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Resumen

En este trabajo se construye modelos estelares basados en el factor de complejidad para sis-

temas autogravitantes estáticos y esféricamente simétricos como condición suplementaria para

cerrar el sistema de ecuaciones que surgen del Desacoplamiento gravitacional. La complejidad

usada es una generalización de la conocida solución Tolman IV. Se usan las soluciones Tolman

IV, Wyman IIa, Durgapal IV y Heintzmann IIa como soluciones semillas. Para el análisis de la

aceptabilidad física de los modelos se utiliza los parámetros de compacticidad correspondientes

a los sistemas SMC X-1 y Cen X-3. Además, se usa el concepto de cracking para analizar

la respuesta de estos modelos bajo la presencia de pequeñas perturbaciones justo después de

abandonar el estado de equilibrio.

Palabras clave: Complejidad, desacoplamiento, semilla, sistemas, equilibrio.
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Abstract

In this work, stellar models based on the complexity factor for static and spherically symmet-

ric self-gravitating systems are constructed as a supplementary condition to close the system

of equations arising from gravitational decoupling. The complexity used is a generalization of

the well-known Tolman IV solution. Tolman IV, Wyman IIa, Durgapal IV and Heintzmann IIa

solutions are used as seed solutions. For the analysis of the physical acceptability of the mod-

els, the compactness parameters corresponding to the SMC X-1 and Cen X-3 systems are used.

Furthermore, the concept of cracking is used to analyze the response of these models under the

presence of small disturbances just after leaving the steady state.

Keywords: Complexity, decoupling, seed, systems, equilibrium.
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Chapter 1

Introduction

At the end of the year 1915 Albert Einstein published his field equations of General Rela-

tivity (GR) [1, 2], which describe the gravitational interaction in terms of the deformation of

curved space-time due to the presence of matter and energy in the Universe [3]. In 1916 Karl

Schwarzschild [4] found the first exact solution of Einstein’s field equations, which describes the

gravitational field generated by a static self-gravitating object and spherically symmetric [5, 6].

Since then, questions have arisen as to whether gravitational structures with spherical symmetry

that have variations in their density can be explored and if so, what kind of these variations are

physically permissible.

After more than a century, various solutions have been developed for Einstein’s field equa-

tions [7–9], both exact and numerical. It is worth highlighting the pioneering work carried out

by Richard C. Tolman [10] for static fluid spheres where a set of five new isotropic analytical

solutions are provided, which lead to subsequent studies of stellar structures such as neutron

stars or star clusters through the use of GR [11]. Tolman himself raises, in his work, the im-
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portance of carrying out more extensive studies in terms of finding solutions that are not purely

static and analyzing the stability and plausibility of such solutions.

In 1998, Delgaty and Lake [12] found that out of the 127 isotropic solutions found in the

literature at that time, 16 passed the physical acceptability tests [13,14]. In addition, it is known

that in various situations the isotropic interior hypothesis loses validity since the anisotropy in

relativistic physical structures can be diverse, such as high densities, the presence of viscosity,

internal magnetic fields, the presence of solid nuclei inside these structures, phase transitions,

pion condensates, gas mixtures or other phenomena [15, 16]. Likewise, Hillebrandt et.al. [17]

showed that the effects produced by anisotropy cannot be neglected in order to describe bod-

ies such as neutron stars. Recently L. Herrera [18] has proven that the existence of dissipative

flows, and/or inhomogeneities of energy density and/or the appearance of shear stresses in the

flow of the isotropic fluid produce instability. Such instability causes that the fluid acquire the

tendency to acquire the anisotropy pressure regime under conditions expected in stellar evolu-

tion. The study of anisotropic solutions started with Bowers and Liang [19] and Florides [20]

followed by the work of M. Consenza et al. [21] who presented a heuristic method for obtaining

models of anisotropic spheres in GR. Some recent work has been put into developing algorithms

to find all anisotropic solutions and symmetrically spherical static polytropes of anisotropic flu-

ids [22–24].

Recently, a new technique has been developed to find anisotropic solutions in a direct and

efficient way by J.Ovalle [25] called Gravitational Decoupling through Minimal Geometric De-

formation (MGD), which allows to extend physically acceptable isotropic solutions into the

anisotropic domain while preserving the original physical acceptability [26,27]. This technique
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was extended to a more recent version known as Gravitational Decoupling through Extended

Minimal Geometric Deformation (MGDe) [28] in order to study the consequences of the mod-

ified GR [29, 30], dark matter conjectures [31, 32], and the study of black holes [33, 34].

The MGD allows reducing the number of degrees of freedom in Einstein’s field equations,

but, nevertheless, arbitrariness remains, which can be completed with some equation of state or

some metric condition. In this work we shall use a recent quantity called complexity factor for

static self-gravitating symmetric spheres. Such quantity is a scalar that appears in the orthogo-

nal splitting of the Riemman Tensor developed by Bel [35], and was used by L. Herrera [36] to

define complexity for self–gravitating fluids, which is based on the idea that the least complex

gravitational system is the one supported by a homogeneous energy density distribution and

isotropic pressure. Assuming this complexity factor, it is possible to close the system because

it provides an equation of state.

Additionally, the stability of self-gravitating compact objects has also been extensively stud-

ied since the seminal works of Bondi [37] and Chandrasekhar [38–40]. In such sense Bondi

proposed a physical intuitive criterium of adiabatic stability while Chandrasekhar developed

a more detailed formalism, widely used in GR. Later in 1992, L. Herrera [41] introduced the

concept of “cracking” for self-gravitating compact objects proposing an alternative approach to

observe the behaviour of such systems just after they depart from equilibrium [42, 43].

In this work, the construction process of new static and spherically symmetric anisotropic

stellar models in the framework of the Gravitational Decoupling is shown. Such solutions are

based on the generalized complexity factor of Tolman IV solution as auxiliary condition to
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solve the system of differential equations arising from the MGD. Also an study of their sta-

bility against perturbation is presented. This work is organized as follows. The next chapter

is devoted to review the whole theoretical framework necessary to our purposes mentioned

before; the Einstein’s field equations, general aspects of interior solutions, specific solutions,

anisotropic solutions, basics conditions of physical acceptability, Gravitational Decoupling and

Cracking of compact objects. In chapter 3 we calculate and generalize the complexity factor

of the Tolman IV solution and implement this result via Gravitational Decoupling to construct

extension to Tolman IV, Wyman IIa, Durgapal IV and Heintzmann IIa. Also in the same chapter

the perturbed total radial force for each model is constructed in order to analyze this response

against small fluctuations over the matter sector. Finally, chapter 4 is devoted to interpret and

discuss our results, and in the last chapter we summarize the work and supply some final com-

ments and conclusions.
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Chapter 2

Theoretical framework

2.1 Einstein’s field equations

Einstein’s field equations (EFE) describe the gravitation as a manifestation of curvature of

space-time1 due the presence of sources of energy and momentum. These equations respect

the covariance principle of Physics, namely, they are the same by any choice of reference sys-

tem, and are given by

Gµν = k2Tµν µ, ν ∈ {0, 1, 2, 3}, (2.1)

where k2 = 8πG
c4

2. In the left hand of EFE there is the geometric information of curvature of

space-time encoded in the Einstein’s tensor Gµν

Gµν = Rµν −
1

2
Rgµν , (2.2)

1Mathematically the space-time in GR is a continuous and differential manifold of four dimensions whose co-
ordinates are xµsuch that µ ∈ {0, 1, 2, 3}: one temporal dimension (x0) and three spacial dimensions (x1, x2, x3).

2c is the vacuum speed of light and G is the universal constant of gravitation.
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where Rµν and R are the Ricci’s tensor and Ricci’s scalar defined by contractions of Riemman’s

tensor Rλ
µρν as

Rµν = gλρRλµρν = Rρ
µρν (2.3)

R = gµνRµν , (2.4)

with gµν the metric tensor.

The Riemman’s tensor is defined through the connections Γσ
µν and their derivatives

Rσ
µρν = ∂ρΓ

σ
µν − ∂νΓ

σ
µρ + Γσ

λρΓ
λ
µν − Γσ

λνΓ
λ
µρ, (2.5)

which are defined as

Γσ
µν =

1

2
gσρ (∂νgµρ + ∂µgνρ − ∂ρgµν) , (2.6)

The right hand side of EFE contains the energy-momentum tensor Tµν , that encodes the

information about all sources of energy and momentum which deform the space-time and is

covariantly conserved, namely

∇µT
µν = 0. (2.7)

As Gµν and Tµν are symmetric, the EFE correspond to 10 highly non-linear differential

equations for gµν with ten unknown quantities to be determinate: six components of gµν and the

four non-vanishing components of Tµν [44].
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2.2 Interior solutions

In this work we model stars in the framework of GR as self-gravitating fluid compact objects

with spherical symmetric configuration in hydrostatic equilibrium surrounded by empty space.

Fuerthermore, due to most of the stars having long phases of stellar evolution, their structure

remains unaltered by large periods of time so we shall consider them as static configurations

[45, 46]. Based on the previous assumptions, we consider a line element given by

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 cos(θ)dϕ2, (2.8)

where ν(r) and λ(r) are strictly functions of the radial coordinate r.

The covariant components of the metric field gµν are

g00 = eν g11 = −eλ g22 = −r2 g33 = −r2 sin2 θ, (2.9)

so that

g00 = e−ν g11 = −e−λ g22 = − 1

r2
g33 = − 1

r2 sin2 θ
. (2.10)

From now on we shall assume c = G = 1 so that k2 = 8π. Now, the only non vanishing

components of Einstein’s tensor Gµν associated with the metric in Eq. (2.8) are (See Appendix

A for details)

G00 = −e−(λ−ν)

r2
(1− λ′r − eλ) (2.11)

G11 =
1

r2
(1− eλ + ν ′r) (2.12)
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G22 = r2e−λ

(
ν ′′

2
− λ′ν ′

4
+

(ν ′)2

4
+

ν ′ − λ′

2r

)
(2.13)

G33 = G22 sin
2 θ, (2.14)

where the differentiation with respect to radial coordinate r for any function f is indicated by

f ′ ≡ ∂rf .

At first approximation the interior of star can be considered as a relativistic perfect fluid, in

such a way that the associated energy-momentum tensor Tµν can be written

Tµν = (ρ+ p)uµuν − pgµν , (2.15)

where ρ, p and uµ are the energy density, pressure and the four-velocity of the fluid, respectively.

So considering uµuµ = 1 for a local inertial observer at rest with the fluid results in uµ =

(e−ν/2, 0, 0, 0) and

T µ
ν = diag(ρ,−p,−p,−p) =



ρ 0 0 0

0 −p 0 0

0 0 −p 0

0 0 0 −p


. (2.16)
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Then, using Eqs. (2.11)-(2.14) and (2.16) in Eq. (2.1) we arrive at

8πρ =
1

r2
+ e−λ

(
λ′

r
− 1

r2

)
(2.17)

8πp = − 1

r2
+ e−λ

(
ν ′

r
+

1

r2

)
(2.18)

8πp =
e−λ

4

(
2ν ′′ − λ′ν ′ + ν ′2 + 2

ν ′ − λ′

r

)
, (2.19)

which are the Einstein’s field equations for a perfect fluid distribution.

The above system of equations consists of three nonlinear coupled differential equations

with four unknown quantities ρ, p, ν and λ so an extra condition is required.

The conservation of the energy-momentum tensor leads to

dp

dr
= −1

2
ν ′(ρ+ p), (2.20)

which is known as the Tolman–Oppenheimer–Volkoff equation (TOV) for an isotropic fluid

in hydrostatic equilibrium. The TOV equation can be interpreted as an equation of balance

between forces, where the hydrostatic force Fh = dpr
dr

is balanced by the gravitational force

Fg = 1
2
ν ′(ρ + pr). Introducing the mass function mass m(r) the grr component of the metric

can be written as

e−λ ≡ 1− 2m(r)

r
. (2.21)
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Now from (2.17) and (2.18) we obtain

1

2
ν ′ =

m+ 4πr3p

r(r − 2m)
, (2.22)

so that the TOV can be expressed as

dp

dr
= −(ρ+ p)(m+ 4πr3p)

r(r − 2m)
. (2.23)

Note that since in this work we will refer only to stars composed of non-exotic matter then

ρ > 0, it implies that dp
dr

< 0, namely, p is an decreasing function of r.

2.3 Exact isotropic specific solutions

A way to obtain exact solutions for the set of equations (2.17)-(2.19) was developed in 1939 by

Tolman [10], which consists of writing these equations as:

0 =
d

dr

(
e−λ − 1

r2

)
+

d

dr

(
e−λν ′

2r

)
+ e−λ−ν d

dr

(
eνν ′

2r

)
(2.24)

8πp = e−λ

(
ν ′

r
+

1

r2

)
− 1

r2
(2.25)

8πρ = e−λ

(
λ′

r
− 1

r2

)
+

1

r2
, (2.26)

then, imposing certain conditions for the components of the metric as is indicated in what

follows.



11

2.3.1 Einstein’s universe solution

In this case its assumed that eν is an arbitrary constant, namely, eν = constant = k, so that

ν ′ = 0 and the system of Eqs. (2.24)-(2.26) in this case becomes

0 =
d

dr

(
e−λ − 1

r2

)
(2.27)

8πp =
e−λ

r2
− 1

r2
(2.28)

8πρ = e−λ

(
λ′

r
− 1

r2

)
+

1

r2
. (2.29)

From the integration of Eq. (2.27) we obtain

eλ =
1

1− r2

C2

, (2.30)

where C is integration constant. Then using Eq. (2.30) in (2.28) p is obtained, that is

8πp = − 1

C2
, (2.31)

and from Eq. (2.29)

8πρ =
3

C2
. (2.32)
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The previous results can be summarized as

eν = constant = k (2.33)

eλ =
1

1− r2

C2

(2.34)

8πρ =
3

C2
(2.35)

8πp = − 1

C2
. (2.36)

Note that

ρ = −3p. (2.37)

2.3.2 Schwarzschild-de Sitter solution

In this case is assumed that e−λ−ν = constant, so that (2.24) gives

e−λ

(
1

r2
+

ν ′

r

)
− 1

r2
= C, (2.38)

where C is an integration constant. Now, since e−λ−ν = constant, it follows that λ′ = −ν ′,

then

e−λ

(
λ′

r
− 1

r2

)
+

1

r2
= −C. (2.39)
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Thus, from Eqs. (2.38) and (2.39) in Eqs. (2.28)-(2.29) one obtains

eν =

(
1− 2m

r
− r2

C2

)
(2.40)

eλ =

(
1− 2m

r
− r2

C2

)−1

(2.41)

8πρ = −C (2.42)

8πp = C, (2.43)

which is well known as Schwarzschild-de Sitter solution for a de Sitter universe with a spheri-

cally symmetrical body at the origin of coordinates. If C −→ ∞ the solution becomes

eν = 1− 2m

r
(2.44)

eλ =

(
1− 2m

r

)−1

, (2.45)

which is the well known Schwarzschild exterior solution. If m = 0 it turns into the usual form

for the de Sitter universe.

2.3.3 Schwarszchild interior solution

In this case we assumed that e−λ = 1− r2

C2 with C being a constant, from where (2.24) becomes

d

dr

(
e−λν ′

2r

)
+ e−λ−ν d

dr

(
eνν ′

2r

)
= 0. (2.46)

Now, if the previous equation is multiplied by eνν′

2r
it is found that

e
ν
2 dν = 2Brdr√

1− r2

C2

(2.47)
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where B is a integration constant. Performing an additional integration we have

eν =

[
A−B

(
1− r2

C2

)1/2
]2

. (2.48)

where A is another integration constant. Now, using e−λ = 1− r2

C2 , Eq. (2.26) leads to

8πρ =
3

C2
. (2.49)

Replacing e−λ and Eq. (2.48) in Eq. (2.25) we obtain

8πp =
1

C2

 3B
(
1− r2

C2

)
− A

A−B
(
1− r2

C2

)1/2
 . (2.50)

In summary, the Schwarszchild interior solution is

e−λ = 1− r2

C2
(2.51)

eν =

[
A−B

(
1− r2

C2

)1/2
]2

(2.52)

ρ =
3

8πC2
(2.53)

p =
1

8πC2

3B
(
1− r2

C2

)1/2

− A

A−B
(
1− r2

C2

)1/2
 . (2.54)

Note that if we impose B = 0, the system of Eqs. (2.51)-(2.54) turns into the Einstein’s universe

solution and if A = 0, the de Sitter universe is found.
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2.3.4 Tolman IV solution

For this case we assume that eνν′

2r
= constant = k, which implies that eν = kr2 + k′( with k′

another constant). Now, if we define k = B2

A2 and k′ = B2, we obtain

eν = B2

(
r2

A2
+ 1

)
. (2.55)

Using the above metric component in Eq. (2.24) results in

eλ =
1 + 2r2

A2

(1 + r2

A2 )(Kr2 + 1)
, (2.56)

where K is an integration constant. Now, it is convenient to choose K = − 1
C2 , from where

eλ =
1 + 2r2

A2

(1 + r2

A2 )(1− r2

C2 )
. (2.57)

After using Eqs. (2.55) and (2.57) in Eqs. (2.25) and (2.26), we obtain

8πρ =
2

A2

1− r2

C2(
1 + 2r2

A2

)2 +
1 + 3A2

C2 + 3r2

C2

A2
(
1 + 2r2

A2

) (2.58)

8πp =
1− A2

C2 − 3r2

C2

A2(1 + 2r2

A2 )
. (2.59)
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In summary, the known Tolman IV solution is

eν = B2

(
r2

A2
+ 1

)
(2.60)

e−λ =
(C2 − r2)(A2 + r2)

C2(A2 + 2r2)
(2.61)

ρ =
3A4 + A2(3C2 + 7r2) + 2r2(C2 + 3r2)

8πC2(A2 + 2r2)2
(2.62)

p =
C2 − A2 − 3r2

8πC2(A2 + 2r2)
. (2.63)

2.3.5 Wyman IIa solution

In this case we show the Wyman IIa solution [12, 47] with n = 2 whose metric components

read

eν = (A−Br2)2 (2.64)

e−λ = 1 + Cr2(A− 3Br2)−2/3, (2.65)

where A, B and C are constants.

Now using these metric components (2.64) and (2.65) in (2.17)-(2.19) we obtain

ρ =
(5Br2 − 3A)C

8π (A− 3Br2)5/3
(2.66)

p =

(
5− 4A

A−Br2

) (
Cr2

(A−3Br2)2/3
+ 1

)
− 1

8πr2
. (2.67)

This solution is a generalization of Tolman VI solution [10, 47]. The Wyman IIa (with

n = 2) solution is not completely satisfactory from physical of view.
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2.3.6 Durgapal IV solution

In this case we consider the Durgapal IV solution [12, 48] whose metric components read

eν = A(Cr2 + 1)4 (2.68)

e−λ =
7− 10Cr2 − C2r4

7(Cr2 + 1)2
+

BCr2

(Cr2 + 1)2(1 + 5Cr2)2/5
, (2.69)

where A, B and C are constants. Now using (2.64) and (2.65) in (2.17)-(2.19) we obtain

ρ =
C
(
7B (Cr2 (9Cr2 − 10)− 3) + 8 (Cr2 (Cr2 + 2) + 9) (5Cr2 + 1)

7/5
)

56π (Cr2 + 1)3 (5Cr2 + 1)7/5
(2.70)

p =
C
(
7B (9Cr2 + 1)− 16 (5Cr2 + 1)

2/5
(Cr2 (Cr2 + 7)− 2)

)
56π (Cr2 + 1)3 (5Cr2 + 1)2/5

. (2.71)

This solution is completely satisfactory from physical of view, namely, it fulfills all physical

conditions detailed in the section 2.6 according to Delgaty [12].

2.3.7 Heintzmann IIa solution

In this subsection we consider the Heintzmann IIa solution [12, 49], whose metric components

read

eν = A2
(
Br2 + 1

)3 (2.72)

e−λ = 1− 3Br2

2

1 + C(1 + 4Br2)−1/2

1 +Br2
. (2.73)
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Here, A, B and C are constants, from where

ρ =
3B

(
C (9Br2 + 3) + (Br2 + 3) (4Br2 + 1)

3/2
)

16π (Br2 + 1)2 (4Br2 + 1)3/2
, (2.74)

p = −
3B

(
7BCr2 + 3 (Br2 − 1)

√
4Br2 + 1 + C

)
16π (Br2 + 1)2

√
4Br2 + 1

. (2.75)

Also, this solution fulfills all physical conditions detailed in the section 2.6 according to

Delgaty [12].

Up to this point we have presented some well-known isotropic solutions (there are a longer

number of known solutions which can be seen in [12]). It is worth mentioning that any solution

must fulfill conditions explored in the following sections.

2.4 Matching conditions

Since space-time in GR is a differential and continuous geometric structure (pseudo-Riemannian

manifold [50]), it should be achieved precisely on the surface Σ between the internal region of

the interstellar object (r < R) and the external region that surrounds it (r > R). In this work,

we will consider that the outside of the stellar distribution is empty and spherically symmetric.

So, by Birkhoff theorem [51], it corresponds to the Schwarzschild exterior solution given by

ds2 =

(
1− 2M

R

)
dt2 −

(
1− 2M

R

)−1

dr2 − r2dθ2 − r2 sin2 θdϕ2, (2.76)

where M and R are the mass and radius of the star, respectively.



19

Now, Darmois [52, 53] demonstrated that the continuity of the first and the second funda-

mental are necessary and sufficient conditions across the surface Σ separating the interior and

exterior geometries. The continuity of the first fundamental forms entails

[
ds2

]
Σ
= 0, (2.77)

which in our case reads

eν
∣∣∣∣
Σ−

=

(
1− 2M

R

) ∣∣∣∣
Σ+

(2.78)

eλ
∣∣∣∣
Σ−

=

(
1− 2M

R

)−1 ∣∣∣∣
Σ+

. (2.79)

Likewise, the second fundamental form states that

[Gµνr
ν ]Σ = 0, (2.80)

where rµ is a unit radial vector. Now, using Eq. (2.80) in (2.1), we find

[Tµνr
ν ]Σ = 0, (2.81)

from where

p
∣∣∣
Σ−

= p
∣∣∣
Σ+

= 0. (2.82)

Up to this point we have focused on isotropic solutions, but as we will see in the next

section it is necessary to extend our study to the anisotropic fluid regime in order to consider
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more suitable models to describe stellar compact objects.

2.5 Spherically symmetric anisotropic solutions in GR

Despite the fact that Einstein and Lemaitre had realized that spherical symmetry only allows

an equality of the tangential pressures pt (which implies Tµν = diag(ρ,−pr,−pt,−pt) [54]

where pr is the pressure in radial direction) the stars were considered as supported by a perfect

fluid for long time [13]. However, in 1972 Ruderman [55] argued for the first time that nuclear

matter at very high densities in the order of 1015g/cm3 could have anisotropy. In the same line,

it was later known that anisotropy can be generated by several reasons [56] such as the mixture

of different fluids, presence of superfluid, existence of solid nuclei, phase transitions, presence

of magnetic fields, viscosity, etc. In this regard isotropic fluid models are not longer the most

suitable for describing stars in GR.

We can start by considering a spherically symmetric static distribution of matter in equilib-

rium with Tµν = diag(ρ,−pr,−pt,−pt). Replacing this information in EFE (2.1) and using

Eqs.(2.11)-(2.14) we obtain

8πρ =
1

r2
+ e−λ

(
λ′

r
− 1

r2

)
(2.83)

8πpr = − 1

r2
+ e−λ

(
ν ′

r
+

1

r2

)
(2.84)

8πpt =
e−λ

4

(
2ν ′′ − λ′ν ′ + (ν ′)2 + 2

ν ′ − λ′

r

)
. (2.85)

Note also if pt = pr = p one returns to EFE for isotropic case given by Eqs. (2.17)-(2.19).
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Now using the condition (2.7) we obtain explicitly

dpr
dr

= −1

2
ν ′(ρ+ pr)−

2

r
Π, (2.86)

where the anisotropy function Π ≡ pr − pt is defined. Equation (2.86) is known as the Tolman-

Oppenheimer-Volkoff (TOV) equation for an anisotropic fluid distribution [19].

After using Eq. (2.22) (which is valid also for the anisotropic case) in Eq. (2.86), it gives us

dpr
dr

= −(ρ+ pr)(m+ 4πr3p)

r(r − 2m)
− 2

r
Π. (2.87)

In the next section we shall explore the acceptability conditions for interior solutions.

2.6 Physical acceptability conditions for interior solutions

The three differential equations (2.83)-(2.85) for a spherically symmetric stellar object have five

unknown quantities: the metric functions ν(r), λ(r) and the three physical quantities ρ, pt and

pr, which in principle can be solved if two equations of state are defined, namely, pr = pr(ρ)

and pt = pt(ρ), or if conditions over the metric functions are given. Mathematically there are no

limits to do the above. However, not all these choices would correspond to acceptable solutions

from the physical point of view. Therefore, it is essential to define certain fundamental condi-

tions that any realistic solution must satisfy [13]. In this work we consider the follow conditions:
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Condition 1: Regular metric

The functions λ and ν must be positive, finite, and free of singularities inside of stellar object.

Furthermore, at the center, it must be satisfied that e−λ(0) = 1 and eν(0) = constant.

The above is justified since

lim
r→0

e−λ = 1− lim
r→0

2m

r
= 1− lim

r→0

4πρ(r)r2

r
= 1, (2.88)

where the Eq.(2.21) was used. Now, from (2.22)

lim
r→0

1

2
ν ′ = lim

r→0

m(r) + 4πr3pr
r(r − 2m)

= 0, (2.89)

where we have assumed that pr and ρ are finite at the center of the star.

Condition 3: Redshift

The inner redshift z should decreases as the value of r increases. This quantity is related to the

phenomenon in which photons lose energy when they travel out of a gravitational source. Such

loss of energy produces a frequency of light wave decrease. So, in order to quantify this, we

consider two observers at rest, one (emitter) that is on the surface of the central gravitational

object at r1, who sends a pulse of light towards the other observer (receiver) located in a very

distant position at r2. Now, due to the fact that light travels along null geodesics (null radial

geodesics are considered for this analysis, dθ = dϕ = 0) we have that

ds2 = gttdt
2 − grrdr

2 = 0 =⇒ dt =

(
grr
gtt

)1/2

dr. (2.90)
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Therefore, for the two light pulses the coordinate time between two successive pulses does not

change since that

t2 − t1 =

∫ r2

r1

(
grr
gtt

)1/2

dr = constant, (2.91)

namely ∆t1 = ∆t2 [57]. Since the proper time intervals (∆τ ) are related to the coordinate time

intervals ∆t as ∆τ =
√
gtt∆t, we have

∆τR
∆τE

=

√
gRtt√
gEtt

, (2.92)

where R corresponds to the receiver and the E to the emitter. Now, as the frecuency is ν ∼ 1
∆τ

,

we arrive at

νE
νR

=

√
gRtt√
gEtt

. (2.93)

With this, the definition of the redshift z [45] is given by

z =
νE − νR

νR
=

√
gRtt√
gEtt
νR − νR

νR
=

√
gRtt√
gEtt

− 1. (2.94)

We should emphasize that the receiver is far long from emitter, so gRtt = 1 and (2.94) leads to

z = g
−1/2
tt − 1, (2.95)

where we have define gEE
tt ≡ gtt.



24

Condition 4: Causality

The radial v2r = dpr
dρ

and transversal v2t = dpt
dρ

speed of sound inside of a star do not exceed the

value of light in vacuum, that is

0 ≤ dpr
dρ

< 1 and 0 ≤ dpt
dρ

< 1. (2.96)

This condition ensures that no mechanical wave can move faster than light within the interstellar

body.

Condition 5: Positive density energy and pressure

The energy density and pressure are positive inside the star. This is true since the stars that we

consider in this study are composed of ordinary matter. In the stellar center these quantities

must be finite ρ(0) = ρ0, pr(0) = pr0, pt(0) = pt0 in order to avoid the collapse of the star [58].

In fact, at the center pr0 = pt0 since dpr
dr

must be finite at r = 0 (see Eq. (2.86)).

Condition 6: Matter profiles

The three physical quantities ρ, pr and pt must have their maximum values at stellar center and

monotonously decrease outward. Explicitly this reads

ρ′(0) = p′r(0) = p′t(0) = 0, and (2.97)

ρ′ ≤ 0, p′r ≤ 0, p′t ≤ 0. (2.98)

Now in order to prove the above it is necessary to show that the tangential pressure is greater

than the radial one, except at the center. In order do so, we start from the anti-cracking condition
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[13], which explicitly reads

−1 +
dpr
dρ

≤ dpt
dρ

≤ dpr
dρ

. (2.99)

Now, since 0 < dpr
dρ

≤ 1 and 0 < dpt
dρ

≤ 1, the left side of the above inequality is not positive,

and then

0 ≤ dpt
dρ

≤ dpr
dρ

. (2.100)

Therefore,

0 ≤ p′t
ρ′

≤ p′r
ρ′
. (2.101)

Now, multiplying by ρ′, which is negative, we obtain

0 ≥ p′t ≥ p′r. (2.102)

From where pt y pr are decreasing function of r, and p′t(0) = p′r(0) = 0. Then if Eq. (2.102) is

integrated, we obtain that

0 ≥ pt − pt0 ≥ pr − pr0, (2.103)

and as pr(0) = pt(0) then Eq. (2.103) becomes pt ≥ pr.
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Condition 7: Energy conditions

In principle, EFE can be solved for any energy-momentum tensor Tµν , but it is essential to

ensure that their components belong to physically realistic sources [5]. Such conditions are

expressed as inequalities on the components of the tensor Tµν as follows [5, 59]:

1 The Weak Energy Condition (WEC): The energy density measured by any observer must

be non-negative

ρ ≥ 0 (2.104)

and

ρ− pr ≥ 0 and ρ− pt ≥ 0. (2.105)

This follows from ρ being a positive scalar for regular matter and the energy density

greater than the pressures, implying the classical causality fact that matter cannot travel

faster than light in vacuum.

2 The Null Energy Condition (NEC): The energy density may be greater than pressure since

the condition of causality must be fulfilled.

ρ− pr ≥ 0 and ρ− pt ≥ 0. (2.106)

3 Dominant energy condition (DEC): Radial and tangential pressures must not exceed en-
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ergy density in absolute value.

ρ ≥ |pr| and ρ ≥ |pt|. (2.107)

4 Strong energy condition (SEC):

ρ ≥ pr, (2.108)

ρ ≥ pt, (2.109)

ρ ≥ pr + 2pt. (2.110)

It is worth noticing that DEC condition implies WEC, and WEC implies NEC. Consequently,

an interior solution is energy acceptable if it satisfies the DEC condition. It is even desirable

that SEC be fulfilled.

2.7 Gravitational decoupling approach (GD)

Since the EFE are a coupled system of nonlinear differential equations, the task of finding exact

solutions for them is not an easy task. Indeed, only for some specific situations analytical

solutions with a certain physical relevance have been found [9]. One of them is the spherically

symmetric space-time with perfect fluid Tµν as a gravitational source. Then, if the perfect fluid

(which we will call from here as “seed source”) is coupled to complex forms of matter-energy

to describe more realistic scenarios, in particular,

T̃µν = T (s)
µν + αθµν , (2.111)
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where α is a coupling constant and θµν is other gravitational source, whose effect on the source

T
(s)
µν

3 is controlled by α. The situation of solve the respective EFE for the source (2.111) can be

though as it is almost impossible to obtain analytical solutions that can be interpreted easily. In

this respect, the so-called Minimal Geometric Deformation (MGD), originally proposed [60,61]

in the context of the Randall-Sundrum brane-world [62, 63] and extended to investigate new

black hole solutions [64,65], has been used to produce brane world configurations from general

relativistic perfect fluid solutions. Even exact and physically acceptable solutions for interior

stellar distributions were successfully generated [66].

The idea of this approach is solve the EFE for Eq. (2.111) by solving the two following

independent problems

G(s)
µν = 8πT (s)

µν (2.112)

G∗
µν = 8πθµν , (2.113)

where {g(s)µν , T
(s)
µν } and {g∗µν , θµν} are obtained. In this sense, the effect of the source θµν over

the “seed” source should be reflected in the geometric deformation measured by

gµν −→ g(s)µν + αg∗µν . (2.114)

where α is a constant that “controls” the influence the θµν over T (s)
µν .

Explicitly, if one considers a static and spherically symmetric space-time sourced by Eq.

3We will use the upperscript “s” to indicate that it refers to the seed source.
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(2.111) where

T µ(s)
ν = diag(ρ(s),−p(s)r ,−p

(s)
t ,−p

(s)
t ) (2.115)

and

θµν = diag
(
θ00, θ

1
1, θ

2
2, θ

3
3

)
, (2.116)

Eq. (2.1) leads to

8πρ̃ = − 1

r2
+ e−λ

(
1

r2
− λ′

r

)
(2.117)

8πP̃r = − 1

r2
+ e−λ

(
1

r2
+

ν ′

r

)
(2.118)

8πP̃t = −e−λ

4

(
−2ν ′′ − ν ′2 + λ′ν ′ − 2

ν ′ − λ′

r

)
, (2.119)

where we have defined

ρ̃ = ρ(s) + αθ00, (2.120)

P̃r = P (s)
r + αθ11, (2.121)

P̃t = P
(s)
t + αθ22, (2.122)

being ρ̃, P̃r and P̃t the effective density, radial and transverse pressure of system.

Note that, as

∇µT̃
µν = 0, (2.123)
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and ∇µT
µν(s) = 0, the condition

∇µθ
µν = 0, (2.124)

is automatically fulfilled, which indicates that there is no exchange of energy-momentum be-

tween the “seed solution” and the extra source θµν so the interaction is entirely gravitational.

2.7.1 Minimal Geometric Deformation (MGD)

In the framework of Minimal Decoupling, the effect of the source θµν is considered as a modi-

fication of the nature of the original fluid, so it is possible to encode this by modifying the line

element given by Eq. (2.8) as follows

ν −→ ξ + αg, (2.125)

eλ −→ e−µ + αf, (2.126)

where {f, g} are the so-called decoupling functions. We say that the deformation is minimal

when g = 0 and f ̸= 0, thus such effect is the geometric deformation on the radial metric.

Then, this geometric deformation is inserted in the system Eqs.(2.120)-(2.122), obtaining two

subsets of equations: one describing a seed sector sourced by the conserved energy-momentum

tensor T (s)
µν

8πρ(s) =
1

r2
+ e−µ

(
µ′

r
− 1

r2

)
, (2.127)

8πP (s)
r = − 1

r2
+ e−µ

(
ν ′

r
+

1

r2

)
, (2.128)

8πP
(s)
t =

1

4
e−µ

(
2ν ′′ + ν ′2 − µ′ν ′ + 2

ν ′ − µ′

r

)
, (2.129)
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and the other set corresponding to quasi-Einstein field equations sourced by θµν

8πθ00 = − f

r2
− f ′

r
, (2.130)

8πθ11 = −f

(
ν ′

r
+

1

r2

)
, (2.131)

8πθ22 = −f

4

(
2ν ′′ + ν ′2 + 2

ν ′

r

)
− f ′

4

(
ν ′ +

2

r

)
. (2.132)

As we have seen before, the components of θµν satisfy the conservation equation ∇µθ
µ
ν = 0,

explicitly

(θ11)
′ − ν ′

2
(θ00 − θ11)−

2

r
(θ22 − θ11) = 0. (2.133)

We have to emphasize the importance of GD as a useful tool to find solutions of EFE. As it is

well known, in static and spherically symmetric space-times sourced by anisotropic fluids, EFE

reduce to three equations given by (2.120)-(2.122) and five unknowns, namely {ν, λ, ρ̃, P̃r, P̃t},

which need two auxiliary conditions to be solved. Thus, as in the context of GD a seed solution

is given, the number of degrees of freedom reduces to four and, as a consequence, only one

extra condition is needed. Specifically, this condition has been implemented in the decoupling

sector given by Eqs. (2.130)-(2.132) as some equation of state, which leads to a differential

equation for the decoupling function f . In this work, we take an alternative route to obtain the

decoupling function f called the complexity factor that we shall introduce in the next section as

a supplementary condition.
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2.8 Complexity of compact sources

The complexity for self-gravitating fluid distributions has been introduced recently based on the

idea that the least complex gravitational system is the one supported by a homogeneous energy

density distribution and isotropic pressure. Such definition arises from a scalar associated with

the orthogonal splitting of Riemann Tensor developed by Bel [35]. In static and spherically

symmetric space–times this scalar encodes the intuitive idea of complexity, specifically it is

YTF = 8πΠ− 4π

r3

∫ r

0

r̃3ρ′dr̃. (2.134)

Besides, the Tolman mass can be defined in terms of this scalar as follows [36, 67]

mT = (mT )Σ

(
r

rΣ

)3

+ r3
∫ rΣ

r

e(ν+λ)/2

r̃
YTFdr̃. (2.135)

It is worth mentioning that the “active” gravitational mass mT depends directly on the com-

plexity factor. This implies that it can suffer modifications produced by the energy density

inhomogeneity and the anisotropy of the pressure. The features mentioned above give a solid

argument to define the scalar complexity factor by means of this scalar.

Note that for a system with homogeneous energy density distribution and isotropic pressure

the complexity factor YTF vanishes. It is not the only system for which this factor becomes

zero. It is also zero when

Π =
1

2r3

∫ r

0

r̃3ρ′dr̃, (2.136)

which provides a non–local equation of state that can be used as a complementary condition to
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close the system of EFE (in fact, this condition has been implement with the MGD in a recent

work in [68]). However, in this work we use a specific value for YTF as a complementary

condition over the matter sector so we replace Eqs. (2.125), (2.126) in (2.134) and use the Eqs.

(2.120)-(2.122) to obtain

αξ′

4
f ′ +

α

2

(
ξ′′ − ξ′

r
+

ξ′2

2

)
f

+
e−µ

2

(
ξ′′ − ξ′

r
+

ξ′2

2
− µ′ξ′

2

)
+ YTF = 0. (2.137)

The above equation allows to find the geometric deformation f due to the seed solution supply-

ing the metric functions {ξ, µ} and YTF being able to be specified.

2.9 Gravitational Cracking

The concept of cracking for self-gravitating compact objects is related to the behavior of a stellar

fluid distribution just after departure from equilibrium. Specifically, cracking occurs whenever

the total non-vanishing radial force, appearing after the perturbation of the system, is directed

inward in the inner part of the sphere and changes its direction at some radial value r less than

the radius of the compact object. Likewise, the force can be directed outward in the inner part

of fluid and it change of sign in the outer part; such a situation is known as overturning. It is

necessary to clarify that cracking only refers to the trend of the compact object to split4 since

it is related to the problem of structure formation of the compact stellar object only at time

scales smaller or almost equal to hydrostatic timescales [73–75]. We have to emphasizing that

phenomena such as the collapse of the inner part or the expansion of the outer part can appear

4Examples of such “ splittings” have been reported elsewhere [70–72].
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from cracking and must be modeled through the integration of the entire set of Einstein’s equa-

tions for finite times greater than hydrostatic time. Thus, cracking has a drastic influence in

the evolution of the structure of a stellar compact object. For example, this situation can affect

the star’s spin evolution as a result of the redistribution of the interior mass, therefore causing

changes in the moment of inertia, starquakes or generating high-energy emissions [76–79].

Regarding the causes that can generate cracking, Di Prisco et.al. [42,43] suggested that fluc-

tuations of local anisotropy may be the crucial factor in the occurrence of cracking, which is in

agreement with the fact that small fluctuations from local isotropy may lead to drastic changes

in the evolution of the system for the dynamics of a locally anisotropic fluid [80]. Since we

are interested in the possible scenarios of stellar evolution, where fluctuations of local isotropy

are factible in a regimen of high density, we will focus on the intense magnetic field observed

in compact objects like white dwarfs, neutron stars, or magnetic strange quark stars [81–84]

(since the magnetic field acting over a Fermi gas produces local pressure anisotropy as a natural

consequence of the spatial reorientation of spins [85–89]) and the viscosity [90–97], which can

be present in high density matter.

One way to explore how the system departs from equilibrium is through a perturbation in

the TOV given by (2.87). Then, in order to include such perturbation, we can define the total

force per unit volume for each fluid element as

R ≡ dpr
dr

+
(ρ+ p)(m+ 4πr3pr)

r(r − 2m)
+

2

r
Π. (2.138)

Note that when the system is in equilibrium R = 0. So, in order to find situations where
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cracking or overturning happens, we shall consider in this work only disturbances in which

the entire material sector of the interior solution is disturbed, except for the radial pressure pr,

which does not change. These disturbances are such that R̃ ̸= 05. In this sense, we formally

consider {α, β} parameters in the interior solution, which can modify the TOV when they are

disturbed. Specifically, R̃(α + δα, β + δβ) up to first order, so

R̃ =
∂R̃
∂α

δα +
∂R̃
∂β

δβ +O(δα2, δβ2). (2.139)

From the above equation it is clear that if cracking occurs, R̃ changes sign in some value of r;

that is, when R̃ has at least a real root. Now, if δβ = −Γδα, the cracking condition translates

to the existence of Γ such that

Γ =
∂R̃/∂α̃|β,α
∂R̃/∂β̃|β,α

. (2.140)

Up to now we have reviewed the necessary theory that will allow us to find a new set of

anisotropic solutions within the framework of GD and also analyze their stability. The details

of such development is detailed in the next chapter.

5The tilde notes that the total radial force is being perturbed.
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Chapter 3

Stellar models with like–Tolman IV

complexity factor

In this chapter we detail the process used to construct a new family of stellar models based

on the complexity factor as a supplementary condition to close the system of equations arising

from the MGD. As a first step, we find the complexity factor of the Tolman IV solution, so

replacing Eqs. (2.60)-(2.63) in (2.134) we obtain

YTF =
r2(A2 + 2C2)

C2(A2 + 2r2)2
, (3.1)

which can be generalized to

YTF =
a1r

2

(a2 + a3r2)2
, (3.2)

where a1, a2 and a3 are dimensionless constants and a2 must be a constant with dimension of

a length squared. The complexity factor, Eq. (3.2), will be used as the condition to close the
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system in the framework of GD and generate anisotropic models from isotropic seeds.

3.1 Model 1: like–Tolman IV solution

In this section we use the seed solution given by Eqs. (2.60) and (2.61) in (2.137) to obtain the

geometric deformation f

f(r) =
(
A2 + r2

) [
c1 +

1

α

(
a1

a3ζ(r)
− A2 + 2C2

2C2(A2 + 2r2)

)]
, (3.3)

where c1 is an integration constant with dimensions of the inverse of a length squared and ζ(r)

is an auxiliary function with dimensions of a length squared (see Appendix, section B). Now, in

order to ensure regularity in the matter sector, the constant c1 must satisfy

c1 =
a2a3A

2 + 2a2a3C
2 − 2a1A

2C2

2αa2a3A2C2
. (3.4)

Replacing (3.3) in (2.126) and using (3.4) we arrive at

e−λ(r) =
(A2 + r2)(a2ζ(r)− a1A

2r2)

a2A2ζ(r)
. (3.5)

Now, we can use the radial component metric (3.5) in the system (2.117)-(2.119) to obtain the

matter sector

ρ̃(r) =
1

8πa2A2ζ(r)2

[
a1A

4
(
3a2 + a3r

2
)
+ a1A

2r2
(
5a2 + 3a3r

2
)
− 3a2ζ(r)

2

]
, (3.6)

P̃r(r) =
3a2ζ(r)− a1A

2(A2 + 3r2)

8πa2A2ζ(r)
, (3.7)

P̃t(r) =
3a2ζ(r)

2 − a1a2A
4 − a1A

2r2 (5a2 + 3a3r
2)

8πa2A2ζ(r)2
. (3.8)
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Thus, we found a new interior solution in the anisotropic regime given by (2.60), (3.5)-(3.8).

Now, it is necessary to apply the matching conditions (2.78), (2.79) and (2.82) to this solution

to obtain the following

a1 =
3a2ζ(R)

A2(A2 + 3R2)
(3.9)

A2

R2
=

R− 3M

M
=

1

u
− 3 (3.10)

B2 = 1− 3M

R
= 1− 3u. (3.11)

It is important to note that from (3.10) and (3.11) it is clear that compactness satisfies u =

M/R < 1/3, which corresponds to a more demanding condition when compared to the the

Buchdahl’s limit (u < 4/9) for isotropic solutions [69]. In consequence, the solutions allowed

with this model should be less compact given that the interval 1/3 ≤ u < 4/9 is forbidden.

3.2 Model 2: like–Wyman IIa solution

For this case we consider the Wyman IIa (with n = 2) model given by (2.64) and (2.65) as seed

solution and, following the same procedure that in the previous section, we obtain

f(r) =
r2

2αa3

[
a1(a3A+ a2B)

a2Bζ(r)
− 2a3C

(A− 3Br2)2/3

]
− a1

2αa23
χ(r), (3.12)

from where

e−λ(r) =
1

2a23

[
a3r

2 (a1a3A+ a2B (a1 + 2a23))

a2Bζ(r)
+

2a2a
2
3

ζ(r)
− a1χ(r)

]
. (3.13)
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Now, using (3.13) in the system (2.117)-(2.119) the matter sector reads

ρ̃(r) =
a1

16πa23

[
χ(r)

r2
− a3ϱ1(r)

a2Bζ(r)2

]
(3.14)

P̃r(r) =
a3r

2P1(r)− a1a2B (5Br2 − A) ζ(r)χ(r)

16πa2a23Br2 (Br2 − A) ζ(r)
(3.15)

P̃t(r) =
a3P2(r)− 4a1a2B

2ζ(r)2χ(r)

16πa2a23B (Br2 − A) ζ(r)2
, (3.16)

where we have used the auxiliary functions {ζ, χ, ϱ1,P1,P2}, which are defined in Appendix,

section B. Now, using the continuity of the first and the second fundamental form leads to

a1 =
8a2a

2
3B

2R2ζ(R)

(A− 5BR2) [a3R2(a3A+ a2B)− a2Bζ(R)χ(R)]
(3.17)

A2 =
B2(5M − 2R)2R4

M2
(3.18)

B2 =
M2

4R5(R− 2M)
. (3.19)

Note that from Eq. (3.19) results R > 2M , which is in accordance with the restriction that any

stable configuration should be greater than its Schwarzschild radius.

3.3 Model 3: like–Durgapal IV solution

In this case we consider the Durgapal IV model given by Eqs. (2.68)-(2.69) as a seed so-

lution. It is worth mentioning that, in what follows, we shall use the auxiliary functions

{ζ, η1, β1, β4, β5, β8, β11, ϱ2,P3 ,P4} defined in the Appendix, section B.
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Following the same procedure of the previous two models, we obtain

f(r) =
r2

56αa33Cβ1(r)2

[
7a1

(
− a3C

3r2 +
2(a2C − a3)

3

a2ζ(r)
+ 2C2(2a2C − 3a3)

)
+8a33C

2

(
Cr2 + 10− 7B

(5Cr2 + 1)2/5

)]
−3a1(a3 − a2C)2χ(r)

4αa43β1(r)2
, (3.20)

and the radial component metric reads

e−λ(r) =
a3η1(r)− 6a1a2C(a3 − a2C)2ζ(r)χ(r)

8a2a43Cβ1(r)2ζ(r)
. (3.21)

Now, from Eqs. (2.117)-(2.119) we obtain

ρ̃(r) =
1

64πa2a43Cr2β1(r)3ζ(r)2

[
a3r

2ϱ2(r) +

−6a1a2Cβ4(r)(a3 − a2C)2ζ(r)2χ(r)

]
, (3.22)

P̃r(r) =
P3(r)

64πa2a43Cr2β1(r)3ζ(r)
, (3.23)

P̃t(r) =
P4(r)

32πa2a43Cβ1(r)3ζ(r)2
. (3.24)

Applying the continuity of the first and the second fundamental form leads to

a1 =
8a2a

4
3C

2R2 (6− CR2β5(R)) ζ(R)

β8(R) [a3R2β11(R) + 6a2C(a3 − a2C)2ζ(R)χ(R)]
(3.25)

A =
1− 2M

R(
M

4R−9M
+ 1

)4 (3.26)

C =
M

R2(4R− 9M)
. (3.27)
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For this case, it is clear that from Eqs. (3.26) and (3.27), the solution must satisfy M/R < 4/9

(which coincides with the Buchdahl’s limit for isotropic solutions).

3.4 Model 4: like–Heintzmann IIa solution

In this section we consider the metric components of the Heintzmann IIa solution given by Eqs.

(2.72) and (2.73) as seed solution. Implementing the same procedure as before we obtain

f(r) =
r2

6αBγ1(r)

[
9B2C√
4Br2 + 1

+ 3B2 − 2a1 (2a
2
2B

2 + a2a3Bγ2(r) + a23)

a2a23ζ(r)

]
−2a1(a3 − a2B)χ(r)

3a33αγ1(r)
, (3.28)

where γ1 and γ2 are auxiliary functions defined in the Appendix, section B. It is compulsory to

mention that in this section we shall use the list of auxiliary functions {ζ, η2, γ1, γ3, γ6, γ7, γ9, ϱ3,P5

,P6} defined in the Appendix, section B.

Now, by using Eq. (3.28) we obtain the radial metric component as follows

e−λ(r) =
a3η2(r) + 2a1a2B(a2B − a3)ζ(r)χ(r)

3a2a33Bγ1(r)ζ(r)
. (3.29)

Then, using the system of Eqs. (2.117)-(2.119), it leads to

ρ̃ =
2a1a2Bγ3(r)(a2B − a3)ζ(r)

2χ(r) + a3r
2ϱ3(r)

24πa2a33Br2γ1(r)2ζ(r)2
, (3.30)

P̃r =
P5(r)

24πa2a33Br2γ1(r)2ζ(r)
, (3.31)

P̃t =
P6(r)

24πa2a33Bγ1(r)2ζ(r)2
. (3.32)
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From the matching conditions we have

a1 = − 3a2a
3
3B

2R2γ7(R)ζ(R)

γ6(R) [a3R2γ9(R)− 2a2B(a2B − a3)ζ(R)χ(R)]
(3.33)

A2 = − (7M − 3R)3

27R(R− 2M)2
(3.34)

B2 =
M2

R4(3R− 7M)2
. (3.35)

Note that from (3.34) and (3.35) results R > 2M , which, as mentioned before, is in accordance

with stable configuration of an stellar compact object. We also have that u < 3/7 < 4/9, which

corresponds to less compact solutions than the allowed by the Buchdahl’s limit [69].

Once new solutions have been found in this work the next step is study their stability. In

order to reach that, in the next section the total perturbed radial force for each model is found.

3.5 Total perturbed radial force of stellar models with like

–Tolman IV complexity factor

In this section we find the total perturbed radial force for each model found in the previous

chapter. Such force is a necessary requirement to analyze the stability of self gravitating spheres.
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3.5.1 Model 1: like–Tolman IV solution

Let us rewrite the anisotropic Model 1 found in Section 3.1 as follows

eν = B2

(
r2

A2
+ 1

)
, (3.36)

e−λ =
(A2 + r2) (a2ζ(r)− a1A

2r2)

a2A2ζ(r)
, (3.37)

ρ =
a1A

2ϱ(r)− 3a2ζ(r)
2

8πa2A2ζ(r)2
, (3.38)

pr =
3a2ζ(r)− a1A

2(A2 + 3r2)

8πa2A2ζ(r)
, (3.39)

Π =
a1r

2 (2a2 − a3A
2)

8πa2ζ(r)2
, (3.40)

m =
r3 (a1A

4 + a1A
2r2 − a2ζ(r))

2A2a2ζ(r)
, (3.41)

where m was calculated with Eq. (2.21), ζ(r) and ϱ(r) are auxiliary functions (see Appendix

C).

Now, it is necessary to use (3.9) in order to express the solution in the following way

ρ =
P1(r)

8πA2 (A2 + 3R2) ζ(r)2
(3.42)

pr =
3(r −R)(r +R) (a3A

2 − 3a2)

8πA2 (A2 + 3R2) ζ(r)
(3.43)

Π = −3r2 (a3A
2 − 2a2) (a2 + a3R

2)

8πA2 (A2 + 3R2) ζ(r)2
(3.44)

m =
3r3P2(r)

A2 (A2 + 3R2) ζ(r)
, (3.45)

where P1(r) and P2(r) are auxiliary functions defined in Appendix B.

Note that from the observation of the whole model the constants a1 and a3 are dimensionless,
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whereas A has units of a length and a2 has units of a length squared. Then, it is convenient, for

our analysis, to define the dimensionless quantities

α =
A

R
(3.46)

x =
r

R
(3.47)

β =
a2
R2

, (3.48)

in terms of which the matter sector {ρ, pr,Π,m} can be rewritten depending on the auxiliary

functions P1(α, β, x), P2(α, β, x) and ς(β, x) (see Appendix C) as

ρ =
P1(α, β, x)

8πR4α2(α2 + 3)ς(β, x)2

=
3

8πR2
ρ̂(α, β, x) (3.49)

pr =
3

8πR2

(
(x2 − 1) (a3α

2 − 3β)

α2 (α2 + 3) (β + a3x2)

)
=

3

8πR2
p̂r(α, β, x) (3.50)

Π =
3

8πR2

(
x2(β + a3) (2β − a3α

2)

α2 (α2 + 3) (β + a3x2)2

)
=

3

8πR2
Π̂(α, β, x) (3.51)

m = R

(
x3P2(α, β, x)

2R2α2 (α2 + 3) ς(β, x)

)
= Rm̂. (3.52)

Now, assuming a3 as a fixed parameter, we can proceed to perturb the matter sector through the
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variation of the parameters {α, β}

α → α̃ = α + δα (3.53)

β → β̃ = α + δβ, (3.54)

where the tilde indicates that the quantity is being perturbed. In this work we perturb the entire

matter sector except for the radial pressure pr, so that the TOV is different from zero. Namely,

the system departs from hydrostatic equilibrium. In other words, the relations (3.49)-(3.52)

result in

R̃ =
1

2

dp̂r
dx

+

(
ρ̂(α̃, β̃, x) + p̂r

)(
m̂(α̃, β̃, x) + 3

2
x3p̂r

)
2x2

(
1− 2m̂(α̃,β̃,x)

x

) +
1

x
Π̂(α̃, β̃, x), (3.55)

where p̂r = p̂r(α, β, x) and

R̃ ≡ 4πR3

3
R. (3.56)

Note that if cracking occurs, R̃ must have a zero in the interval x ∈ (0, 1).
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3.5.2 Model 2: like–Wyman IIa solution

From section 3.2, the model reads

eν = (A−Br2)2, (3.57)

e−λ =
1

2a23

[
a3r

2 (Aa1a3 + a2B (a1 + 2a23))

a2Bζ(r)
+

2a22a3B

ζ(r)
− a1χ(r)

]
, (3.58)

ρ =
a1

16πa23

[
χ(r)

r2
− a3τ(r)

a2Bζ(r)2

]
, (3.59)

pr =
a3r

2P3(r)− a1a2B (5Br2 − A) ζ(r)χ(r)

16πa2a23Br2 (Br2 − A) ζ(r)
, (3.60)

Π =
a1

16πa23

(
a3 (a3r

2(a3A+ 4a2B) + a22B)

a2Bχ(r)2
− χ(r)

r2

)
, (3.61)

m =
a1r

4a23

(
χ(r)− a3r

2(a3A+ a2B)

a2Bζ(r)

)
, (3.62)

where χ(r), τ(r) and P3(r) are auxiliary functions (see Appendix C). Now we introduce the

following quantities

x =
r

R
(3.63)

α = BR2 (3.64)

β = a3R
2, (3.65)

from where

ρ =
α

2πR2

(
(a2 + β)ϑ1(α, β, x)

x2(A− 5α)ζ(β, x)2ϑ2(α, β, x)

)
=

α

2πR2
ρ̂ (3.66)
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pr =
α

2πR2

ϑ3(α, β, x)
−1

x2ζ(β, x)ϑ2(α, β, x)

[
βx2

(
x2 − 1

)
(Aβ + αa2)(Aβ + 5αa2)

+αa2(a2 + β)ζ(β, x)ϑ4(α, β, x)

]
=

α

2πR2
p̂r (3.67)

Π =
α

2πR2

(
(a2 + β)ϑ5(α, β, x)

x2(A− 5α)ζ(β, x)2ϑ6(α, β, x)

)
=

α

2πR2
Π̂ (3.68)

m = R

(
2αx(a2 + β)ϑ7(α, β, x)

(5α− A)ζ(β, x)ϑ6(α, β, x)

)
= Rm̂, (3.69)

where the auxiliary functions {ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6, ϑ7} and ζ(β, x) are defined in Appendix C.

Considering A and a2 we proceed to apply (3.53), (3.54) in (2.139) to obtain

R̃ =
2α

3

dp̂r
dx

+
2

3

(
α̃ρ̂(α̃, β̃, x) + αp̂r

)(
m̂(α̃, β̃, x) + 2αx3p̂r

)
x2

(
1− 2m̂(α̃,β̃,x)

x

)
+
4α̃

3

1

x
Π̂(α̃, β̃, x), (3.70)

where p̂r = p̂r(α, β, x) and (3.56).



48

3.5.3 Model 3: like–Durgapal IV solution

From section 3.3 the relevant information reads

eν = A
(
Cr2 + 1

)4
, (3.71)

e−λ =
1

8a2a43C (Cr2 + 1)2 ζ(r)

[
6a1a2C ln(a2)(a3 − a2C)2ζ(r)

−6a1a2C(a3 − a2C)2ζ(r) ln ζ(r) + a3η1(r)

]
, (3.72)

ρ =
1

64πa2a43Cr2 (Cr2 + 1)3 ζ(r)2

[
a3r

2η2(r)

−6a1a2C
(
3Cr2 − 1

)
(a3 − a2C)2ζ(r)2χ(r)

]
, (3.73)

pr =
P4(r)

64πa2a43Cr2 (Cr2 + 1)3 ζ(r)
, (3.74)

Π =
1

64π (Cr2 + 1)3

[
a1P5(r)

a2a33Cζ(r)2
− 8C2r2(3 + Cr2)

−6a1 (3Cr2 + 1) (a3 − a2C)2χ(r)

a43r
2

]
, (3.75)

m =
r

16 (Cr2 + 1)2

[
2a1r

2

a2ζ(r)C
+ r2

(
a1η4(r)

a33ζ(r)
+ 8C

(
Cr2 + 2

))
+
6a1(a3 − a2C)2χ(r)

a43

]
, (3.76)

where the functions η1(r), η2(r), η4(r),P4(r),P5(r) are defined in Appendix C.

Now from the metrics (3.71), (3.72) and the resulting matter sector we can infer that is conve-

nient to carry out the following parameterization

x =
r

R
(3.77)

α = CR2 (3.78)

β = a3R
2, (3.79)
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while the parameters A and a2 turn out to be dimensionless. Then the matter sector takes the

form

ρ =
α

8πR2 (αx2 + 1)3

[
αx2

(
αx2 + 3

)
+ 6

+
(α(α + 3)− 6)β(a2 + β)ϱ1(α, β, x)

(9α + 1)ζ(β, x)2ϱ2(α, β, x)

−6αa2 (3αx
2 − 1) ϱ3(α, β, x)χ(β, x)

(9α + 1)x2ϱ2(α, β, x)

]
=

α

8πR2
ρ̂ (3.80)

pr =
1

8πR2x2

(
(1 + 9x2α) ϱ4(α, β)

(9α + 1) (αx2 + 1)3 ζ(β, x)ϱ2(α, β)
− 1

)
=

1

8πR2
p̂r (3.81)

Π = − α

8πR2 (αx2 + 1)3

[
αx2

(
αx2 + 3

)
+
(6− α(α + 3))β(a2 + β)ϱ10(α, β, x)

(9α + 1)ζ(β, x)2ϱ2(α, β, x)

+
6αa2 (3αx

2 + 1) ϱ3(α, β, x)χ(β, x)

x2(9α + 1)ϱ2(α, β, x)

]
=

α

8πR2
Π̂ (3.82)

m = R

(
αxϱ11(α, β, x)

2(9α + 1) (αx2 + 1)2 ζ(β, x)ϱ2(α, β, x)

)
= Rm̂, (3.83)

where the functions {ϱ1, ϱ2, ϱ3, ϱ4, ϱ10, ϱ11} and the functions χ(β, x) are defined in Appendix

C.

Now, we proceed to apply the perturbation on the parameters α and β through of (3.53),
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(3.54) and (2.139) so that

R̃ =
1

6

dp̂r
dx

+

(
α̃ρ̂(α̃, β̃, x) + p̂r

)(
m̂(α̃, β̃, x) + 1

2
p̂rx

3
)

6x2
(
1− 2m̂(α̃,β̃,x)

x

)
+
2α̃

3x
Π̃(α̃, β̃, x), (3.84)

where p̂r = p̂r(α, β, x) and (3.56).

3.5.4 Model 4: like–Heintzmann IIa

From section 3.4 we have

eν = A2
(
Br2 + 1

)3
, (3.85)

e−λ =
a3φ1(r) + 2a1a2B(a2B − a3)ζ(r)χ(r)

3a2a33B (Br2 + 1) ζ(r)
, (3.86)

ρ =
1

24πa2a33Br2 (Br2 + 1)2 ζ(r)2

[
a3r

2φ2(r)

+2a1a2B
(
Br2 − 1

)
(a2B − a3)ζ(r)

2χ(r)

]
, (3.87)

pr =
2a1a2B (7Br2 + 1) (a2B − a3)ζ(r)χ(r)

24πa2a33Br2 (Br2 + 1)2 ζ(r)
− a3r

2φ3(r)

24πa2a33Br2 (Br2 + 1)2 ζ(r)
,(3.88)

Π =
1

24πa2a33Br2 (Br2 + 1)2 ζ(r)2

[
a1a3r

2φ4(r)

−2a1a2B
(
2Br2 + 1

)
(a3 − a2B)ζ(r)2χ(r)− 3a2a

3
3B

3r4ζ(r)2
]
, (3.89)

m =
a3φ5(r) + 2a1a2B(a2B − a3)ζ(r)χ(r)

3a2a33B (Br2 + 1) ζ(r)
, (3.90)
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where the auxiliary functions {φ1, φ2, φ3, φ4, φ5} are defined in Appendix C. In order to express

the results in a more convenient manner, we introduce

x =
r

R
(3.91)

α = BR2 (3.92)

β = a3R
2, (3.93)

from where

ρ =
α

8πR2 (αx2 + 1)2

[
αx2 + 3− (α− 5)β(a2 + β)γ1(α, β, x)

(7α + 1)ζ(β, x)2γ2(α, β, x)

−
(
αx2 − 1

)
Υ(α, β, x)

]
=

α

8πR2
ρ̂ (3.94)

pr =
α

8πR2 (αx2 + 1)2

[
5− αx2 +

γ3(α, β, x) (7αx
2 + 1) γ4(α, β, x)

(7α + 1)ζ(β, x)γ2(α, β, x)

−
(
7αx2 + 1

)
Υ(α, β, x)

]
=

α

8πR2
p̂r (3.95)

Π =
α

8πR2 (αx2 + 1)2

[
− αx2 − βγ3(α, β, x)γ5(α, β)

(7α + 1)ζ(β, x)2γ2(α, β)

−
(
2αx2 + 1

)
Υ(α, β, x)

]
=

α

8πR2
Π̂ (3.96)

m =
αxR

2 (αx2 + 1)

[
x2 +

βx2γ3(α, β, x)γ4(α, β, x)

(7α + 1)ζ(β, x)γ2(α, β, x)
+ x2Υ(α, β, x)

]
= Rm̂. (3.97)
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Then if we perturb the parameters α and β in the way of (3.53) and (3.54) and use the equation

(2.139), we have

R̃ =
α

6

dp̂r
dx

+

(
α̃ρ̂(α̃, β̃, x) + αp̂r

)(
m̂(α̃, β̃, x) + α

2
p̂rx

3
)

6x2
(
1− 2m̂(α̃,β̃,x)

x

) +
α̃

3x
Π̂, (3.98)

where p̂r = p̂r(α, β, x) and with (3.56).
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Chapter 4

Results and discussions

The present chapter is dedicated to verify the physical acceptability of the stellar models ob-

tained in the chapter 3 and their stability in the context of gravitational cracking. For such

purposes we shall use the compactness parameters given in Table 4.1 and a set of suitable val-

ues of a2 and a3 in order to discuss to what extent our solutions are adequate to describe the

X-ray pulsars belonging to the binary star systems SMC X-1 and Cen X-31 [98].

Compact start M/M⊙ R(km) u = M/R ρ(0)/ρ(R) z(R)

SMC X-1 [98] 1.04 8.301 0.19803 1.4659 [99] 0.286776
Cen X-3 [100] 1.49 10.8 0.2035 1.915 [101] 0.298592

Table 4.1: Physical parameters for the compact stars of the systems SMC X-1 and Cen X-3.

4.1 Metrics

In Figures 4.1 and 4.2 the metric functions for compactness parameters indicated in the legend

are shown. Note that eν is a monotonously increasing function of r with eν(0) = constant.

1These systems consist of a X ray source (pulsar) with a blue supergiant star as companion.
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While e−λ is monotonously decreasing with e−λ(0) = 1, as expected.
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Figure 4.1: eν for Model 1 (a), Model 2 (b), Model 3 (c) and Model 4 (d).

4.2 Matter sector

In Figures 4.3, 4.4 and 4.5 we show the profile of the physical quantities ρ̃, P̃r and P̃t as a

function of the radial coordinate r for the values of the parameters in the legend. It is important

to note that all these quantities fulfill the physical requirements discussed before in section

2.6 for all the parameters involved, that is ρ̃, P̃r and P̃t are finite at the center and decrease

monotonously toward the surface. Furthermore, P̃t(0) = P̃r(0) and P̃t(r) > P̃r(r) for all r > 0

as expected (see Figure 4.6).
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Figure 4.2: e−λ for Model 1 (a), Model 2 (b), Model 3 (c) and Model 4 (d).

4.3 Energy conditions and causality

The matter sector of a suitable stellar model must satisfy the dominant energy condition (DEC)

in order to avoid violation of causality. The DEC for these models requires

ρ̃− P̃r ≥ 0 (4.1)

ρ̃− P̃t ≥ 0. (4.2)

From Figures 4.7 and 4.8 it can be seen that all the models satisfy DEC for all the parameters

involved.

Besides, in Figures 4.9 and 4.10 we can observe that the radial and tangential fluid sound

velocities are less than unity, as required (remember that we are assuming c = 1).
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Figure 4.3: ρ̃ as a function of r for Model 1: (a) u = 0.19803, (b) u = 0.2035, Model 2: (c) u = 0.19803, (d) u =
0.2035, Model 3: (e) u = 0.19803, (f) u = 0.2035, Model 4: (g) u = 0.19803, (h) u = 0.2035.

4.4 Redshift and density ratio

In the previous section it has been demonstrated that the four models fulfill the basic physical

requirements necessary to consider them as acceptable interior fluid solution for the compact-

ness parameter of both SMC X-1 and Cen X-3 (see Table 4.1). We can now explore which

models are more adequate to describe the compact objects under consideration. In this regard,

we study the redshift z = e−ν/2 − 1 and the density ratio ρ̃(0)/ρ̃(R) to each model and com-
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Figure 4.4: P̃r(r) as a function of r for Model 1: (a) u = 0.19803, (b) u = 0.2035, Model 2: (c) u = 0.19803, (d) u
= 0.2035, Model 3: (e) u = 0.19803, (f) u = 0.2035, Model 4: (g) u = 0.19803, (h) u = 0.2035.

pare our results with the values in Table 4.1. Thus, in Figure 4.11 we show the redshift z as

a function of the radial coordinate. We can observe that z decreases outward and its value at

the surface is less than the universal bound for interior solutions satisfying the DEC, namely

zbound = 5.211 [59].

Now, from the comparison of the value of density ratio for SMC X-1 reported in [99] being

ρ̃(0)/ρ̃(R) ≈ 1.4659, with the values of the Table 4.2, we appreciate that Models 3 and 4 fit
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Figure 4.5: P̃t(r) as a function of r for Model 1: (a) u = 0.19803, (b) u = 0.2035, Model 2: (c) u = 0.19803, (d) u
= 0.2035, Model 3: (e) u = 0.19803, (f) u = 0.2035, Model 4: (g) u = 0.19803, (h) u = 0.2035.

Model ρ(0)/ρ(R)
Model 1 (a2 = 0.53, a3 = 0.57) 2.62443
Model 2 (a2 = 2.7, a3 = 1.6) 1.84825
Model 3 (a2 = 0.8, a3 = 0.2) 1.43124
Model 4 (a2 = 1.1, a3 = 0.39) 1.53133

Table 4.2: Estimated values of the density ratio for SMC X-1 (u = 0.19803).

accurately to SMC X-1. In the same way, ρ̃(0)/ρ̃(R) ≈ 1.915 for Cen X-3 as appears in [101],

so the Models 2, 3 and 4 are suitable candidates to describe this compact objects.



59

a2=0.15 a3=0.18

a2=0.53 a3=0.57

a2=0.6 a3=0.65

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

x(r/R)

8
π
[P

t
(r
)-

P
r
(r
)]

(a)

a2=0.15 a3=0.18

a2=0.53 a3=0.57

a2=0.6 a3=0.65

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.01

0.02

0.03

0.04

x(r/R)
8
π
[P

t
(r
)-

P
r
(r
)]

(b)

a2=0.3 a3=0.2

a2=2.7 a3=1.6

a2=3.2 a3=2.1

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.01

0.02

0.03

0.04

x(r/R)

8
π
[P

t
(r
))
-

P
r
(r
)]

(c)

a2=0.3 a3=0.2

a2=2.7 a3=1.6

a2=3.2 a3=2.1

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.01

0.02

0.03

0.04

x(r/R)

8
π
[P

t
(r
))
-

P
r
(r
)]

(d)

a2=0.54 a3=0.2

a2=0.65 a3=0.2

a2=0.8 a3=0.2

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

x(r/R)

8
π
[P

t
(r
))
-

P
r
(r
)]

(e)

a2=0.31 a3=0.2

a2=0.65 a3=0.2

a2=0.8 a3=0.2

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.02

0.04

0.06

x(r/R)

8
π
[P

t
(r
))
-

P
r
(r
)]

(f)

a2=0.47 a3=0.2

a2=0.54 a3=0.2

a2=1.1 a3=0.39

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.005

0.010

0.015

0.020

0.025

x(r/R)

8
π
[P

t
(r
)-

P
r
(r
)]

(g)

a2=0.3 a3=0.2

a2=0.65 a3=0.4

a2=0.8 a3=0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

x(r/R)

8
π
[P

t
(r
)-

P
r
(r
)]

(h)

Figure 4.6: P̃t(r) − P̃r(r) as a function of r for Model 1: (a) u = 0.19803, (b) u = 0.2035, Model 2: (c) u =
0.19803, (d) u = 0.2035, Model 3: (e) u = 0.19803, (f) u = 0.2035, Model 4: (g) u = 0.19803, (h) u = 0.2035.

Model ρ(0)/ρ(R)
Model 1 (a2 = 0.53, a3 = 0.57) 2.49405
Model 2 (a2 = 0.3, a3 = 0.2) 1.97267
Model 3 (a2 = 0.31, a3 = 0.2) 1.92661
Model 4 (a2 = 0.8, a3 = 0.5) 1.92086

Table 4.3: Estimated values of the density ratio for Cen X-3 (u = 0.2035).

In summary, Models 3 and 4 might be considered as suitable solutions describing SMC X-1,



60

a2=0.15 a3=0.18

a2=0.53 a3=0.57

a2=0.6 a3=0.65

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

x(r/R)

8
π
[ρ
 (

r
)-

P
r
(r
)]

(a)

a2=0.15 a3=0.18

a2=0.53 a3=0.57

a2=0.6 a3=0.65

0.0 0.2 0.4 0.6 0.8 1.0

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

x(r/R)
8
π
[ρ
 (

r
)-

P
r
(r
)]

(b)

a2=0.3 a3=0.2

a2=2.7 a3=1.6

a2=3.2 a3=2.1

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

x(r/R)

8
π
[ρ
 (

r
)-

P
r
(r
)]

(c)

a2=0.3 a3=0.2

a2=2.7 a3=1.6

a2=3.2 a3=2.1

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

x(r/R)

8
π
[ρ
 (

r
)-

P
r
(r
)]

(d)

a2=0.54 a3=0.2

a2=0.65 a3=0.2

a2=0.8 a3=0.2

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.1

1.2

1.3

1.4

x(r/R)

8
π
[ρ
 (

r
)-

P
r
(r
)]

(e)

a2=0.31 a3=0.2

a2=0.65 a3=0.2

a2=0.8 a3=0.2

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

x(r/R)

8
π
[ρ
 (

r
)-

P
r
(r
)]

(f)

a2=0.47 a3=0.2

a2=0.54 a3=0.2

a2=1.1 a3=0.39

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.1

1.2

1.3

1.4

x(r/R)

8
π
[ρ
 (

r
)-

P
r
(r
)]

(g)

a2=0.3 a3=0.2

a2=0.65 a3=0.4

a2=0.8 a3=0.5

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

x(r/R)

8
π
[ρ
 (

r
)-

P
r
(r
)]

(h)

Figure 4.7: ρ̃(r)− P̃r(r) as a function of r for Model 1: (a) u = 0.19803, (b) u = 0.2035, Model 2: (c) u = 0.19803,
(d) u = 0.2035, Model 3: (e) u = 0.19803, (f) u = 0.2035, Model 4: (g) u = 0.19803, (h) u = 0.2035.

while models 2, 3 and 4 are the solutions for Cen X-3.

4.5 Stability analysis

In this section we analyze the stability of models in the framework of gravitational cracking. In

other words, we analyze the behavior of the perturbed total radial forces (3.55), (3.70), (3.84)
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Figure 4.8: ρ̃(r)− P̃t(r) as a function of r for Model 1: (a) u = 0.19803, (b) u = 0.2035, Model 2: (c) u = 0.19803,
(d) u = 0.2035, Model 3: (e) u = 0.19803, (f) u = 0.2035, Model 4: (g) u = 0.19803, (h) u = 0.2035.

and (3.98) to find the existence of any fracture (cracking and/or overturning) inside the fluid.

We plot R̃ as a function of x, for different values of Γ, α and β in order to explore the stability

of each model.
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Figure 4.9: Sound velocities as a function of r for compactness factor u = 0.19803: (a) Radial velocity vr and (b)
Tangential velocity vt. Models 1, 2, 3 and 4 are identified with blue, black, red and green line respectively.
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Figure 4.10: Sound velocities as a function of r for compactness factor u = 0.2035: (a) Radial velocity vr and (b)
Tangential vt. Models 1, 2, 3 and 4 are identified with blue, black, red and green line respectively.

4.5.1 Cracking of Model 1

In this part we focus on the stability analysis for Model 1. For this purpose we study the behavior

of (3.55). In the Figure 4.12 we show R̃ as a function of x for different values of Γ. Note that

there is overturning for positive Γ and cracking for negative Γ. Interestingly, the radius where

cracking/overturning occurs coincide for all the values of Γ considered.
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Figure 4.11: z for Model 1 (a) Model 2 (b) Model 3 (c) and Model 4 (d).
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Figure 4.12: R̃ as function of x (Model 1), for a3 = 0.57, β = 0.53, α ≈ 0.101 (u = 0.3322); Γ = 5 (black
line), Γ = 2.5 (blue line), Γ = −2.5 (red line) and Γ = −5 (green line).

The behavior of R̃ as function of x respect to different values of β is shown in Figure 4.13,

where we observe that as the value of β increases the stellar fluid distribution experiments over-

turning in outer regions.
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Figure 4.13: R̃ as function of x (Model 1), for a3 = 0.57, Γ = −1.67, α ≈ 0.143169 (u = 0.19803); β = 0.53
(black line), β = 0.55 (blue line ), β = 0.6 (red line) and β = 0.75 (green line).

In Figure. 4.14, it is shown R̃ as a function of x for different values of α. In this case

it is noticeable that as the value of α decreases the fracture occurs in outer regions of fluid

distribution; that is, such tendency is maintained for increasingly compact systems.
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Figure 4.14: R̃ as function of x (Model 1), for a3 = 0.57, β = 0.53, Γ = −1.67; α ≈ 1.43169 (u = 0.19803)
(black line), α ≈ 1.38348 (u = 0.2035) (blue line), α ≈ 1.3 (u = 0.2132) (red line) and α ≈ 1.2 (u = 0.2252)
(green line).
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4.5.2 Cracking of Model 2

In this subsection we analyze the stability of Model 2. In Figure 4.15 we show R̃ (given by

Eq.(3.70)) as a function of x for different values of Γ. We observe that fracture appears in the

inner regions of the compact object as the value of Γ increases. Note that there is cracking and

overturning for the same value Γ = 0.9 (green line), and that for the value of Γ = 1.15 (orange

line) the model has stability. To be more precise, the system experiments a kind of transition

between states with overturning and others with cracking due to the increasing of Γ.

It is worth emphasizing that, in this context, “stability” means that the system has absence

of any fracture. To be specific, R̃ does not change sing at any radius and that it does not have

to be taken literally since the cracking approach only takes a “picture” of the tendency of radial

force just after the system leaves equilibrium.
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Figure 4.15: R̃ as function of x (Model 2), for a2 = 0.3, A ≈ −0.63793, α ≈ 0.13213 (u = 0.2035), β = 1.383;
Γ = −0.9 (black line), Γ = −0.5 (blue line), Γ = 0.5 (red line), Γ = 0.9 (green line) and Γ = 1.15 (orange line).

In Figure 4.16, plots of R̃ as a function of x for different values of α (compactness factor)

are shown. In this case the system goes from a configuration without fracture (orange line) to
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situations where cracking and overturning appear (green and red lines) as the value of α in-

creases. Also, we note that cracking appears in outer regions and overturning in inner regions

as the value of compactness factor increases, and after the system becomes stable for upper

compact objects.
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Figure 4.16: R̃ as function of x (Model 2), for a2 = 0.3, Γ = 1.0, β = 1.383; α ≈ 0.17678 (u = 0.25) ( black
line), α ≈ 0.14699 (u = 0.22) (blue line), α ≈ 0.13213 (u = 0.2035) (red line), α ≈ 0.12741 (u = 0.19803)
(green line) and α ≈ 0.10463 (u = 0.17) (orange line).

In Figure 4.17, we show R̃ as a function of x for different values of β. In this case we note

that the overturning point shifts to the center of the stellar object as the value of β reduces.

4.5.3 Cracking of Model 3

In this case we analyze the behavior of the disturbed total radial force (3.84). Thus, in Figure

4.18 we show R̃ as a function of x for different values of Γ. We have that for positive Γ the

system is stable, while for negative ones (blue and black line) the system experiments cracking

(see Figure 4.18(a)), which moves to inner regions of fluid distribution as the value of Γ de-

creases (black and blue line) as can also be seen in Figure 4.18(b).
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Figure 4.17: R̃ as function of x (Model 2), for a2 = 0.3, A ≈ −0.63793, α = 0.13213 (u = 0.2035), Γ = −0.9;
β = 1.38348 (black line), β = 1.2 (blue line), β = 1.0 (red line) and β = 0.8 (green line).
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Figure 4.18: R̃ as function of x (Model 3), for a2 = 0.8, α = 0.0893 (u = 0.19803), β = 0.2; (a) Γ = −12.0
(black line), Γ = −10.5 (blue line), Γ = 10.5 (red line) and Γ = 12.0 (green line), (b) Γ = −12.0 (black line),
Γ = −13.0 (blue line), Γ = −14.0 (red line) and Γ = −15.0 (green line)

Also in Figure 4.19, we show R̃ as a function of x for distinct values of α. In this case

there is cracking for the value of α = 1.6 and 1.9 (black and blue line), while for upper values,

such as α = 2.4 and 2.8 (red and green line), the system presents cracking and overturning for

the same value of the compactness factor. Note that the system experiments cracking in inner
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regions of the fluid distribution as the value of α increases. Also note that the curves coincide

at a specific radial value.
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Figure 4.19: R̃ as function of x (Model 3), for a2 = 0.8, Γ = −1.8, β = 0.2; α ≈ 1.6 (u = 0.4156) (black line),
α ≈ 1.91 (u = 0.42) (blue line), α ≈ 2.4 (u = 0.4248) (red line) and α ≈ 2.8 (u = 0.4275) (green line).

In Figure 4.20, curves of R̃ as a function of x for different values of β are shown. In this

case the fracture point moves to inner regions of the fluid as the value of β decreases. Also,

we have that for the values of β = 0.2 and 1.2 (black and blue lines) the model experiments

stability.
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Figure 4.20: R̃ as function of x (Model 3), for a2 = 0.8, Γ = −1.9, α = 0.0893 (u = 0.19803); β = 0.2 (black
line), β = 1.2 (blue line), β = 1.9 (red line) and β = 2.5 (green line).
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4.5.4 Cracking of Model 4

In this part we analyze the stability of Model 4, for which we plot the perturbed total radial

force (3.98) as function of x. Thus, in Figure 4.21, we show R̃ as a function of x for distinct

values of Γ. Observe that for the positive values of Γ the model is stable (red and green line),

while that for Γ = −10.0 (black line) the system presents cracking (see Figure 4.21(a)), which

moves to the inner regions of the stellar fluid distribution as the value of Γ decreases (see Figure

4.21(b)).
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Figure 4.21: R̃ as function of x (Model 4), for a2 = 0.8, α ≈ 0.12917 (u = 0.2035), β = 0.5; (a) Γ = −10.0
(black line), Γ = −7.5 (blue line), Γ = 7.5 (red line) and Γ = 10.0 (green line), (b) Γ = −10.0 (black line),
Γ = −9.0 (blue line), Γ = −8.0 (red line) and Γ = −7.0 (green line).

In Figure 4.22, R̃ as a function of x for different values of α is shown. In this case the

cracking appears in the inner regions of the fluid distribution as the value of α increases. Also,

it is noticeable that for α = 7.54 and 9.47 (red and green line) the system experiments cracking

and overturning for the same value of compactness parameter; specifically, the cracking appears

in the inner regions and overturning in the outer regions of the stellar fluid distribution for more

compact objects. Note that the overturning appears at the same radius.
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Figure 4.22: R̃ as function of x (Model 4), for a2 = 0.8, β = 0.5, Γ = −1.8; α ≈ 4.51 (u = 0.4154) (black
line), α ≈ 5.5 (u = 0.4178) (blue line), α = 7.54 (u = 0.4206) (red line) and α ≈ 9.47 (u = 0.4222) (green
line).
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Figure 4.23: R̃ as function of x (Model 4), for a2 = 0.8, α = 0.12917 (u = 0.2035), Γ = −1.8; β = 0.5 (black
line), β = 2.5 (blue line), β = 3.0 (red line) and β = 3.5 (green line).

Finally, in Figure 4.23, we show R̃ as function of x for different values of β. In this case the

fracture appears in the outer regions of the fluid distribution as value of β increases, and that for

the value of α = 0.5 the model has stability.

Summarizing, we have observed the response of the models against perturbation just after

the fluid distribution deviates from equilibrium, obtaining that all of them predict the existence
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of fracture within the fluid of a compact object for certain sets of the parameters involved.
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Chapter 5

Conclusions

In this work we extended four models of self-gravitating static spheres of isotropic fluid to

anisotropic domains by Gravitational Decoupling through the Minimal Geometric Deformation

using as supplementary condition, the complexity factor corresponding to a generalization ob-

tained from the well–known Tolman IV interior solution. These new solutions fulfill the basic

physical acceptability conditions; i) the metric functions are regular, and g00(0) = constant

and g11(0) = 1, ii) the density energy and pressures are regular at the origin and decrease

monotonously outward, iii) causality conditions and iv) the solutions satisfy the dominant en-

ergy condition. Such conditions were tested for the compactness parameters of the systems

SMC X-1 and Cen X-3. Also, these solutions are well behaved, but only for some parame-

ters sets they can be considered as suitable models for the compact objects under consideration

based on the density ratio. Precisely, Models 3 and 4 are more appropriated to describe SMC

X-1 while Models 2, 3 and 4 can be used for Cen X-3.

Furthermore, we found that the four models presents fracture for certain settings of pa-
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rameters. Indeed, these models presented exotic behavior for the total perturbed radial force

having cracking and overturning, standing out a kind of transition between situations of crack-

ing and overturning. Such transition for some configurations of parameters has intermediate

states where the stellar fluid experiments cracking and overturning at the same time. In specific,

for all models the strongest and deeper crackings occur for bigger values of the parameter α,

which is directly related to the compactness factor of stellar compact object. Besides, most of

the models trend to the “stability” as the value of Γ grows. This result is also observed for small

values of α, which represents an interesting fact. Also, it is worth to mentioning, that for all

models only overturning occurs inside the fluid when we study the behavior of R̃ for different

values of the parameter β. Such overturning point moves to outer regions of stellar fluid as the

value of β increases.

Thus, we can evidence, theoretically, that the existence of any fracture inside a stellar fluid

modeled by our models has a direct relation with fluctuations of the anisotropy and inhomo-

geneity of such fluid. The above follows from the fact that these quantities being present in the

definition of the gravitational complexity factor for self-compact objects. Also, it is worth men-

tioning that the importance of this stability analysis results from the fact that the occurrence of

cracking predicted by these models can be related with the possible origin of quakes in neutron

stars, the collapse of super massive star or the ejection of outer shells in supernova event.

Additionally, it might be interesting to explore the possibility of generating new families

following the same procedure presented in this work. Particularly such solutions can be based

in other specific value of complexity factor, which can be a generalization of any other well-

known solution or as also some specific function of radial coordinate. Also, these ideas can be
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explored in the framework of the extended version of MGD.
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Annex A

Einstein’s tensor for Static and Spherical

symmetric spacetime

1.1 Connections

We obtain the connections (Christoffel symbol of the second kind) corresponding to the metric

(2.8) through the definition (2.6), resulting that there are only nine non null connections

Γ1
11 =

1

2
λ′,

Γ1
00 =

1

2
ν ′eν−λ,

Γ1
22 = −re−λ,

Γ1
33 = −re−λ sin2 θ,

Γ2
33 = − sin θ cos θ,

Γ0
01 =

1

2
ν ′,

Γ2
21 = Γ3

31 =
1

r
,

Γ3
32 = cot θ.
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1.2 Ricci’s tensor components

So with the nine non null connections we can calculate the only non zero Ricci’s tensor compo-

nents with the help of (2.3) and (2.5) obtaining

R00 = ∂λΓ
λ
00 − ∂0Γ

λ
λ0 + Γλ

λσΓ
σ
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ν ′λ′ +

1

2r
λ′ +

1

2r
λ′ − 1

4
ν ′2

− 1

r2
− 1

r2

= −ν ′′

2
+

1

4
λ′ν ′ − 1

4
ν ′2 +

λ′

r
,
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R22 = ∂λΓ
λ
22 − ∂2Γ

λ
λ2 + Γλ

λσΓ
σ
22 − Γλ

σ2Γ
σ
λ2

= ∂1Γ
1
22 − ∂2Γ

3
32 + Γλ

λ1Γ
1
22 − Γ0

σ2Γ
σ
02 − Γ1

σ2Γ
σ
12 − Γ2

σ2Γ
σ
22 − Γ3

σ2Γ
σ
32

= ∂1Γ
1
22 − ∂2Γ

3
32 + Γ0

01Γ
1
22 + Γ1

11Γ
1
22 + Γ2

21Γ
1
22 + Γ3

31Γ
1
22 − Γ1

22Γ
2
12 − Γ2

12Γ
1
22 − Γ3

32Γ
3
32

= ∂1Γ
1
22 − ∂2Γ

3
32 + Γ0

01Γ
1
22 + Γ1

11Γ
1
22 + Γ3

31Γ
1
22 − Γ2

12Γ
1
22 − Γ3

32Γ
3
32

=
∂

∂r
(−re−λ)− ∂

∂θ
(cot θ) +

1

2
ν ′(−re−λ) +

1

2
λ′(−re−λ)

+
1

r
(−re−λ)− 1

r
(−re−λ)− cot2 θ

= 1− e−λ

(
1 +

1

2
r(ν ′ − λ′)

)
,

R33 = ∂λΓ
λ
33 − ∂3Γ

λ
λ3 + Γλ

λσΓ
σ
33 − Γλ

σ3Γ
σ
λ3

= ∂1Γ
1
33 + ∂2Γ

2
33 + Γλ

λ1Γ
1
33 + Γλ

λ2Γ
2
33 − Γ0

σ3Γ
σ
03 − Γ1

σ3Γ
σ
13 − Γ2

σ3Γ
σ
23 − Γ3

σ3Γ
σ
33

= ∂1Γ
1
33 + ∂2Γ

2
33 + Γ0

01Γ
1
33 + Γ1

11Γ
1
33 + Γ2

21Γ
1
33 + Γ3

31Γ
1
33 + Γ3

32Γ
2
33 − Γ1

33Γ
3
13

−Γ2
33Γ

3
23 − Γ3

13Γ
1
33 − Γ3

23Γ
2
33

= ∂1Γ
1
33 + ∂2Γ

2
33 + Γ0

01Γ
1
33 + Γ1

11Γ
1
33 + Γ2

21Γ
1
33 − Γ1

33Γ
3
13 − Γ3

23Γ
2
33

=
∂

∂r

(
−re−λ sin2 θ

)
+

∂

∂θ
(− sin θ cos θ) +

1

2
ν ′(−re−λ sin2 θ)

+
1

2
λ′(−re−λ sin2 θ) +

1

r
(−re−λ sin2 θ)− 1

r
(−re−λ sin2 θ)

− cot θ(− sin θ cos θ)

= sin2 θ

[
1− e−λ

(
1 +

1

2
r(ν ′ − λ′)

)]
= R22 sin

2 θ.
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Summarizing we have that the only non zero Ricci’s tensor components are

R00 =

(
1

2
ν ′′ +

1

4
ν ′2 − 1

4
ν ′λ′ +

ν ′

r

)
eν−λ,

R11 = −1

2
ν ′′ +

1

4
ν ′λ′ − 1

4
ν ′2 +

λ′

r
,

R22 = 1− e−λ

(
1 +

1

2
r(ν ′ − λ′)

)
,

R33 = R22 sin
2 θ.

1.3 Curvature scalar

The also known as Ricci’s scalar for the metric (2.8) is calculated as follows

R = gµνRµν = Rµ
µ

= g00R00 + g11R11 + g22R22 + g33R33

= g00R00 + g11R11 + g22R22 + g33R22 sin
2 θ

= g00R00 + g11R11 + (g22 + g33 sin2 θ)R22

= e−λ

(
1

2
ν ′′ +

1

4
ν ′2 − 1

4
ν ′λ′ +

ν ′

r

)
− e−λ

(
−ν ′′

2
− 1

4
ν ′2 +

1

4
ν ′λ′ +

λ′

r

)
− 2

r2

(
1− e−λ

(
1 +

1

2
r(ν ′ − λ′)

))
= e−λ

(
ν ′′ +

1

2
ν ′2 − 1

2
λ′ν ′ +

2

r
(ν ′ − λ′) +

2

r2
− 2

r2
eλ
)
.
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1.4 Einstein’s tensor components

Once the scalar and the Ricci components have been calculated, it is possible to calculate the

non-zero components of the Einstein tensor from Eq. (2.2), resulting in

G00 = R00 −
1

2
Rg00

= eν−λ

(
1

2
ν ′′ +

1

4
ν ′2 − 1

4
ν ′λ′ +

ν ′

r

)
−1

2
eν−λ

(
ν ′′ +

1

2
ν ′2 − 1

2
λ′ν ′ +

2

r
(ν ′ − λ′) +

2

r2
− 2

r2
eλ
)

= eν−λ

[
λ′

r
+

1

r2
(eλ − 1)

]
,

G11 = R11 −
1

2
R11

= −1

2
ν ′′ +

1

4
ν ′λ′ − 1

4
ν ′2 +

λ′

r

+
1

2

(
ν ′′ +

1

2
ν ′2 − 1

2
λ′ν ′ +

2

r
(ν ′ − λ′) +

2

r2
− 2

r2
eλ
)

=
ν ′

r
+

1

r2
− eλ

r2
,

G22 = R22 −
1

2
Rg22

= 1− e−λ

(
1 +

1

2
r(ν ′ − λ′)

)
+
1

2
r2e−λ

(
ν ′′ +

1

2
ν ′2 − 1

2
λ′ν ′ +

2

r
(ν ′ − λ′) +

2

r2
− 2

r2
eλ
)

=
1

2
re−λ(ν ′ − λ′) +

1

2
r2e−λν ′′ +

1

4
r2ν ′2e−λ − 1

4
r2λ′ν ′e−λ

=
1

4
r2e−λ

(
2
ν ′ − λ′

r
+ 2ν ′′ − λ′ν ′ + ν ′2

)
,
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G33 = R33 −
1

2
Rg33

= R22 sin
2 θ − 1

2
Rg33

= R22 sin
2 θ − 1

2
R(−r2 sin2 θ)

= sin2 θ

(
R22 −

1

2
R(−r2)

)
= sin2 θ

(
R22 −

1

2
Rg22

)
= G22 sin

2 θ.

In summary, the only non null Einstein’s tensor components for the metric (2.8) are

G00 = eν−λ

(
λ′

r
− 1

r2
+

1

r2
eλ
)

G11 =
1

r

(
ν ′ +

1

r
(1− eλ)

)
G22 =

1

4
r2e−λ

(
2ν ′′ − λ′ν ′ + ν ′2 + 2

ν ′ − λ′

r

)
G33 = G22 sin

2 θ.
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Annex B

Auxiliary functions I

ζ = a2 + a3r
2 χ = ln

(
1 +

a3
a2

r2
)

η1 = 6a1a
3
2C

3r2 + a22a3C
(
3a1Cr2β2(r) + 8a23

)
+a2a

2
3Cr2

(
8a23 − a1

(
C2r4 + 6β3(r)

))
− 2a1a

3
3r

2

η2 = a22B
(
3a23 − 2a1Br2

)
− a1a

2
3r

2 + a2a3Br2
(
3a23 − a1γ2(r)

)
,

ϱ1 = a3A
(
3a2 + a3r

2
)
+ a2B

(
a2 − a3r

2
)

ϱ2 = 8a2a
3
3C

2
(
Cr2β5(r) + 6

)
ζ(r)2 + a1S1(r)

ϱ3 = 3a2a
2
3B

2
(
Br2 + 3

)
ζ(r)2 + a1S2(r)
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P1 = a2B
2
(
5a1r

2 + 8a3ζ(r)
)
− a1AB

(
a2 − 5a3r

2
)
− a1a3A

2

P2 = 4a1a3ABr2
(
2a2 + a3r

2
)

+a2B
2

(
4a2r

2
(
a1 + 4a23

)
+ a3r

4
(
a1 + 8a23

)
+ 8a22a3

)
− a1a2a3A

2

P3 = 6a1a2Cβ8(r)(a3 − a2C)2ζ(r)χ(r) + 8a2a
4
3Cβ3

1ζ(r)

+a3β8(r)

[
− 6a1a

3
2C

3r2 + a22a3C
(
−3a1Cr2β9(r)− 8a23

)
+a2a

2
3Cr2

(
a1

(
Cr2β10(r)− 6

)
− 8a23

)
+ 2a1a

3
3r

2

]
,

P4 = −18a1a2C
2(a3 − a2C)2ζ(r)2χ(r)

+24a2a
4
3C

2χ(r)2 + 6a22a
2
3C

2r2
(
Cr2β7(r) + 3

)
+a1a3

[
18a42C

4r2 + 9a32a3C
3r2

(
3Cr2 − 4

)
−a2a

3
3

(
8C4r8 + 34C3r6 + 14Cr2 + 1

)
− 6a43Cr4

]
P5 = a3r

2

[
a1γ6(r)

(
2a22B

2 + a2a3Bγ2(r) + a23
)
+ 3a2a

2
3B

2γ7(r)ζ(r)

]
−2a1a2Bγ6(r)(a2B − a3)ζ(r)χ(r)

P6 = 15a2a
3
3B

2ζ(r)2 + 10a1a2B
2(a2B − a3)ζ(r)

2χ(r)

+a1a3

[
− 10a32B

3r2 + 5a22a3B
2r2γ8(r)− 5a33Br4

+a2a
2
3

(
Br2

(
−9B2r4 +Br2 − 11

)
− 1

) ]
,
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S1 = 6a42C
3β4(r) + 3a32a3C

2
(
3Cr2β6(r) + 4

)
+2a22a

2
3Cβ4(r)

(
Cr2β7(r) + 3

)
− 2a43r

2β4(r)

+a2a
3
3

(
Cr2

(
Cr2

(
Cr2β3(r) + 48

)
+ 4

)
+ 6

)
S2 = −2a32B

2γ3(r) + a22a3B
(
Br2γ4(r)− 2

)
+a2a

2
3

(
Br2

(
Br2γ5(r) + 3

)
+ 3

)
− a33r

2γ3(r)

β1 = Cr2 + 1 β2 = Cr2 − 4 β3 = Cr2 − 1

β4 = 3Cr2 − 1 β5 = Cr2 + 3 β6 = 3Cr2 − 5

β7 = Cr2 − 9 β8 = 9Cr2 + 1 β9 = Cr2 − 4

β10 = Cr2 + 6

β11 = −6a32C
3 − 3a22a3C

2β9 + 2a33 + a2a
2
3C

(
Cr2β10 − 6

)
,

γ1 = Br2 + 1 γ2 = Br2 − 2 γ3 = Br2 − 1

γ4 = 5− 3Br2 γ5 = Br2 + 9 γ6 = 7Br2 + 1

γ7 = Br2 − 5 γ8 = 2− 3Br2.

γ9 = 2a22B
2 + a2a3Bγ2 + a23.
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Annex C

Auxiliary functions II

ζ(r) = a2 + a3r
2

ϱ(r) = A2(3a2 + a3r
2) + r2(5a2 + 3a3r

2)

χ(r) = ln

(
1 +

a3
a2

r2
)

τ(r) = a3A
(
3a2 + a3r

2
)
+ a2B

(
a2 − a3r

2
)

ς(β, x) = R2
(
β + a3x

2
)

ζ(β, x) = a2 + βx2

χ(β, x) = ln

(
1 +

β

a2
x2

)

P1(α, β, x) = 3R6

(
a23α

2x2
(
1− x2

)
+ βa3

(
3α2 + 3x4 −

(
α2 + 1

)
x2
)

+β2
(
2α2 + 5x2 − 3

))
P2(α, β, x) = R4

(
β
(
2α2 + 3x2 − 3

)
− a3α

2
(
x2 − 3

))
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P1(r) = 6A2a22 − 3R2
(
a2 − A2a3

) (
3a2 + a3r

2
)

−3A2a3r
2ζ(r) + 15a22r

2 + 9a2a3r
4

P2(r) = A2
(
2a2 − a3r

2 + 3a3R
2
)
+ 3a2(r −R)(r +R)

P3(r) = a2B
2
(
5a1r

2 + 8a3ζ(r)
)
− A2a1a3 − a1AB

(
a2 − 5a3r

2
)

P4(r) = −
(
9Cr2 + 1

)(
6a1a2C(a3 − a2C)2ζ(r)χ(r) + a3η3(r)

)
−8a2a

4
3C

(
Cr2 + 1

)3
ζ(r)

P5(r) = 6a42C
3
(
3Cr2 + 1

)
− 2a43r

2
(
3Cr2 + 1

)
−3a32a3C

2
(
−9C2r4 + 9Cr2 + 4

)
+2a22a

2
3C

(
C2r4

(
3Cr2 − 26

)
+ 3

)
+a2a

3
3Cr2

(
Cr2

(
Cr2

(
7Cr2 + 13

)
+ 48

)
+ 16

)
ϑ1(α, β, x) = αa2ζ(β, x)

2χ(β, x)

−βx2
(
a2β

(
3A− αx2

)
+ Aβ2x2 + αa22

)
ϑ2(α, β, x) = β(βA+ αa2)− αa2(a2 + β)χ(β, x)

ϑ3(α, β, x) = (5α− A)
(
A− αx2

)
ϑ4(α, β, x) = x2(5α− A) ln(a2 + β) +

(
A− 5αx2

)
ln ζ(β, x)

+A
(
x2 − 1

)
ln(a2)

ϑ5(α, β, x) = αa2ζ(β, x)
2χ(β, x)− βx2

(
Aβ2x2 + αa22 + 4αa2βx

2
)

ϑ6(α, β, x) = β(βA+ αa2)− αa2(a2 + β) ln

(
1 +

β

a2

)
ϑ7(α, β, x) = βx2(βA+ αa2)− αa2ζ(β, x)χ(β, x).
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η1(r) = 6a1a
3
2C

3r2 + a22a3C
(
3a1Cr2

(
Cr2 − 4

)
+ 8a23

)
+a2a

2
3Cr2

(
8a23 − a1

(
C2r4 + 6Cr2 − 6

))
− 2a1a

3
3r

2

η2(r) = 8a2a
3
3C

2
(
Cr2

(
Cr2 + 3

)
+ 6

)
ζ(r)2

+a1

(
6a42C

3
(
3Cr2 − 1

)
+ 2a43r

2
(
1− 3Cr2

)
+2a22a

2
3C

(
3Cr2 − 1

) (
Cr2

(
Cr2 − 9

)
+ 3

)
+3a32a3C

2
(
3Cr2

(
3Cr2 − 5

)
+ 4

)
+a2a

3
3

(
Cr2

(
Cr2

(
Cr2

(
Cr2 − 1

)
+ 48

)
+ 4

)
+ 6

))
η3(r) = a22a3C

(
−3a1Cr2

(
Cr2 − 4

)
− 8a23

)
+a2a

2
3Cr2

(
a1

(
Cr2

(
Cr2 + 6

)
− 6

)
− 8a23

)
+2a1a

3
3r

2 − 6a1a
3
2C

3r2

η4(r) = 3a3Cr2(2a3 − a2C)− 6(a3 − a2C)2 + a23C
2r4

η5(r) = 6a2C(a3 − a2C)2ζ(R)χ(R)

+a3R
2

(
− 6a32C

3 − 3a22a3C
2
(
CR2 − 4

)
+a2a

2
3C

(
CR2

(
CR2 + 6

)
− 6

)
+ 2a33

)
ϱ1(α, β, x) = 6α3a42

(
3αx2 − 1

)
+ 3α2a32β

(
3αx2

(
3αx2 − 5

)
+ 4

)
+2αa22β

2
(
3αx2 − 1

) (
αx2

(
αx2 − 9

)
+ 3

)
+a2β

3

(
αx2

(
αx2

(
αx2

(
αx2 − 1

)
+ 48

)
+ 4

)
+ 6

)
+2β4x2

(
1− 3αx2

)
ϱ2(α, β, x) = β

(
6α3a32 + 3(α− 4)α2a22β − (α(α + 6)− 6)αa2β

2 − 2β3

)
−6αa2(a2 + β)(β − αa2)

2 ln

(
1 +

β

a2

)
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ϱ3(α, β, x) = (α(α + 3)− 6) (a2 + β)(β − αa2)
2

ϱ4(α, β, x) = 6αa2(a2 + β)(β − αa2)
2ζ(β, x)ϱ6(α, β, x)− βϱ5(α, β, x)

ϱ5(α, β, x) = −6α3a42
(
α
(
(α(α + 3)− 6)x2 + 9

)
+ 1

)
−3α2a32βϱ7(α, β, x) + αa22β

2ϱ8(α, β, x)

+2(α + 1)3β4x2 + a2β
3ϱ9(α, β, x)

ϱ6(α, β, x) = (α + 1)3 ln(a2)− (9α + 1) ln(a2 + β)− α(α(α + 3)− 6) ln ζ(β, x)

ϱ7(α, β, x) = α

(
9α + α(α(α + 3)− 6)x4 + 2

(
α
(
α2 + α− 3

)
+ 13

)
x2 − 35

)
− 4

ϱ8(α, β, x) = α

(
α(9α + 55) + α2(α(α + 3)− 6)x6 − 3(α− 2)α(α(α + 3)− 6)x4

+3
(
α
(
4α2 + α + 5

)
+ 16

)
x2 − 48

)
− 6

ϱ9(α, β, x) = α
(
x2 (αϱ14(α, β, x)− 18) + 18

)
+ 2

ϱ10(α, β, x) = 6α3a42
(
3αx2 + 1

)
+ 3α2a32β

(
3αx2 − 4

) (
3αx2 + 1

)
+2αa22β

2
(
α2x4

(
3αx2 − 26

)
+ 3

)
− 2β4x2

(
3αx2 + 1

)
+αa2β

3x2

(
αx2

(
αx2

(
7αx2 + 13

)
+ 48

)
+ 16

)
ϱ11(α, β, x) = 6αa2ϱ3(α, β, x)ζ(β, x)χ(β, x)− x2ϱ12(α, β, x)

ϱ12(α, β, x) = 2(6− α(α + 3))β4(a2 + β)

−αa2β(6− α(α + 3))(a2 + β)ϱ13(α, β, x)

−(9α + 1)
(
αx2 + 2

)
ζ(β, x)ϱ2(α, β, x)

ϱ13(α, β, x) = 6(β − αa2)
2 + 3αβ(αa2 − 2β)x2 − α2β2x4

ϱ14(α, β, x) = α(α(α + 3)− 6)x2
(
αx2 + 6

)
+ 3α(α + 13)− 6
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φ1(r) = a22B
(
3a23 − 2a1Br2

)
+ a2a3Br2

(
a1

(
2−Br2

)
+ 3a23

)
−a1a

2
3r

2

φ2(r) = a1

(
− 2a32B

2
(
Br2 − 1

)
+ a22a3B

(
Br2

(
5− 3Br2

)
− 2

)
+a2a

2
3

(
Br2

(
Br2

(
Br2 + 9

)
+ 3

)
+ 3

)
+ a33r

2
(
1−Br2

))
+3a2a

2
3B

2
(
Br2 + 3

)
ζ(r)2

φ3(r) = a1
(
7Br2 + 1

) (
2a22B

2 + a2a3B
(
Br2 − 2

)
+ a23

)
+3a2a

2
3B

2
(
Br2 − 5

)
ζ(r)

φ4(r) = a22a3B
(
−6B2r4 +Br2 + 2

)
− 2a32B

2
(
2Br2 + 1

)
+2a2a

2
3Br2

(
Br2

(
Br2 + 6

)
+ 3

)
− a33r

2
(
2Br2 + 1

)
φ5(r) = a3R

2
(
2a22B

2 + a2a3B
(
BR2 − 2

)
+ a23

)
−2a2B(a2B − a3)ζ(R)χ(R)

Υ(α, β, x) =
2αa2 (αa2 − β) γ3(α, β, x)χ(β, x)

(7α + 1)γ2(α, β, x)x2

γ1(α, β, x) = αa22β
(
αx2

(
5− 3αx2

)
− 2

)
+a2β

2
(
αx2

(
αx2

(
αx2 + 9

)
+ 3

)
+ 3

)
+β3x2

(
1− αx2

)
− 2α2a32

(
αx2 − 1

)
γ2(α, β, x) = β

(
2α2a22 + (α− 2)αa2β + β2

)
−2αa2(a2 + β)(αa2 − β) ln

(
1 +

β

a2

)
γ3(α, β, x) = (α− 5) (a2 + β)

γ4(α, β, x) = 2α2a22 + αa2β
(
αx2 − 2

)
+ β2

γ5(α, β, x) = αa22β
(
−6α2x4 + αx2 + 2

)
+ 2αa2β

2x2
(
αx2

(
αx2 + 6

)
+ 3

)
−β3x2

(
2αx2 + 1

)
− 2α2a32

(
2αx2 + 1

)
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