

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

Servicio Web para Anonimización y Pseudonimización de Datos
Estructurados

David Alberto Mena Madrid

Ingeniería en Ciencias de la Computación

Trabajo de fin de carrera presentado como requisito
para la obtención del título de

Ingeniero en Ciencias de la Computación

Quito, 19 de diciembre de 2021

2

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

HOJA DE CALIFICACIÓN
 DE TRABAJO DE FIN DE CARRERA

Servicio Web para la Anonimización y Pseudonimización de Datos
Estructurados

David Alberto Mena Madrid

Nombre del profesor, Título académico Daniel Riofrio, PhD

Quito, 19 de diciembre de 2021

3

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales

de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad

Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad

intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este

trabajo en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación

Superior del Ecuador.

Nombres y apellidos: David Alberto Mena Madrid

Código: 00215169

Cédula de identidad: 1717914533

Lugar y fecha: Quito, 19 de diciembre de 2021

4

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado

como una publicación, incluso a pesar de estar disponible sin restricciones a través de un

repositorio institucional. Esta declaración se alinea con las prácticas y recomendaciones

presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017)

Discussion document on best practice for issues around theses publishing, disponible en

http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following capstone project is available through Universidad San Francisco de Quito

USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be

considered a publication. This statement follows the recommendations presented by the

Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion

document on best practice for issues around theses publishing available on

http://bit.ly/COPETheses.

5

RESUMEN

En la era actual, el análisis de datos constituye un área esencial dentro de las ciencias

de la computación. En este campo, existe un grave problema asociado con el manejo de la

privacidad individual, debido a que la identidad u otra información sensible de los usuarios son

expuestas; si esta información cae en malas manos, los resultados podrían ser devastadores. En

el contexto de las empresas y organizaciones, si no se maneja correctamente las políticas de

información, su reputación e imagen pública podrían verse afectadas porque, cada vez, los

usuarios están tomando este tema con mayor importancia. En el presente proyecto, se

analizaron técnicas de anonimización y pseudonimización para la protección de la privacidad

de los datos. El objetivo fue comprender los conceptos principales de cada técnica y los

problemas que presentan. Además, se desarrolló un prototipo de aplicación web para probar la

implementación de estas. El prototipo se lo expone como una propuesta inicial para mejorar la

transferencia de información intra e inter departamental dentro la Universidad San Francisco

de Quito USFQ. Finalmente, se espera que esta investigación y prototipo sean de gran utilidad

para otras universidades, empresas u organizaciones en el futuro.

Palabras clave: Privacidad, Datos, Análisis, Web, Anonimización, Pseudonimización.

6

ABSTRACT

Nowadays, data analysis is an essential area of computer science. In this field, there is

a serious problem associated with the management of individual privacy as the identity or other

sensitive information of the users are exposed; if this information is in the wrong hands, the

results could be devastating. In the context of companies and organizations, if information

policies are not managed correctly, their reputation and public image could be affected because

users are taking this issue with greater importance. In this project, anonymization and

pseudonymization techniques were analyzed to protect data privacy. The objective was to

understand the main concepts of each technique and the problems they present. Additionally,

a web application prototype was developed to test the implementation of these techniques. The

prototype is presented as an initial proposal to improve intra and inter departmental information

transfer within the Universidad San Francisco de Quito USFQ. Finally, it is expected that this

research and prototype will be of great use to other universities, companies, or organizations

in the future.

Key words: Privacy, Data, Analytics, Web, Anonymization, Pseudonymization.

7

TABLA DE CONTENIDO

INTRODUCTION.. 10

DEVELOPMENT .. 14

Anonymization ... 14

Anonymization Techniques.. 14

Data Masking .. 14

Data Perturbation .. 15

Data Swapping .. 16

Nulling Out ... 18

Data Generalization .. 19

Pseudonymization .. 21

Prototype .. 27

Repository .. 29

Structure ... 29

Backend .. 29

Frontend .. 37

Configuration and Execution of the Program .. 50

Main Endpoint .. 53

Techniques ... 57

Preprocessing ... 63

JSON Configuration ... 64

Anonymization and Pseudonymization Implementation ... 68

Errors .. 68

CONCLUSIONS .. 70

RECOMENDATIONS .. 73

REFERENCES ... 76

8

ÍNDICE DE TABLAS

Table 1. Data masking example ... 15

Table 2. Data perturbation example ... 15

Table 3. Data swapping with independent columns example .. 16

Table 4. Data swapping with group columns example .. 17

Table 5. Data swapping with partitions example ... 18

Table 6. Data nulling example ... 19

Table 7. Data generalization for numeric content example ... 19

Table 8. Data generalization for text content example .. 20

Table 9. Data generalization for date content example .. 20

Table 10. Pseudonymization Initial Data ... 22

Table 11. Public Dataset for Regular Pseudonymization Preserving Distribution 23

Table 12. Private Dataset for Regular Pseudonymization Preserving Distribution 23

Table 13. Public Dataset for Pseudonymization with Tokenization .. 25

Table 14. Private Dataset for Regular Pseudonymization with Tokenization 25

Table 15. Data masking parameters ... 57

Table 16. Data perturbation parameters ... 59

Table 17. Data swapping parameters ... 59

Table 18. Data generalization parameters .. 61

Table 19. Pseudonymization parameters ... 62

Table 20. General structure parameters ... 63

9

ÍNDICE DE FIGURAS

Figure 1. Root path of the application. .. 28

Figure 2. Portrays the currently active participants in the client-server application 29

Figure 3. The Server Architecture ... 30

Figure 4. Main Application Structure .. 31

Figure 5. Routing Structure.. 33

Figure 6. Base Router for Endpoints.. 34

Figure 7. Data Science Router ... 35

Figure 8. Anonymization Router ... 36

Figure 9. Web Directory Router .. 37

Figure 10. Client Architecture ... 37

Figure 11. Public Folder .. 38

Figure 12. Root HTML .. 39

Figure 13. Source Code.. 40

Figure 14. Centralized Constant Values .. 41

Figure 15. API URL ... 41

Figure 16. Text Constants .. 42

Figure 17. Colors Palette.. 43

Figure 18. Theme Structure ... 44

Figure 19. Frontend Page Components .. 45

Figure 20, Anonymization Page Index .. 46

Figure 21. Anonymization Page Send Request.. 47

Figure 22. Main Page Index ... 48

Figure 23. Main React Rendering File Index... 49

Figure 24. Backend Execution ... 52

Figure 25. Frontend Execution .. 52

Figure 26. Web Application Main Page .. 53

Figure 27. Anonymization Endpoint.. 54

Figure 28. Anonymization Endpoint Call .. 56

Figure 29. JSON Configuration Example .. 65

Figure 30. Web Application Main Page with JSON .. 67

Figure 31. Error Page ... 69

10

INTRODUCTION

Data science is an area of computer science which has grown exponentially in the past

years. In fact, according to IBM, there was a predicted estimated growth of 28% in data science

jobs from 2015 to 2020 in the United States (IBM et al, 2017). The fact that there are more

opening jobs in this field shows that companies are being more interested in this area to be

applied for their businesses. This does not only apply to companies, but also to organizations

or any other type of entities. Besides, something to consider is that the main ingredient for data

science is the “data” or information that is used for analysis or for training different data

models. Therefore, data science is inextricably bound to the access, quantity, and quality of

information.

Meanwhile, data privacy has become a high issue among this field. Also, there are

regulations on privacy that have been implemented across the planet, with General Data

Protection Regulation (GPDR) being the most known. GPDR is the privacy regulation that is

used for the European Union (Burgess, 2020). Taking this into consideration, it becomes an

essential priority for a business or organization or any entity that needs to work with the

information of individuals, to have a good privacy management. This is not only since there

are regulations that exist to control privacy practices, but also because this issue has a direct

impact on the entity reputation.

To overcome the privacy problem, but at the same time to be able to have valuable

information from data analysis privacy methods must be used. There are two main branches

within privacy for data analysis: anonymization and pseudonymization (Tokenex, 2018). These

are different groups of techniques which protect the identifiable information of individuals

within banks of data (Tokenex, 2018). By applying these methods correctly, the entity can

disentangle itself in a greater level from privacy issues, maintain a good image relating to user

11

information management and at the same time be able to apply data analysis to acquire valuable

insights.

Anonymization is the process by which personally identifiable information also known

as (PII) is secured from a dataset or database (Rivas, 2020). This is an important area to

consider for privacy reasons, the wellbeing of user information among organizations, and to

have a more ethical and open data analysis (UserCentrics, 2021). Information that goes through

a correct process of anonymization can lower its privacy breach and be shared with more

openness. It consists of multiple techniques, which all attempt to reduce identification of a

specific individual within a set of information that holds values from multiple individuals. The

idea is to alter the information in a way that preserves the value for analysis, but at the same

time does not expose information about specific persons (UserCentrics, 2021). In other words,

when the data is analyzed, it will hold characteristics about the group of individuals but no

information about a determined person within the group (Tokenex, 2018).

This is a complex process because making information not personally identifiable does

not consist of eliminating attributes that directly identify an individual like the name, the

identification number, a specific address, etc. The individual can be identified through other

not direct attributes like information about his/her behavior, physical attributes, emotional

characteristics, psychological description, money spending patterns or preferences (Record

Evolution, 2020). Any information that with reverse engineering could be used to determine a

particular person presents a hazard.

Additionally, there exists a high possibility that the indirect information of an individual

could exist on another database, place within the internet or the physical world. There is also a

chance that this indirect information could allow access to direct identifiable data about an

individual. Therefore, all attributes on a dataset hold a risk of identification even if this risk is

12

not evident by sight. The main objective of anonymization is that no matter the supplementary

information given, an individual will not be identified (Deepomatic, 2019). Therefore, a

database or dataset that is correctly anonymized will hold a level of security by itself.

On the other hand, pseudonymization is another way to protect the identification of

specific individuals within a database or dataset that also consists of a series of techniques.

Although it has a similar name to anonymization, it is a completely different process. The main

distinction lies in the fact that pseudonymization allows reidentification of an individual when

granted additional information (Deepomatic, 2019). This aggregated information which can

allow the identification of a particular person is guarded with high security (Maldoff, 2016).

The performance of pseudonymization depends inextricably on the difficulty of access to this

external database.

The aggregated information can be any attribute that allows direct identification of a

person or an attribute that has a high possibility of indirectly permitting the identification of an

individual. Nevertheless, as previously mentioned, any attribute even the indirect columns have

a chance of allowing someone´s identification. Therefore, in pseudonymization, it is important

to select correctly the public and private columns or attributes of the protected information.

This is also the case for anonymization, when not all the attributes are anonymized but only a

subgroup of the dataset.

There is another consideration to take into account about these two techniques.

Anonymization modifies the information directly, therefore it presents a tradeoff between the

value within the information and the quantity it is anonymized. This is also known as the

privacy-utility tradeoff (Tabakovic, 2020). On the other hand, pseudonymization does not

modify the original information, this does not guarantee that the value within information will

not be reduced, since it is replacing attributes in the original dataset by pseudonym attributes

13

(Tokenex, 2018). Therefore, both methods present a threshold between the value of information

and privacy, but in a different form.

In this work, anonymization and pseudonymization methods were explored, identifying

some of the different techniques both methods present. The techniques were analyzed and

applied only for structured data. This refers to information that has a defined structure, as a set

of rows and columns commonly known as a dataset or an entity within a database. Other

structures of information can also be anonymized and pseudonymized, but those cases are not

covered here.

Furthermore, also a prototype implementing some of the methods both for

anonymization and pseudonymization was developed. The prototype was designed as a web

application, with high detail on its implementation. Therefore, after reading and analyzing this

document, the reader will have a better understanding of privacy protection methods, their

implementation and also web development.

14

DEVELOPMENT

Anonymization

Anonymization is in charge of modifying or generalizing information (Octopize, 2021).

The idea is that it becomes increasingly harder in complexity to identify a specific individual

from the data. At the same time, it must preserve the maximum amount of value within the

information (structure and patterns) to be applied correctly. This is important because the

quality of the data analysis depends strictly on this fact as previously mentioned.

Although, anonymization is said to be an irreversible process this is not a real fact since

there is always a risk of deanonymization, which is the inverse process of anonymization

(Frankenfield, 2020). Especially in the current age, with all the present sources of information

available, and where the same information could be at multiple places at once. As mentioned

in the introduction, if not direct information is stored on another information bank and this

information gives access to direct information for identification, then this presents a hazard for

the guarded information in the original information bank. Thus, anonymization must not be

seen as a black box which modifies data in an irreversible way. Instead, the different techniques

that implement it, must be understood well in their strengths and their weaknesses.

Anonymization Techniques

Some of the techniques for the anonymization are mentioned next. Also, visual

examples and analysis are offered.

Data Masking

This technique can be applied to one or multiple columns of the dataset. The idea is to

introduce random characters in part of the data in each record. The random characters can be

any, such as “*” or “x”, to hide part of the information (Imperva, n.d.). This technique is used

15

by payment institutions, to hide part of a credit card number (Complior, n.d.), a balance, or an

account number, so that no one can recognize it except the owner of the information. An

example of a credit card number using this technique is shown below:

Before After

3622 3311 4320 7570 XXXX XXXX XXXX 7570

Table 1. Data masking example

Table 1 shows a hypothetical credit card number, safeguarded by applying a data masking

anonymization technique.

Data Perturbation

It involves adding statistical noise to the dataset (New America, n.d.). The noise is

aggregated on the selected columns, depending on the respective data type (Imperva, n.d.).

Modifications consist of rounding numbers in the data (Imperva, n.d.), multiplying the data by

a base (Imperva, n.d.), adding or subtracting a random value to each record of the data (New

America, n.d.), or adding random alterations to the data (New America, n.d.). The objective of

these methods is that the data is slightly modified, but at the same time the statistical properties

(New America, n.d.), patterns, and relationships are preserved as much as possible. An example

is shown below:

Identifier Before After

ID Name Age Balance Name Age Balance

1 Peter 19 1.500,30 Peter 29 225,05

2 Tom 22 1.210,40 Tom 33 181,56

3 Kelly 21 940,50 Kelly 32 141,08

4 Austin 21 1.840,30 Austin 32 276,05

5 Emma 23 1.420,00 Emma 35 213,00

6 Sophie 19 1.720,80 Sophie 29 258,12

7 Kevin 20 1.770,90 Kevin 30 265,64

Table 2. Data perturbation example

16

Table 2 displays the Data perturbation anonymization technique. The columns “Age”

and “Balance” were modified by data perturbation. Column “Age” was modified by

multiplying the original value by 1.5 and rounding up to an integer. Column “Balance” was

modified by multiplying by 0.15 and rounding up to two decimals.

Data Swapping

This method consists of interchanging the records of one or multiple columns of the

dataset (Szoc, n.d.). The interchange or shuffling is done randomly (Peinoit, 2019). It is

important to consider which attributes are relevant for the application of this technique

(Imperva, n.d.). Swapping must be done to break any relationship on the data that could identify

specific individuals.

There are multiple ways to swap the data on each of the desired columns of the dataset.

The first way of data swapping is to shuffle independently each selected column (Peinoit,

2019). A table illustrating this data swapping with independent columns is presented below:

Identifier Before After

ID Name Age Balance Name Age Balance

1 Peter 19 1.500,30 Austin 19 1.840,30

2 Tom 22 1.210,40 Kelly 22 1.770,90

3 Kelly 21 940,50 Kevin 21 1.420,00

4 Austin 21 1.840,30 Tom 21 1.500,30

5 Emma 23 1.420,00 Sophie 23 940,50

6 Sophie 19 1.720,80 Emma 19 1.720,80

7 Kevin 20 1.770,90 Peter 20 1.210,40

Table 3. Data swapping with independent columns example

17

Table 3 illustrates Data Swapping Anonymization technique is used in columns

“Name” and “Balance” from the dataset. It is important to note that changes are independent

in both columns.

The second way of data swapping is to swap columns in groups (Peinoit, 2019). This

means that a group of columns in the dataset is shuffled, retaining the relationship between

their records. An example is displayed below:

Identifier Before After

ID Name Age Balance Name Age Balance

1 Peter 19 1.500,30 Austin 21 1.500,30

2 Tom 22 1.210,40 Sophie 19 1.210,40

3 Kelly 21 940,50 Emma 23 940,50

4 Austin 21 1.840,30 Peter 19 1.840,30

5 Emma 23 1.420,00 Kelly 21 1.420,00

6 Sophie 19 1.720,80 Kevin 20 1.720,80

7 Kevin 20 1.770,90 Tom 22 1.770,90

Table 4. Data swapping with group columns example

In Table 4, Data Swapping with grouped columns is portrayed. The columns that were

modified are “Name” and “Age”, they are shuffled vertically, maintaining the relationships of

the records of those two columns originally.

The third way of data swapping is to shuffle the records within partitions (Peinoit,

2019). This means that a base column is selected, from which all the range of values define

groups that the other dependent column records can be shuffled in. Each of these groups is

called a partition. An example is exhibited below:

18

Identifier Before After

ID Name Age Balance Name Age Balance

1 Peter 19 1.500,30 Sophie 19 1.500,30

2 Tom 22 1.210,40 Tom 22 1.210,40

3 Kelly 21 940,50 Austin 21 940,50

4 Austin 21 1.840,30 Kelly 21 1.840,30

5 Emma 23 1.420,00 Emma 23 1.420,00

6 Sophie 19 1.720,80 Peter 19 1.720,80

7 Kevin 20 1.770,90 Kevin 20 1.770,90
Table 5. Data swapping with partitions example

Table 5 displays Data Swapping with partitions. The base column selected is “Age”,

from which two partitions are formed: “19” and “21” (because nineteen and twenty-one are the

only values in the column repeated at least twice). Considering these two partitions, rows from

column “Name” are shuffled within each partition. Therefore, the names Austin and Kelly are

swapped for partition “21”. While the names Sophie and Peter are swapped for partition “19”.

Nulling Out

This technique is based on deleting the records in the selected columns of the dataset

(Record Evolution, 2020). It is important to consider any external or internal database that

could still hold the deleted information or any relationship with the information that was not

removed in the dataset. If there is no external or internal database and the desired columns

records are erased, this is the best way of anonymizing. The only consequence is that the

information deleted is completely lost, so it becomes a completely irreversible process

considering the privacy-utility tradeoff (Tabakovic, 2020). An illustration of the operation is

shown below:

19

Identifier Before After

ID Name Age Balance Name Age Balance

1 Peter 19 1.500,30 Peter 19 null

2 Tom 22 1.210,40 Tom 22 null

3 Kelly 21 940,50 Kelly 21 null

4 Austin 21 1.840,30 Austin 21 null

5 Emma 23 1.420,00 Emma 23 null

6 Sophie 19 1.720,80 Sophie 19 null

7 Kevin 20 1.770,90 Kevin 20 null

Table 6. Data nulling example

In Table 6, the column “Balance” content is completely erased, which makes the process if

well-handled irreversible.

Data Generalization

The practice is based on reducing the specificity or granularity of data (Record

Evolution, 2020). In this sense, it adds complexity in the attempt of the identification of a

specific individual. This means that the selected column or columns for anonymization in the

dataset become less specific. The data type and content of the column is important for the

considerations in the process of generalizing data. An example of information in a numeric

data type is shown below:

Identifier Before After

ID Name Age Balance Name Age Balance

1 Peter 19 1.500,30 Peter [11-20] 1.500,30

2 Tom 22 1.210,40 Tom [21-30] 1.210,40

3 Kelly 21 940,50 Kelly [21-30] 940,50

4 Austin 21 1.840,30 Austin [21-30] 1.840,30

5 Emma 23 1.420,00 Emma [21-30] 1.420,00

6 Sophie 19 1.720,80 Sophie [11-20] 1.720,80

7 Kevin 20 1.770,90 Kevin [11-20] 1.770,90

Table 7. Data generalization for numeric content example

20

Table 7 illustrates when generalization technique is applied in the column “Age”. The

specific numeric values of the age of an individual become value ranges. This makes it harder

to determine a specific individual by their age.

As mentioned previously, this method can function correctly for diverse data types. An

illustration of the process for text information is demonstrated below:

Identifier Before After

ID Name Age Location Name Age Location

1 Peter 19 Quito Peter 19 Ecuador

2 Tom 22 Montreal Tom 22 Canada

3 Kelly 21 Lima Kelly 21 Peru

4 Austin 21 Toronto Austin 21 Canada

5 Emma 23 Guayaquil Emma 23 Ecuador

6 Sophie 19 Cusco Sophie 19 Peru

7 Kevin 20 Zürich Kevin 20 Switzerland

Table 8. Data generalization for text content example

In Table 8, the column “Location” was generalized. Therefore, the location became less

specific and, instead of mentioning the city of the individual person, it relates the country. This

makes it harder to identify the individual by their locality.

An example of data generalization for date information is shown below:

Identifier Before After

ID Name Age Date Name Age Date

1 Peter 19 16/01/2018 Peter 19 2018

2 Tom 22 08/04/2013 Tom 22 2013

3 Kelly 21 23/07/2016 Kelly 21 2016

4 Austin 21 29/10/2013 Austin 21 2013

5 Emma 23 01/03/2021 Emma 23 2021

6 Sophie 19 16/12/2021 Sophie 19 2021

7 Kevin 20 11/05/2018 Kevin 20 2018

Table 9. Data generalization for date content example

21

Table 9 portrays the Generalization of the “Date” attribute. This is a small example of

the principle in use, but in a big database with user data, this makes it more complex to identify

a determined user by the “Date” column.

Pseudonymization

Pseudonymization is not based on adding complexity in the dataset to make it harder to

identify a specific individual information. In fact, pseudonymization does not directly modify

the values on the original dataset. It uses a different approach to protect the information of

specific individuals (Anonyome Labs, 2020). Although, pseudonymization and anonymization

have similar names and focus on a same objective, it is important to avoid confusing both terms,

because they are very different.

There are many ways of implementing pseudonymization. Thus, the most important

thing is not the implementation, but understanding well the core idea. The main idea, is that

pseudonymization does not modify the dataset values. In contrast, what it does instead is adding

pseudonyms which replace the desired sensitive columns on the original dataset (Tokenex,

2018). These pseudonyms have no value on themselves but are the keys for retrieving the

sensitive information. The sensitive information is stored on another database or dataset, which

also holds the relationships to their corresponding pseudonyms. This database must be highly

secured since the strength of pseudonymization is directly related to the difficulty of access of

the sensitive data.

There are various techniques for applying the pseudonymization concept. Two of these

techniques are regular pseudonymization (Tokenex, 2018) and pseudonymization with

tokenization (Hamidovic et al, 2019). Regular pseudonymization does not alter the dimension

or number of columns in the dataset or database. Instead, it replaces all the values in the

22

sensitive columns by pseudonym values (Tokenex, 2018). These pseudonyms can represent the

distribution frequency in the original column or not (Tan, 2020). Later, these pseudonyms are

also saved in a different dataset or database that must be stored with high security. An example

of this process preserving the original distribution is shown below.

ID Name Age Balance Account City Satisfaction
Secret
Code

1 Peter 19 1.500,30 AE34 Quito 8 81453

2 Tom 22 1.210,40 CB62 Montreal 9 73497

3 Kelly 21 940,50 NJ28 Lima 7 12052

4 Austin 21 1.840,30 AE34 Toronto 6 63849

5 Emma 23 1.420,00 NM73 Guayaquil 8 49635

6 Sophie 19 1.720,80 NJ28 Cusco 9 57060

7 Kevin 20 1.770,90 OL09 Zürich 10 94826

Table 10. Pseudonymization Initial Data

Looking at Table 10, the initial data for an example of Pseudonymization is manifest.

It has eight attributes which are “ID”, “Name”, “Age”, “Balance”, “Account”, “City”,

“Satisfaction” and “Secret Code”.

Examining Table 10, from the eight present attributes three of them can be considered

sensitive information. These are “Balance”, “Account” and “Secret Code”. According to

regular pseudonymization technique, the present dataset will be divided in two datasets. One

that holds the sensitive information with the relationship to the corresponding pseudonyms and

one that holds the public information with the replacing pseudonyms for analysis. The public

dataset with pseudonyms is shown next.

23

ID Name Age Balance Account City Satisfaction
Secret
Code

1 Peter 19 AXY79 19832 Quito 8 75HNM

2 Tom 22 KXB06 29780 Montreal 9 243KL

3 Kelly 21 TLE32 13248 Lima 7 PDR79

4 Austin 21 BFW87 19832 Toronto 6 12RET

5 Emma 23 XZR32 92288 Guayaquil 8 49HFD

6 Sophie 19 JNUL4 13248 Cusco 9 985THY

7 Kevin 20 E3RF2 90933 Zürich 10 47NBE

Table 11. Public Dataset for Regular Pseudonymization Preserving Distribution

Table 11 shows a publicly accessible dataset generated by the regular

pseudonymization technique. Contrasting with Table 10, it is evident that the columns

“Balance”, “Account” and “Secret Code” where replaced by pseudonyms. The distribution

frequency of the columns was also preserved by the pseudonyms, as seen on the attribute

“Account”. Indexes 1 and 4 share the same value, as well as indexes 3 and 6. This matches the

repetitions that occur for the same column on Table 10 and is a useful feature for analysis.

The private dataset generated for the regular pseudonymization with preserving frequency is

illustrated below.

ID
Balance
Pseudo

Account
Pseudo

Secret
Code

Pseudo
Balance Account

Secret
Code

1 AXY79 19832 75HNM 1.500,30 AE34 81453

2 KXB06 29780 243KL 1.210,40 CB62 73497

3 TLE32 13248 PDR79 940,50 NJ28 12052

4 BFW87 19832 12RET 1.840,30 AE34 63849

5 XZR32 92288 49HFD 1.420,00 NM73 49635

6 JNUL4 13248 985THY 1.720,80 NJ28 57060

7 E3RF2 90933 47NBE 1.770,90 OL09 94826

Table 12. Private Dataset for Regular Pseudonymization Preserving Distribution

24

Table 12 shows the protected columns with their respective pseudonyms. This dataset

must be protected with high security for the pseudonymization technique to work appropriately.

On the other hand, regular pseudonymization without preserving distribution frequency

is the same process, only that every pseudonym is a random value without holding any

relationship to the distribution in the original column (Tan, 2020). This means that for the

previous example, only the pseudonyms used for the “Account” attribute on Table 11 change.

The values of this attribute for index one, three, four and six will be randomized to avoid any

relationship with the original column. These changes will also be reflected on the private

dataset, shown in Table 12, with new pseudonyms for the “Account” attribute.

Pseudonymization with tokenization is another type of implementation for this concept.

This method is also known as tokenization by itself (Tokenex, 2018). The key idea that changes

is that all the sensitive attributes in the dataset are replaced by one attribute which holds a token

(Hamidovic et al, 2019). This token has a relationship with all the sensitive information in one

or multiple columns. The public dataset generated will have all the original columns, except

for the sensitive ones. Also, it will have a new column with the token that relates with the

sensitive information. Meanwhile, the private dataset generated will only have the token

attribute with all the sensitive columns related to it. It is important that the token utilized holds

no repeated values. An example of this type of pseudonymization is portrayed next.

The same initial information as for the regular pseudonymization is used for this

example, this is found in Table 10. The public dataset generated for this initial information for

the pseudonymization with tokenization algorithm is displayed below.

25

ID Name Age City Satisfaction Token

1 Peter 19 Quito 8 AXN44

2 Tom 22 Montreal 9 DRE21

3 Kelly 21 Lima 7 LJK07

4 Austin 21 Toronto 6 PUI43

5 Emma 23 Guayaquil 8 BVH67

6 Sophie 19 Cusco 9 XCB72

7 Kevin 20 Zürich 10 ZET80

Table 13. Public Dataset for Pseudonymization with Tokenization

Table 13 illustrates the public dataset generated for the pseudonymization with

tokenization. The sensitive columns “Balance”, “Account” and “Secret Code”, shown in Table

10 were replaced by the “Token” attribute.

The private dataset generated by the pseudonymization technique with tokenization is

displayed next.

ID Token Balance Account
Secret
Code

1 AXN44 1.500,30 AE34 81453

2 DRE21 1.210,40 CB62 73497

3 LJK07 940,50 NJ28 12052

4 PUI43 1.840,30 AE34 63849

5 BVH67 1.420,00 NM73 49635

6 XCB72 1.720,80 NJ28 57060

7 ZET80 1.770,90 OL09 94826

Table 14. Private Dataset for Regular Pseudonymization with Tokenization

26

On Table 14, the protected columns with their respective token are displayed. This

dataset must be protected with high security for the pseudonymization technique to work

appropriately.

In Table 14, both “ID” and “Token” are attributes with no repeated values, which means

they are useful for identifying all the attribute values of the sensitive information. In other

words, they may serve as a key for identification. Therefore the “ID” column could have been

used also as the token attribute. This is an important consideration to take in account, later in

the document when the implementation for this technique is illustrated.

Finally, addressing both anonymization and pseudonymization, it is important to

reiterate that the most important thing for these methods is to understand well the main concept.

There is a lot of confusion on the theory for both subjects and it is easy to confuse them and

their corresponding application. Sometimes the terms are used interchangeably for the same

technique application, for example, with data masking. In the next section, some of the

techniques for anonymization and pseudonymization methods will be applied within a web

application.

27

Prototype

A web application was developed in order to portray the anonymization techniques

previously mentioned. It is offered as a solution to improve the data sharing among departments

within Universidad San Francisco de Quito USFQ in Ecuador.

The application has a server-client structure for the web. The server was built on the

FastAPI Python framework, while the client was constructed on the React framework in

JavaScript. The objective of the application is to allow users at the university to upload

structured data (dataset) in the form of a “.parquet” file. Parquet files are specifically suited

for the management of big quantities of information. They store data more efficiently, present

faster reading times, and are also very convenient for compression purposes (Databricks, n.d.).

In order to convert a dataset from “.csv” format to “.parquet”, the pandas library of python

offers all the necessary methods with the functions “read_csv”, “read_parquet”, “to_csv” and

“to_parquet”. Thus, a file can be preprocessed and prepared in a “.csv” format, later converted

to “.parquet” format locally, and lastly upload the “.parquet” converted file to the web

application.

The file uploading in the application is followed by the insertion of a JSON string that

specifies the anonymization techniques or pseudonymization to be applied in the different

columns of the uploaded data. The “.parquet” file with the JSON string is sent, and once the

dataset is processed in the server, a new file is forwarded to download in the client. This file

consists of the same input data but anonymized according to the selected techniques and

columns in the JSON string. This received file is in the “.parquet” format but it’s also

compressed by “gzip”. To be able to display it or convert it in a “.csv” readable format, the

same pandas functions mentioned previously must be considered locally. Especially the

28

method “read_parquet” which can read a “.parquet” file directly even if it is compressed.

Therefore, there is no necessity for explicit decompression of the file.

Specifically, the program covers four anonymization techniques and

pseudonymization. The anonymization techniques implemented are data masking, data

perturbation, data swapping and data generalization. They will be expanded and explained in

further detail later in the document. On the other hand, the pseudonymization technique with

tokenization was implemented also.

In further detail, the application consists of one repository containing the frontend and

backend in different folders. The backend folder contains all the backend programs related to

the system. In this case, there is only one backend server, but more related backend servers

could be added in this section in the future if required. The frontend folder contains all the

frontend programs; in this situation, there is only a web client, but the addition of other clients

like a mobile or I/O device client can be introduced here.

Figure 1. Root path of the application.

Figure 1 shows the backend and frontend structures of the system. Also, a

“README.md” file explaining the project in full scope and a “.ignore” to mention the local

files not to be uploaded.

29

Repository

The repository with the program can be accessed through GitHub on the following

address https://github.com/Davidmenamm/Anonymization

Structure

The backend and frontend folders contain only one element that corresponds to the

currently active backend server and client, as previously mentioned.

Figure 2. Portrays the currently active participants in the client-server application

Figure 2 portrays the active server and client for the web application. The active server

corresponds to the directory “fastapi_server” inside the “back_end” folder. Whereas the active

client is in the “react_web_client” directory inside the “front_end” folder.

Backend

Inside the server, the main functionality is in the “main.py” file. This element oversees

the initialization and management of the base of the web server. Besides this, there is also a

folder which hosts all the different endpoints logic and routing, called “endpoints”.

30

Figure 3. The Server Architecture

In Figure 3, the server structure is displayed. The elements shown in Figure 3, which

are not the main file and the endpoints folder, represent the following: the “README.md” file

mentions the server application description and a JSON string example, and the

“requirements.txt” describes the necessary dependencies, in order to install the program in

another computer.

In more detail, the main file manages Cross-Origin Resource Sharing (CORS), which

is in charge of determining which client URLs or hosts are able to communicate with the server.

Also, it oversees the annexing of all the endpoints, serves as the web server’s principal endpoint

and initializes the server. The main file contents are shown below (please see Figure 4).

31

Figure 4. Main Application Structure

The imported libraries are shown at the beginning of the Figure 4. Next, on the main

app section, the app variable contains an object representing all the API that is being generated

through FastAPI (FastAPI, n.d.-b). The generated API is built based on a standard called

OpenAPI (FastAPI, n.d.-a, n.d.-b). The OpenAPI standard is a project which is in charge of

defining a base structure for API’s language independent (OAI, 2021).

Later, in the CORS section, the web server CORS policy is defined. This controls the

cross-origin access to the web server (FastAPI, n.d.-c). In other words, all the clients that are

allowed to access the web server and the configurations associated with the access they are

given. The CORS definition acts as a middleware for the web server application (FastAPI, n.d.-

32

c). This means that before any request accesses an endpoint and before the response is returned

to the client, it goes first through the CORS definition (FastAPI, n.d.-c).

Continuing, in the include router section, a router is added. This will allow the program

to declare endpoints on different files. In this case, the endpoint definition of all endpoints in

the project, with exception to the root endpoint, is in the “endpoints” folder. This is done to

better organize the application, though all endpoints could be in this file; nevertheless, it's not

recommended. Additionally on the root endpoint section, the root path of the server is assigned

an endpoint. It only serves as a way for the client, to test the connection initially.

Following, at the end of the file, the uvicorn server is initiated. Uvicorn is a simple

Asynchronous Server Gateway Interface (ASGI) for Python (Uvicorn, n.d.). ASGI, is a

protocol of communication between the web server and the web application. It is the successor

of Web Server Gateway Interface (WSGI), which was previously implemented universally

(Manca, 2019). The main difference is that ASGI allows asynchronous communication

between the parts (web server and web application) (Manca, 2019). This means that it can

handle requests in a more effective manner, which can allow it to manage more clients at the

same time, and faster on a long-term communication. The “main:app” connects the uvicorn

server with the API application. The host, the port, and the allowed workers are specified on

the server. The workers are the programs in charge of receiving the web server’s requests; they

can handle multiple threads each (Rayward, 2018). In other words, each worker can handle

multiple clients isolated from other workers (Rayward, 2018). All of this together serves as the

basis for the program.

On the other hand, the endpoints’ structure is another important element of the program.

As mentioned before, all the routing and respective logic are on the endpoints folder. This

folder is explained next.

33

Figure 5. Routing Structure

Figure 5 shows the endpoints structure: routing and associated logic. There are two

main subfolders. These are “data_science” and “web”. The first folder holds all endpoints

related to data science, currently it only holds anonymization. The second folder contains all

endpoints related to the web application. Currently no endpoints are added, but here it could be

aggregated processes specifically related to the web application, like user login, search

functionality or alike features, if needed in the future. Other subfolders could be included in

this section, if the web application added other important areas with related necessary

endpoints, on future versions.

Figure 5, there is a router file on every level within the endpoints directory and its

subfolders. These routers are connected to each other in a hierarchical manner, which means

that the highest router in the folder structure, connects the routers within directories inside of

the same folder, and so on recursively. For example, router on the first level of the endpoints

folder, at the bottom of the image, connects to the routers inside the folders “data_science” and

“web”, which themselves are also in the first level of the endpoints folder. The router inside

34

the “data_science” directory, connects to the router inside of the “anonymization” folder, which

itself is inside of the “data_science” directory.

On the other hand, the router in the first level is directly connected to the main

application of the server. This can be seen on Figure 4, on the “include router” section of the

file. All the routing connections presented allow the endpoints of the application to be in

different files. As mentioned before, all endpoints could be located on the main application,

but doing so is not recommended for scalability and better organization.

To be able to see this in more detail, the file corresponding to the router on the first

level is displayed below.

Figure 6. Base Router for Endpoints

Figure 6 portrays the connection between the base router (directly inside routers directory)

and the routers within the folders of “data_science” and “web”.

More in detail, in Figure 6 the routers are added with the framework’s class

“APIRouter” (FastAPI, n.d.-d), through the method “include_router”. When the “APIRouter”

instance is created, the parameters provide information to be used by default by all routers at

this level (FastAPI, n.d.-d). Prefix refers to the base path for all endpoints at this level (FastAPI,

35

n.d.-d). In other words, any endpoint added at this file will have the URL path “/endpoints”

before any path the endpoint defines for itself. Tags is related to an interesting functionality

from the FastAPI server, which allows the testing of the endpoints in the application server

more directly (FastAPI, n.d.-a, n.d.-d). This is an attractive feature of FastAPI but has no

relevance with the project, therefore it will not be mentioned. Responses, provide extra

responses for all endpoints declared on the file (FastAPI, n.d.-d). At the bottom of the image,

a GET default endpoint is added, displaying a message indicating that there are no endpoints

with functionality at this level of the routing.

Continuing, on Figure 5 the router inside the folder “data_science” is displayed below.

Figure 7. Data Science Router

Figure 7 presents the router within the folder “data_science” indicated on Figure 5. The

connection between this router and the router inside the directory “anonymization” of the same

figure is also shown. More descriptive information about the parameters of the “APIRouter”

and the default endpoint are discussed below Figure 6.

Later, the router at the last level of the endpoints directory, inside the folder “anonymization”

is examined below.

36

Figure 8. Anonymization Router

Figure 8 shows the router within the folder “anonymization” illustrated on Figure 5.

Considering that on Figure 5, the “anonymization” folder has no other directories inside, with

their respective router files, there are no routers connected to this file. This is the router where

the anonymization process begins, specifically this holds the anonymization endpoint. The

anonymization POST endpoint content is hidden, but it will be displayed and explained later

in the document in the Main Endpoint section. Also, more descriptive information about the

parameters of the “APIRouter” are discussed below Figure 6.

As seen on Figure 5, there are also other files at the same level than the anonymization

router, shown in Figure 8. These are “techniques.py”, “mask.py”, “noise.py”, “swap.py” and

“generalize.py”. These files are all in charge of applying the specific anonymization techniques

and pseudonymization. They will be mentioned briefly in the section of Anonymization and

Pseudonymization Implementation.

Besides, there is one more router to consider. As seen on Figure 5, this is the router

inside the “web” directory. The contents of the file are shown next.

37

Figure 9. Web Directory Router

On Figure 9, the router within the folder “web” which can be seen on Figure 5, is

portrayed. Considering that on Figure 5, the “web” directory has no other directories inside,

with their respective router files, there are no routers connected to this file. More descriptive

information about the parameters of the “APIRouter” and the default endpoint are discussed

below Figure 6.

Frontend

On the other hand, the frontend application was built with the react framework. The

architecture of the client program is inside the “react_web_client” directory shown in Figure

2. This folder is expanded and explained in detail next.

Figure 10. Client Architecture

38

Figure 10 indicates the web client architecture. It consists of two main folders called

“public” and “src”. Additionally, there are system related files which are “.gitignore”,

“package.json”, “README.md” and “yarn.lock”.

The “public” directory consists of static files that react needs to load without being

processed by webpack (GeeksforGeeks, 2021). This includes JavaScript libraries, CSS

libraries, HTML, assets and etc (GeeksforGeeks, 2021). Webpack is the static bundling module

solution that react applications use (Singh, 2019).

Figure 11. Public Folder

Figure 11 indicates the “public” directory in the client. It contains three main files which

are “index.html”, “manifest.json” and “robots.txt”, and one asset “favicon.ico”.

The “manifest.json” file includes metadata about the application, for example relevant

information for the moment it is loaded on mobile phones (Abhishek Singh, 2020).

Additionally, “robots.txt” file contains permissions allowed to web crawlers, spiders, and

scrapers (Abhishek Singh, 2020). Also, the root HTML file is included in this directory

(index.html); this is the first page to be loaded on the application (Sridhar, 2018). From the

three mentioned files, the most relevant one to consider is the “index.html”, it will be expanded

following.

39

Figure 12. Root HTML

Figure 12 portrays the root HTML file. This is the first page loaded when the frontend

program is initiated (Sridhar, 2018).

Analyzing Figure 12, the main parts to consider are detailed:

 The public URL corresponds to an environment variable that allows the access to any

of the content in the “public” directory. The public URL must be used before in the

path.

 The browser tab icon is located on the tag with “rel=icon”. If there’s need to update this

icon, a new file must be uploaded to be used as tab icon. It must be added to the public

folder with the same name as “favicon.ico” and replace the current “favicon.ico” file.

Another option is to add a file with a new name and update the path at the “href” of the

tag.

 At the end of the file, an important section to observe is the “div” with root id. All the

react components and application will be located at this point. This connection will be

mentioned later in the document, when the “index.js” file is examined.

40

The most relevant information, concerning this project, about the “public" directory

was mentioned. Currently it is being used only to configure a specific tab icon and application

name. In the future more functionality from the “public” folder could be implemented in the

application.

Continuing, observing Figure 10, the next directory to consider is “src”. The folder is

expanded and explained next.

Figure 13. Source Code

In Figure 13, the source code section of the frontend application can be observed. There

are two directories: “constants” and “pages”, and one file: “index.js”. The “constants” folder is

used to store any important constant value that will be used in the application. This accounts

for texts, URLS, UI styling parameters and other values alike. It is a useful feature, since these

constant values can be changed in one place, which means that all files that implement any of

the constant values will update immediately. The “constants” directory is opened to explore

more in depth.

41

Figure 14. Centralized Constant Values

Figure 14 illustrates the “constants” directory. There are three main folders: “api”,

“texts” and “theme”. The contents of the folders are also displayed. The “api” directory holds

all the constant values related to API’s. There is only one element in the folder, which is the

file “urls.js”. At this file, the URLs from all the endpoints used at the client are located. The

contents are shown below.

Figure 15. API URL

42

At the beginning of Figure 15, the base URL is configured, the application is running

locally. The second part of the file mentions the only accessed endpoint currently on the

application. This is the endpoint where all the anonymization and pseudonymization processes

requested by the client are initiated and given a response by the server.

Later, speaking about the “texts” folder mentioned in Figure 14. This contains only an

“index.js” file, which holds all the common or reused texts of the application. The file details

are displayed.

Figure 16. Text Constants

Figure 16 shows a very simple file for saving the text constants, currently it holds only

a hand fold of values, but more could be added in the future.

Subsequently, looking at Figure 14, the last directory to consider is “theme”. It contains

two files: “colors.js” and “index.js”. The role of this directory is to manage the application’s

general visual theme. Both files are expanded and explained below.

43

Figure 17. Colors Palette

Figure 17 shows the palette of colors for the theme in the frontend application. These

colors can be changed for all the program from this file.

44

Figure 18. Theme Structure

45

On Figure 18 the theme structure is illustrated. Material UI, which is a recognized

library for react, on version 4 is used (Material UI, 2021). There are three main sections which

are the “palette”, “styles” and “overrides”.

More extensively in Figure 18, Material UI was used to structure the theming. The three

areas present are: “palette”, “styles” and “overrides”. The “palette” oversees the color

management of the application; the “colors.js” is imported to use the color palette constants

already defined. The “styles” manage the common styles that can be used throughout the

program. The “overrides” modifies the base styling of the material UI components, which are

used in the application in Figure 21 and Figure 28. Not all the theme is currently used on the

application, principally only the palette is being used. Although the other areas are shown, to

give an example of how to add them on the theming configuration.

Continuing, with the examination of the “src” folder shown in Figure 13. The “pages”

directory is opened and described next.

Figure 19. Frontend Page Components

Figure 19 portrays the Frontend Pages with their constituent components. There is one

subfolder named “AnonymizePage” that holds two files: “index.js” and “SendRequest.js”.

There is one independent file called “index.js”. There is only one subfolder under the “pages”

directory. This is because there is only one active page currently on the application, the

46

anonymization page. If more pages had to be aggregated in future developments of the

program, they would be added as subfolders at this section.

The anonymization page contains only two files: “index.js” and “SendRequest.js”. Both

are extended and explained coming.

Figure 20, Anonymization Page Index

Looking at Figure 20, the base react component for the anonymization page is shown,

it is called “AnonymizePage”. Additionally, the “SendRequest” react component and the title

of the page are located inside the base component.

47

Figure 21. Anonymization Page Send Request

In Figure 21, the “SendRequest” react component is illustrated. It has two main sections

portrayed in the file which are the styling and the component itself. The contents of the

component “SendRequest” are hidden and will be displayed and explained later in the

document.

Observing Figure 21 more in detail. Initially, all the imports related to react, material

UI, text constants and URL constants are imported. Posterior, on the styling section, the CSS

is defined on the same file as the component and in plain JavaScript. This is done with the aid

of a useful functionality from material UI called “makeStyles”. Additionally, one more thing

to note is that “makeStyles” receives a parameter, which is called “theme”. This parameter

represents the theme itself declared on Figure 18. This is the way material UI uses to allow

access of the theme by any specific react component.

48

Later, at the middle of the file, a react component is generated. This corresponds to the

“SendRequest” component, which is the main component where the anonymization process

starts. It holds a Form where the configuration string and the file to be anonymized or

pseudonymized is included. The component is closed at this moment, since this section is

mainly focused on the structure of the web application for the frontend, but it will be analyzed

in a coming section.

Next, there is one more file to consider from Figure 19. This is the “index.js” which

does not belong to a subfolder of the “pages” directory but it is directly inside the “pages”

folder. This file contains the main react page of the application, in other words the page that

will be shown when the program initiates. Exactly, it is not the first page loaded since the

“index.html” mentioned previously on Figure 12 and also the contents of the main “index.js”

file inside the “src” directory (Figure 23), launch earlier. Usually this first two pages do not

show any relevant visual UI but are in charge of functionality. Therefore, any component added

inside the “MainPage” should be displayed at the beginning of the react application.

Figure 22. Main Page Index

Figure 22 shows the main react UI page. It contains one react component called

“MainPage”, which currently holds only the “AnonymizePage” mentioned inside Figure 20.

49

Additionally, it is important to reiterate that this file is the “index.js” directly located inside of

the “pages” folder, as shown on Figure 19, to avoid confusion of index files.

Continuing, observing Figure 13 that portrays the content inside the “src” folder. There

is one more index file to consider, this is the “index.js” file directly inside the “src” directory

and not in any of the subfolders. This file will be expanded and described.

Figure 23. Main React Rendering File Index

Figure 23 displays the main react source code file index. All the react components will

be located inside the “ReactDOM.render”. Currently, there are three main containers inside

this section. These are: “React.StrictMode”, “MuiThemeProvider” and “MainPage”.

Explaining Figure 23 in more detail, this file is directly connected with the “index.html”

file, presented earlier. In Figure 12 the “index.html” can be seen, it is important to observe the

“div” element with an id of “root”. Inside this “div” element, all the contents rendered with

“ReactDOM.render” in Figure 23, will be located. The “React.StrictMode” component

50

corresponds to a react configuration, which gives more strict coding rules, it can be removed

but it is usually useful to maintain better code practices. The “MuiThemeProvider” is a content

provider, that Material UI uses, to pass the theme created in Figure 18, to be accessed by any

component on the react application. The “MainPage” corresponds to the main page component

of the application, referenced on Figure 22.

Finally, observing Figure 10, the last files to be mentioned of the frontend application

are: “.gitignore”, “package.json”, “README.md” and “yarn.lock”. The first is a file to avoid

uploading specific files or types of files to the online repository, noted in the “Repository”

section. The second file serves to handle the dependencies for JavaScript and other

configurations. The third file holds a description about the frontend application. Lastly, the

fourth file is a system specific file that yarn package manager generates, but it is not considered

in the scope of the project.

Configuration and Execution of the Program

To configure and execute the program locally, there are some conditions that must be

accounted. If all the mentioned factors are followed up correctly, the program should run with

ease in the local machine. The requisites to run the application are mentioned below.

Knowledge

 An intermediate knowledge both in JavaScript and Python programming languages is

necessary.

 A proficient knowledge of the React framework for the frontend (with hook

components) and the FastAPI framework for the backend is required.

 A minimum knowledge of NodeJS to download it in the LTS version, which comes

with the default NPM package manager.

51

 The knowledge of dependency managers is important both for the frontend and backend

of the application.

o For the Frontend, the package manager is Yarn, which is installed through NPM

once the LTS version of NodeJS is installed.

o In the backend, the package manager can be “pip”, “anaconda” or any dependency

manager that allows to add the required libraries mentioned in the

“requirements.txt” file shown in Figure 3.

Considerations

 The backend must be executed first by running the “main.py” application mentioned

on Figure 4.

o This will launch the “uvicorn” server locally and activate the backend

application on “localhost” with the port 4557.

 Later the frontend must be run by executing the “yarn start” command in the shell of

choice. This means PowerShell, command prompt, terminal or etc.

o This will prompt a new window on the default browser on “localhost” and the

port 3000.

 The connection between the two applications is already set up, and there is no need for

extra configuration.

Once all these conditions are followed up in the local computer, the application should

launch correctly and display as it is shown below.

The shell mentions the following message once the backend is started adequately.

52

Figure 24. Backend Execution

Figure 24 shows the execution of the backend application. These are the messages that

are displayed on the shell once the program is runed correctly. The path shown in the image is

of no importance since this will change when executed on a different computer.

On the other hand, the shell displays the following text once the frontend is launched correctly.

Figure 25. Frontend Execution

Figure 25 shows the frontend application execution when run successfully. The path

shown in the image is of no importance since this will change when executed on a different

computer.

Finally, once the backend is launched and later the frontend is launched, the following

window will prompt in the default browser. This is the only present window of the application

and were all the anonymization process occurs.

53

Figure 26. Web Application Main Page

In Figure 26 the web application main screen is shown. This is the only page currently

on the application and where the main anonymization process is executed.

Main Endpoint

As shown earlier in Figure 8, the anonymization endpoint is located within the

anonymization router. This is the main endpoint of the application and is in charge of initiating

the anonymization process. It is also the only active endpoint currently on the application. Its

contents are expanded and explained below.

54

Figure 27. Anonymization Endpoint

Figure 27 shows the anonymization endpoint. This is the main endpoint of the

application. It receives two arguments which are a file and a string and returns a response as a

stream of data. This allows the client to download the anonymized file. Besides this, its code

has three main sections “input in-memory file to dataframe”, “json configuration and apply

techniques” and “output in-memory file to streaming response”. Also, it has a section to take

the time the endpoint takes to respond to the client.

Analyzing Figure 27 more in detail, the anonymization endpoint is a POST endpoint. It

receives two parameters which are the input file and the configuration string, “file” and

55

“config” respectively. The default format used by “FastAPI” framework for file transfer is to

encode the body in a multipart format, known as “multipart/form-data” (FastAPI, n.d.-e). This

is an important consideration to take in account when sending the information from the client.

This will be seen in a moment.

Inside the endpoint, the first section, “input in-memory file to dataframe”, stores the

input file in program memory and later proceeds to place it on a DataFrame object. The second

part, “json configuration and apply techniques”, loads the JSON configuration string and sends

the DataFrame object to be applied the corresponding techniques of anonymization or

pseudonymization mentioned in the JSON. The techniques applied will be explained later in

the document. The third part, “output in-memory file to streaming response” generates a file in

program memory with the results of the anonymization, this is a “.gzip” compressed file. It

sends this file back to the client for download through a streaming response. Within all this

steps something important to consider is that, for security reasons, the input file is not allowed

to enter the disk memory but runs completely on the program memory. This is done through

Python API “BytesIO”, which allows program memory byte files (Python, 2021).

Lastly, to be able to better visualize this process, the frontend function responsible for

calling the main endpoint in the server will be displayed. This is the function that was hidden

when explaining Figure 21 previously on the document. This file contains a react component

with JSX code which is the way of writing applications in the react framework. The component

is very simple and only displays a page with a form, as shown in Figure 26. The main part to

consider from the code is the “enctype” mentioned in the form. This must be set to the

“multipart/form-data” as previously noted on this section.

56

Figure 28. Anonymization Endpoint Call

On Figure 28 the anonymization endpoint is called from the client. The code displays a

the react component that makes the calling. The contents can be omitted, but the important part

to consider is the “enctype” mentioned in line 35. This is the “multipart/form-data” format,

which the form needs to specify in order to send files to the FastAPI server.

57

Techniques

The application contains four anonymization techniques and the pseudonymization

technique with tokenization. The anonymization techniques used are data masking, data

perturbation, data swapping and data generalization. Data masking was implemented to work

on numeric, text or date domains; basically, any data type that can be translated to a string

value works. Data perturbation was developed to be used only on numeric input; therefore, it

functions adequately with integer or decimal values. Data swapping doesn’t consider the

domain type; therefore, it allows any type of data. Additionally, data swapping was

implemented for independent columns and grouped columns, as displayed in Table 3 and Table

4; columns with partitions were not developed. Lastly, data generalization is configured to

function with numeric, text or date domains, but no other than these.

More in detail, the data masking implementation developed has some configurable

hyperparameters. These are the “direction”, the “quantity” and the “symbol”. The “direction”

has only two options, “right” and “left”. In the first option, the mask is applied from the right

(as shown in Table 1), whereas in the second option, the mask is placed from the left. Regarding

the “quantity”, it refers to the length of the employed mask. It can have determined units of

length or a percentage length. Respecting the “symbol”, this addresses the character used for

the applied mask. Besides these parameters, also the list of columns on which to apply data

masking must be provided. The following table denotes this type of anonymization.

Parameter Description Example Default

Direction The orientation of the mask "right" or "left" "right"

Quantity
The size of the mask: integer
number or float percentage

3 or 0.20 or etc 1

Symbol The character for the mask "*", "#", "-" or etc "*"

Columns
Columns on which to apply

the technique
["column1", "column4",

"column7"]
required

Table 15. Data masking parameters

58

Table 15 illustrates the parameters for the implemented data anonymization technique.

It contains the parameter, its description, an example, and the default value or required in case

there is no default value.

On other hand, data perturbation also has some configurable conditions, which are:

“operator”, “quantity”, “rounding”, “rand” and “seed”. The “operator” covers the type of

operator that will be used to add statistical noise to the data. As mentioned on the “data

perturbation” section, this technique consists of adding statistical noise to the information. The

“quantity” represents the base number that will be applied with the operator. In case the “rand”

argument is habilitated, this means a range of random numbers, from 0 to the value of

“quantity”, will be applied with the operator. For example, on Table 2, the “operator” used was

“*” and the “quantity” 1.5 and 0.15. Continuing, the “rounding” indicates the number of

decimals to be used for rounding, after the noise is aggregated. It rounds to the nearest decimal.

The “rand” allows random numbers to be used, instead of a constant value. This allows the

generation of more random noise but must be used carefully and lightly so that it doesn’t distort

data too much, making it lose too much value. The “seed” is only applicable when “rand” is

habilitated, it represents the pseudorandom seed for reproducibility. Apart from the mentioned

arguments, also the “columns” parameter is necessary. A table is illustrated below.

Parameter Description Example Default

Operator Operator to use for the noise "+", "-", "*" or "/" "*"

Quantity
The base number to use for the

noise
5, 12, 23 or etc 2

Rounding Number of decimals to round 1, 2, 3, 4 or etc 2

Rand
If random numbers in range,
rather than a constant value

true or false false

Seed
The initialization for the
pseudorandom numbers

0, 112, 1140 or etc 0

Columns
Columns on which to apply

the technique.
["column1", "column4",

"column7"]
required

59

Table 16. Data perturbation parameters

Table 16 portrays the parameters for data perturbation or statistical noise anonymization

technique. It contains the parameter, its description, an example, and the default value or

required in case there is no default value. For the rounding parameter, if the number 0 is

selected, the number is rounded and casted to the nearest integer.

Subsequently, mentioning data swapping, it holds two parameters for tuning. The first

one is the “type” of grouping. As noted at the beginning of this section, only two types of

grouping are being used: independent and group columns. The second one is the “seed”. Data

swapping shuffles records randomly within the column or group of columns. Therefore, a seed

for the reproducibility of the randomness is necessary. In top of that, as in the other cases it

also has a “columns” argument. The respective table is shown below.

Parameter Description Example Default

Type Type of column grouping "independent" or "group" "independent"

Seed
The initialization for the
pseudorandom shuffling

0, 112, 1140 or etc 0

Columns
Columns on which to apply

the technique.
["column1", "column4",

"column7"]
required

Table 17. Data swapping parameters

Looking at Table 17, the arguments for data swapping anonymization technique. It

contains the parameter, its description, an example, and the default value or required in case

there is no default value.

Regarding data generalization, there are three main parameters that can be modified for

the implementation, these are “num_range”, “str_level” and “date_type”. The “num_range”

applies only for numeric domains, this is the interval length to which the technique generalizes

60

numbers. For example, if the number was 97 and the “num_range” was 10, the result after

applying generalization would be “90.0 – 100.0”. The “str_level” is used only for columns of

string values, this corresponds to the number of levels that will be returned on the string. If a

particular string does not contain enough levels as required by this argument, then it is raised

to the maximum level possible. Such as, a string containing the hierarchical categories for

books in a specific library. If the string was “History World War WW2” and the “str_level”

was two, then the string would be generalized by two levels leaving it on “History World”. It

is important to preprocess the dataset to arrange the string values in the column to be

hierarchical or generalizable in this format, otherwise the generalization of strings does not

work.

There are also three secondary parameters for generalization, these are the “date_type”,

“day_first” and “year_first”. The “date_type” corresponds to the format dates are generalized.

In other words, if specific dates are generalized leaving only the month or leaving only the year

or both. Also, dates can be generalized on five and ten year intervals. The other secondary

arguments will be explained later. Also, as the preceding techniques the “columns” argument

is included.

Parameter Description Example Default

num_range The interval range for numeric generalization
2, 10, 50, 100

or etc
10

str_level
The levels to return on a string for

generalization
1, 2, 3, 4 or etc 1

date_type The format for date generalization

"month",
"year", "month-
year", "five" or

"ten"

"year"

day_first

Interpret the first element on a date as the day
and second as the month. Only when the

“year_first” parameter is not defined.
Otherwise, it defines the order of the day and

the month. The month will come after or
before the day, depending on this parameter.

true or false true

61

year_first

Interpret the first element on a date as a year.
The month and day will come after in the

respective order corresponding to the
"day_first" parameter.

true or false false

columns Columns on which to apply the technique
["column1",
"column4",
"column7"]

required

Table 18. Data generalization parameters

In Table 18, the variables for data swapping anonymization technique are exhibited. It

contains the parameter, its description, an example, and the default value or required in case

there is no default value.

Additionally, mentioning data generalization, for the date domains it is important to

consider the date format used. Currently, the “DD-MM-YYYY”, “MM-DD-YYYY”, “YYYY-

DD-MM” and “YYYY-MM-DD” are the allowed formats for the application. These formats

are specified based on the arguments “day_first” and “year_first” mentioned on Table 18.

Although, behind the scenes, the date parsing is done with the method parser of the “dateutil”

python library (Dateutil, n.d.), which can handle most known date formats. The user can

attempt distinct formats to the expected formats and see how the application results.

Regarding the pseudonymization technique with tokenization, it consists of generating

a new dataset that does not contain the private columns, that do not want to be displayed, but

maintains a relation to the old dataset by a unique identifier. Therefore, the values of the private

columns can be identified by tracing the unique identifier between the two datasets. It contains

two main arguments which are “unique_index” and “private_columns”. The first argument

refers to the unique identifier of the dataset which must be unique to work. The second

argument refers to the private columns that will be removed from the new generated dataset.

The idea, as previously mentioned, is that the new generated dataset can be publicly accessed,

and the previous dataset, that holds the private columns, must be kept with high security.

62

Parameter Description Example Default

unique_index

The unrepeated identifier. It
can be a specific column or

a list of columns that
together identify each
record. This must not

interfere with the columns
mentioned in the

“private_columns” argument

["column_id"] or
["column_id1",
"column_id2",
"column_id3"]

required

private_columns
The sensitive column or list

of columns to remove
["column2"] or ["column2",

"column5", "column6"]
required

Table 19. Pseudonymization parameters

In Table 19, the arguments for pseudonymization with tokenization are displayed. It

contains the parameter, its description, an example, and the default value or required in case

there is no default value.

To pass the different anonymization techniques and pseudonymization simultaneously

and on different columns of the dataset, a general structure is utilized. It has only one argument

called “techniques”, which is a dictionary that holds the different anonymization techniques or

pseudonymization being implemented. The techniques inside this dictionary are themselves

arrays of objects. The objects represent a configuration for the specific technique. This means

that each technique can have multiple configurations, this is important for when the same

technique wants to be applied with different parameters for different columns. The

configurations as mentioned are objects, they hold the arguments defined on the preceding

tables of this section. The following table portrays these considerations.

Parameter Description Example Default

63

Techniques

A dictionary that holds the
different techniques to be

applied. Each technique inside
is an array of objects itself.
The objects represent the

specific configuration for a
particular technique.

{ "mask": [{…},{…}],
"noise": [{…},{…},{…}],

"swap": [{…}], "generalize":
[{…},{…},{…}],

"pseudonymization": [
{…},{…}] }

required

Table 20. General structure parameters

Table 20 displays the general structure for passing anonymization techniques or

pseudonymization with tokenization to the application. It contains the parameter, its

description, an example, and the default value or required in case there is no default value. For

the value in the example column of the table, it is important to consider that this is a union of

different data structures. The elements “{…}” denote the specific configuration to be used,

they were not expanded. The configuration consists of the arguments mentioned on the

previous tables of this section. In other words, every “{…}” will have the specific variables

according to the technique that is being used. As an arbitrary example, the “{…}” for data

masking would be: {"columns": ["name"], direction": "right", "quantity": 4, "symbol": "*"}.

Finally, it is important to consider that all the tables mentioned on this section are

implemented in practice on JSON strings. This means that all the general structure mentioned

on Table 20 and the rest of the tables mentioned in this section, are all introduced in the

application using a JSON format. This will be examined in more detail on the “JSON

Configuration” section, later in the document.

Preprocessing

The preprocessing of information is very important on any data science analysis. As

mentioned previously, anonymization and pseudonymization are important areas to preserve

the privacy of information within data science. Preprocessing can become a complex process

64

depending on the initial data. Also, it can be very specific to the type of data utilized. The

program as it is now, does not include a preprocessing unit since that is a very broad area and

will make the program much more complex. Therefore, the preprocessing of the input data is

left as a complete responsibility for the user to apply, before submitting the file to the program.

There are important considerations to take into account in the dataset preprocessing.

The columns must have only one domain type, and not mixed domains. Also, every column

must have the correct format as illustrated on the Techniques section. Finally, there must be no

empty values, this means that the dataset must be treated correctly with techniques for filling

values, e.g., the mean of the column for numeric values.

JSON Configuration

 The JSON configuration follows the structure mentioned in the “Techniques” section.

It is inputted as a string to the program in the text area shown in the main page of the application

on Figure 26. An example of this JSON string is shown below, it is important to note that the

JSON string does not require to pass all the techniques at the same time as the one shown in

the example. The only thing to consider is that at least one technique or more must be

introduced to the program.

65

Figure 29. JSON Configuration Example

66

Figure 29 addresses an example of the JSON configuration. It is important to note as

mentioned precedingly, that not all the techniques must be mentioned at the same time as in

the example. At least one or more techniques must be added, all depends on the requirements

of the user for the specific dataset that is utilized. Additionally, every technique holds an array,

therefore it can have more than one configuration of parameters. This is useful when

configuring the same technique for different columns with distinct conditions. Besides, it is not

recommended to share columns among the different configurations within a same technique or

within different techniques. Therefore, in the image they are not shared but in case sharing is

done, the techniques will be applied sequentially in the order they are declared on the JSON

string, from top to bottom. Also, errors could occur in the application when attempting to share

columns. Lastly, all the parameters for the techniques seen in the JSON string are explained in

the “Techniques” section and the column names shown in the image are hypothetical, so they

must be replaced by the specific ones in the dataset used.

This is how the main page of the application will look like when introduced the JSON

string.

67

Figure 30. Web Application Main Page with JSON

Figure 30 shows the main page of the web application with the JSON configuration

string. Before the send button is clicked, the “.parquet” file must be added through the upload

button. Once the file is added, if it is correctly preprocessed and the JSON string is adequately

configured, the download will be loaded in a moment, depending on the size of the input file.

68

Anonymization and Pseudonymization Implementation

The anonymization techniques and pseudonymization with tokenization technique was

specifically implemented on the following files: “techniques.py”, “mask.py”, “noise.py”,

“swap.py” and “generalize.py” as seen on Figure 5.

The techniques file receives the dataset that will be modified with the techniques of

privacy protection according to the JSON configuration. This is seen in Figure 27, the

techniques method, from the techniques file, is called to apply the privacy techniques to the

dataset and return the result to the main endpoint. Additionally, it also is the file that releases

the pseudonymization with tokenization.

The rest of the files mentioned are each responsible for a specific anonymization

technique: “mask.py” file refers to data masking, “noise.py” signifies data perturbation

technique (which adds statistical noise), “swap” addresses data swapping and “generalize.py”

implements data generalization. All these techniques were explained in detail in the theory

previously in the document. The pseudonymization with tokenization is the only technique that

does not have its own file, since this is a very simple technique in practice, thus it was added

directly in the “techniques” file. The contents of all these files can be revised if desired by the

user but all work accordingly and produce the desired result when the input dataset is correctly

preprocessed and the JSON configuration string is adequately build.

Errors

In case there is an error in the JSON string or if the input dataset was incorrectly

preprocessed, there will appear an error on the screen once the send button shown in Figure 30

is clicked. To try again the web page must be reloaded in “localhost:3000” as mentioned in the

Configuration and Execution section of the Program.

69

There is no validation of the JSON string or the input dataset in the program. Therefore,

the input dataset and configuration string must be entered adequately or else an error will

display. Additionally, the server must be examined to see if it is still running, if this not the

case it must be relaunched before the client is reloaded. An example of the error page is

illustrated next.

Figure 31. Error Page

Figure 31 shows the error page of the application. It is important to note that the URL

is changed from “localhost:3000” portrayed at Figure 26 to

“localhost:4557/endpoints/data_science/anonymization/files”. This makes it necessary to

reload at “localhost:3000” to try again. Also, an error message with the text “Internal Server

Error” displays on the screen. This is the error message that appears for Microsoft Edge web

browser, a different error message and UI will probably appear for other browsers, but the idea

is the same.

70

CONCLUSIONS

Data science is an essential field for the development of businesses, organizations, or

any entity on today’s society’s computer systems. Privacy is a recurring issue that is strongly

related to this field as it requires the access of information as its base and most of the time this

information is related to specific individuals. Anonymization and Pseudonymization are

important methods to consider to prevent privacy problems, manage better user privacy ethics,

and continue doing data analysis. In this document, both methods were studied and analyzed.

Also, a prototype of a web application implementing techniques for both methods was released.

An important concept present in these two methods of privacy protection is the

threshold that occurs between the value of data (patterns and structure) and the privacy it holds.

No matter how good anonymization or pseudonymization is done, there will always be some

value lost in the original data. Therefore, it is extremely important to spend the necessary time

finding the adequate threshold, to correctly apply any of these two methods. This is an arduous

job since there is no determined way to know exactly the amount of privacy and utility of

information. As previously mentioned, privacy is influenced by the amount of information

accessible from other sources. This means that all the information in the internet and in the

physical world present a hazard, since there is the possibility that information that can reveal

identities from the original source is present somewhere. With respect to utility is also difficult

to determine the amount of utility, since this can change depending on the model used for the

data analysis. Besides, it is important to note that both methods have different ways of

removing the value in data. Anonymization removes value in data by modifying values directly,

whereas pseudonymization by replacing sensitive columns with pseudonyms that can be or not

equally distributed or removing sensitive columns.

71

The idea of the application is that it will be hosted and utilized by Universidad San

Francisco de Quito USFQ in Ecuador to better manage data transferring among all departments.

There is an important concern to take into account when hosting the application on a server for

it to be accessible online. Due to privacy concerns, all the process of the application is done in

program memory as Figure 27 portrays. The anonymization or pseudonymization of the dataset

files can also occur at the gigabyte level, which adds an enormous weight to the active program

memory. If this was done for various users at the same time a server with a high amount of

Random-Access memory (RAM) would be necessary for hosting. Usually, servers with higher

amount of RAM memory are significantly more expensive.

Furthermore, taking in account the country of Ecuador, this is a country which has a

lower level of technological development presently compared to other more developed

countries like the United States, Germany, or Russia. Therefore, the present methods

mentioned on this document are not a common practice within the country. In fact, the correct

application of these methods is also a challenge for the higher technologically developed

countries. This means that there is a big opportunity for implementing this technology among

the business and organizations within the country since all of them manage sensitive data about

their users. Any company or venture that would like to attempt expanding these techniques

among the country would have a good idea for business.

Finally, it is interesting that the difficulties present to protect the privacy of information

hold a similar problem to what occurs in computer encryption. In encryption there is no perfect

algorithm to protect the security of information, all algorithms have vulnerabilities and can be

broken. Therefore, the quality of encryption is not measured on how unbreakable an algorithm

is, but instead in how difficult, how much computer power and how much time it would be

necessary to break an encryption. Also, the value of the information in time is an important

aspect that is considered in encryption. In that sense a good encryption is an algorithm that can

72

protect the information for enough time until it loses most of its value. Besides, another

important consideration in encryption is that computing power is always advancing, hence

algorithms that are considered strong in the present era will probably not be so in the future.

All these aspects apply to anonymization and pseudonymization as well.

 The key idea for a good anonymization or pseudonymization of information is not that

it becomes unbreakable, but that the concepts for a good encryption are also applied. In other

words, that the identification of a specific individual has a high complexity, a high

computational cost and is not possible to be performed on the time of value of the information.

Also, it must be considered that all of these applies for the current state of technology since as

technology advances most of this privacy protection methods will probably become obsolete.

Thus, the area of privacy protection of information is an active field which will always be

presenting new techniques and solutions.

73

RECOMENDATIONS

The techniques analyzed and implemented for both areas of privacy protection are not

all the techniques present for these two methods. These are some of the multitudes of

techniques that exist. The idea of the project was to bring a glimpse of what anonymization and

pseudonymization are. It is not a complete guide on this highly broad and complex topic, but

an introduction. Other important techniques that can be considered for future implementations

of the application are differential privacy, and synthetic data.

Subsequently, to solve the RAM limitation among servers for web hosting,

implementing temporary files is a solution to consider. Temporary files are stored temporarily

on the disk of the computer, but they are immediately eliminated as soon as the program stops

requiring these files for its processing. The framework used of FastAPI in Python offers the

option of utilizing “Spoiled Temporary Files” (FastAPI, n.d.-e). These are files that are saved

in memory until a threshold size and once the threshold is exceeded, they are stored temporarily

on disk. The only thing needed for this change to be applied is to modify the definition for the

anonymization POST endpoint. Instead of using “bytes” as the type of data for one of its

arguments it must use “UploadFile”. In other words, replace the word “bytes” by the word

“UploadFile” from the definition of the endpoint shown in Figure 27. Also, updating the

respective import must be considered, “UploadFile” is imported from FastAPI and must be

reflected on the import statement of Figure 8, which is speaking about the same file.

Furthermore, the application presented for this protype is a very simple full stack

application. Thus, there is a vast list of improvements that can be done for the program. From

the upgrades that can be applied some of the most relevant would be: to add user login or

management, add routing for more pages, to make a more dynamic web interface which takes

advantage of react components for the input configuration, adding a more robust validation of

74

the input dataset and configuration and applying vectorization methods for pandas which is the

main library used currently in the application. From all the areas of advancement presented the

most significant on the performance of the application is the addition of vectorization methods.

This would mean rethinking the logic of the problems already solved for the techniques on the

files “mask.py”, “noise.py”, “router.py” and “swap.py” illustrated in Figure 5 and applying

vectorization. Vectorization is several times faster in terms of performance (Wyndham, n.d.).

It is a necessity if big amounts of data want to be analyzed on a reasonable amount of time.

Subsequently, all the implementations done for the anonymization and

pseudonymization techniques were done directly with Python code and the pandas library. This

could be improved if specific libraries for anonymization and pseudonymization were used.

Hence an investigation of python libraries relating to these subjects to apply them, would be

an important consideration. Adding these libraries would also help on code readability and

performance. Besides, if more complex techniques such as differential privacy or synthetic data

were to be added in the future. These are highly complex techniques thus, implementing them

directly in python would be a difficult and long work. Here libraries come very handy and are

seen as a practical solution.

Finally, the objective of a web application is to be launched for it to be publicly

accessible on the internet. Currently the application is only allowed to run locally as manifest

in the “Configuration and Execution of the Program” section. Therefore, it is highly encouraged

that if Universidad San Francisco de Quito USFQ, any other university, person, or entity,

reading this document, finds the program useful, to upload it on a web host for it to be publicly

available. This program serves as a base for anonymization and pseudonymization techniques,

but it is highly encouraged that its development is continued by other parties that find it

interesting. This way the program can evolve in a much more advance version helping in the

75

understanding and application of this complex topic, which is to find the ideal point between

privacy of information and data analysis.

76

REFERENCES

Anonyome Labs. (2020). What is Pseudonymization? Retrieved on December 19 of 2021 from

https://anonyome.com/2020/10/what-is-pseudonymization/

Burgess, M. (2020). What is GDPR? The summary guide to GDPR compliance in the UK.

Retrieved on December 19 of 2021 from https://www.wired.co.uk/article/what-is-gdpr-

uk-eu-legislation-compliance-summary-fines-2018

Complior. (n.d.). Pseudonymization and Anonymization of Personal Data. Retrieved on

October 18 of 2021 from https://complior.se/pseudonymization-and-anonymization-of-

personal-data-what-is-the-difference/

Databricks. (n.d.). Parquet. Retrieved on December 19 of 2021 from

https://databricks.com/glossary/what-is-parquet

Dateutil. (n.d.). Parser. Retrieved on November 11 of 2021 from

https://dateutil.readthedocs.io/en/stable/parser.html

Deepomatic. (2019). Data Anonymization a Challenge to Face! Retrieved on December 19 of

2021 from https://deepomatic.com/data-anonymization-a-challenge-to-face

FastAPI. (n.d.-a). First Steps. Retrieved on November 11 of 2021 from

https://fastapi.tiangolo.com/tutorial/first-steps/

FastAPI. (n.d.-b). Extending OpenAPI. Retrieved on November 11 of 2021 from

https://fastapi.tiangolo.com/advanced/extending-openapi/

FastAPI. (n.d.-c). CORS (Cross-Origin Resource Sharing). Retrieved on November 13 of 2021

from https://fastapi.tiangolo.com/tutorial/cors/

77

FastAPI. (n.d.-d). Bigger Applications - Multiple Files. Retrieved on December 10 of 2021

from https://fastapi.tiangolo.com/tutorial/bigger-applications/

FastAPI. (n.d.-e). Request Files. Retrieved on December 17 of 2021 from

https://fastapi.tiangolo.com/tutorial/bigger-applications/

Frankenfield, J. (2020). De-Anonymization. Retrieved on December 19 of 2021 from

https://www.investopedia.com/terms/d/deanonymization.asp

GeeksforGeeks. (2021). How to use files in public folder in ReactJS? Retrieved on December

12 of 2021 from https://www.geeksforgeeks.org/how-to-use-files-in-public-folder-in-

reactjs/

Hamidovic, H., Kabil, J. Šehić, E. (2019). EU General data protection regulation (GDPR) -

Anonymisation and pseudonymisation in function of data protection. Retrieved on

December 19 of 2021 from https://www.researchgate.net/figure/Example-of-

pseudonymization-by-tokenization_fig5_332686691

IBM., Business Higher Education Forum., Burning Glass Technologies. (2017). The Quant

Crunch How The Demand For Data Science Skills Is Disrupting The Job Market.

Retrieved on December 26 of 2021 from

https://www.ibm.com/downloads/cas/3RL3VXGA

Imperva. (n.d.). Anonymization. Retrieved on October 18 of 2021 from

https://www.imperva.com/learn/data-security/anonymization/

Maldoff, G. (2016). Top 10 operational impacts of the GDPR: Part 8 – Pseudonymization.

Retrieved on December 19 of 2021 from https://iapp.org/news/a/top-10-operational-

impacts-of-the-gdpr-part-8-pseudonymization/

78

Manca, F. (2019). Introduction to ASGI: Emergence of an Async Python Web Ecosystem.

Retrieved on December 8 of 2021 from

https://florimond.dev/en/posts/2019/08/introduction-to-asgi-async-python-web/

Material UI. (2021). Material UI. Retrieved on November 11 of 2021 from https://v4.mui.com/

New America. (n.d.). Data Perturbation Methods. Retrieved on October 18 of 2021 from

https://www.newamerica.org/oti/reports/primer-disclosure-limitation/disclosure-

limitation-techniques/

OAI. (2021). The OpenAPI Specification. Retrieved on November 11 of 2021 from

https://github.com/OAI/OpenAPI-Specification

Octopize. (2021). What anonymization techniques to protect your personal data? Retrieved on

December 19 of 2021 from https://octopize-md.com/en/2021/07/28/what-

anonymization-techniques-to-protect-your-personal-data/

Peinoit, P. (2019). Data Privacy through shuffling and masking – Part 1. Retrieved on October

18 of 2021 from https://www.talend.com/blog/2019/08/13/data-privacy-shuffling-

masking-part-1/

Python. (2021). IO - Core tools for working with streams. Retrieved on November 11 of 2021

from https://docs.python.org/3/library/io.html#io.BytesIO

Rayward. O. (2018). Better performance by optimizing Gunicorn config. Retrieved on

December 26 of 2021 from https://medium.com/building-the-system/gunicorn-3-

means-of-concurrency-efbb547674b7

Record Evolution. (2020). Data Anonymization Techniques and Best Practices: A Quick

Guide. Retrieved on October 19 of 2021 from https://www.record-

evolution.de/en/data-anonymization-techniques-and-best-practices-a-quick-guide/

79

Rivas, S. (2020). Personal data anonymization: key concepts & how it affects machine learning

models. Retrieved on December 19 of 2021 from

https://tryolabs.com/blog/2020/06/11/personal-data-anonymization-key-concepts--

how-it-affects-machine-learning-models

Singh, A. [Abhishek] (2020). Create-react-app files/folders structure explained. Retrieved on

December 12 of 2021 from https://medium.com/@abesingh1/create-react-app-files-

folders-structure-explained-df24770f8562

Singh, A. [Ashish] (2019). An intro to Webpack: what it is and how to use it. Retrieved on

December 12 of 2021 from https://www.freecodecamp.org/news/an-intro-to-webpack-

what-it-is-and-how-to-use-it-8304ecdc3c60/

Sridhar, A. (2018). A quick guide to help you understand and create ReactJS apps. Retrieved

on December 12 of 2021 from https://www.freecodecamp.org/news/quick-guide-to-

understanding-and-creating-reactjs-apps-8457ee8f7123/

Szoc, S. (n.d.). Data Anonymization. Retrieved on October 18 of 2021 from

https://ec.europa.eu/cefdigital/wiki/download/attachments/68329287/Anonymization

%20explained_sara%20szoc.pdf?version=1&modificationDate=1558525207019&api

=v2

Tabakovic, A. (2020). Only a little bit re-identifiable?! Good luck with that. Retrieved on

December 19 of 2021 from https://mostly.ai/blog/only-a-little-bit-re-identifiable/

Tan, S. (2020). Pseudonymization 101. Retrieved on November 11 of 2021 from

https://www.privitar.com/blog/pseudonymization-101/

80

Tokenex. (2018). Pseudonymization vs. Anonymization: GDPR. Retrieved on December 19 of

2021 from https://www.tokenex.com/blog/general-data-protection-regulation-

pseudonymization-vs-anonymization

UserCentrics. (2021). Data Anonymization: The What, Why, and How of Data Anonymization.

Retrieved on December 19 of 2021 from https://usercentrics.com/knowledge-hub/data-

anonymization/

Uvicorn. (n.d.). Introduction. Retrieved on November 11 of 2021 from

https://www.uvicorn.org/

Wyndham, J. (n.d.). Fast, Flexible, Easy and Intuitive: How to Speed Up Your Pandas Projects.

Retrieved on November 11 of 2021 from https://realpython.com/fast-flexible-pandas/

