UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

Evaluación de Problemática de Inundaciones en el GAD Municipal San Gabriel, Carchi

Gabriel Alejandro Jara Jacome Ingeniería Civil

Trabajo de fin de carrera presentado como requisito para la obtención del título de Ingeniería Civil

Quito, 20 de diciembre de 2021

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

HOJA DE CALIFICACIÓN DE TRABAJO DE FIN DE CARRERA

Evaluación de Problemática de Inundaciones en el GAD Municipal San Gabriel, Carchi

Gabriel Alejandro Jara Jacome

Nombre del profesor, Título académico

Sixto Durán-Ballén Ochoa, PhD

Quito, 20 de diciembre de 2021

3

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales

de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad

Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad

intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este

trabajo en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación

Superior del Ecuador.

Nombres y apellidos:

Gabriel Alejandro Jara Jacome

Código:

00137742

Cédula de identidad:

1725083008

Lugar y fecha:

Quito, 27 de septiembre de 2021

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado como una publicación, incluso a pesar de estar disponible sin restricciones a través de un repositorio institucional. Esta declaración se alinea con las prácticas y recomendaciones presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017) Discussion document on best practice for issues around theses publishing, disponible en http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following capstone project is available through Universidad San Francisco de Quito USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be considered a publication. This statement follows the recommendations presented by the Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion document on best practice for issues around theses publishing available on http://bit.ly/COPETheses.

5

RESUMEN

El presente proyecto integrador es una evaluación de la problemática de inundación en la

parroquia de San Gabriel, Carchi. Dentro de este, se analizará la zona geográfica y sus

condiciones hidrológicas, factores hidraúlcios e hidrológicos de las precipitaciones, entre otros.

El resultado será conocer la escorrentía máxima que se genera ante una precipitación de

periodo de retorno considerable, dar asistencia y soluciones técnicas para evitar afectaciones

por inundaciones.

Palabras clave: Hidrología, Hidraúlica, Precipitaciones, Inundaciones, Escorrentía

6

ABSTRACT

This integrative project is an evaluation of the problematic flooding in the parish of San

Gabriel, Carchi. The geographical area and its hydrological conditions, hydraulics and

hydrological factors of rainfall, among others are analyzed. The result will be to estimate the

maximum runoff that is generated in the event of a high return period precipitation and to

provide assistance and technical solutions to avoid future flooding damage.

Keywords: Hydrology, Hydraulics, Precipitation, Floods, Runoff

TABLA DE CONTENIDO

Cap. 1: Introducción	10
1.2 Problematica	11
1.3 Área de estudio	11
1.3 Objetivos	13
1.4 Metodología	
Cap. 2: Cálculo de Caudal Máximo	
2.1 Cálculo de área de drenaje	
2.1.1 Método geométrico	
2.1.2 Método computacional (AutoCAD)	17
2.2 Intesidad de lluvia	19
2.2.1 Estación Tulcán Aeropuerto	19
2.2.2 Estación M013 Zona 28	20
2.3 Coeficientes de escorrentía	21
2.4 Estimación de escorrentía	22
2.4.1 Método racional	22
2.5 Precipitaciones Mensuales	23
2.6 Caudales Mensuales con precipitaciones y método racional	
Cap. 3: Soluciones Técnicas	
3.1 Diseño de Revestimiento de piedra	25
3.1.1 Tipo de piedra	
3.1.2 Tamaño promedio de piedra	25
3.1.3 Profundidad de relleno	
3.1.4 Longitud de relleno	26
3.1.5 Ancho del relleno.	
3.2 Diseño de estructura de drenaje	27
3.3 Diseño de detención de aguas pluviales	
3.4 Soluciones no estructurales	
3.4.1 Geolámina y geomembrana	31
3.4.2 Cobertura vegetal	
3.4.3 Reforestación	
Cap. 4: Conclusiones	
Cap. 5: Referencias Bibliografias	

ÍNDICE DE TABLAS

Tabla 1: Cálculo de área de drenaje en Excel	16
Tabla 2: Características físicas de las subcuencas para los sitios de captación	17
Tabla 3: Intensidad máxima para distintos periodos de retorno	20
Tabla 4: Intensidades máximas para la Zona 28	
Tabla 5: Uso del suelo y cobertura vegetal en el área de estudio	21
Tabla 6: Factores típicos de coeficiente de escorrentía	
Tabla 7: Precipitación mensual y anual en el área de interés (mm)	23
Tabla 8: Intensidades Mensuales	
Tabla 9: Caudal Mensual	24
Tabla 10: Caudal en función de la elevación	
Tabla 11: Diseño de detención de aguas pluviales para distintos periodos de retorno	
Tabla 12: Diseño de detención de aguas pluviales para un $T_c = 120 \text{ minutos}$	
Tabla 13: Diseño de detención de aguas pluviales en tres etapas	
The in the Branch and are included and are are an included and in the company and in the	

ÍNDICE DE FIGURAS

Figura 1: Ubicación general del área de interés (Fuente: IGM)	11
Figura 2: Parroquía de San Gabriel vista desde Google Earth	12
Figura 3: Curvas de nivel parroquía de San Gabriel	14
Figura 4: Área de drenaje	
Figura 5: Área de drenaje ajustada con sus elementos	
Figura 6: Área de drenaje obtenido en AutoCAD	
Figura 7: Subcuencas hidrográficas de los sitios de interés	
Figura 8: Curvas IDF estación Tulcán Aeropuerto	19
Figura 9: Vegetación de San Gabriel	21
Figura 10: Elementos hidráulicos en una tubería circular	26
Figura 11: Nomograma para estimar el tiempo de flujo superficial	28
Figura 12: Nomograma para estimar la velociduad de flujo superficial concentrado	

INTRODUCCIÓN

1.1 Introducción

Se conoce como precipitación al proceso dentro del ciclo hidrológico donde el agua, en estado gaseoso, se transforma en estado líquido a través de la presión atmosférica dando como resultado la llovizna. La intensidad de la misma se puede calcular según la cantidad de precipitación (mm) dividida para la duración del evento (hr). Según la agencia metereologíca METEORED, una precipitación puede ser considerada torrencial a partir de una intensidad de 60 mm/h en adelante.

El régimen de lluvia de Ecuador presenta un balance hídrico positivo, debido a que las lluvias están presentes durante todo el año en la mayor parte de su área territorial. En general, se puede definir que el territorio ecuatoriano presente un número de lluvias alta, siendo su pico entre los meses de marzo y junio y disminuye durante el mes de agosto hasta septiembre. Por consiguiente, se puede decir que Ecuador tiene un régimen bimodal, debido a que presenta dos periodos de alta actividad pluvial siendo de marzo-junio y octubre-noviembre. Las provincias del sur amazónico presentan el mínimo de precipitaciones, siendo su régimen de lluvias media mensual de (100 – 150 mm), mientras que en las provincias al norte del país oscilan entre los 240 mm.

Existen regiones en específico que sufren de lluvias de alta intensidad siendo de 40 mm en 30 minutos ($I_{30} = 40 \ mm$). Por defecto, esto genera la problemática de inundaciones que se ve más presente en las provincias del norte de Ecuador. Las consecuencias de las inundaciones afectan principalmente en los siguientes factores: Interrupción del servicio de agua potable en sectores urbanos y rurales, erosión de subsuperficial y socavones y afectaciones en la salud. En promedio son cerca de 150 mil habitantes, 80 mil hectáreas de cultivo y más de mil

kilómetros de vialidad que se ven afectadas cada año. Esto refleja una severa problemática a tratarse por parte de cada región y las condiciones pluviales que sufre.

1.2 Problemática

Dado el evento ocurrido el 15 de marzo del 2021 en la parroquia de San Gabriel, donde tras una fuerte precipitación muchas viviendas y terrenos resultaron inundados, el GAD Municipal solicitó soporte técnico con el cual se pueda evaluar la situación ocurrida y dar soluciones técnicas. Por tanto, dentro de este proyecto integrador, se analizará la zona geográfica de la parroquia, topografía, condiciones hidrológicas, etc; dando como resultado la estimación de la escorrentía máxima para un periodo de retorno considerable que permita una solución segura y a su vez económica para evitar futuras afectaciones por inundaciones.

1.3 Área de estudio

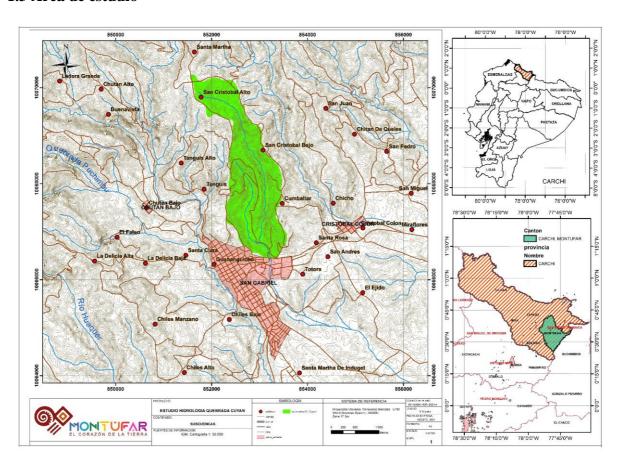


Figura 1: Ubicación general del área de interés (Fuente: IGM)

La zona geográfica de interés se encuentra en la provincia de Carchi parroquia San Gabriel

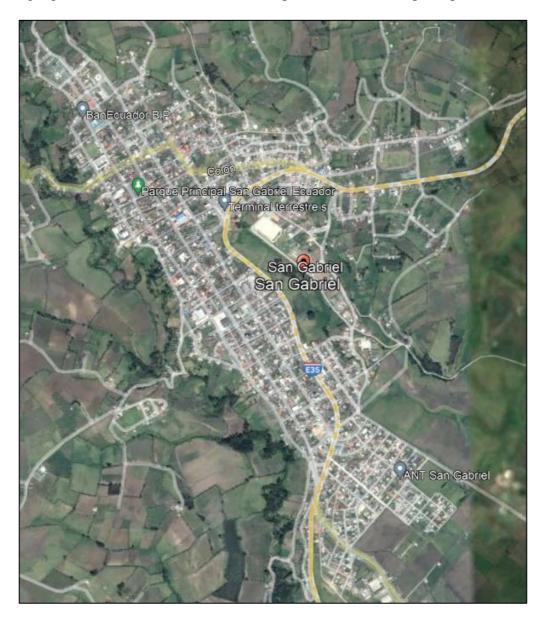


Figura 2: Parroquía de San Gabriel vista desde Google Earth

San Gabriel cuenta con una población de 12575 habitantes según el último censo realizado en 2010. La industria láctea y el cultivo de tubérculos son las principales fuentes económicas de la zona. El clima es un factor muy importante a tomar en cuenta en la región, debido a que es una región de alta actividad pluvial y con una humedad promedia de 93 %. Su región es principalmente montañosa, de altas tierras, antiplanos con depresiones considerable.

1.4 Objetivos

- Analizar la zona geográfica y evaluar las condiciones hidrológicas.
- Calcular los factores hidrológicos e hidráulicos presentes en las precipitaciones.
- Estimar el caudal máximo que genera la actividad pluvial.
- Encontrar soluciones técnicas para mitigar el daño de futuras inundaciones.

1.5 Metodología

Se empezará analizando las curvas de nivel del sitio en cuestión para delimitar la cuenca. Utilizando el Método Racional, será posible obtener el caudal máximo para un periodo de retorno adecuado, donde será posible calcular el flujo de agua efecto de las precipitaciones pluviales. Los datos utilizados son extraídos del estudio de hidrología y sedimentología pertenecientes al departamento de agua potable y alcantarillado del cantón Montufar realizada por el Ing. Angel Alvarado en septiembre del 2021. El diseño de posibles soluciones técnicas para controlar la problemática de inundaciones en la zona, se desarrollará con el contenido de la clase de Hidraulica (ICV-3003). Se determinará la solución más viable considerando principalmente los factores económicos y de seguridad que exige el cantón en cuestión.

Capítulo 2: Cálculo de Caudal Máximo

2.1 Cálculo de área de drenaje.

2.1.1 Método geométrico

Utilizando el programa topográfico GlobalMapper, se exporta las curvas de nivel dando como resultado el siguiente gráfico.

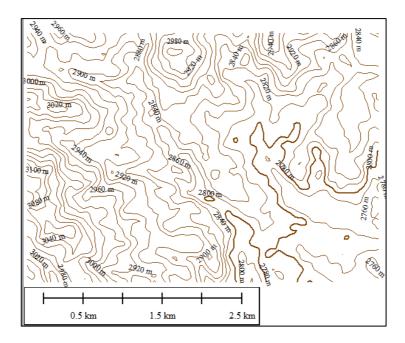


Figura 3: Curvas de nivel parroquía de San Gabriel

Una vez limitada el área de interés se procede a determinar la subcuenca, es decir, el área que acumula escorrentía hacia un mismo punto de drenaje. El procedimiento para la delimitación de una cuenca según el libro *Introducción a la hidráulica e hidrología con aplicaciones para la administración de agua pluvial* es el siguiente:

- Información Topográfica: Curvas de nivel/líneas de contorno (Elevaciones)
- Partiendo del Punto de Análisis, alcanzar los puntos altos (Cumbres), cruzando las curvas de nivel de manera perpendicular.
- Unir los puntos altos (Cumbres) sin cruzar los puntos bajos (Ríos, Quebradas, etc.)
- Trazar paralelo a 2 líneas de igual Elevación

- Imaginar el escurrimiento de la lluvia si este contribuye a la Escorrentía del área de drenaje
- Puntos Altos (Cumbres) apuntan hacia abajo
- Puntos Bajos (Valles) apuntan hacia arriba

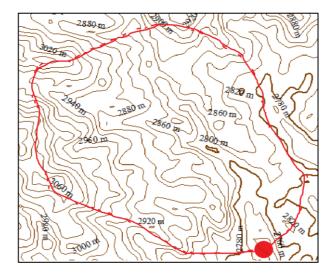


Figura 4: Área de drenaje

Delimitada el área de drenaje se procede a separar en figuras geométricas, de preferencia triángulos, para calcular el área total del polígono de la siguiente manera:

$$S = \frac{a+b+c}{2}$$

- Donde: a, b y c las tres líneas que conforman el triangulo.
- S el perímtero del triangulo.

$$\circ \quad A = \sqrt{S(S-a)(S-b)(S-c)}$$

• A el área del triangulo

$$A_T = \sum A_i$$

• A_T la suma de todas las áreas.

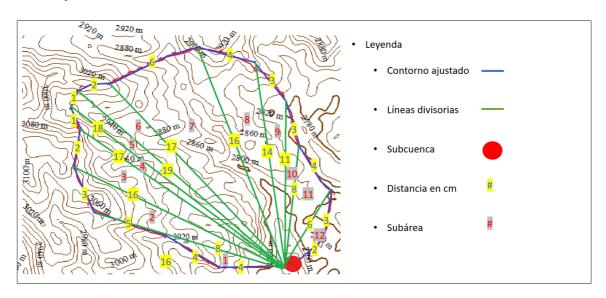


Figura 5: Área de drenaje ajustada con sus elementos

Utilizando Excel, se obtiene la siguiente tabla:

Tabla 1: Cálculo de área de drenaje en Excel

		Area c	le Drena	ije <u> </u>		
Escala	2					
a1	4 b1	4 c1	8 S1	8 A1	2,57	10,28
a2	13 b2	3 c2	16 S2	16 A2	5,65	22,61
a3	16 b3	2 c3	17 S3	17,5 A3	14,26	57,05
a4	17 b4	1 c4	18 S4	18 A4	4,02	16,08
a5	18 b5	1 c5	19 S5	19 A5	4,25	17,00
a6	19 b6	2 c6	17 S6	19,05 A6	5,63	22,51
a7	17 b7	6 c7	16 S7	19,5 A7	47,99	191,98
a8	16 b8	4 c8	14 S8	17 A8	25,75	103,00
a9	14 b9	3 c9	11 S9	14,05 A9	4,79	19,14
a10	11 b10	3 c10	8 S10	11,05 A10	3,62	14,49
a11	8 b11	4 c11	6 S11	9 A11	11,62	46,48
a12	2 b12	6 c12	3 S12	5,5 A12	4,91	19,62
					Area Total	540

 $A_T = 540 \ Ha$

2.1.2 Método computacional (AutoCAD)

Utilizando GlobalMapper se extrajo las curvas de nivel a AutoCAD y trazando un polígono se puede obtener las propiedades geométricas como el área.

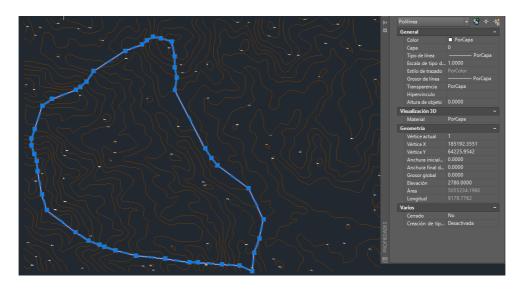


Figura 6: Área de drenaje obtenida en AutoCAD

$$A_T = 505 Ha$$

2.1.3 Recopilación de información por parte de IGM

El cálculo del área fue recopilado de la base de datos del Instituto Geográfico Militar, obteniendo así las siguientes áreas.

Tabla 2: Características físicas y morfológicas de las subcuencas para los sitios de captación

Nombre Subcuenca	A	P	Lp	Hmáx	Hmín	S	Sc	Tc
Nombre Subcuenca	(km^2)	(km)	(m)	(m)	(m)	(%)	(%)	(min)
Quebrada Cuyán en cantera	1.75	8.59	3932	3294	2892	10.12	28.24	45
Quebrada Cuyán AJ Quebrada	1.89	9.44	4441	3294	2853	9.73	28.57	49
Sin Nombre	1.09	9. 44	444 1 	3294	2633	9.73	20.37	47
Quebrada Sin Nombre AJ	1.08	5.25	2411	3129	2853	8.58	30.72	36
Quebrada Cuyán	1.08	3.23	∠ 4 11	3129	2033			30
Quebrada Cuyán en Santa Rosa	3.29	10.68	5057	3294	2839	8.82	18.66	58

Fuente: Departamento de agua potable y alcantarillado Montufar

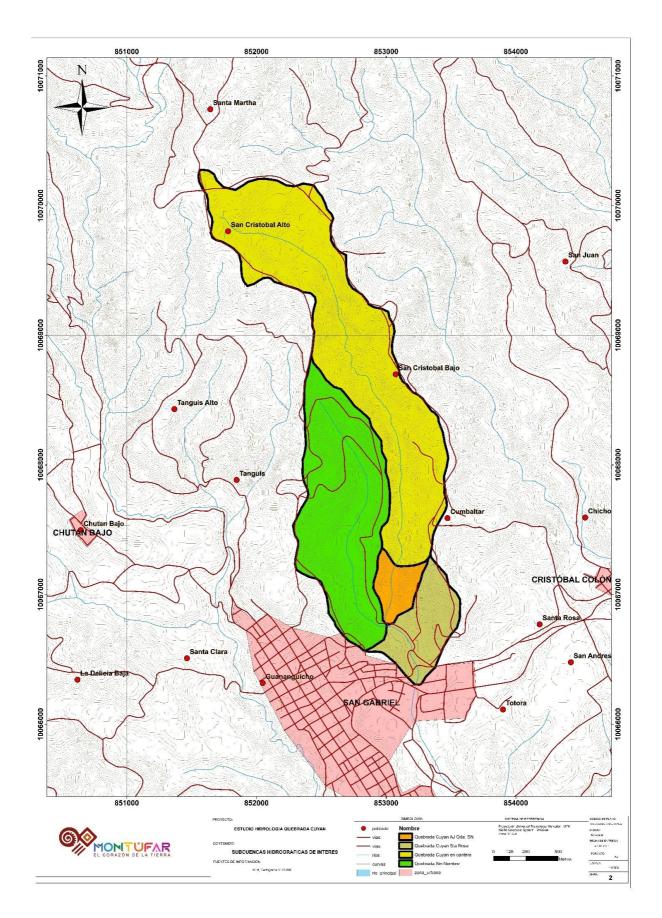


Figura 7: Subcuencas hidrográficas de los sitios de interés (Fuente: IGM)

Para la estimación de la escorrentía, se utilizará las dos áreas de interés más relevantes, siendo la Quebrada Cuyán en Santa Rosa con un área de 3.29 km2 y la Quebrada Cuyán AJ Quebrada Sin Nombre con un área de 1.89 km2. Dando como resultado un área total de:

$$A_T = 3.29 + 1.89 \text{ km}^2 = 5.18 \text{ } km^2 = 518 \text{ } Ha$$

2.2 Intensidad de lluvia (i)

2.2.1 Estación Tulcán Aeropuerto

Se tomaran los datos de las estaciones pluviales M102, H017 para determinar la intensidad de la parroquia de San Gabriel de la *Actualización del estudio de lluvias intensas Quito* – *Ecuador Versión (2) 2019 del* INAMHI para la parroquia de Tulcán, la cual es la más próxima al sitio en cuestión.

Utilizando las curvas de intensidad-duración-frecuencia (IDF) se puede obtener los siguientes datos para aplicar la siguiente formula

$$i = \frac{K \times T}{t}$$

Donde:

- I= Intensidad (mm/h)
- T= período de retorno (años)
- t= tiempo de duración (minutos)
- K, m, n= constantes de ajuste propias de cada estación

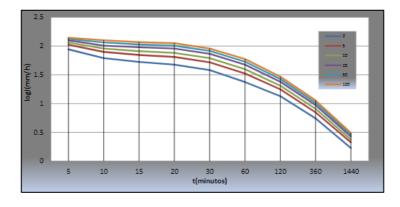


Figura 8: Curvas IDF estación Tulcán Aeropuerto (INAMHI 2019)

Tabla 3: Intensidad máxima para distintos periodos de retorno (INAMHI 2019)

(min)	2	Period 5	o de Retor	no T (años) 25	50	100
5	80.8	95.6	108.5	128.4	145.8	165.5
10	64.8	76.7	87.0	103.0	116.9	132.8
15	57.0	67.4	76.5	90.5	102.8	116.7
20	52.0	61.5	69.8	82.6	93.8	106.5
30	42.8	52.1	60.3	73.3	84.9	98.4
60	24.7	30.0	34.8	42.3	49.0	56.8
120	15.1	17.7	19.9	23.4	26.4	29.8
360	5.8	6.8	7.6	9.0	10.1	11.4
1440	1.7	2.0	2.3	2.7	3.0	3.4

Dadas las condiciones del evento ocurrido el 15 de marzo, se seleccionó un periodo de retorno de 50 años para una duración de 60 minutos. La intensidad calculada sería

$$i = 49.0 \, mm/hr$$

2.2.2 Estación M013 Zona 28

Por otro lado, se tomará en cuenta la información proporcionada por la Zona 28 que coincide con muchas caracetristicas de la suncuenca de interés del cantón San Gabriel, de la cual se tiene mayor información en este parámetro. Al ser muy parecidas, se utiliza factores de ajustes con lo que se presenta la siguiente información:

Tabla 0: Intensidades máximas para la Zona 28 (mm/h)

Período de	Duración (min)													
retorno (años)	5	10	15	30	60	120	180	360	720	1440				
5	103.6	83.1	73.0	58.6	35.7	19.3	13.5	7.3	3.9	2.1				
10	119.5	95.9	84.3	67.6	41.2	22.3	15.6	8.4	4.6	2.5				
25	139.8	112.1	98.5	79.1	48.1	26.1	18.2	9.8	5.3	2.9				
50	155.0	124.4	109.3	87.7	53.4	28.9	20.2	10.9	5.9	3.2				
100	170.4	136.7	120.2	96.4	58.7	31.8	22.2	12.0	6.5	3.5				

Fuente: INAMHI, 2019

Tomando en cuenta los factores de seguridad y económicos del catón, se optó por tomar un periodo de retorno intermedio de 25 años para una duración de 1 hora, obteniendo así:

$$i = 48.1 \, mm/hr$$

2.3 Coeficiente de escorrentía

Figura 9: Vegetación de San Gabriel

El coeficiente de escorrentía es un factor que considera tanto la evaporación. cobertura vegetal y perdidas inciales durante la precipitación. Según la información proveniente del IEE, MAGAP, 2017 el área correspondiente contiene en su mayoría cobertura de pasto y cultivos, como se indica en la siguiente tabla:

Tabla 5: Uso del suelo y cobertura vegetal en el área de estudio

Nombre Subcuenca	Cobertura vegetal	A (km²)
	HABA	0.010
Quebrada Cuyán en cantera	PAPA	0.977
	PASTO CULTIVADO	0.765
	HABA	0.010
Quebrada Cuyán AJ	ARVEJA	0.012
quebrada Sin Nombre	PAPA	1.022
	PASTO CULTIVADO	0.841
	ARVEJA	0.014
	CENTRO POBLADO	0.007
Quebrada Sin Nombre AJ	HABA	0.025
quebrada Cuyàn	MAIZ	0.121
	PAPA	0.397
	PASTO CULTIVADO	0.507
	ARVEJA	0.044
	CENTRO POBLADO	0.007
Quebrada Cuyán en Santa	HABA	0.035
Rosa	MAIZ	0.165
	PAPA	1.529
	PASTO CULTIVADO	1.425

Fuente: IEE - MAGAP, 2017

Utilizando la tabla de coeficientes del Método Racional del libro de Introduction to

Hydraulics and Hydrology with Aplications for Stormwater Management John E. Gribbin,

P.E. Third Edition, se toma el coeficiente de diseño para una zona con cobertura vegetal de:

Tabla 6: Factores típicos de coeficiente de escorrentía. Fuente: Gribbin, J (2002)

TABLE 11-1 Typical Runoff Coef	efficients for Use with the Rational Method Runoff Coefficient						
Surface Type	Range of Values	Typical Desig					
Impervious (pavement, roofs)	0.75-0.95	0.95					
Lawns	0.05-0.35	0.30					
Unimproved (woods, brush)	0.10-0.30	0.20					

Note: These values of c are typical for lower-intensity storms (up to 25-year return period). Higher values are appropriate for larger design storms. A more extensive list of c values is presented in Appendix C-1.

$$c = 0.30$$

2.4 Estimación de escorrentía

2.4.1 Método racional

Este método se utiliza para calcular el caudal máximo (Q_{max}) y su hidrograma de escorrentía. Cabe recalcar que este método asume que el 100 % de la cuenca es impermeable, en otras palabras, que no tiene perdidas a lo largo de su extensión. Los factores de evaporación, infiltración, cobertura vegetal y perdidas inciales se aplican en el coeficiente de escorrentía (c) según las condiciones climáticas de la zona. La intensidad de la lluvia (i) es uno de los principales factores para este método, siendo obtenido por estaciones pluviales. Por último, el área de interés es cálculada según las curvas de nivel del sitio y la subcuenca que genera la misma, este puede ser obtenido trazando cruces manualmente o por programas como AutoCAD.

Tomando en cuenta los factores previamente analizados, la escorrentía estimada se encuentra utilizando la siguiente formula:

$$Q = \frac{c i A}{360}$$

$$Q = \frac{0.30 \times 48.1 \times 518}{360} = 20.62 \, m^3 / s$$

El caudal obtenido corresponde a una tormenta con periodo de retorno de 25 años para una duración de 1 hora (Q_{max}). El caudal obtenido será el caudal de diseño con el cual se procederá a realizar los diseños para las soluciones técnicas.

2.5 Precipitaciones Mensuales

La distribución de precipitaciones presenta un régimen bimodal, con sus puntos máximos en abril y noviembre y el mínimo ocurre en agosto.

Tabla 7: Precipitación mensual y anual en el área de interés (mm)

Estación	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Prom
El Angel M012	90.2	94.7	105.7	103.5	66.2	37.2	30.7	24.7	40.3	96.2	125.2	113.9	77.38
San Gabriel M013	81.5	86.8	97.8	110.6	82.6	58.1	53.6	39.8	47.3	97.9	112.9	102.6	80.96

Fuente: INAMHI

2.6 Caudales Mensuales con precipitaciones y método racional

Utilizando los datos de la tabla 7, se procede a promediar las estaciones M012 y M103 obteniendo la siguiente intensidad

$$p_{prom} = \frac{77.38 + 80.96}{2} = 79.17 \ mm$$

Se presume un promedio de 2 lluvias intensas, para obtener la intensidad

$$i_{prom} = \frac{79.17}{2} = 39.58 \, mm/h$$

Tabla 8: Intensidades Mensuales del área de interés (mm/h)

Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Prom
42.9	45.4	50.88	53.53	37.2	23.8	21.1	16.1	21.9	48.5	59.53	54.13	39.58

Para cada intensidad mensual, se aplicó el método racional para obtener el caudal máximo en cada mes, descrita en la siguiente tabla:

$$Q_{ene} = \frac{42.9 \times 0.30 \times 518}{360} = 18.5 \, m^3/s$$

Tabla 9: Caudal Mensual del área de interes (m^3/s)

Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Prom
18.5	19.6	21.96	23.1	16.1	10.3	9.1	6.96	9.45	20.9	25.69	23.36	17.09

Con esto, se obtiene que el caudal máximo $Q_{max}=25.69\ m^3/s$ perteneciente al mes de noviembre. Por consiguiente, se puede presumir que la precipitación ocurrida en el mes de marzo, proviene de una tormenta de periodo de retorno mayor a 25 años.

3. Soluciones Técnicas

Tras estimar la escorrentía se realizará el análisis y diseño de los métodos de protección de suelos y control de erosión debido a indundaciones. Se prevé que las protecciones sugeridas se colocan en la parte norte del caton, pues la subcuenca se encuentra ubicada en la parte superior como se puede apreciar en la figura 7. De igual forma el caudal de diseño se prevé que se reparta a lo largo de toda la sección, por lo que se considerará una repartición del mismo en diez puntos. Los métodos son los siguientes:

3.1 Diseño de revestimiento de piedra

Para este diseño se tomará en cuenta los siguientes factores: Tipo de piedra, tamaño promedio de piedra (d_{50}) , profundidad de relleno (T), longitud de relleno (L_a) y el ancho del relleno (W). Debido a que el caudal encontrado es del total de área, se plante la posibilidad de crear diez revestimientos en las zonas de mayor peligro.

3.1.1 Tipo de piedra

Para un revestimiento de piedra se debe utilizar grava grande, entre las cuales se debe destacar las siguientes cualidades: Diámetro de mayor magnitud, durabilidad y angularidad,

3.1.2 Tamaño promedio de piedra (d_{50})

Para controlar el drenaje que afrontará el revestimiento de piedra, se recomienda el uso de tuberías comerciales de 36 pulgadas, lo que es D=B=91.4 cm.

Se asume un coeficiente de Manning de n = 0.012

La pendiente de la parroquia de San Gabriel es la siguiente: $S = \frac{3020-2760}{1900} \times 100\% = 1.3\%$ Las demás propiedades geométricas son dadas automáticamente por el diámetro de la tubería

Siendo el radio hidraúlico R = 0.228 m

El área de la tubería sería: $A = \frac{\pi}{4}D^2 = \frac{\pi}{4}0.914^2 = 0.656$

$$Q_{Full} = \frac{1}{n} R^{2/3} S^{1/2} A = \frac{1}{0.012} (0.228)^{\frac{2}{3}} (0.013)^{\frac{1}{2}} (0.656) = 2.32 \, m^3 / s$$

Para obtener el flujo de salida, se utilizará el ábaco para elementos hidraúlicos en una tubería circular.

%
$$Q = \frac{Q}{Q_{Full}} \times 100 \% = \frac{20.62/10}{2.32} \times 100\% = 89 \%$$

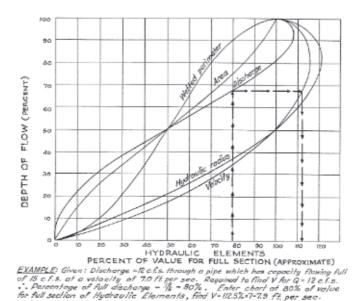


Figura 10: Elementos Hidraulicos en una tubería. Fuente: Gribbin, J (2002)

$$Y_{out} = 0.73 (0.914) = 0.67 \text{ m}$$

Resultando:

$$d_{50} = \frac{0.044}{Y_{out}} \left(\frac{Q}{B}\right)^{4/3} = \frac{0.044}{0.67} \left(\frac{2.06}{0.914}\right)^{4/3} = 19.41 \text{ cm}$$

3.1.3 Profundidad de relleno (T)

Este parámetro varia según el uso de geolámina que en el país el precio osila entre dos a tres dólares el metro cuadrado,

Con geolámina: $T = 2 \times d_{50} = 2 \times 19.41 = 38.81 \ cm$

Sin geolámina: : $T = 3 \times d_{50} = 3 \times 19.41 = 58.22 \ cm$

3.1.4 Longitud de relleno (L_a)

Este factor varia según la altura del caudal de salida, siendo en este caso mayor a la mitad del parámetro B. Por tanto:

$$L_a = 5.4 \frac{Q}{B^{3/2}} = 5.4 \frac{55}{0.914^{3/2}} = 12.7 m$$

3.1.5 Ancho del relleno (W)

El ancho de relleno varia según la altura del caudal de salida, siendo en este caso mayor a la mitad del parámetro B. Por tanto:

$$W = 3B + 0.4L_q = 3(0.914) + 0.4(12.7) = 7.8 m$$

3.2 Diseño de estructura de drenaje

Utilizando dispositivos hidraúlicos para drenar el caudal con un tubería comercial promedio de 18 pulgadas (D = 45.7 cm), se obtiene:

$$A_{Tuberia} = \frac{\pi}{4}D^2 = \frac{\pi}{4}(45.7)^2 = 0.66 m^2$$

Se utilizará un coeficiente de tubería promedio de $c_D = 0.62$

Por consiguiente:

$$Q = c_D \times A_{Tuberia} \sqrt{2gh}$$

$$Q = 0.62 \times 0.66 \sqrt{2 \times 9.81 h}$$

$$Q = 1.81 \sqrt{h}$$

Se analizará para una altura máxima de 4 metros cada 0.4 metros

Tabla 4: Caudal en función de la elevación.

Elevación (m)	h (m)	Q (m3/s)
0	0	0.0
0.4	0.2	0.7
0.8	0.6	1.4
1.2	1.0	1.8
1.6	1.4	2.1
2	1.8	2.4
2.4	2.2	2.7
2.8	2.6	2.9
3.2	3.0	3.1
3.6	3.4	3.3
4	3.8	3.5

La estructura de drenaje necesaria para controlar el impacto pluvial será de 1.6 metros de altura si es que se realizan diez de estas estructuras.

$$2.1 (10) = 21 \frac{m^3}{s} \ge 20.62 m^3$$

Si se desea realizar la estructura de 4 metros, solo serían necesarios 6.

$$3.5 (6) = 21 \frac{m^3}{s} \ge 20.62 m^3$$

3.3 Diseño de detención de aguas pluviales

Se calculará el tiempo de retorno utilizando el siguiente nomograma tomando en cuenta el factor de Manning y la pendiente del terreno anteriormente presentados. Se considerará que la escorrentía inicial se efectua en los primeros 100 m, es decir, $L_1 = 100 \text{ m}$.

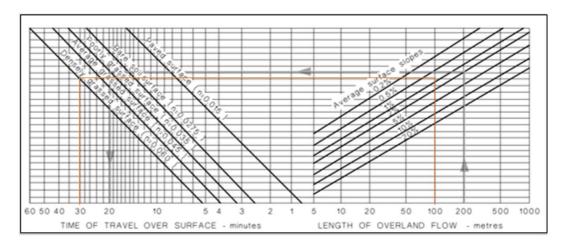


Figura 11: Nomograma para estimar el tiempo de flujo superficial. Fuente: Gribbin, J (2002)

$$t_1 = 30 \ minutos$$

Para el flujo concentrado superficial se utilizará el siguiente nomograma. La longitud en este caso se estima como $L_2 = 300 \, m$. Se evalua con el menor coeficiente, debido a la saturación.

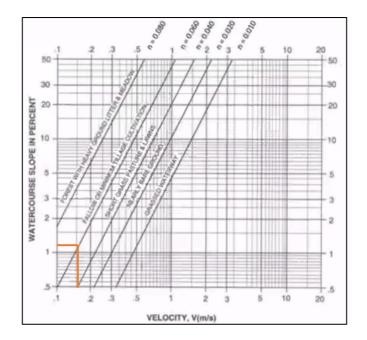


Figura 12: Nomograma para estimar la velociduad de flujo superficial concentrado.

Fuente: Gribbin, J (2002)

$$v_2 = 0.5 \frac{m}{s}$$

$$t_2 = \frac{L_2}{v_2} = \frac{300}{0.15} = 2000 \text{ seg} = 33 \text{ minutos}$$

Para el flujo corriente se utilizará las ecuaciones de Manning. La longitud será de $L_3=150\ m$

$$v_3 = \frac{1}{n}R^{2/3}S_o^{1/2} = \frac{1}{0.012}(0.228)^{\frac{2}{3}}(0.013)^{1/2} = 3.55\frac{m}{s}$$
$$t_3 = \frac{1500}{3.55} = 422 \text{ seg} = 7 \text{ minutos}$$

El tiempo total será $T_c = t_1 + t_2 + t_3 = 30 + 33 + 7 = 70$ minutos

Utilizando la tabla 2, considerando un periodo de retorno de 10, 25 y 50 años, se tomará los dos tiempos más cercanos al tiempo calculado, resultando $Tc = 60 \ y \ 120 \ min$

Tabla 11: Diseño de detención de aguas pluviales para distintos periodos de retorno

Periodo de Retorno (año)	i (mm/hr)	T (min)	Qp-prep (m3/s)
10	34.8	60	104
25	42.3	60	127
50	49	60	147

Para el cálculo de Q_{p-pre} se utiliza un factor de c=0.80 debido a la alta densidad de cobertura vegetal en los alrededores.

$$Q_{p-pre} = \frac{ciA}{360} = \frac{0.80 \times 19.9 \times 1347}{360} = 60 \frac{m^3}{s}$$

Para el cálculo de Q_{p-post} se repite el mismo proceso utilizando un factor de c=0.80

$$Q_{p-post} = \frac{ciA}{360} = \frac{0.80 \times 34.8 \times 1347}{360} = 104 \frac{m^3}{s}$$

El ΔQ representa la diferencia entre la escorrentía sin control y la escorrentía con control inicial, siendo:

$$Q_{p-post} = 104 - 60 = 44 \frac{m^3}{s}$$

Tabla 12: Diseño de detención de aguas pluviales para un $T_c = 120 \ minutos$

Periodo de Retorno (año)	i (mm/hr)	T (min)	Qp-prep (m3/s)	Qp-post (m3/s)	QA (m3/s)
10	19.9	120	60	104	45
25	23.4	120	70	127	57
50	26.4	120	79	147	68

Para la primera etapa, se realizará con un orificio con un tubería comercial promedio de 18 pulgadas (D = 45.7 cm), se obtiene:

$$A_{Tuberia} = \frac{\pi}{4}D^2 = \frac{\pi}{4}(45.7)^2 = 0.66 m^2$$

Se utilizará un coeficiente de tubería promedio de $c_D = 0.62$

Por consiguiente:

$$Q = c_D \times A_{Tuberia} \sqrt{2gh} = 0.62 \times 0.66 \sqrt{2 \times 9.81 \, h} = 1.81 \sqrt{h}$$

Para la segunda etapa se utilizará un vertedero con las siguientes características: $c_W=1.83~{
m y}$ una longitud promedio de vertederos de $L_2=0.45~m$

$$Q_v = c_w L H^{\frac{3}{2}} = (1.82) (0.45) H^{\frac{3}{2}} = 0.82 h^{\frac{3}{2}}$$

Finalmente la tercera etapa es un vertedero con longitud promedio de $L_3 = 3.8 m$

$$Q_v = c_w L H^{\frac{3}{2}} = (1.82) (3.8) H^{\frac{3}{2}} = 6.95 h^{\frac{3}{2}}$$

Tabla 13: Diseño de detención de aguas pluviales en tres etapas

Altura	Orificio	Verterdero 1 Verterdero 2		Total
h (m)	Q (m3/s)	Q (m3/s)	Q (m3/s)	Qmax (L/s)
0	0.0	0.00	0.0	0.00
0.4	1.1	0.21	1.8	3.11
0.8	1.6	0.59	5.0	7.18
1.2	2.0	1.08	9.1	12.20
1.6	2.3	1.66	14.1	18.01
2	2.6	2.32	19.7	24.54
2.4	2.8	3.05	25.8	31.69
2.8	3.0	3.84	32.6	39.43
3.2	3.2	4.69	39.8	47.72
3.6	3.4	5.60	47.5	56.51
4	3.6	6.56	55.6	65.78
4.1	3.7	6.81	57.7	68.17

Para una altura de 4.1 metros se puede satisfacer el caudal proveniente de una lluvia con periodo de retorno de 50 años. De igual forma se recomienda implementar varias de estas estructuras en las zonas de mayor impacto pluvial.

A su vez, este tipo de estructuras se pueden aprovechar como almacenaje de agua para producciones agrícolas que requieran grandes cantidades de agua. Las mismas pueden retener agua y direccionarla si fuera necesario por medio de tuberías o canales recubiertas de geomembrana.

3.4 Soluciones no estructurales

3.4.1 Geolámina o Geomembrana

El uso de los geosintéticos esta muy presente actualmente en varios tipos de construcciones como reservorios, carreteras, losas, entre otros. Uno de sus principales usos es evitar la filtración del agua y la erosión del suelo. Por lo mismo, el uso de geomembrana puede redireccionar la escorrentía pluvial a zonas de mayor interés, sea para uso agrícola o almacenarla para consumo animal o humano.

3.4.2 Cobertura Vegetal

Uno de los principales factores de aumento de inundaciones es la deforestación. A poca vegetación, el agua filtra menos, que por defecto, se desliza por todo el terreno causando deslieves y arrastrando lodo a su paso. La solución más económica sería la reforestación en zonas estratégicas, así existe una mayor filtración en el suelo, mayor cantidad de arboles que sirvan como muralla natural ante deslaves y mejora el medioambiente, tanto en el aire como en la disminución de precipitaciones.

3.4.3 Reforestación

Los beneficios de la reforestación se ven reflejados en la protección contra la erosión del suelo, fortica y estabiliza las riberas. Además, ayuda al cambio climático estabilizándolo y evitando tormentas de gran magnitud. También ayuda a la mitigación de sedimientos, pues mejora la infiltración del agua y funciona como barrea contra corrientes de agua reduciendo su velocidad y frenando los sedimientos acarreados.

4. Conclusiones

- Se determinó un caudal de diseño para el dimensionamiento de las soluciones técnicas, considerando la seguridad de los pobladores y sus bienes, como la disponibilidad económica que presenta el cantón San Gabriel.
- La distribución de precipitaciones presenta un régimen bimodal, con sus puntos máximos en abril y noviembre y el mínimo ocurre en agosto.
- El método racional consideró la cobertura vegetal, el área de la subcuenca y la intensidad de las lluvias del cantón, para estimar el caudal de diseño.
- El caudal de diseño fue de $Q=20.62\,m^3/s$ lo que conllevó a distribuirlo en la zona de interés en diez puntos, siendo este el caudal de diseño $Q_{dis}=2.06\,m^3/s$ para las soluciones estructurales.
- Se propusieron cuatro soluciones viables para mitigar la problemática de inundaciones, dos estructurales y dos no estructurales.
- El proyecto contó con la dificultad en obtener las intensidades de lluvia del caltón San Gabriel. No obstante, se solicitó la información al Departamento de Agua Potable y Alcantarillado del Gobierno Autónomo Descentralizado de Montufar y su respuesta demoró en ser entregada.
- Se recomienda realizar o impletar un análisis de costos para las soluciones planteadas dadas las condiciones investigadas por este estudio.
- Se recomienda que las futuras generaciones de constructores, tengan más presentes el factor de seguridad antes que el económico. Pues la Política Nacional es muy endeble con respecto a los periodos de retorno que se utilizan para el diseño de estructuras en el país. Utilizar periodos de retorno mayores brindará mayor seguridad a la población como a sus bienes y no esperar a un evento trágico y repentino para recién tomar cartas en el asunto..

5. Referencias Bibliografícas

- Alvarado, A (2021) Estudios y diseños definitivos de las obras necesarias para el manejo y control de caudales de la quebrada cuyan sector santa rosa de la ciudad de San Gabriel, canton Montufar. Departamento de Agua Potable y Alcantarillado,
- Chow, Ven Te (1983). Hidrología Aplicada, Mc Graw Hill, 1994.
- Guía de Prácticas Hidrológicas; OMM; 1994; OMM N 168; Adquisición y Proceso de Datos, Análisis, Predicción y otras aplicaciones.
- Gribbin, J (2002). Introduction to Hydraulics and Hydrology with Aplications for Stormwater

 Management P.E. Third Edition
- INAMHI. (2019). Actualización del Estudio de Lluvias Intensas.
- POURRUT, P. (1983). Los Climas del Ecuador Fundamentos Explicativos. Quito: PRONAREG ORSTOM.