en el nodo:

$$M_{bi} = M_{PR_i} + V_{U_{bi}} \left(S_h + \frac{d_c}{2} \right)$$

Mb1	87.55	[T-m]
Mb2	90.03	[T-m]

Tabla 50: Momentos producidos en el nodo por acción de cargas en las vigas

Obteniendo así la suma de momentos de la viga:

$$\sum M_{pb} = M_{b1} + M_{b2} = 177.58 \, [Ton - m]$$

Se analiza también los momentos procedentes de la columna:

$$\sum M_{pc} = \sum Z_c \left(F_{yc} - \frac{\alpha_s P_r}{A_g} \right)$$

Ecuación 45

 $\alpha_s = 1$ para LRFD

Pr es el mayor entre la carga axial mayorada de las columnas o $P_r = 0.06 \frac{R_y F_y Z_c}{\alpha_s h_o} = 25.67 [T]$

Ecuación 46

Del modelo de Etabs, se obtuvo que las cargas mayoradas de las columnas son:

Puc1	75.06	[T]
Puc2	59.57	[T]

Tabla 51: Cargas axiales mayoradas en columna

Obteniendo los momentos de la columna:

Mpr c1	144.69	[T-m]
Mpr c2	148.38	[T-m]

Tabla 52: Momentos producidos en el nodo por acción de las columnas

$$\sum M_{pc} = 144.69 + 148.38 = 293.07 \ [Ton - m]$$

Finalmente obteniendo que la relación entre los momentos de la columna y viga es:

$$\frac{\sum M_{pc}}{\sum M_{pb}} = \frac{293.07}{177.58} = 1.65 < 1.0$$

Como cumple la relación, la conexión es correcta.

Se calcula la demanda de la zona del panel, según las disposiciones del AISC 341 sección

E3.6e:

Se calcula los momentos que llegan la cara de las columnas y con estos se obtienen las

fuerzas que actúan en los patines de las vigas:

Figura 22: Diagrama de fuerzas actuantes en zona de panel

 $M_f = M_{PR} + V_{ubi} S_h$

Ecuación 47

$$F_{fu} = \frac{M_f}{d_b - t_{fb}}$$

Ecuación 48

MfAB	76.98	[T-m]
Mf _{BC}	78.32	[T-m]
Ffuab	159.05	[T]
Ffubc	161.81	[T]

Tabla 53: Fuerzas y momentos actuantes en la zona panel

Se obtiene además el cortante por capacidad de las vigas y columnas, para estos se necesita la altura libre entre piso, como se sabe la altura de cada piso es 3 m, por lo que la altura libre es:

 $L_{v} = H_{entrepiso} - d_{b} = 2.5 \ [m]$

Ecuación 49

El cortante de viga es:

$$V_{uc_b} = \frac{\sum M_{pb}}{d_b + L_v} = 59.19 \ [T]$$

Ecuación 50

El cortante de cada columna es:

$$V_{uc_{c1}} = \frac{2*M_{PR_{c1}}}{L_v} = 115.75 [T]$$
 $V_{uc_{c2}} = \frac{2*M_{PR_{c2}}}{L_v} = 118.70 [T]$

Para el cálculo de la demanda de corte en la zona de panel, se escoge el menor de estos 3 valores, siendo este el de $V_{uc_b} = 59.19 [T]$. Obteniendo que el corte en la zona de panel es:

 $R_u = F_{fu_{AB}} + F_{fu_{BC}} - V_{uc_b} = 261.67 \ [T]$

Ecuación 52

Según la AISC 360 sección J, la resistencia de la zona panel depende de la relación:

$$\frac{\alpha P_{uc}}{P_y} = \frac{\alpha P_{uc}}{A_g F_y} = 0.11$$

Ecuación 53

Esta relación se calcula con las cargas axiales mayoradas de la tabla 51, y ya que es menor que 0.4, la resistencia de la zona de panel se calcula según la ecuación 54:

$$R_v = 0.60 F_v d_c t_{wc} = 145.73 [T]$$

Ecuación 54

$$\phi R_{\nu} = (0.9)(145.73) = 131.16 [T]$$

Ya que es menor que la demanda de cortante, se necesita poner placas adosadas al alma de la columna. Se debe obtener el espesor de estas placas, para lo que se obtiene el cortante que estas deben soportar:

$$R_p = R_u - \phi R_v = 261.67 - 131.16 = 130.51 \, [T]$$

Ecuación 55

El espesor necesario se calcula según:

$$t_{p_{req}} = \frac{R_p}{0.6 F_y d_c} = 1.43 \ [cm]$$

Ecuación 56

Si se pone 2 placas en la columna, estas deben ser de más de 7.16 [mm], por lo que se pondrá 2 placas adosadas de 0.75 [cm].

Finalmente se verifica los requisitos de la placa de continuidad, por lo que se debe verificar que el espesor del patín de la columna sea mayor que:

$$t_{fc} \ge \frac{b_{fb}}{6} = 3.33 \ [cm]$$
 $t_{fc} \ge t_{fb} = 1.6 \ [cm]$

Como no cumple una de estas condiciones, se necesita placa de continuidad la cual debe tener un espesor mayor que:

$$t_{pc_{req}} = 0.40 \sqrt{1.8 b_{fb} t_{fb} \frac{R_{yb} f_{yb}}{R_{yc} f_{yc}}} = 3.036 \ [cm]$$

Ecuación 57

Por lo que se utilizara un espesor de 3.5 [cm] para las placas de continuidad.

El detallamiento de esta conexión se encuentra en el anexo A.

Conexión 4ES

Las conexiones 4ES son conexiones de extremo atornilladas que se realizan soldando la viga a una placa de extremo y atornillando a su vez esta placa a una columna.

Figura 23: Configuraciones de conexiones 4ES

Estas conexiones están precalificadas para su uso en pórticos especiales resistentes a momento (SMF) y marcos de momento intermedio (IMF); deben cumplir con las limitaciones de la AISC. El comportamiento de este tipo de conexiones se puede controlar mediante varios estados límite, incluida la fluencia por flexión de la sección de la viga, la fluencia por flexión de las placas de los extremos, ruptura por cizallamiento de los pernos de la placa o ruptura de las uniones soldadas. Se puede considerar este tipo de conexión como alternativa siempre y cuando la profundidad de la viga no sea menor a 600 [mm], no existan conectores de corte dentro de 1.5 veces la profundidad de la viga y si la losa se mantiene al menos a 25 [mm] de ambos lados de las alas de la columna. Además, se debe cumplir con las limitaciones de viga y columna para conexiones 4ES. En la tabla a continuación se resume los rangos permitidos para que cumpla la conexión.

TABLE 6.1 Parametric Limitations on Prequalification						
	Four-Bolt U (4	It Unstiffened Four-Bo (4E)		Four-Bolt Stiffened Eight-Bolt Stiffen (4ES) (8ES)		
Parameter	Maximum in. (mm)	Minimum in. (mm)	Maximum in. (mm)	Minimum in. (mm)	Maximum in. (mm)	Minimum in. (mm)
t _{bf}	34 (19)	3⁄8 (10)	34 (19)	¾ (10)	1 (25)	%6 (14)
bbf	9¼ (235)	6 (152)	9 (229)	6 (152)	12¼ (311)	7½ (190)
d	55 (1400)	13¾ (349)	24 (610)	13¾ (349)	36 (914)	18 (457)
t _p	2¼ (57)	1/2 (13)	1½ (38)	1/2 (13)	2½ (64)	34 (19)
b _p	10¾ (273)	7 (178)	10¾ (273)	7 (178)	15 (381)	9 (229)
g	6 (152)	4 (102)	6 (152)	3¼ (83)	6 (152)	5 (127)
Pfi, Pto	4½ (114)	1½ (38)	5½ (140)	1¾ (44)	2 (51)	1% (41)
pь	_	_	_	_	3¾ (95)	3½ (89)
b_{bf} = width of beam flange, in. (mm) b_p = width of end-plate, in. (mm) d = depth of connecting beam, in. (mm) g = horizontal distance between bolts, in. (mm) p_b = vertical distance between the inner and outer row of bolts in an 8ES connection, in. (mm) p_{fl} = vertical distance from the inside of a beam tension flange to the nearest inside bolt row, in. (mm) p_{fb} = vertical distance from the outside of a beam tension flange to the nearest outside bolt row, in. (mm) p_{fb} = vertical distance from the outside of a beam tension flange to the nearest outside bolt row, in. (mm) t_{bf} = thickness of beam flange, in. (mm) t_p = thickness of end-plate, in. (mm)						

Tabla 54: Limitaciones paramétricas para conexiones precalificadas.

Figura 24:Geometría de placa de extremo extendida reforzada con 4 pernos (4ES)

Procedimiento de Diseño

Se seleccionó una de las tres configuraciones de conexión de momento de placa de extremo y se estableció valores preliminares para la geometría de la conexión, que cumplan con los rangos establecidos en la tabla 54.

	Máximo [cm]	Dato [cm]	Mínimo [cm]
tp	3.80	3.50	1.30
bp	27.30	25.00	17.80
g	15.20	15.00	8.30
pfi	14.00	4.50	4.40
pfo	14.00	4.50	4.40

Tabla 55: Geometría de la conexión utilizada.

Además, se determinó una geometría inicial del diámetro del perno y su material, el cual se seleccionó que sea un acero A490 que cumple con las resistencias mínimas especificadas en la tabla J3.2 de la AISC 360:

Datos del perno				
d _{perno} 3.60 [cm]				
Aperno	10.179	[cm ²]		
de	4.60	[cm]		
fnt	113 / 7953.78	[ksi] / [kg/cm ²]		
fnv	68 / 4782.47	[ksi] / [kg/cm ²]		

Tabla 56: Datos de los pernos a usar en la conexión 4ES

Además, se obtuvo algunos parámetros geométricos que se utilizaran en el diseño:

$$h_o = d_b - \frac{t_{fb}}{2} + p_{fo}$$

Ecuación 58

$$h_1 = d_b - 1.5 t_{fb} - p_{fi}$$

Ecuación 59

Y se calculó la altura y longitud de los rigidizadores:

$$h_{st} = p_{fo} + d_e$$

$$L_{st} = \frac{h_{st}}{\tan(30^\circ)}$$

$$c = p_{fi} + p_{fo} + t_{fb}$$

Ecuación 62

Resumiendo, estos cálculos en la siguiente tabla:

ho	53.70	[cm]
\mathbf{h}_1	43.10	[cm]
hst	9.10	[cm]
С	10.60	[cm]
Lst	15.76	[cm]

Tabla 57: Parámetros geométricos de la conexión con rigidizadores

Se calculó el momento producido en la cara de la columna, M_f .

$$M_f = M_{pr} + V_u S_h$$

Donde: S_h es la distancia desde la cara de la columna hasta la rótula plástica. Para conexiones 4ES:

$$S_h = L_{st} + t_p = 19.26 \ [cm]$$

Ecuación 63

 V_u es el cortante al final de la viga.

$$V_u = \frac{2M_{pr}}{L_h} + V_{gravitacional}$$

Ecuación 64

 M_{pr} es el momento máximo probable, el cual se calcula igual que para la conexión RBS, con la ecuación 33.

Cpr	1.2		
MPR	99.91	[T-m]	
Tabla 58:Momento máximo probable.			

Vg AB	2.70	[T]
Vpr AB	46.86	[T]
Vu AB	49.55	[T]

Tabla 59: Cortante al final de la viga AB.

Vg BC	2.19	[T]
Vpr вс	57.67	[T]
Vu BC	59.87	[T]
Tabla 60: Cor	tante al final d	le la viga BC

	M_{fAB}	109.46	[T-m]	
Tabla 6	1:Momento et	n la cara de la	columna por v	viga AB.

	Mf BC		111.	45	[T-m]			
Tabla 6	2:Momento	en la	cara	de la	colui	mna p	or	viga	BC.

Se verifico que el diámetro del perno propuesto sea mayor al diámetro de perno requerido a partir de la siguiente expresión:

$$d_{b req} = \sqrt{\frac{2M_f}{\pi \phi_n F_{nt}(h_o + h_1)}} = 3.171 \ [cm]$$

Ecuación 65

Por lo que es correcto el uso del diámetro de perno de 3.60 [cm].

Se determinó el espesor de placa requerido de placa de extremo, para esta placa se utilizará el mismo material que para las vigas y columnas (acero A36).

$$t_{p \, req} = \sqrt{\frac{1.1M_f}{\Phi_d F_{yp} Y_p}}$$

Ecuación 66

Donde Y_p se calcula de acuerdo con la tabla 6.3 de la sección 6.8 de la AISC 358, mostrado en la figura 25.

Figura 25: Mecanismo de fluencia de conexión 4ES

Calculando estos parámetros, se obtiene que el espesor de placa requerido es:

Φd	1	
Үр	505.85	[cm]
S	9.68	[cm]
tp, req	3.08	[cm]
Verificación	OK	

Tabla 63: Espesor de placa requerido

Como este espesor es menor al que se escogió en la tabla 55, se puede usar el espesor de 3.5

[cm] de la tabla.

Se calculó la fuerza mayorada en los patines de la viga

$$F_{fu} = \frac{M_f}{d - t_{bf}} = 226.156 \ [T]$$

Luego se seleccionó el refuerzo de la placa del rigidizador, para el rigidizador se utilizará el mismo material que para la placa de conexión (acero A36).

$$t_s \ge t_{bw} \left(\frac{F_{yb}}{F_{ys}}\right)$$

Espesor			
fys	2530	[kg/cm ²]	
t _{s, min}	1	[cm]	
ts	1.50	[cm]	

Tabla 64: Verificación del espesor de la placa de conexión

La geometría del rigidizador debe cumplir con los requisitos de la Sección 6.7.4 de la AISC 358. Además, para evitar el pandeo local de la placa de refuerzo el espesor de la placa debe cumplir el siguiente criterio:

$$\frac{h_{st}}{t_s} \le 0.56 \sqrt{\frac{E}{F_{ys}}}$$

Ecuación 68

Esbeltez	
hst/ts	6.07
Limite	15.90
Verificación	OK

Tabla 65: Verificación de esbeltez del rigidizador.

La resistencia a la ruptura por cizallamiento de la conexión está dada por los pernos; por lo tanto:

$$V_u \le \phi_n R_n = \phi_n(n_b) F_{nv} A_b$$

Ecuación 69

Para este estado limite, el factor de reducción es de 0.9 y el número de pernos en el patín de

compresión es 4 ya que es una conexión 4ES. Obteniendo de los cálculos que:

	nb	4		
	Фn Rn	175.25	[Ton]	
Tabl	a 66: Verificaci	ión de coi	rte en pe	rnos

Ya que esta resistencia es mayor que el corte actuante obtenido de la tabla 59 y 60, se sabe que no habrá ruptura de los pernos, por lo que la geometría y material de estos es correcta. Luego se verificó la falla del arrancamiento entre la placa de la conexión con el ala de la columna.

$$V_u \le \Phi_n R_n = \Phi_n(n_i) r_{ni} + \Phi_n(n_o) r_{no}$$

Donde:

- $r_{ni} = 1.2L_c tF_u < 2.4d_b tF_u$ para cada perno interior
- $r_{no} = 1.2L_c tF_u < 2.4d_b tF_u$ para cada perno exterior

$$L_{ci} = p_{fi} + t_{fb} + p_{fo} - d_{perno}$$

$$L_{co} = d_e - \frac{d_{perno}}{2}$$
$$p_{si} = p_{fi} - \frac{(t_s - t_{fb})}{2}$$
$$p_{so} = p_{fo} - \frac{(t_s - t_{fb})}{2}$$

ni	2	
no	2	
Lci	7.00	[cm]
Lco	2.8	[cm]
psi	4.55	[cm]
pso	4.55	[cm]

Tabla 67: Parámetros geométricos para la verificación del arrancamiento entre placa y columna

Placa			
t	3.50	[cm]	
rni	119.95	[T]	
rno	47.98	[T]	
ΦRn	302.28	[T]	
Vu	49.55	[T]	
OK			

OK Tabla 68: Verificación de falla de arrancamiento del perno de la placa

Columna			
t	3.00	[cm]	
rni	102.82	[T]	
rno	105.75	[T]	
ΦRn	375.43	[T]	
Vu	49.55	[T]	
ОК			

Tabla 69: Verificación de falla del rodamiento del perno de la columna.

Por lo que la conexión cumple para este criterio de falla.

Diseño del lado de la columna

Primero se verificó que el ala de la columna no ceda por flexión

$$t_{cf \ req} = \sqrt{\frac{1.1M_f}{\Phi_d F_{yc} Y_c}}$$

Ecuación 71

 Y_c se calcula en función de las tablas 6.5 o 6.6 de la Sección 6 de la AISC 358, según corresponda.

Figura 26: Parámetros de fluencia para patín de columna

S	10.61	[cm]
Yc_unstif	353.44	[cm]
tcf_req	3.69	[cm]
Necesita placas de continuidad		
psi'	4.55	[cm]
Yc_stif	651.64	[cm]
tcf_req	2.71	[cm]

Si se cumple, por lo tanto, el tamaño de la columna es adecuado y no requiere aumentar el tamaño de la columna o agregar placas de continuidad.

Se determinó la fuerza del rigidizador como:

$$\phi_d M_{cf} = \phi_d F_{yc} Y_c t_{cf}^2$$

Φd Mcf	80.479	[T-m]
Фd Rn	166.279	[T]
Tabla 71:Fuerza del rigidizador.		

Por lo tanto, la fuerza de diseño de ala de la columna es equivalente a:

$$\phi_d R_n = \frac{\phi_d M_{cf}}{(d - t_{bf})}$$

Luego se verifica la resistencia a fluencia del alma de la columna no rigidizada, se debe cumplir que:

$$F_{fu} \leq \phi_d R_n$$
$$R_n = C_t (6k_c + t_{bf} + 2t_p) F_{yc} t_{cw}$$

Donde:

De acuerdo con la AISC, si no se cumple la ecuación anterior quiere decir que se requieren placas de continuidad.

Ct	1	
kc	5.7	[cm]
Фd Rn	173.25	[T]
Necesita placas de continuidad		

 Necesita placas de continuidad

 Tabla 72:Chequeo de resistencia de fluencia en el alma de la columna no rigidizada.

Luego se verificó la resistencia al pandeo del alma de la columna no reforzada

$$F_{fu} \leq \phi R_n$$

Donde $\phi = 0.75$ y se consideran 2 casos:

Cuando F_{fu} se aplica a una distancia mayor o igual a $\frac{d_c}{2}$ desde el final de la columna

$$R_n = \frac{24t_{cw}^3 \sqrt{EF_{yc}}}{h}$$

Cuando F_{fu} se aplica a una distancia menor a $\frac{d_c}{2}$ desde el final de la columna

$$R_n = \frac{12t_{cw}{}^3\sqrt{EF_{yc}}}{h}$$

Si no se cumple el requisito de resistencia de continuidad del alma de la columna quiere decir que se requieren placas.

Φ	0.75		
Rn	145.31	[T]	
Φ Rn	108.99	[T]	
Necesita placas de continuidad			

Tabla 73: Chequeo de resistencia de pandeo en el alma de la columna no rigidizada.

Luego se verifica la resistencia a aplastamiento del alma de la columna no rigidizada. Es requisito de fuerza es:

$$F_{su} \leq \varphi R_n$$

Donde $\phi = 0.75$ y se consideran 2 casos:

Cuando F_{fu} se aplica a una distancia mayor o igual a $\frac{d_c}{2}$ desde el final de la columna

$$R_n = 0.80t_{cw}^2 \left[1 + 3\left(\frac{N}{d_c}\right) \left(\frac{t_{cw}}{t_{cf}}\right)^{1.5} \right] \sqrt{\frac{EF_{yc}t_{cf}}{t_{cw}}}$$

Cuando F_{fu} se aplica a una distancia menor a $\frac{d_c}{2}$ desde el final de la columna

$$\operatorname{Para} \frac{N}{d_c} \leq 0.2$$

$$R_n = 0.40t_{cw}^2 \left[1 + 3\left(\frac{N}{d_c}\right) \left(\frac{t_{cw}}{t_{cf}}\right)^{1.5} \right] \sqrt{\frac{EF_{yc}t_{cf}}{t_{cw}}}$$

$$\operatorname{Para} \frac{N}{d_c} > 0.2$$

$$R_n = 0.40t_{cw}^2 \left[1 + \left(\frac{4N}{d_c} - 0.2\right) \left(\frac{t_{cw}}{t_{cf}}\right)^{1.5} \right] \sqrt{\frac{EF_{yc}t_{cf}}{t_{cw}}}$$

Siendo $N = t_{bf} + 2w + 2t_p$

W	0	[cm]
Ν	8.6	[cm]
Rn	235.21	[T]
Φ Rn	176.41	[T]
Nacasita plaças da continuidad		

Si no se cumple que $F_{fu} \leq \varphi R_n$, entonces se requieren placas.

 Necesita placas de continuidad

 Tabla 74: Chequeo de resistencia de desgarre en el alma de la columna no rigidizada

Si se requieren placas de refuerzo para cualquiera de los estados límite de la columna, la fuerza requerida es:

$$F_{su} = F_{fu} - \min(\phi R_n)$$

Donde min (ϕR_n) es el mínimo de los ϕR_n calculados en las verificaciones anteriores.

Columna fuerte- viga débil

Se analiza de la misma manera que para la conexión RBS, sin embargo, al cambiar la geometría de la conexión en vigas, los momentos actuantes de estos elementos será diferente, mientras que los momentos por acciones de la columna no se alteraran. Por tanto, se analizarán la sumatoria de momentos precedentes de las vigas que conectan a la columna. Para esto se obtiene el cortante de demanda en las rotulas plásticas de las conexiones en las vigas que llegan a la columna, siendo estos:

V _U b1	49.55	[T]	
$V_U b2$	55.48	[T]	
 	1 /	1 1	

Tabla 76: Cortantes actuantes en la rótula plástica de cada viga

Con estos cortantes se obtienen los momentos en el nodo:

$$M_{bi} = M_{PR_i} + V_{U_{bi}} \left(S_h + \frac{d_c}{2} \right)$$

Mb1	109.46	[T-m]
Mb2	110.60	[T-m]

Tabla 77: Momentos producidos en el nodo por acción de cargas en las vigas

Obteniendo así la suma de momentos de la viga:

$$\sum M_{pb} = M_{b1} + M_{b2} = 220.06 \ [Ton - m]$$

Se analiza también los momentos procedentes de la columna:

$$\sum M_{pc} = \sum Z_c \left(F_{yc} - \frac{\alpha_s P_r}{A_g} \right)$$

Ecuación 73

Debido a que la columna tiene la misma geometría y demanda de carga axial que para la

conexión RBS, se utilizara el mismo momento del nodo por acción de cargas de la columna.

$$\sum M_{pc} = 144.69 + 148.38 = 293.07 \ [Ton - m]$$

Finalmente obteniendo que la relación entre los momentos de la columna y viga es:

$$\frac{\sum M_{pc}}{\sum M_{pb}} = \frac{293.07}{238.53} = 1.332 < 1.0$$

Como cumple la relación, la conexión es correcta.

Demanda en zona de panel

Se calcula la demanda de la zona del panel, según las disposiciones del AISC 341 sección E3.6e. Primero hay que calcular los momentos que llegan la cara de las columnas y con estos se obtienen las fuerzas que actúan en los patines de las vigas:

$$M_f = M_{PR} + V_{\text{ubi}} S_h$$

$$F_{fu} = \frac{M_f}{d_b - t_{fb}}$$

Ecuación 75

Mfab	109.46	[T-m]
MfBC	110.60	[T-m]
Ffuab	226.16	[T]
Ffu _{BC}	228.52	[T]

Tabla 78: Fuerzas y momentos actuantes en la zona panel

El cortante de viga es:

$$V_{uc_b} = \frac{\sum M_{pb}}{d_b + L_v} = 73.35 \ [T]$$

Ecuación 76

El cortante de cada columna es:

$$V_{uc_{c1}} = \frac{2*M_{PR_{c1}}}{L_v} = 115.75 [T]$$
 $V_{uc_{c2}} = \frac{2*M_{PR_{c2}}}{L_v} = 118.70 [T]$

Ecuación 77

Para el cálculo de la demanda de corte en la zona de panel, se escoge el menor de estos 3 valores, siendo este el de $V_{uc_b} = 73.35 [T]$. Obteniendo que el corte en la zona de panel es:

$$R_u = F_{fu_{AB}} + F_{fu_{BC}} - V_{uc_b} = 381.32 \ [T]$$

Ecuación 78

Según la AISC 360 sección J, la resistencia de la zona panel depende de la relación:

$$\frac{\alpha P_{uc}}{P_y} = \frac{\alpha P_{uc}}{A_g F_y} = 0.11$$

Ecuación 79

Esta relación se calcula con las cargas axiales mayoradas de la tabla 51, y ya que es menor que 0.4, la resistencia de la zona de panel se calcula según la ecuación 54:

$$\phi R_{\nu} = (0.9)(145.73) = 131.16 [T]$$

Ya que es menor que la demanda de cortante, se necesita poner placas adosadas al alma de la columna. Se debe obtener el espesor de estas placas, para lo que se obtiene el cortante que estas deben soportar:

$$R_p = R_u - \phi R_v = 381.32 - 131.16 = 250.16 [T]$$

Ecuación 81

El espesor necesario se calcula según:

$$t_{p_{req}} = \frac{R_p}{0.6 \, F_y \, d_c} = 2.75 \, [cm]$$

Ecuación 82

Si se pone 4 placas en la columna, estas deben ser de más de 6.87 [mm], por lo que se pondrá 4 placas adosadas de 7.5 [mm].

Finalmente se verifica los requisitos de la placa de continuidad, por lo que se debe verificar que el espesor del patín de la columna sea mayor que:

$$t_{fc} \ge \frac{b_{fb}}{6} = 3.33 \ [cm]$$
 $t_{fc} \ge t_{fb} = 1.6 \ [cm]$

Como no cumple una de estas condiciones, se necesita placa de continuidad la cual debe tener un espesor mayor que:

$$t_{pc_{req}} = 0.40 \sqrt{1.8 \ b_{fb} \ t_{fb} \frac{R_{yb} f_{yb}}{R_{yc} \ f_{yc}}} = 3.036 \ [cm]$$

Ecuación 83

Por lo que se utilizara un espesor de 3.5 [cm] para las placas de continuidad.

El detallamiento de esta conexión se encuentra en el anexo B.

CONCLUSIONES

La selección del tipo de conexión va a depender de diferentes consideraciones. A grandes rasgos se sugiere que las conexiones empernadas se hagan en obra y las soldadas en taller. Esto se debe a que la soldadura en obra suele ser más costosa y requiere de un trabajo mucho más especializado. Este tipo de trabajo requiere de personal altamente calificado y en obra las condiciones de trabajo no pueden ser controladas totalmente por lo que la temperatura, humedad, viento, lluvia, podría complicar esta labor mucho más; mientras que en taller todo esto puede ser parcial o totalmente controlado. Otra complicación es el tipo de maquinaria que se requiere, la cual necesita de una gran cantidad de energía, además suelen ser pesadas y de gran tamaño. Las conexiones empernadas son más fáciles de realizar y no requiere de personal especializado, por lo que podríamos evitarnos todos los inconvenientes antes mencionados al usar este tipo de conexión.

A partir del análisis de resultados obtenidos, se determinó que usando las mismas secciones para vigas y columnas en el caso de diseño de conexiones RBS y 4ES se pudo diseñar conexos precalificadas sin la necesidad de alterar las vigas y columnas; por lo tanto, la decisión de que conexión usar depende netamente de las condiciones y factibilidad del proyecto individual. La elección de una u otra conexión no tiene repercusión sobre el comportamiento estructural, pero en tema de costos llevar a cabo las conexione RBS podría requerir de una inversión mayor que al usar conexiones 4ES; por lo tanto, el monto de inversión disponible para la ejecución del proyecto será otro de los factores cruciales para decidir la conexión más viable.

69

- ACI 318. (2019). *Building Code Requirements for Structural Concrete (ACI 318-19)*. United States of America: American Concrete Institude.
- AISC 358. (2016). Prequalified Connections for special and intermediate steel moment frames for seismic applications, including suplements No.1 and No.2. Chicago : American National Standard.
- AISC 360-16. (2016). Seismic Provisions for Structural Steel Buildings. United States of America: ANSI.
- American Welding society. (2020). *Structural Welding Code Steel*. United States of America: ANSI.
- ASCE/SEI 7. (2017). *Minimum Design Loads and Associated Criteria for Buildings and other structures*. Virginia: SEI.
- Bruneau, M. (2011). *Ductile Design of Steel Structures*. United States : McGraw-Hill Companies.

Electrodos Infra. (2000). Manual de electrodo para soldar. Quito : ISO 9001.

- FIsher, J. (2006). *Base Plate and Anchor*. United States of America: American Institude of steel construction.
- NEC. (2016). Guía práctica para el diseño de estructuras de acero de conformidad con la Norma Ecuatoriana de la Construcción NEC . Quito.

NEC-SE-CG. (2014). Cargas No Sísmicas. Quito.

NEC-SE-DS. (2014). Peligro Sísmico - Diseño sismo resistente. Quito.

SEA. (2018). Structural/Seismic Design Manual . California: SEAOC.

UNE-EN. (2014). Representación simbólica de uniones soldadas. Quito: ISO 2553.

ANEXO A: DETALLE CONEXIÓN RBS

RBS

Se debe tener en consideración que:

- El corte de la RBS debe realizarse por corte térmico
- El acabado final del corte debe tener una rugosidad de máximo 500 micro pulgadas
- Todas las esquinas deben ser redondeadas para evitar la acumulación de esfuerzos
- Se debe omitir los pernos de corte de las losas compuestas en la zona protegida
- Todas las soldaduras deben ser con electrodos E70 y debe estar acorde a AWS D1.1

ANEXO B: DETALLE CONEXIÓN 4ES

Se debe tener en consideración que:

- Los pernos utilizados deben estar conforme a los parámetros definidos por ASTM para acero A490.
- El material para rigidizadores, placas de conexión y placas de continuidad, es acero
 A36, que debe estar de acorde con ASTM.
- Los requerimientos de instalación deben estar acorde al AISC 341 de provisión sísmica y a las especificaciones de la RCSC.