UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

Edificio de acero estructural con pórticos a momento y dos tipos de conexiones en la provincia de Pastaza.

Wilson Isaías Erazo Espín Ingeniería Civil

Trabajo de fin de carrera presentado como requisito para la obtención del título de INGENIERO CIVIL

Quito, 07 de diciembre de 2021

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

HOJA DE CALIFICACIÓN **DE TRABAJO DE FIN DE CARRERA**

Edificio de acero estructural con pórticos a momento y dos tipos de conexiones en la provincia de Pastaza.

Wilson Isaías Erazo Espín

Nombre del profesor, Título académico Pablo Torres Rodas, PhD

Quito, 07 de diciembre de 2021

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este trabajo en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación Superior del Ecuador.

Nombres y apellidos:	Wilson Isaías Erazo Espín
Código:	00121445
Cédula de identidad:	1600557902
Lugar y fecha:	Quito, 07 de diciembre de 2021

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado como una publicación, incluso a pesar de estar disponible sin restricciones a través de un repositorio institucional. Esta declaración se alinea con las prácticas y recomendaciones presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017) Discussion document on best practice for issues around theses publishing, disponible en http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following capstone project is available through Universidad San Francisco de Quito USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be considered a publication. This statement follows the recommendations presented by the Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion document on best practice for issues around theses publishing available on http://bit.ly/COPETheses.

RESUMEN

En Ecuador en los últimos años se ha notado un alto índice de construcciones hechas de acero estructural, por ende, es necesario entender como estas estructuras se comportan en una construcción. A continuación, se presentará un edificio de 6 pisos realizado de acero estructural con pórticos a momentos y dos tipos de conexiones precalificadas para la provincia de Pastaza. Es una estructura nunca antes vista para la provincia, ya que, la mayoría de edificaciones son hechas de hormigón armado. Para ello, se realizó un análisis completo de vigas principales, vigas secundarias, columnas, losa colaborante, conexiones y placa base.

Todo el estudio del diseño de la estructura se rige a los parámetros de construcción que impone la NEC 2015 y la AISC 360, que garantizan seguridad, comodidad y confianza a los habitantes de la edificación.

Palabras clave: acero estructural, pórticos a momento, conexiones precalificadas, Provincia de Pastaza, Vigas, Columnas, Losa colaborante.

ABSTRACT

In Ecuador in recent years there has been a high rate of constructions made of structural steel, therefore, it is necessary to understand how these structures behave in a construction. Next, a 6-story building made of structural steel with frames at moments and two types of prequalified connections for the province of Pastaza will be presented. It is a structure never seen before for the province, since most buildings are made of reinforced concrete. For this, a complete analysis of main beams, secondary beams, columns, collaborating slab, connections and base plate was carried out.

All the study of the design of the structure is governed by the construction parameters imposed by the NEC 2015 and the AISC 360, which guarantee safety, comfort and confidence to the inhabitants of the building.

Keywords: structural steel, frames at the moment, prequalified connections, Pastaza Province, Beams, Columns, Collaborating slab.

TABLA DE CONTENIDO

INTRODUCCION	
Antecedentes	
Ubicación de Ecuador	
Cinturón de fuego	14
Terremotos (teoría)	15
¿Que son las placas tectónicas?	16
Mapa de placas tectónicas	16
Pro ble mática	20
Riesgo sísmico por placas tectónicas	20
Riesgo sísmico por actividad volcánica	21
Acero en estructuras	21
DESARROLLO DEL TEMA Planteo del problema	23
Geometría de la estructura	24
Asignación de cargas	25
Adicional de cargas muertas	25
Asignación de carga viva	
Parámetros de diseño empleados para definir fuerzas sísmicas	
Coeficiente Sísmico	
Cortante basal de diseño	
Periodo de vibración T	
Peligro y Efectos Sísmicos Locales en Ecuador	
Configuración en elevación y planta de la estructura	
Derivas de piso	
Cargas no sísmicas	
Carga muerta	
Carga viva	
Combinaciones de cargas	
Teoría de Marcos resistentes a momento	
Demanda por corte	41
Columna fuerte-Viga débil	43
Crite rio de conexión RBS	44
Criterio de conexión WUF-W	45

Diseño de Vigas Principales, Sistema sismo-resistente (SMF)	
Diseño de Vigas Secundarias	
Diseño de Columnas, Sistema sismo-resistente (SMF)	
Diseño de conexión RBS	
Diseño de la conexión WUF-W	71
Diseño de la Losa Compuesta	77
Análisis y modelado de la estructura en ETABS 2018	
RESULTADOS	
CONCLUSIONES Recomendaciones	103
Referencias BIBLIOGRAFICAS	
ANEXO A: DISEÑO DE VIGAS PRINCIPALES (SMF)	
ANEXO B: DISEÑO DE VIGAS SECUNDARIAS	
ANEXO C: DISEÑO DE COLUMNAS (SMF)	
ANEXO D: COLUMNA FUERTE-VIGA DEBIL	
ANEXO E: LOSA COMPUESTA	
ANEXO F: CONEXIÓN RBS	
ANEXO G: CONEXIÓN WUF-W	

ÍNDICE DE TABLAS

Tabla 1. Cargas de pared	26
Tabla 2. Datos generales del edificio.	
Tabla 3. Resumen de cargas de pared.	27
Tabla 4. Peso del edificio.	27
Tabla 5. Coeficiente de amplificación del suelo en la zona de periodo corto	
Tabla 6. Coeficiente de las ordenadas de desplazamiento para diseño en roca	
Tabla 7. Coeficiente de comportamiento no lineal de los suelos	
Tabla 8. Coeficientes para determinar el espectro sísmico.	
Tabla 9. Cálculo del cortante basal.	
Tabla 10. Derivas máximas de los pisos	
Tabla 11. Detalles del acero que se va a utilizar	46
Tabla 12. Dimensiones de la viga a utilizar	47
Tabla 13. Datos geométricos de la viga	47
Tabla 14. Longitud de la viga.	48
Tabla 15. Chequeo de compacto/no compacto y dúctil/no dúctil	
Tabla 16. Chequeo de pandeo lateral torsional.	49
Tabla 17. Demanda/capacidad de momento flexionante	51
Tabla 18. Demanda de cargas.	51
Tabla 19. Chequeo demanda/capacidad a corte	
Tabla 20. Tipo y datos de las vigas secundarias	53
Tabla 21. Datos geométricos de las vigas secundarias.	53
Tabla 22. Datos de las vigas secundarias	53
Tabla 23. Chequeo de secciones sísmicas	54
Tabla 24. Chequeos de demanda de apoyos de la viga	55
Tabla 25. Chequeo de demanda/capacidad de momento flexionante	56
Tabla 26. Chequeo de demanda/capacidad a corte	56
Tabla 27. Datos generales de la columna	57
Tabla 28. Dimensiones calculadas de la columna	57
Tabla 29. Chequeo estabilidad ala y alma	58
Tabla 30. Chequeo estabilidad ala y alma	59
Tabla 31. Cálculo del diseño a flexo compresión	60
Tabla 32. Cálculo del diseño a corte.	61
Tabla 33. Tipo de acero y datos de la viga principal	62
Tabla 34. Datos geométricos de la viga principal.	62
Tabla 35. Datos generales para el diseño de la conexión	63
Tabla 36. Distancias para el diseño de la conexión RBS	64
Tabla 37. Módulo de sección plástica	64
Tabla 38. Momento plástico probable	65
Tabla 39. Resistencia a corte.	65
Tabla 40. Momento máximo probable	65
Tabla 41. Momento pastico de la viga.	66
Tabla 42. Resistencia a flexión de la viga	66

Tabla 43. Resistencia requerida a corte	66
Tabla 44. Datos para el diseño de la placa de corte	67
Tabla 45. Datos para el diseño de pernos	68
Tabla 46. Datos de la columna	70
Tabla 47. Verificaciones de la zona de panel	71
Tabla 48. Dimensiones de la viga IPE300 y tipo de material	72
Tabla 49. Dimensiones de la columna C2 W18X86	72
Tabla 50. Límites de precalificación para las vigas	72
Tabla 51. Cálculo del diseño de placa de corte	73
Tabla 52. Cálculo del diseño de placa de corte	75
Tabla 53. Datos de diseño de la losa compuesta.	78
Tabla 54. Cuantificación de cargas.	78
Tabla 55. Datos principales de la losa compuesta.	78
Tabla 56. Cálculo de las condiciones de tramo	79
Tabla 57. Cálculo de los esfuerzos de la placa	80
Tabla 58. Cálculo de los esfuerzos en el sistema compuesto	82
Tabla 59. Cálculo de la resistencia a flexión	83
Tabla 60. Cálculo de la resistencia a corte	83
Tabla 61. Cálculo del diseño de conectores	84
Tabla 62. Cálculo de los modos de vibración	94
Tabla 63. Cálculo de la participación de masa	95
Tabla 64. Cálculo del pandeo global	95
Tabla 65. Cálculo del cortante basal	96

ÍNDICE DE FIGURAS

Figura 1. Ubicación de Ecuador en América, señalando que la línea ecuatorial pasa por el	
territorio	14
Figura 2. Cinturón de fuego del pacifico	15
Figura 3. Edificación colapsada en Pedernales	16
Figura 4. Placas tectónicas existentes en el planeta	17
Figura 5. Dirección de desplazamiento de las placas tectónicas	18
Figura 6. Momento en el que una placa subduce a la otra	18
Figura 7. Momento en el que una placa subduce a la otra	19
Figura 8. Momento en el que una placa subduce a la otra	19
Figura 9. Distribución de equipos acelerográficos en el Ecuador	20
Figura 10. Museo Soumaya	22
Figura 11. Diseño arquitectónico del proyecto, mediante AutoCAD	23
Figura 12. Diseño digital de la estructura tridimensional en ETABS	24
Figura 13. Vista del primer piso en un plano X-Y diseñado en ETABS	28
Figura 14. Carga viva de acuerdo a la ocupación o uso	29
Figura 15. Ecuación del cortante basal de diseño	30
Figura 16. Ecuación del cortante basal de diseño	31
Figura 17. Mapa para zonas sísmicas de Ecuador (Factor Z)	32
Figura 18. Espectro elástico horizontal de diseño en aceleraciones	34
Figura 19. Amplificación espectral según la región del Ecuador	35
Figura 20. Configuración estructural en elevación y planta	35
Figura 21. Espectro elástico de aceleración	37
Figura 22. Zona de panel en pórticos resistentes a momento	39
Figura 23. Se observa la forma de la conexión RBS	40
Figura 24. Se observa cómo se deformará un pórtico resistente a momento con conexión RBS.	.40
Figura 25. Se observa que la zona de panel se comporte de esta manera	41
Figura 26. Se muestra las fuerzas que ocurren en el panel	42
Figura 27. Dimensiones de un pórtico resistente a momento	42
Figura 28. Fuerzas internas de un pórtico resistente a momento	43
Figura 29. Criterio columna fuerte-viga débil	44
Figura 30. Conexión RBS con sus respectivas distancias	44
Figura 31. Tipo de conexión WUF-W	45
Figura 32. Conexión RBS y sus componentes	63
Figura 33. Ecuaciones para determinar las dimensiones de la conexión RBS	63
Figura 34. Ecuación del módulo de sección plástica	64
Figura 35. Tensiones nominales.	68
Figura 36. Distancia mínima al borde	69
Figura 37. Detalles de la placa simple de la conexión a cortante	74
Figura 38. Condiciones para la deflexión de la placa	79
Figura 39. Definición del módulo de elasticidad del hormigón	85
Figura 40. Definición del Acero A572Gr50	86
Figura 41. Definición del Acero A653SQGr50	86

Figura 13 Definición de la sacción W18V86 1	87
<i>T</i> igura 45. Definición de la sección w16A60-1	
Figura 44. Definición de la sección IPE 300.	88
Figura 45. Definición de la sección IPE 300.	88
Figura 46. Definición de combinaciones de cargas.	.89
Figura 47. Definición de casos de cargas.	89
Figura 48. Demanda/Capacidad de una vista en planta.	90
Figura 49. Demanda/Capacidad de toda la estructura en una vista 3D	.91
Figura 50. Demanda/Capacidad de vigas secundarias.	.92
Figura 51. Periodo de modelación.	.93
Figura 52. Calibración para el coeficiente C.	.97
Figura 53. Estado dinámico en el Espectro X.	.97
Figura 54. Estado dinámico en el Espectro Y.	.98
Figura 55. Estado dinámico en el cortante basal Sx.	.98
Figura 56. Estado dinámico en el cortante basal Sy.	.99
Figura 57. Estado del cortante basal Sx	00
Figura 58. Estado del cortante basal Sy1	01
Figura 59. Estado de la carga espectral X1	.02
Figura 60. Estado de la carga espectral Y1	02

INTRODUCCIÓN

Ecuador es uno de los países latinoamericanos que se encuentra dentro del cinturón de fuego, por lo que, todo el país sufre de una alta actividad sísmica debido a dos placas tectónicas la Nazca y la Sur Americana. Para que ocurran los sismos una placa se desliza debajo de la otra, pero muchas veces esto no sucede por años y se va acumulando energía tal que cuando se libera produce los sismos. Es necesario entender que a lo largo de Ecuador existen varios volcanes que cuando están en actividad pueden emitir pequeños sismos y afectar a las ciudades cercanas a los mismos. Es deber de los ingenieros civiles analizar y diseñar estructuras sismo resistentes que puedan soportar estos terremotos, poniendo a salvo muchas vidas humanas y bienes materiales. En el presente escrito se detallará paso a paso el diseño de un edificio de acero estructural con pórticos a momento y dos tipos de conexiones precalificadas en la provincia amazónica Pastaza. Se tomaron aspectos muy importantes como la disponibilidad en el mercado de los tipos de acero que se utilizó para el análisis.

Antecedentes

Ubicación de Ecuador

Ecuador es un país de Sur América que limita al norte con Colombia, al sur con Perú y al osete con el océano pacifico, cabe recalcar que por el país cruza la línea ecuatorial por lo que estamos en el centro del planeta. Es el país andino con menos extensión, posee un área de 252 000 kilómetros cuadrados.

Está atravesado de norte a sur por La Cordillera de los Andes. Hacia el occidente de los Andes hay tierras bajas que colindan con el Océano Pacífico. Hacia el oriente hay tierras bajas que forman parte de la llanura amazónica y tienen una topografía poco accidentada. Los Andes ecuatorianos se dividen en dos cordilleras principales: (1) Occidental y (2) Oriental o Real. Están unidas entre sí por una serie de nudos transversales que delimitan valles interandinos (1, 6). Las dos cordilleras alcanzan altitudes por sobre los 5000 m. En la alta Amazonía existen tres ramales de los Andes parcialmente separados de la cordillera oriental, las cordilleras Napo-Galeras, Cutucú y Cóndor. (Varela & Ron, 2020).

Figura 1. Ubicación de Ecuador en América, señalando que la línea ecuatorial pasa por el territorio. Fuente. Ron, Geografía y clima del ecuador. 2020. Vía web.

Cinturón de fuego

El cinturón o anillo de fuego del Pacífico está situado en las costas del océano Pacífico y se caracteriza por concentrar algunas de las zonas de subducción más importantes del mundo, lo que ocasiona una intensa actividad sísmica y volcánica en las zonas que abarca. El Cinturón de Fuego se extiende sobre 40.000 km (25.000 millas) y tiene forma de herradura. Tiene 452 volcanes y concentra más del 75% de los volcanes activos e inactivos del mundo.

Figura 2. Cinturón de fuego del pacifico. Fuente. Pin, Actividad en el Cinturón de Fuego del Pacífico. 2018. Vía web.

Terremotos (teoría)

Se conoce como terremoto al choque de placas tectónicas que están en movimiento o actividad volcánica, muchas de las ocasiones de grandes sismos es cuando las dos placas que deben mantenerse en movimiento una de otra, permanecen estáticas durante varios años y al momento que proceden a deslizarse una con otra, libera una gran energía provocando lo que se conoce por sismos, lo que conlleva que incluso existan asentamientos de varios metros en lugares cercanos al sismo.

Los terremotos son los eventos naturales que más puede dañar una estructura y por ello hay que tener en cuenta al momento de diseñar. Un claro ejemplo es el terremoto registrado en Manabí el 16 de abril del 2016 de 7,8 a escala de Richter. Donde se evidencio que edificios fueron construidos con arena de mar, agua de mar, poco acero e incluso se encontró conchas de mar en las columnas de los edificios. Cobrando la vida de 657 vidas humanas en Ecuador.

Figura 3. Edificación colapsada en Pedernales. Fuente. CNN Español, La huella del terremoto en Pedernales. 2016. Vía web.

Por otro lado, se tiene registro que en 2010 en Haití perdieron la vida más de 300 000 personas. Estas cifras son alarmantes y preocupa a los gobiernos con países de alto riesgo sísmico, más aún si son países en vías de desarrollo donde no tienen un criterio para realizar una construcción tomando en cuenta estos riesgos.

¿Que son las placas tectónicas?

Se denomina placa tectónica a una parte de litósfera que está en constante movimiento sobre la astenosfera. La Tierra tiene 14 placas principales y 43 placas secundarias.

Mapa de placas tectónicas

La teoría de la tectónica de placas permite explicar uno de los elementos fundamentales en el funcionamiento de nuestro mundo. A través de la actividad tectónica se originan los terremotos, así como la mayor parte de los maremotos y la actividad volcánica. De igual manera, ha configurado los continentes, las cordilleras y las fosas; y es fundamental para mantener el planeta habitable mediante el ciclo del carbono (Gil, 2020). La capa externa de la Tierra, la corteza terrestre, es una delgada superficie de roca sólida que flota sobre otra de roca fundida, el manto. Esta corteza terrestre está formada por la corteza oceánica, que no es más que la parte exterior del manto enfriada y solidificada, y la corteza continental, formada por grandes bloques de rocas cristalinas — como el granito— que son menos densas y flotan sobre el manto. Ambas cortezas se desplazan a causa de las corrientes magmáticas del manto sobre el que flotan, algo no muy diferente a lo que ocurre con las corrientes marinas, y de este desplazamiento surgen choques, fricciones y fracturas en la corteza, lo que da lugar a las placas tectónicas y a los terremotos. En esos límites entre placas tectónicas se dan tres tipos de bordes o fallas: las convergentes, divergentes y transformantes (Gil, 2020).

A continuación, se presenta un mapa de todo el planeta donde se puede evidenciar todas las placas tectónicas existentes.

Figura 4. Placas tectónicas existentes en el planeta. Fuente. Gil, El mapa de las placas tectónicas. 2020. Vía web.

A continuación, se presenta un mapa en donde se puede apreciar en que direcciones se desplaza cada placa y que tipo de contacto provoca.

Figura 5. Dirección de desplazamiento de las placas tectónicas. Fuente. Abella, El mapa de las placas tectónicas. 2014. Vía web.

Existen 3 tipos de contacto:

• Tipo convergente: Es cuando una placa se desliza debajo de la otra placa, las dos placas van en diferente sentido.

Figura 6. Momento en el que una placa subduce a la otra. Fuente. Hamilton, ¿Qué tipos de bordes de placas tectónicas existen? 2019. Vía web.

 Tipo divergente: Cuando las dos placas tienen diferentes direcciones y van dejando un vacío entre ellas.

Figura 7. Momento en el que una placa subduce a la otra. Fuente. Hamilton, ¿Qué tipos de bordes de placas tectónicas existen? 2019. Vía web.

• Por transformación o deslizamiento: Es cuando las dos placas se rozan entre sí. Y van en

direcciones diferentes.

Figura 8. Momento en el que una placa subduce a la otra. Fuente. Hamilton, ¿Qué tipos de bordes de placas tectónicas existen? 2019. Vía web.

Se puede observar en la imagen que Ecuador está situado entre dos placas, la placa de Nazca que está en subducción con la placa sudamericana. Teniendo un contacto tipo convergente por lo que es un país con alto índice de sismos.

Problemática

Existen tres tipos de fuentes que originan terremotos en el país:

- Subducción de placas tectónicas
- Fallas corticales que es la presión acumulada entre placas
- Actividad volcánica en el país

Debido a esto se ha colocado acelerógrafos a lo largo y ancho del país.

Figura 9. Distribución de equipos acelerográficos en el Ecuador. Fuente. Chamba, Ubicación de los equipos acelerográficos del país. 2020. Vía web.

Riesgo sísmico por placas tectónicas

Ecuador y toda Sudamérica se ven afectadas en toda la costa del océano pacifico, ya que, tenemos dos tipos de placas tectónicas la placa de Nazca subduce a la placa Sudamericana unos 10 cm al año, lo que provoca, acumulación de presión entre estas placas que al momento de liberar toda esa energía produce los denominado terremotos. Se tiene certeza que en las provincias de Manabí y Esmeraldas son zonas de gran acumulación de presión debido a que existen largos planos entre placas. No obstante, la principal causa sin lugar a duda es la subducción de las dos placas.

Riesgo sísmico por actividad volcánica

Según el Instituto Geofísico, hasta ahora se han contabilizado 27 volcanes potencialmente activos en el Ecuador, incluidos los volcanes de las islas Galápagos. De estos, siete volcanes continentales (Cayambe, Reventador, Guagua Pichincha, Cotopaxi, Tungurahua, Sangay y Potrerillos- Chacana) y siete volcanes de Galápagos (Marchena, Cerro Azul, Fernandina, Santo Tomás/Volcán Chico, Alcedo, Darwin y Wolf) han tenido erupciones en tiempos históricos, es decir, desde el año 1532 (Chamba, 2020).

Por este motivo, es primordial tomar en cuenta la actividad de los volcanes, más aún, en ciudades o pueblos cercanos a los mismos, diseñando estructuras que resistan sismos.

Acero en estructuras

En la actualidad el acero estructural es uno de los materiales más utilizados en el mundo de la construcción a lo largo del mundo, ya que, es fácil su montaje y menora el tiempo de construcción en sus estructuras. Se debe utilizar mano de obra calificada para el montaje de las estructuras, de igual manera tener personal con experiencia en soldadura, ya que, se necesita una suelda específica para cada tipo de acero.

El acero es muy utilizado en la construcción de maquinarias, herramientas, utensilios, equipos mecánicos, electrodomésticos, y en las estructuras de viviendas, edificios y obras públicas. Las constructoras ferroviarias y los materiales rodantes también se incluyen (Salazar, 2018).

El acero posee una aleación de materiales, contiene 2 o más mezclas de metales, que dependiendo su utilidad va a variar su ductilidad. Está conformado principalmente por hierro y carbono.

Figura 10. Museo Soumaya. Fuente. Romero, Plataforma Arquitectura, Museo Soumaya, Ciudad de Mexico, Mexico. 2019. Vía web.

La versatilidad de las estructuras metálicas ha permitido abstraer las ideas o los conceptos de los proyectos a través de métodos, ya sean analógicos o digitales. Este tipo de arquitectura permite crear diseños complejos y muy atractivos para el ciudadano de a pie. Ahí es donde entra la gran variedad de tipos de esfuerzos que es capaz de soportar la estructura metálica, ya sea por tirantes, perfiles laminados o cerchas (Canova, 2021).

DESARROLLO DEL TEMA

Planteo del problema

Se realiza un análisis y estudio de un edificio de acero con pórticos a momento sismoresistente en la ciudad de Puyo, situado en la provincia de Pastaza (suelo tipo E), que tenga una apropiada conformidad a los principios de la dinámica estructural, con un periodo de retorno de 475 años, de acuerdo a la NEC, que tenga la capacidad máxima de soportar un sismo probable. Dicha edificación es adecuada para viviendas, y para su construcción se usan pórticos resistentes a cargas sísmicas y cargas gravitacionales. Una alternativa es diseñar todos los marcos de manera sismo resistente, pero resulta demasiado costoso e innecesario hacerlo así, ya que, los valores finales de los desplazamientos y derivas de piso resultan ser muy adecuados y eficientes para el edificio de acero que se ha diseñado, donde se ha verificado que cumpla con los requerimientos establecidos por las normas vigentes respectivas. A continuación, se muestra el diseño del edificio a construirse, en una vista en planta.

Figura 11. Diseño arquitectónico del proyecto, mediante AutoCAD.

También, se presenta el modelo tridimensional de la estructura, donde se puede observar y divisar cada elemento de la estructura por un color. Se puede distinguir las columnas (internas y externas), vigas principales, vigas secundarias o viguetas, losa compuesta (Steel Deck) y apoyos, mediante la herramienta ETABS.

Figura 12. Diseño digital de la estructura tridimensional en ETABS.

Geometría de la estructura

La construcción del edificio sismo-resistente requiere de materiales principales, los cuales son el acero y hormigón. Está compuesta por 6 pisos, con una altura de entrepiso de 3.24 metros y una altura total de 19.44 metros, el cual, es designado para el uso de viviendas. En la parte de materiales, para columnas se emplean perfiles tipo W, para las columnas externas W18X86-1 y para las columnas internas W18X175. Para las vigas principales se emplean perfiles tipo IPE 300 y para las vigas secundarias o viguetas, se emplea un perfil tipo IPE 200. La losa compuesta se la diseña mediante la tabla de propiedades de Kubilosa (Plataforma especializada en construcción), siendo la más eficiente para el edificio sismo-resistente que se va a construir.

Asignación de cargas

Dead: Peso propio de los materiales. Son cargas que actúan permanentemente sobre la estructura, las cuales están constituidas por los pesos de todos los elementos.

Adicional de cargas muertas

En base al diseño arquitectónico se ha determinado las cargas gravitacionales que se encontrarán permanentemente sobre la losa y elementos estructurales, mismas que son pertenecientes al peso de producido por la mampostería según la distribución arquitectónica.

PARED TIPO 1		PARED TIPO 2		
Pared X (m)	43.89 Pared X (m)		2.5	
Pared Y (m)	78.82 Pared Y (m)		0.9	
Largo (m)	1	Largo (m)	1	
Alto (m)	2.68	Alto (m)	1.2	
Espesor (m)	0.15	Espesor (m)	0.15	
Densidad kg/m3	1300	Densidad kg/m3	1300	
Peso (Kg)	522.60	Peso (Kg)	234.00	
	PARED	TIPO 3		
Pared X (m)		6.28		
Pared Y (m)		0.45		
Largo bloque (m)	1	Largo (m)	1	
Alto bloque (m)	1	Alto (m)	1.68	
Espesor bloque (m)	0.15	Espesor (m)	0.006	
Densidad bloque (kg/m3)	1300 Densidad kg/m3		2500	
Peso (Kg)	195 Peso (Kg)		25.2	
PARED TIPO 4				
Pared X (m)	3.45			
Pared Y (m)		5.25		
Largo bloque (m)	1	Largo vidrio (m)	1	
Alto bloque (m)	1.4	Alto vidrio (m)	1.28	
Espesor bloque (m)	0.15	Espesor (m)	0.006	
Densidad bloque (kg/m3)	1300	Densidad kg/m3	2500	
Peso (Kg)	273 Peso (Kg)		19.2	
PARED TIPO 5				
Pared X (m)	6.2			
Pared Y (m)	2.45			
Largo bloque (m)	1 Largo (m) 1		1	
Alto bloque (m)	1.6	Alto (m)	1.08	
Espesor bloque (m)	0.15 Espesor (m) 0.006		0.006	
Densidad bloque (kg/m3)	1300 Densidad kg/m3 2500			
Peso (Kg)	312 Peso (Kg) 16.2			

Tabla 1. Cargas de pared.

A continuación, se presenta información de forma tabulada, de características generales del edificio, sus cargas y pesos totales, los mismos que se detallan en las siguientes tablas:

CARACTERÍSTICAS GENERALES DEL EDIFICIO			
# pisos	6		
Ubicación	Provincia de Pastaza		
Uso del edificio	Viviendas		
Altura de Piso	3.24 m		
Altura Total Edificio	19.44 m		

Tabla 2. Datos generales del edificio.

RESUMEN DE CARGAS				
122.71	64128.246	kg	PARED 1	
3.4	795.6	kg	PARED 2	
6.73	1481.946	kg	PARED 3	
8.7	2542.14	kg	PARED 4	
8.65	2838.93	kg	PARED 5	
SUMA PAREDES	71786.862	333.768	kg/m2	

Tabla 3. Resumen de cargas de pared.

Tabla 4. Peso del edificio.

TABLE: Material List by Section Property				
Section	Object Type Number Pieces Length		Weight	
			m	kgf
IPE200	Beam	556	1023.353	22892.19
IPE300	Beam	228	842.6072	31739.84
W18X175	Column	48	155.52	40479.37
W18X86-1	Column	96	311.04	39849.34
Placa Deck	Floor			220083.62
Placa Deck	Metal Deck			7938.3
PESO TOTAL	262082.66			
	202382.00			

El peso a asignar de ACM será de 333.7681 kg/m2. Dicha carga se asignará sobre la losa al ser un elemento tipo "membrane" transmite las cargas directamente a los elementos estructurales. En el último piso como losa inaccesible no se colocará Adicional de Carga Muerta. En seguida, se muestra una vista del primer piso, donde se puede observar su geometría, dimensiones y cargas agregadas.

Figura 13. Vista del primer piso en un plano X-Y diseñado en ETABS.

Asignación de carga viva

Según la NEC-SE-CG-Cargas sísmicas, para determinar la carga viva para los cálculos, se debe tomar en cuenta varios factores que influyen y que conforman esta carga, siendo el peso de las personas, muebles, mercadería en transición, accesorios y equipos temporales o móviles, entre otras. (2015, p. 5).

Ocupación o Uso	Carga uniforme (kN/m ²)	Carga concentrada (kN)
Cubiertas		
Cubiertas planas, inclinadas y curvas Cubiertas destinadas para áreas de paseo Cubiertas destinadas en jardinería o patios de reunión. Cubiertas destinadas para propósitos especiales Toldos y carpas Construcción en lona apoyada sobre una estructura ligera Todas las demás	0.70 3.00 4.80 i 0.24 (no reduc.) 1.00	i
Elementos principales expuestos a áreas de trabajo Carga puntual en los nudos inferiores de la celosía de cubierta, miembros estructurales que soportan cubiertas sobre fábricas, bodegas y talleres de reparación vehicular Todos los otros usos Todas las superficies de cubiertas sujetas a mantenimiento de trabajadores		8.90 1.40 1.40
En la región andina y sus estribaciones, desde una cota de 1	000 m sobre el r	nivel del mar, no se

permite la reducción de carga viva en cubiertas para prevenir caídas de granizo o ceniza.

Figura 14. Carga viva de acuerdo a la ocupación o uso.

Fuente. Norma ecuatoriana de la construcción (NEC-SE-CG-Cargas Sísmicas) 2015.

La asignación para los 5 primeros pisos fue de 200kg/m2 al tratarse del último piso como losa inaccesible se colocará una carga de 70 kg/m2.

Parámetros de diseño empleados para definir fuerzas sísmicas

Coeficiente Sísmico

Mediante la Norma Ecuatoriana de la Construcción (NEC-SE-DS), se presenta los requerimientos, parámetros y metodologías que se debe aplicar en un diseño sismo-resistente, principalmente de edificios que se complementan por normas extranjeras reconocidas.

Cortante basal de diseño

Mediante el cálculo del cortante basal de diseño (método 1), se puede comprender el comportamiento sísmico al que se somete una estructura, donde se rige a varios parámetros que ya fueron mencionados con anterioridad, los cuales son planteados por la NEC. Entonces, se calcula con la siguiente fórmula:

$$\mathbf{V} = \frac{IS_a(T_a)}{R\phi_P\phi_E} \boldsymbol{W}$$

Dónde

S _a (T _a)	Espectro de diseño en aceleración; véase en la sección [3.3.2]
Ø _P y Ø _E	Coeficientes de configuración en planta y elevación; véase en la sección [5.3]
I	Coeficiente de importancia; se determina en la sección [4.1]
R	Factor de reducción de resistencia sísmica; véase en la sección [6.3.4]
V	Cortante basal total de diseño
W	Carga sísmica reactiva; véase en la sección [6.1.7]
Ta	Período de vibración; véase en la sección [6.3.3]

Figura 15. Ecuación del cortante basal de diseño. Fuente. Norma ecuatoriana de la construcción (NEC-SE-CG-Cargas Sísmicas) 2015.

Periodo de vibración T

De acuerdo a la NEC 15, el valor de I=1 de acuerdo al coeficiente de importancia de una estructura no esencial. Para determinar el coeficiente de reducción de resistencia sísmica, se chequea en la Tabla 15 de la NEC-SE-DS, donde el valor de R=8, que corresponde a Pórticos Resistentes a Momento, es decir, "pórtico especial sismo-resistente de acero laminado en caliente y con elementos armados de placas". Entonces,

para determinar el periodo de vibración de una forma aproximada, se usa la siguiente ecuación:

$$\mathbf{T} = \boldsymbol{C}_t \boldsymbol{h}_n^{\alpha}$$

Dónde:

C_t Coeficiente que depende del tipo de edificio

h_n Altura máxima de la edificación de n pisos, medida desde la base de la estructura, en metros.

T Período de vibración

Figura 16. Ecuación del cortante basal de diseño. Fuente. Norma ecuatoriana de la construcción (NEC-SE-CG-Cargas Sísmicas) 2015.

Peligro y Efectos Sísmicos Locales en Ecuador

Los requisitos y procedimientos se determinan mediante la zona sísmica del Ecuador, en el área donde se va a construir la estructura, y se debe considerar, el tipo de suelo, el uso e importancia de la estructura, el tipo de sistema y la configuración a utilizarse en la estructura. Para el caso de estructuras normales, se debe diseñar para una resistencia que tenga la capacidad de soportar desplazamientos laterales inducidos por el sismo de diseño, donde se considera la respuesta inelástica, la ductilidad, la redundancia y la resistencia inherente de la estructura. Para el caso de estructuras esenciales y de ocupación especial, se debe verificar el comportamiento inelástico para varios niveles de terremotos. Las fuerzas sísmicas de diseño son las que determinan la resistencia mínima de diseño para todas las estructuras.

Para determinar el coeficiente que depende del tipo de edificio, se debe saber que se diseñará para una "Estructura de acero sin arriostramiento", por lo tanto, su valor es $C_t = 0.072$, con un valor de alfa de $\alpha = 0.8$.

Figura 17. Mapa para zonas sísmicas de Ecuador (Factor Z). Fuente. Norma ecuatoriana de la construcción (NEC-SE-CG-Cargas Sísmicas) 2015.

De acuerdo al mapa de zonificación sísmica del Ecuador, el factor de zona Z, para un tipo de suelo E (suelo arcilloso), corresponde a un valor de Z=0.3 para la ciudad de Puyo. Una vez definidos estos parámetros, se puede determinar los coeficientes de perfil del suelo Fa, Fd y Fs, mediante las siguientes tablas:

	Zona sísmica y factor Z						
Tipo de perfil del subsuelo	I	II	ш	IV	V	VI	
	0.15	0.25	0.30	0.35	0.40	≥0.5	
A	0.9	0.9	0.9	0.9	0.9	0.9	
В	1	1	1	1	1	1	
С	1.4	1.3	1.25	1.23	1.2	1.18	
D	1.6	1.4	1.3	1.25	1.2	1.12	
E	1.8	1.4	1.25	1.1	1.0	0.85	
F	Véase <u>Tabla 2</u> : Clasificación de los perfiles de suelo y la sección <u>10.5.4</u>						

Tabla 5. Coeficiente de amplificación del suelo en la zona de periodo corto. Fuente. Norma ecuatoriana de la construcción (NEC-SE-CG-Cargas Sísmicas) 2015.

Tabla 6. Coeficiente de las ordenadas de desplazamiento para diseño en roca. Fuente. Norma ecuatoriana de la construcción (NEC-SE-CG-Cargas Sísmicas) 2015.

	Zona sísmica y factor Z						
Tipo de perfil del subsuelo	1	11	111	IV	V	VI	
	0.15	0.25	0.30	0.35	0.40	≥0.5	
A	0.9	0.9	0.9	0.9	0.9	0.9	
В	1	1	1	1	1	1	
С	1.36	1.28	1.19	1.15	1.11	1.06	
D	1.62	1.45	1.36	1.28	1.19	1.11	
E	2.1	1.75	1.7	1.65	1.6	1.5	
F	Véase	Tabla 2 : C	lasificación	de los perf	iles de suel	o y 10.6.4	

Tabla 7. Coeficiente de comportamiento no lineal de los suelos.Fuente. Norma ecuatoriana de la construcción (NEC-SE-CG-Cargas Sísmicas) 2015.

	Zona sísmica y factor Z					
Tipo de perfil del subsuelo	1	Ш	ш	IV	V	VI
	0.15	0.25	0.30	0.35	0.40	≥0.5
A	0.75	0.75	0.75	0.75	0.75	0.75
В	0.75	0.75	0.75	0.75	0.75	0.75
С	0.85	0.94	1.02	1.06	1.11	1.23
D	1.02	1.06	1.11	1.19	1.28	1.40
E	1.5	1.6	1.7	1.8	1.9	2
F	Véase Tabla 2: Clasificación de los perfiles de suelo y 10.6.4					

Luego, se determina el espectro de respuesta elástico en aceleraciones Sa, con los datos de los coeficientes anteriores, el mismo que se expresa en función de la gravedad para el nivel que corresponde el sismo de diseño.

Figura 18. Espectro elástico horizontal de diseño en aceleraciones. Fuente. Norma ecuatoriana de la construcción (NEC-SE-CG-Cargas Sísmicas) 2015.

Para determinar el valor del factor **r** que se usa para el espectro de diseño elástico, éste depende de la ubicación geográfica donde se va a construir el edificio, que corresponde a un tipo de suelo E, por lo que su valor es igual a r=1.5. De igual forma, el coeficiente de amplificación espectral varía dependiente de la región, que en este caso corresponde a la región de las provincias del Oriente.

- η= 1.80 : Provincias de la Costa (excepto Esmeraldas),
- η= 2.48 : Provincias de la Sierra, Esmeraldas y Galápagos
- η= 2.60 : Provincias del Oriente

Figura 19. Amplificación espectral según la región del Ecuador. Fuente. Norma ecuatoriana de la construcción (NEC-SE-CG-Cargas Sísmicas) 2015.

Configuración en elevación y planta de la estructura

En cuanto a la configuración estructural, se presenta un centro de rigidez o centro de masa en planta (simetría), por lo que, la configuración de los niveles en elevación es constante, por lo tanto, no presentan irregularidades. Entonces, los factores ϕ_P y ϕ_E tienen el valor de 1.

Figura 20. Configuración estructural en elevación y planta. Fuente. Norma ecuatoriana de la construcción (NEC-SE-CG-Cargas Sísmicas) 2015. Con los valores obtenidos y detallados en la siguiente tabla, se determina el cortante basal estático al cual se somete la estructura ante un posible evento sísmico. Los valores son calculados de manera aproximada y, son los siguientes:

ESPECIFICACIONES NEC 2015				
Factor de importancia	I=	1.000		
Categoria Sísmica	Zona Sismica=	III		
Valor de factor Z	Z=	0.300		
Perfil del Suelo	Suelo Tipo=	E		
mplificacion del suelo en la zona de periodo corto	Fa=	1.250		
Coef. Amplificacion de las ordenadas del espectro elastico de respuesta de desplazamientos para diseno en roca	Fd=	1.700		
Comportamiento no lineal de los suelos	Fs=	1.700		
Factor usado en el espectro de diseño elástico	r=	1.500		
Relación de amplificación espectral	η=	2.600		
Altura de la edificación en metros	hn=	19.440		
Tipo Estructura	De Acero sin arriostramientos			
Coeficiente que depende del tipo de edificio	Ct=	0.072		
Alfa	α=	0.800		
Periodo de Vibracion Metodo 1	Ta CODIGO=	0.773		
Periodo de Vibracion Metodo 2	1.3 * Ta Codigo	1.005		
Periodo Límite de Vibración	To=	0.231		
Periodo de Vibracion	Ta=	0.773		
Período límite de vibración en el espectro sísmico elástico de aceleraciones que representa el sismo de diseño	Tc=	1.272		
Coeficiente relacionado con el período de vibración de la estructura T	k=	1.137		
Aceleración Espectral	Sa(Ta)=	0.975		
oeficiente de Reduccion de Respuesta Estructural	R=	8		
Irregularidad en planta	$\Phi P=$	1.000		
Irregularidad en elevación	ΦΕ=	1.000		
	V=	0.122		

Tabla 8. Coeficientes para determinar el espectro sísmico.

Tabla 9. Cálculo del cortante basal.

Cotante Basal Período NEC		Cotante B	asal Período Máximo	Cotante Basal Período Softtware		
Т	0.773	Tmax (1.3T)	1.005	Tmodal (s)	0.878	
Sa (T)	0.975	Sa (Tmax)	0.975	Sa (Tmodal)	0.975	
V	0.975	V (Tmax)	0.122	V (Tmodal)	0.122	
k	1.137	k(max)	1.253	k(modal)	1.189	
Wr	217.653	V min	21.221			

Figura 21. Espectro elástico de aceleración.

Derivas de piso

Se determinan las derivas para cada piso y, tomando los valores máximos de las derivas estáticas y dinámicas se hace una tabla, las mismas que no exceden el máximo permisible, es decir, que todas cumplen y son menores al 2% según la NEC 2015.

Tabla 10. Derivas máximas de los pisos.

DERIVAS MÁXIMAS DE LOS PISOS			CHECK
Max Espect X	0.002716	1.630%	ОК
Max Espect Y	0.00252	1.512%	ОК
Max Sx	0.003002	1.801%	ОК
Max Sy	0.002978	1.787%	ОК

Cargas no sísmicas

Carga muerta

Estas cargas, determinadas como muertas o permanentes, están constituidas por los pesos de los elementos estructurales que se encuentran integrados de forma permanente a la estructura.

Carga viva

Estas cargas están constituidas por los pesos en la estructura de forma temporal, es decir, que no se encuentran todo el tiempo sobre la estructura, como personas, accesorios móviles, equipos, etc.

Combinaciones de cargas

Según lo establecido por la NEC SE DS, NEC SE AC, AISC 360 se colocarán las siguientes cargas combinaciones esenciales, de las cuales se ha tomado las más importantes y se ha agregado otras más para garantizar que la resistencia iguale o exceda los efectos de las combinaciones más críticas.

- 1,4D
- 1,2D+1,6L
- 1,2D+L+Sx
- 1,2D+L-Sx
- 1,2D+L+Sy
- 1,2D+L-Sy 0,9D+Sx
- 0,9D-Sx
- 0,9D-Sy
- 0,9D+Sy
- 0,9D+Espect. X
- 0,9D- Espect. X
- 0,9D Espect. Y
- 0,9D + Espect. Y

Donde:

D = Carga Muerta L = Carga Viva Espect X = Carga Espectral en dirección X Espect X = Carga Espectral en dirección Y Sx = Cortante Basal sísmico en dirección X Sy = Cortante Basal sísmico en dirección Y

Teoría de Marcos resistentes a momento

Los pórticos que resisten a momento están conformados por tres partes fundamentales como se puede apreciar a continuación:

Figura 22. Zona de panel en pórticos resistentes a momento. Fuente. Hernández, Revisión y aplicación de la zona de panel en los pórticos resistentes a momento de acero. 2019. Vía web.

Donde claramente se puede apreciar que un pórtico está conformado por columnas, vigas, y el sector de anclaje donde se va a unir estos dos elementos con alguna conexión precalificada que sería el sector del nodo.

Cuando se realiza el diseño de los pórticos resistentes a momento de acero, tanto intermedios como especiales, es fundamental plantear la revisión de la zona del panel, que representa la parte interna de la junta viga-columna en las conexiones a momento, a fin de limitar que se produzca una falla frágil por una inadecuada resistencia al corte en dicha zona, debido a la acción sísmica (Hernández, 2019).

Lo que se desea es que las fallas sucedan en las vigas, mas no en las columnas. Provocando rotulas plásticas por flexión en las vigas.

Figura 23. Se observa la forma de la conexión RBS. Fuente. Hernández, Revisión y aplicación de la zona de panel en los pórticos resistentes a momento de acero. 2019. Vía web.

A continuación, se aprecia como la estructura se deformará ante un sismo, se puede ver que las columnas no fallan, el fallo se da en las vigas.

Figura 24. Se observa cómo se deformará un pórtico resistente a momento con conexión RBS. Fuente. Hernández, Revisión y aplicación de la zona de panel en los pórticos resistentes a momento de acero. 2019. Vía web.

En la zona de panel, se esperará que ocurra el siguiente comportamiento, donde se ve afectado por fuerza a corte.

Figura 25. Se observa que la zona de panel se comporte de esta manera. Fuente. Hernández, Revisión y aplicación de la zona de panel en los pórticos resistentes a momento de acero. 2019. Vía web.

Demanda por corte

La resistencia requerida en la zona del panel se determina a través de la suma de las fuerzas que se producen debido a los momentos máximos probables de las vigas, ubicados en la cara de la columna, menos el corte máximo esperado que actúa en la misma. La resistencia de diseño a corte estará definida por ØvRv (Hernández, 2019).

A continuación, se puede apreciar las fuerzas internas que se producen en el panel:

Figura 26. Se muestra las fuerzas que ocurren en el panel. Fuente. Hernández, Revisión y aplicación de la zona de panel en los pórticos resistentes a momento de acero. 2019. Vía web.

En la siguiente imagen se puede observar los elementos que conforman un pórtico resistente a momentos donde L es la distancia del centro de columna a la otra columna. Lb es la distancia que va a tener la viga. Por otro lado, hc va a ser la altura de piso sin tomar en cuenta el espesor de la viga. Y finalmente, hpz es la altura de viga y por ende la altura de la conexión precalificada para el pórtico.

Figura 27. Dimensiones de un pórtico resistente a momento. Fuente. Bruneau M., Uang C. & Sabelli R. (2011). Ductile Design of Steel Structures. Second Edition. Mc Graw Hill.

A continuacion, se ve un ejemplo de como son los esfuerzos en un portico a momento cuando este es sometido a cargas laterales, en donde se puede apreciar esfuerzos axiales, momentos por flexion y fuerzas cortantes. Se puede observar que los momentos ocurridos en los extremos son mucho mayores a comparacion a los fuerza axiales y cortantes, pero si deben tomar en cuenta al momento de realizar el diseno.

Figura 28. Fuerzas internas de un pórtico resistente a momento. Fuente. Bruneau M., Uang C. & Sabelli R. (2011). Ductile Design of Steel Structures. Second Edition. Mc Graw Hill.

Columna fuerte-Viga débil

El criterio de columna fuerte – viga débil tiene como objetivo fundamental contar con un sistema estructural en el cual las columnas son generalmente más fuertes que las vigas a fin de forzar el estado límite de fluencia por flexión en las vigas en los diferentes niveles de los PEM cuando éstos estén sujetos a las fuerzas resultantes producidas por el sismo de diseño. De esta manera, se logra un alto nivel de disipación de energía (Normativa Ecuatoriana de la Construccion, 2015).

Con la siguiente ecuación se puede satisfacer el criterio de viga débil-columna fuerte:

$\frac{\sum M_{pc}^*}{\sum M_{pv}^*} \ge 1.0$	
Dónde:	
$\sum M_{pc}^{*}$	La suma de los momentos plásticos nominales de las columnas que llegan a la junta
$\sum M_{pv}$	La suma de momentos plásticos nominales de las vigas que llegan a la junta

Figura 29. Criterio columna fuerte-viga débil. Fuente. NEC NEC-SE-AC: Estructuras de Acero. 2015. Vía web.

Criterio de conexión RBS

Figura 30. Conexión RBS con sus respectivas distancias. Fuente. AISC 358. (2016). Capítulo 5.

Al momento de diseñar una conexión es de vital importancia definir el tipo a utilizar, ya que de ésta depende en gran parte el comportamiento de la estructura. Los elementos de conexión pueden ser rígidos de forma sustancial, de manera que los extremos de todos los miembros conectados no sólo se trasladen, sino que también giren en forma idéntica; estas conexiones conocidas como rígidas o resistentes a momento, tienen la capacidad de transmitir, tanto momento a flexión, como fuerza cortante de un miembro a otro (Pannillo, Chacón, & Riera, 2018).

En el caso de la conexión RBS se corta parte de las alas en forma de una parábola como se puede observar en la imagen de arriba, es característico de la conexión, también se debe calcular las distancias a, b y c las cuales sirven para diseñar la conexión. En la sección de viga reducida es donde va a ocurrir la rotura plástica, es decir, en esa zona va a ocurrir el fallo de la viga cuando sean sometidas a un sismo, siempre precautelando que las columnas permanezcan casi intactas y pueda la gente evacuar sin que exista pérdidas humanas.

Criterio de conexión WUF-W

Figura 31. Tipo de conexión WUF-W. Fuente. American Institute of Steel Construction (AISC 358-16).

La conexión a momento a momento de aleta no reforzada soldada-alma soldada (WUF-W) es una conexión a momento totalmente soldada, en la cual las aletas y el alma de la viga se sueldan directamente a la aleta de la columna. Un número de conexiones a momento soldadas que comenzaron a usarse después del sismo de Northridge de 1994, tales como la de sección de viga reducida y conexiones con refuerzo de la aleta de la viga, fueron diseñadas para alejar la articulación plástica de la cara de la columna (Pannillo, Chacón, & Riera, 2018).

Por lo tanto, el tipo de conexión a momento WUF-W se encuentra justo en la cara de la columna, la articulación plástica va a ocurrir en la unión entre la viga y columna, siendo el valor de $S_h = 0$ valor que se toma con el fin de simplificar los cálculos de diseño. El procedimiento de diseño abarca, en su mayoría verificaciones típicas con respecto a las placas de continuidad, la relación de momento entre viga y columna, la resistencia a cortante, tanto para la zona de panel como para la viga. En fin, se evita a toda costa de que ocurra una fractura y, para ello existen criterios y características detalladas con mayor profundidad en la norma AISC 358-16 que cumplan con el fin de brindar un buen nivel de desempeño.

Diseño de Vigas Principales, Sistema sismo-resistente (SMF)

Para empezar, se utilizó un tipo de acero grado 50 con su respectivo módulo de elasticidad, como se puede apreciar en la siguiente tabla:

Nota: Los datos en gris se debe colocar manualmente.

Materiales		
Tipo de		
Acero	50	ksi
E	2100000	kg/cm2

Tabla 11. Detalles del acero que se va a utilizar

Se debe colocar los datos de la viga:

Datos de viga		
bf	15	cm
tf	1,07	cm
h	30	cm
tw	0,71	cm
Cb	1,0	

Tabla 12. Dimensiones de la viga a utilizar.

Donde,

bf: Longitud de las alas.

tf: Espesor de las alas.

h: Altura de la sección transversal.

tw: espesor del alma.

Cb: Amplificador de momento.

Tabla 13. Datos geométricos de la viga.

IPE	300	40,7
А	51,88	cm2
Ix	7998,99	cm4
ly	602,71	cm4
Sx	533,27	cm3
Sy	80,36	cm3
Zx	602,10	cm3
Zy	123,89	cm3
rx	12,42	cm
ry	3,41	cm
fy	3513,7	kg/cm2
ho	28,93	cm
rts	4,04	cm
Jc	9,70	cm4
ct2	0,00063	_
Lr	412	cm

Donde,

A: Área

I: Inercia en X y en Y

S: Modulo de sección elástico en X y Y

Z: Modulo plástico en X y Y
r: Radio de giro en X y Y
fy: Resistencia del acero
ho: Distancia entre patín y patín
rts: Radio de giro para vigas doblemente reforzadas
Jc: Momento polar de inercia
Lr: Límite superior Lp<lb<=Lr

Se realiza el análisis para una viga representativa del modelo.

Nota: los valores en las celdas gris se deben colocar manualmente.

Tabla 14. Longitud de la viga.

Geometría de la viga		
Lv	5,7	m

Lv: Longitud de la viga.

Verificación de las secciones sísmicas.

Tabla 15. Chequeo de compacto/no compacto y dúctil/no dúctil.

Chequeo Secciones Sísmicas		
cte	24,45	
b/t	7,46	COMPACT
bf/2tf	7,01	CONFACT
cw1	59,91	DUCTU
h/tw	42,2535211	DOCTIL

Se verifica que la sección sí es compacta y dúctil.

$$\frac{b}{t} = 0.32 \sqrt{\frac{E}{R_y * F_y}}$$

$$\frac{b}{t}=7,46$$

$$\frac{\mathrm{bf}}{2 * \mathrm{tf}} = \frac{15}{2 * 1.07}$$
$$\frac{bf}{2 * tf} = 7,01$$

Para IPE 300: $\frac{bf}{2*tf} = 7.01 < \frac{b}{t} = 7.46$... LA SECCIÓN ES COMPACTA.

$$C_{W1} = 2,57 \sqrt{\frac{E}{Ry * Fy}}$$
$$C_{W1} = 59.91$$

$$\frac{h}{t_w} = \frac{30}{0.71}$$

$$\frac{h}{t_w} = 42.25$$

Para IPE 300: $\frac{h}{t_w} = 42.45 < 59.91 \dots$ LA SECCIÓN ES DÚCTIL.

Verificación del pandeo lateral torsional

Chequeo Pandeo Lateral Torsional		
Lb	446,86	in
Lb	175,93	cm
Lb	37,24	ft
Lmin	142,5	cm
Lmin	56,10	in
Mr	2020,83	kip-in
Mr	23,28	T-m
Prb	0,55	kips
Prb	38,65	kg/cm2
Lon	gitud de apoyo	5
Espaciamiento	11,5	ft
L	57,45	in
L	4,79	ft
L	145,91	cm
	ОК	
Apoyo Nodal		
βbr	41,18	k/in
βbr	47434,71	kg/cm
θ	11,62	grados
Rigidez del apoyo		
К	716392,60	kg/cm
ОК		

Tabla 16. Chequeo de pandeo lateral torsional.

Lb: Máximo desplazamiento entre apoyos.

$$L_b = 0.095 * r_y * E/(R_y * F_y)$$

 $L_b = 175.93 \ cm$

L min: Distancia mínima entre apoyos.

$$L_{min} = rac{L_v}{4} * 100$$

 $L_{min} = 142,5~cm$

Mr: Momento resistente.

$$Mr=Ry*Ze*Fy$$
 donde $RyM_r = R_y * Z_e * F_y$ donde $R_y = 1,1$
 $M_r = 23,28 T - m$

Prb: Fuerza aproximada del apoyo.

$$P_{rb} = 0.02 \frac{M_r * C_d}{h_o}$$
$$P_{rb} = 38.65 \ kg/cm^2$$

L: Longitud de apoyo.

$$L = \sqrt{\left(\frac{Espaciamiento}{r_x}\right)^2 + (h)^2}$$
$$L = 145,91 \ cm$$

Verificación de longitud de apoyo

$$L = 145,91 \ cm > Lmin = 142,5 \ cm$$

Si L > Lmin ... CUMPLE

Si L < Lmin ... AUMENTE LA DISTANCIA DE APOYO

Verificación de apoyo nodal

Bbr: Apoyo Nodal (rigidez unitaria).

$$\beta br = \frac{1}{\emptyset} \left(\frac{10 * M_r * C_b}{L_b * h_o} \right)$$
$$\beta br = 47434,71 \, \frac{kg}{cm}$$

θ: Angulo.

$$Arctan = \frac{h}{L}$$

 $\theta = 11,62 \ grados$

K: Rigidez del apoyo.

$$K = \frac{A * E}{L} * COS^{2}\theta$$
$$K = 716392,60 \frac{kg}{cm}$$

Verificación de rigidez de apoyo

$$K = 716392,60 \frac{kg}{cm} > \beta br = 47434,71 \frac{kg}{cm}$$

$Si K > \beta br \dots CUMPLE$

Si $K < \beta br$... SELECCIONE OTRO PERFIL

Verificación Demanda/Capacidad para el momento flexionante

Tabla 17. Demanda/capacidad de momento flexionante.

Chequeo D/C Momento flexionante			
Lp	147 cm		
фМр	1904036	kg-cm	
	19,04	t-m	
D/C	0,318		

Tabla 18. Demanda de cargas.

Demada de cargas		
MD	6,06176	T-m
VD	8,54355	Т

Lp: Apoyo lateral superior de la viga secundaria.

ØMp: Momento plástico.

Verificación demanda/capacidad momento flexinante

$$\frac{D}{C} = \frac{M_D}{\emptyset M_p} < 1$$

$$\frac{D}{C} = 0,318 < 1 \dots CUMPLE$$

Verificación demanda/capacidad a corte

Tabla 19. Chequeo demanda/capacidad a corte.

Chequeo D/C a corte		
φVn	44,905	Т
D/C	0,190	

$$\frac{D}{C} = \frac{V_D}{\emptyset V_n} < 1$$

$$\frac{D}{C}=0,19<1\ldots CUMPLE$$

Diseño de Vigas Secundarias

A continuación, se detalla el tipo de acero con su módulo de elasticidad y dimensiones de la viga secundaria.

Nota: Los datos en gris se debe ingresar manualmente

Materiales			
Tipo de			
Acero	50	ksi	
E	2100000	kg/cm2	
Datos de viga			
bf	10	cm	
tf	0,85	cm	
h	20	cm	
tw	0,56	cm	
Cb	1,0	-	

Tabla 20. Tipo y datos de las vigas secundarias.

Propiedades geométricas de la viga secundaria. Ocupando una viga IPE 200.

IPE	200	21,4
A	27,25	cm2
Ix	1845,59	cm4
ly	141,93	cm4
Sx	184,56	cm3
Sy	28,39	cm3
Zx	209,66	cm3
Zy	43,93	cm3
rx	8,23	cm
ry	2,28	cm
fy	3513,7	kg/cm2
ho	19,15	cm
rts	2,71	cm
Jc	3,22	cm4
ct2	0,00091	-
Lr	289	cm

Tabla 21. Datos geométricos de las vigas secundarias.

A continuación, se detalla la longitud de las vigas de igual forma el número de vigas secundarias:

Geometría de la vigas secundarias		
LV.	45	R
Lv Lt principal	4,5	m
N. Vigas	3	m

Verificación de las secciones sísmicas

Se chequea las secciones sísmicas, determinando su ductilidad y si es compacta.

Chequeo Secciones Sísmicas			
cte	24,447		
b/t	7,459	COMPACT	
bf/2tf	5,882		
cw1	59,905	DUCTIL	
h/tw	35,714		
$\frac{b}{t} = 0.32 \sqrt{\frac{E}{R_y * F_y}}$			

Tabla 23.	Chequeo	de	secciones	sísmicas.
100000 =01	00900		5000101105	515

$$\frac{b}{t} = 7,46$$
$$\frac{bf}{2*tf} = \frac{10}{2*0.85}$$

$$\frac{bf}{2*tf} = 5,88$$

Para IPE 200: $\frac{bf}{2*tf} = 5.88 < \frac{b}{t} = 7.46$... LA SECCIÓN ES COMPACTA.

$$C_{W1} = 2,57 \sqrt{\frac{E}{Ry * Fy}}$$

$$C_{W1} = 59,91$$
$$\frac{h}{t_w} = \frac{20}{0,56}$$
$$\frac{h}{t_w} = 35,71$$

Para IPE 200: $\frac{h}{t_w} = 35.71 < 59.91...$ LA SECCIÓN ES DÚCTIL. Verificación de la demanda de apoyos de la viga

Demada de apoyos de la viga		
Ct1	Ok	(
Ct2	ОК	
Apoyos	3	u
Lds	1	m
Cu	3,932	t
Wr	0,874	t/m
Mu	2,211	t-m

Tabla 24. Chequeos de demanda de apoyos de la viga.

Ct1: Es el chequeo de longitud de apoyo de las vigas principales.

Ct2: Es el chequeo de apoyo nodal con rigidez del apoyo de las vigas principales.

Apoyos: Tiene que cumplir los dos chequeos Ct1 y Ct2. Para después aplicar la siguiente formula:

$$Apoyo = \frac{L_v}{L}$$
$$Apoyo = \frac{4,5 m}{1,46 m}$$
$$Apoyo = 3$$

Lds: Separación entre vigas secundarias.

Cu: Carga ultima (Incluye peso propio de la viga).

$$Cu = 3,932 ton$$

También se obtiene:

$$Wr = 0,874 t/m$$

Finalmente,

$$Mu = 2,211 t - m$$

Verificación demanda/capacidad momento flexionante

Chequeo D/C Momento flexionante			
Lp	98 cm		
фМр	663013	kg-cm	
	6,630	t-m	
D/C	0,334		

Tabla 25. Chequeo de demanda/capacidad de momento flexionante.

Lp: Apoyo lateral superior de la Viga Secundaria

$$L_p = 1,76 * ry * cte$$

 $L_p = 98 cm$

φMp: Momento plástico.

$$\Phi Mp = 0.9 * fy * Zx$$

$$\Phi Mp = 6.630 t - m$$

D/C: Demanda/capacidad

$$\frac{D}{C} = 0,334 < 1 \dots CUMPLE$$

Verificación demanda/capacidad a corte

Tabla 26. Chequeo de demanda/capacidad a corte.

Chequeo D/C a corte		
φVn	23,612	Т
D/C	0,169	

$$\Phi Vn = \frac{0.6 * fy * tw * h}{1000} = 23,612 \text{ ton}$$

$$\frac{D}{C} = 0,169 < 1 \dots CUMPLE$$

Diseño de Columnas, Sistema sismo-resistente (SMF)

La columna a diseñar es la C2 W18X86, siento ésta la más pequeña, las mismas que se encuentran en la parte interior de los extremos del edificio. Para poder realizar el diseño, se presentan los datos de la geometría de la columna, su material y módulo de elasticidad, en las siguientes tablas:

Materiales				
Tipo de Acero	50	ksi		
E	2100000	kg/cm2		
Dat	Datos de la columna			
bf	28.194	cm		
tf	2.21	cm		
h	47.244	cm		
tw	1.359	cm		
Cb	1.0	-		
k	1	-		

Tabla 27. Datos generales de la columna.

Tabla 28. Dimensiones calculadas de la column

W	472.44	143.5
А	182.82	cm2
lx	72127.74	cm4
ly	8263.84	cm4
Sx	3053.41	cm3
Sy	586.21	cm3
Zx	3429.08	cm3
Zy	898.14	cm3
rx	19.86	cm
ry	6.72	cm
l/ry	48.19	-
fy	3513.7	kg/cm2
ho	45.03	cm
rts	7.81	cm
Jc	140.97	cm4
ct2	0.00103	-
Lr	846	cm

Se realiza un chequeo de estabilidad del ala y alma, resumido sus resultados en la siguiente tabla:

Chequeo Estabilidad Ala y Alma		
cte	24.45	
b/t	7.46	OK
bf/2tf	6.38	ŬK
Ca	0.0105	
Cw1	59.25	OK
h/tw	34.764	ŬK
PESO SECCIÓN		ОК

Tabla 29. Chequeo estabilidad ala y alma.

Para comprender mejor el chequeo, se detalla el procedimiento con su respectiva fórmula a continuación:

Verificación del ancho-espesor del ala:

$$\frac{b}{t} = 0.32 \sqrt{\frac{E}{R_y * F_y}} = 0.32 \sqrt{\frac{2100000}{3513.7 * 1.1}}$$
$$\frac{b}{t} = 7.46$$
$$\frac{b}{t} = \frac{bf}{2 * tf} = \frac{28.194}{2 * 2.21}$$
$$\frac{bf}{2 * tf} = 6.38$$

Para W18X86: $\frac{bf}{2*tf} = 6.38 < \frac{b}{t} = 7.46$... LA SECCIÓN CUMPLE.

Verificación de wed alma:

$$C_a = \frac{P_u}{0.9 * f_y * P_y} = \frac{6.061 * 1000}{0.9 * 3513.7 * 182.82}$$
$$C_a = 0.0105$$

$$C_{w1} = 2.57 \sqrt{\frac{E}{R_y F_y}} (1 - 1.04C_a) = 2.57 \sqrt{\frac{2100000}{3513.7 * 1.1}} (1 - 1.04 * 0.0105)$$
$$C_{w1} = 59.25$$
$$\frac{h}{t_w} = \frac{47.244}{1.395}$$
$$\frac{h}{t_w} = 34.764$$

Para W18X86: $\frac{h}{t_w} = 34.764 < 59.25$... LA SECCIÓN ES DÚCTIL.

Verificación de Límites de Pandeo

Ahora, se realiza un chequeo de los límites de pandeo, resumido sus resultados en la siguiente tabla:

Límites de Pandeo		
Lp	2.893	m
Lb	3.09	m
Lr	8.4614	m
Requiere apoyo lateral		

Tabla 30. Chequeo estabilidad ala y alma.

Se detalla el procedimiento de los valores que contiene la tabla, a continuación:

$$L_{p} = 1.76r_{y}\sqrt{\frac{E}{E_{y}}} = 1.76 * 6.72\sqrt{\frac{2100000}{3513.7}}$$
$$L_{p} = 2.893 m$$
$$L_{b} = altura \ entre \ piso -\frac{0.3}{2} = 3.24 - \frac{0.3}{2}$$

$$L_b = 3.09 \ m$$

$$L_{r} = 1.95 * r_{ts} \frac{E}{0.7F_{y}} \sqrt{\frac{Jc}{S_{x}h_{o}} + \sqrt{\left(\frac{Jc}{S_{x}h_{o}}\right)^{2} + 6.76\left(\frac{0.7F_{y}}{E}\right)^{2}}$$

$$= 1.95 * 7.81 \frac{2100000}{0.7 * 3513.7} \sqrt{\frac{140.97}{3053.41 * 45.03} + \sqrt{\left(\frac{140.97}{3053.41 * 45.03}\right)^2 + 6.76 \left(\frac{0.7 * 3513.7}{2100000}\right)^2}}$$

 $L_r = 8.461 m$

Si Lb>Lp, CUMPLE.

Si Lb<Lp, se requiere apoyo lateral.

Diseño a flexo compresión

Para calcular el diseño a flexo compresión, se hace una serie de cálculos, los cuales

ayudan a determinar los valores que se muestran en la siguiente tabla:

Diseñ	io a flexo com	oresión	
Fe	8924.8018	kg/cm2]]
F	andeo Inelást	ico]
	Se ocupa Ec. F	cr	
фр	Necesita Fcr		Anélicis a Compresión
Kl/ry	48.1904	-	Analisis a Compresion.
Fcr y	2979.8915	kg/cm2	
фр	490.2928	Ton	
D/C	17%	ОК	
Мр х-х	120.4876	Tm]]
Мр у-у	31.5579	Tm	
φMn x	118.8807	Tm	Análisis a Flexo
φMn y	29.6608	Tm	compresión.
Flexocomp.	0.36	ОК	
Flexocomp. 2	0.1275	OK	

Tabla 31. Cálculo del diseño a flexo compresión.

Se detalla el procedimiento de los valores que contiene la tabla, a continuación:

De acuerdo al teorema de Euler:

$$\sigma_{cr} = \frac{\pi^2 E}{(KL/r)^2} = \frac{\pi^2 * 2100000}{48.19^2}$$

$$\sigma_{cr} = 8924.8018 \, kg/cm^2$$

Si $\sigma_{cr} < f_v$, es Pandeo Elástico.

Si $\sigma_{cr} > f_{\nu}$, es Pandeo Inelástico.

Como resultado, se obtiene un Pandeo Inelástico, ya que, fy tiene un valor de 3513.7 kg/cm^2 .

Para finalizar el análisis a compresión, se verifica que la Demanda/Capacidad (D/C) sea menor al 2%, para que sea una sección adecuada, y se observa que sí cumple la sección de la columna W18X86.

De la misma manera, para finalizar el análisis a flexo compresión, se tiene las siguientes condiciones:

Si Flexocomp.<1, ... OK

Si Flexocomp.>1, ... REDISEÑAR.

Si Flexocomp.2<1, ... OK

Si Flexocomp.2>1, ... REDISEÑAR.

Según los cálculos que se presentan en la tabla, todas las condiciones de los dos análisis cumplen.

Diseño a corte

Se presenta la siguiente tabla con los valores calculados para determinar el diseño a corte:

Tabla 32. Cálculo del diseño a corte.				
Diseño a corte				
h/tw	34.7638 OK			
Cv	1	-		
Vn	135.3575	Ton		
D/C	4%	ОК		

Se detalla el procedimiento de los valores que contiene la tabla, a continuación:

$$V_n = 0.6F_yAC_v = 0.6 * 3513.7 * (47.24 * 1.359)/1000 * 1$$

$$V_n = 135.3575 Ton$$

Si D/C > 0.2, LA SECCIÓN CUMPLE.

Diseño de conexión RBS

A continuación, se detalla el tipo de acero, el módulo de elasticidad de ese acero y las dimensiones de la viga principal.

Materiales			
Tipo de			
Acero	50	ksi	
E	2100000	kg/cm2	
	Datos de viga		
bf	15	cm	
tf	1,07	cm	
h	30	cm	
tw	0,71	cm	
Cb	1,0	-	

Tabla 33. Tipo de acero y datos de la viga principal.

En la siguiente tabla están las propiedades geométricas de la viga principal que usaremos más adelante.

IPE	300	40,7
А	51,88	cm2
lx	7998,99	cm4
ly	602,71	cm4
Sx	533,27	cm3
Sy	80,36	cm3
Zx	602,10	cm3
Zy	123,89	cm3
rx	12,42	cm
ry	3,41	cm
fy	3513,7	kg/cm2
fu	4569,95257	kg/cm2

Tabla 34. Datos geométricos de la viga principal.

Se necesita colocar los siguientes valores para seguir después con las consideraciones:

Nota: Los valores en gris se los coloca manualmente.

Diseño de la conexión RBS		
Longitud		
Viga	5,75	m
Vu	5451,57	kgf
Lh	4,6	m

Tabla 35. Datos generales para el diseño de la conexión.

Longitud de viga: Es la distancia entre apoyos.

Vu: Cortante último.

Lh: Es el 80% de la longitud de la viga.

Consideración 1

Figura 32. Conexión RBS y sus componentes. Fuente. AISC 358. (2016). Capítulo 5.

Las distancias a, b y c se deben regir a la NEC 2015 que a su vez se rigen en el AISC 358,

se obtuvo la media para las tres distancias. Los valores en gris son los que se va a utilizar.

$0.50b_{bf} \le a \le 0.75b_{bf}$	AISC 358, Eq 5.8-1
$0.65d \le b \le 0.85d$	AISC 358, Eq 5.8-2
$0.10b_{bf} \le c \le 0.25b_{bf}$	AISC 358, Eq 5.8-3

Figura 33. Ecuaciones para determinar las dimensiones de la conexión RBS. Fuente. AISC 358. (2016). Capítulo 5.

CONSIDERACIÓN I				
7,50	<a<< td=""><td>11,25</td><td>9,38</td><td>cm</td></a<<>	11,25	9,38	cm
19,50	< b <	25,50	22,50	cm
1,50	<c<< td=""><td>3,75</td><td>3,00</td><td>cm</td></c<<>	3,75	3,00	cm

Tabla 36. Distancias para el diseño de la conexión RBS.

Se debe encontrar el Módulo de sección plástica en el centro de la sección de haz reducido.

$$Z_{RBS} = Z_x - 2ct_{bf}(d - t_{bf})$$

AISC 358, Eq 5.8-4

Figura 34. Ecuación del módulo de sección plástica. Fuente. AISC 358. (2016). Capítulo 5.

Tabla 37. Módulo de sección plástica.

CONSIDERACIÓN II	
Zvsr	416,368

Consideración 3

El factor Cpr tiene en cuenta la resistencia máxima de la conexión, incluido el endurecimiento por deformación, la restricción local, refuerzo y otras condiciones de conexión.

$$C_{pr} = \frac{F_y * F_u}{F_y} \le 1.2$$

Para después, calcular el momento plástico Mpr probable en la sección reducida de la viga.

$$M_{pr} = C_{pr} * R_y * F_y * Z_{vsr}$$

CONSIDERACIÓN III		
Cpr 1,150 -		
Mpr	20896326,32	kgf-cm

Se determina la resistencia a corte requerido.

$$V_{VSR} = \frac{2 * M_{pr}}{L_{viga}} + V_u$$

Tabla 39. Resistencia a corte.

CONSIDERACIÓN IV		
Vvsr	78134,444	kgf

Consideración 5

Sh: distancia desde la cara de la columna a la articulación plástica

$$S_h = a + \frac{b}{2}$$

Mf: Momento máximo probable en la cara de la columna.

$$M_f = M_{pr} + V_{VSR} * S_h$$

Tabla 40. Momento máximo probable.

CONSIDERACIÓN V		
Sh 20,625 cm		cm
Mf	22507849,24	kgf-cm

Consideración 6

Mpe: Momento plástico de la viga basado en el esfuerzo de fluencia esperado.

$$M_{pe} = R_y * F_y * Z_x$$

Tabla 41. Momento pastico de la viga.

CONSIDERACIÓN VI		
Mpe	26269243,2	kgf-cm

Se debe verificar la resistencia a flexión de la viga en la cara de la columna.

$$M_f \leq \emptyset d * M_{pe}$$

Tabla 42. Resistencia a flexión de la viga.

CONSIDERACIÓN VII	
Mpe > Mf	CORRECTO

Esta condición tiene que cumplir, caso contrario, se debe cambiar los datos a,b y c y repetir los pasos.

Consideración 8

Se debe encontrar la resistencia requerida a corte Vu de la conexión y viga entre el alma de la viga y columna.

$$V_u = \frac{2 * M_{pr}}{Lh} + V_{gravedad}$$

Tabla 43. Resistencia requerida a corte.

CONSIDERACIÓN VIII		
Vu	83586,014	

Diseño de placa de corte.

Se utiliza un acero A36 con un fy de 2531,0507 kg/cm2.

Nota: Los datos de las celdas en gris se coloca manualmente, es criterio del diseñador.

DISEÑO DE PLACA DE CORTE		
Fy (Placa de corte)	2531,05065	kg/cm2
dcp(Placa de corte)	25	cm
tcp(Placa de corte)	2	cm
φν V V	94914,3995	kgf
φv V V>Vu CORRECTO		ECTO

Tabla 44. Datos para el diseño de la placa de corte.

Fy: Fluencia del acero A 36.

Dcp: Altura de la placa.

Tcp: espesor de la placa.

 $\phi v V v$: Cortante de la placa de corte.

$$\phi v V V = 0,75 * Fy * dcp * tcp$$

Para que el diseño cumpla y no falle tiene que cumplir con la siguiente expresión:

$\phi v V V = 94914,39 kg * f > Vu = 83586,014 kg * f ... CUMPLE$

Como la expresión si cumple las dimensiones y el fy de la placa se mantienen, caso contrario, se

tendría que cambiar.

Diseño de pernos.

Nota: Los datos en gris se ingresan manualmente.

DISEÑO DE PERNOS		
Fnv	4780	kg/cm2
ΦD	1,6	cm
LR	2,208	cm
Ag	3,5328	cm2
Ry	16886,784	kgf
Cantidad de tornillos 5		5
Ancho de la placa	6,04	cm
dcp de la placa	25	cm
CORRECTO		

Tabla 45. Datos para el diseño de pernos.

Fnv: Tensión a corte nominal.

Se escoge el valor señalado en la tabla:

Tabla J3.2 Tensión Nominal de Conectores y Partes Roscadas, kgf/cm² (MPa)		
Descripción del Conector	Tensión de Tracción Nominal, F _n , kgf/cm² (MPa) ^[4]	Tensión de Corte Nominal en Conexiones de Tipo Aplastamiento, F _{m²} kgt/cm² (MPa)
Pernos A307	3160 (310) ^{lel}	1900 (188) ^{[bille][d]}
Grupo A (ej. Pernos A325), cuando la rosca no está ex- cluida en el plano de corte	6320 (620)	3800 (372) [™]
Grupo A (ej. Pernos A325), cuando la rosca está excluida en el plano de corte	6320 (620)	4780 (469) ^[4]

Figura 35. Tensiones nominales. Fuente. AISC 360. (2016). Capítulo J.

 ΦD : Es el diámetro del perno, se los puede escoger de la siguiente tabla.

TABLA J3.4M Distancia Mínima al Borde ^[a] , desde el Centro del Agujero Estándar ^[b] hasta el Borde de la Parte Conectada, mm		
Diámetro Perno (mm) Distancia Mínima al Borde		
16 20	22	
22	28	
24	30	
27	34	
30	38	
36 46		
Over 36 1.25d		

Figura 36. Distancia mínima al borde. Fuente. AISC 360. (2016). Capítulo J.

LR: Longitud del perno.

LR = 1,38 * Diametro del perno LR = 2,208 cm

Ag: Área gruesa

Ag = Diametro del perno * LR

 $Ag = 3,53 \ cm^2$

Ry: Es la multiplicación de tensión a corte nominal por el área gruesa.

$$R_y = F_{nv} * A_g$$

 $R_y = 16886,784 \ Kg * f$

Cantidad de tornillos: Mínimo dos tornillos y va a depender del diseñador cuantos debe colocar.

tornillos = 5

Ancho de la placa: Es el diámetro más la distancia mínima al borde multiplicada por dos, esta distancia va depender de acuerdo a que diámetro se va a utilizar.

Anch. placa = \emptyset D + 2,22 * 2

Anch. placa = 6,04 cm

Altura de la placa: Se debe escoger el mayor entre la altura de la placa de corte y la altura Lp1.

Altura de la placa = 25cm

Tiene que cumplir el siguiente chequeo

Cantidad de tornillos $* Ry \ge Vu$

84433,92 $kg * f \ge 83586,014 kg * f$

La expresión cumple, en caso de no cumplir se deberá cambiar la cantidad de tornillos y/o aumentar el diámetro de los mismos.

Diseño de placa de continuidad.

Datos de columna

Datos de columna		
W18X86		
bf	28,194	cm
tf	2,21	cm
h	47,244	cm
tw	1,359	cm
tp	10,7	mm
lp	42,824	cm
ар	12,738	cm

Tabla 46. Datos de la columna.

bf: Longitud de las alas.

tf: Espesor de las alas

h: Altura de la sección transversal.

tw: Espesor del alma.

tp: Espesor de la placa.

lp: Longitud de la placa.

ap: Ancho de la placa.

Verificación de zona de panel

Tabla 47. Verificaciones de la zona de panel.

Verificación de Zona de panel		
dz	28,58	cm
wz	42,824	cm
No necesita placa doble		

dz: Peralte de la zona del panel.

wz: Ancho de la zona de panel.

$$t_{W} \ge \frac{d_{Z} + w_{Z}}{90}$$

 $t_{W} \ge 0,793$

$1,359 \ cm \ge 0,793 \ cm$

Como la condición cumple entonces no se necesita placa doble, caso contrario, se debería colocar placa doble.

Diseño de la conexión WUF-W

Para realizar el diseño de la conexión WUF-W, se elige una sección de viga y columna, en este caso se hace para la viga IPE300 y para la columna con sección C2 W18X86. Los valores de las medidas geométricas, tanto para vigas como para columnas, se debe ingresar manualmente.

Nota: Los valores en celdas con fondo gris se ingresa manualmente y las celdas con fondo blanco son calculadas.

Datos de viga		
bf	15	cm
tf	1.07	cm
h	30	cm
tw	0.71	cm
Cb	1.0	
IPE	300	40.7
А	51.88	cm2
lx	7998.99	cm4
ly	602.71	cm4
Sx	533.27	cm3
Sy	80.36	cm3
Zx	602.10	cm3
Zy	123.89	cm3
rx	12.42	cm
ry	3.41	cm
fy	3513.7	kg/cm2
fu	4569.95257	kg/cm2
Lp1	2.22	cm

Tabla 48. Dimensiones de la viga IPE300 y tipo de material.

Tabla 49. Dimensiones de la columna C2 W18X86.

Columnas		
C2 W18X86		
bf	28.194	cm
tf	2.21	cm
h	47.244	cm
tw	1.359	cm

Limitaciones

Se debe cumplir ciertas limitaciones de precalificación, tanto para vigas como para columnas, las cuales se indican en la siguiente tabla:

Limitaciones conexión Viga WUF W	
Vigas Roladas I	ОК
d (max)<= 920 mm W36	ОК
Peso <=224 kg/m	ОК
Lv/h>7	ОК
tf<25 mm	ОК
Limitaciones conexión Columna WUF W	
d (max)<= 920 mm W36	ОК

Tabla 50. Límites de precalificación para las vigas.
Las limitaciones más importantes para este diseño que se deben cumplir según la norma AISC 358-16, son las que se presentan en la siguiente tabla:

Para viga:

- 1. Las vigas deben ser miembros ensamblados en I.
- 2. El peralte máximo es del perfil W920 (W36).
- 3. Debe tener como máximo un peso de 224 kg/m.
- 4. La aleta debe tener un espesor máximo de 2.54 cm.
- La luz libre en relación al peralte de la viga debe ser mayor a 7 para el caso de Pórticos Resistentes a Momento para resistencias especiales (PRM-DES).

Para columna:

1. El peralte máximo es del perfil W920 (W36).

Diseño de placa de corte

Los valores ingresados y calculados para el diseño, se presentan en la siguiente tabla:

DISEÑO DE PLACA DE CORTE				
Cantidad de tornil	2			
ΦD	1.905	cm		
Fnv	4780	kg/cm2		
LR	2.6289	cm		
Ag	5.0081	cm2		
Ry	17953.8754	kgf		
Espesor mínimo	0.71	cm		
Ancho mínimo	6.985	cm		
Alto	11.43	cm		
ОК				
а	6-12	mm		
b	>25	mm		
с	>20°&<40°	mm		
d	>50	mm		
e	>12<25	mm		

Tabla 51. Cálculo del diseño de placa de corte.

Para que cumpla la verificación del alma de la viga a la columna, se debe cumplir con los siguientes parámetros que presenta la norma AISC 358-16:

- 1. El espesor mínimo de la placa debe ser al menos igual al alma de la viga.
- 2. El ancho debe separarse como mínimo 50 mm del agujero que es para la soldadura.
- La altura de la placa debe tener una separación superior e inferior como máximo de 12mm y mínimo de 6mm.

Para los detalles superior e inferior de la placa simple a conexión cortante, se presenta la siguiente figura, donde se explica de forma más detallada cada sección:

Notas

- a = mínimo 6 mm, máximo 12
- b = mínimo 25 mm
- $c = 30^{\circ} (\pm 10^{\circ})$
- d = mínimo 50 mm
- e = distancia mínima de 12 mm y distancia máxima de 25 mm desde el extremo de la soldadura de filete al borde del agujero de acceso

Figura 37. Detalles de la placa simple de la conexión a cortante. Fuente. Norma AISC 358-16.

Consideraciones de diseño.

Se presentan las seis consideraciones que se encuentran en la norma AISC 358-16, y sus valores se presentan en la siguiente tabla:

Diseño de la conexión WUF W					
Longitud Viga	5.75	m			
Vu	5451.57	kgf			
CO	NSIDERACIÓ	NI			
Cpr	1.4				
Mpr	10095105	kgf-cm			
СО	NSIDERACIÓI	V II			
Sh	0				
CO	NSIDERACIÓN	1111			
Vh	5451.57	kgf			
CO	CONSIDERACIÓN IV				
Muv	128776.987	kgf-cm			
∑Mf	10223882	kgf-cm			
Ru	353400.692	kgf			
Rn	135357.546	kgf			
CALCU	JLE PLACAS D	OBLES			
tp	2.5	cm			
Rn	384359.654	kgf			
	ОК				
СО	NSIDERACIÓI	VV			
φVn	44905.13	Т			
D/C	0.12140194				
CONSIDERACIÓN VI					
DISEÑO DE	PLACA DE CO	NTINUIDAD			
tp	10.7	mm			
lp	42.824	cm			
ар	12.738	cm			

Tabla 52. Cálculo del diseño de placa de corte.

El orden y procedimiento de las consideraciones para el diseño, se explican a continuación:

1. Cálculo del momento máximo probable en la articulación plástica. El valor de C_{pr} = 1.4, según datos experimentales de la norma. Para calcular M_{pr} , se debe tomar el valor de $Z_e = Z_x$.

$$M_{pr} = C_{pr}R_{y}F_{y}Z_{e} = 1.4 * 3.41 * 3513.7 * 602.10$$
$$M_{pr} = 10095105.0 \ kg.f/cm$$

- 2. Como la articulación plástica se encuentra justo en la cara de la columna, el valor de $S_h = 0.$
- 3. Se calcula la fuerza cortante en los extremos de la viga mediante ETABS, siendo este valor $V_h = 5451.57 \ kg.f.$
- 4. Se verifica las relaciones entre la viga y columna, mediante las siguientes fórmulas:

$$M_{uv} = V_h \left(\frac{d_c}{2}\right) = 5451.57 \left(\frac{47.244}{2}\right)$$

$$M_{uv} = 128776.99 \, kg.f/cm$$

$$\sum Mf = \text{Escriba aquí la ecuación.} \sum \left(M_{pr} + M_{uv}\right) = \sum (10095105.0 + 128776.99)$$

$$\sum Mf = 10223882.0 \, kg.f/cm$$

$$R_u = \frac{\sum Mf}{d - t_f} = \frac{10223882.0}{30 - 1.07}$$

$$R_u = 353400.69 \, kg.f$$

$$R_v = 0.6 * F_y * dc * tp$$

$$R_v = 135357.55 \, kg.f$$

Si Rn>Ru, LA CONDICIÓN CUMPLE.

Si Rn<Ru, CALCULAR PLACAS DOBLES.

$$R_v = 0.6 * F_y * h * (tw + tp) = 0.6 * 3513.7 * 47.244 * (1.359 + 2.5)$$

$R_v = 384359.65 \, kg.f$

Si Rn>Ru, LA CONDICIÓN CUMPLE.

Si Rn<Ru, AUMENTE ESPESOR DE PLACAS.

5. Se calcula la resistencia de la viga y la D/C.

 $\emptyset Vn = 0.6 * F_v * h * tw = 0.6 * 3513.7 * 30 * 0.71$

ØVn=44905.13 Ton

$$\frac{D}{C} = \frac{Vu}{\emptyset Vn} = \frac{5451.57}{44905.13}$$
$$\frac{D}{C} = 0.1214$$

 La placa de continuidad debe tener por lo menos el mismo espesor de las alas que se encuentran ubicadas a cada lado de la columna.

Diseño de la Losa Compuesta

Para diseñar la placa colaborante sismorresistente para losas, se acudió al catálogo de Kubilosa y al Manual de Aceros Deck, para determinar los datos de diseño, los chequeos y el diseño de conectores de corte. A continuación, se presentan tablas de los valores tomados para el diseño de una placa, en este caso se eligió la más económica, la misma que cumple con todos los chequeos.

DATOS DE DISEÑO				
Descripción	Valor	Unidad		
Limite de fluencia de la placa deck kg/m2	2600	kg/cm2		
Altura de la placa deck	0.05	m		
Peso específico del hormigón	2400	kg/m3		
Espesor del hormigón (m)	0.05	m		
Módulo de elasticidad del acero	2039000	kg/cm2		
Espesor de Placa	0.65	mm		
Peso de la placa	6.37	kg/m2		
Luz Libre de Losa Lsd (m)	1.8	m		
Número de tramos	3	u		
Inercia según el espesor Is (+)	29.3	cm4/m		
Ss+	9.61	cm3/m		
Ss-	14.54	cm3/m		
n	9	-		
phi de la malla electrosoldada (cm)	0.8	cm		
Wr Ancho superior del valle deck utilizado (cm)	14.5	cm		
Resistencia a compresión del hormigón kg/cm2	240	kg/cm2		
Límite de fluencia de la malla electrosoldada kg/cm2	6000	kg/cm2		
Wr Ancho inferior del valle deck utilizado (cm)	12	cm		
Cs Espacio entre ejes de valle contiguos (cm)	26.5	cm		

Tabla 53. Datos de diseño de la losa compuesta.

Para la siguiente tabla, las cuantificaciones de las cargas se las hace mediante la herramienta ETABS.

Tabla 54. Cuantificación de cargas.

Cuantificación de cargas				
Carga Muerta total	360	kg/m2		
Carga viva total	200	kg/m2		
Cu	752	kg/m2		
Momento Positivo kg-m	121.824	kg-m		
Momento Negativo kg-m	203.04	kg-m		

Para calcular y determinar los chequeos, se debe conocer los siguientes datos de entrada:

Tabla 55. Datos principales de la losa compuesta.

CHEQUEOS			
Peso del hormigón kg/m2	120	kg/m2	
Peso total Wd	126.37	kg/m2	
Deflexión Admisible*	1	cm	

Chequeo de deflexión de la placa

Para realizar el cálculo de este chequeo, se hace uso de las siguientes fórmulas:

$\delta_{calc} = \frac{0.013 \times Wd}{E_s}$	$\frac{I_{sd} \times (L_{sd})}{\times I_{sd} \times b}$	×100) ⁴	cm.	Condición de un solo tramo
$\delta_{calc} = \frac{0.0054 \times W_{calc}}{E_s}$	$d_{sd} \times (L_{sd} \times (L_{sd} \times I_{sd} \times b))$	×100) ⁴	- cm.	Condición de dos tramos
$\delta_{calc} = \frac{0.0069 \times W_{calc}}{E_s}$	$\frac{d_{sd} \times (L_{sd})}{\times I_{sd} \times b}$	×100) ⁴	cm.	Condición de tres o más tramos
Donde:				
	Wd _{sd}	:	Carga mue	rta por unidad de longitud (kgf/m).
	Lad	:	Luz libre d	e la losa (m).
	Es	:	Módulo de	elasticidad del acero (kgf/cm ²).
	Isd	0	Inercia (cm	1 ⁴ /m).
	b	:	ancho de a	nálisis (m).
Figura	1 38. Co	ndicion	es para la	deflexión de la placa.

Fuente. Manual de Acero-Deck.

Una vez reemplazadas las fórmulas por los valores correspondientes, se obtienen los

resultados, los cuales se presentan en la siguiente tabla:

DEFLEXIÓN DE LA PLACA			
Para un tramo 0.2887 cm			
Para dos tramos	0.1199	cm	
Para tres tramos 0.1532 cm			
OK			

Tabla 56. Cálculo de las condiciones de tramo.

Se verifica que, la siguiente condición sí cumple:

$$\delta_{calc} \leq \delta_{adm} \dots CUMPLE$$

$$\delta_{calc} \leq \delta_{adm} \dots REQUIERE REDISEÑO$$

Chequeo de los esfuerzos de la placa

Para realizar el cálculo de este chequeo, se hace uso de las siguientes fórmulas:

$$f^{+} = \frac{M_{sd}^{+}}{Sp_{sd}} \times 100 \ (kgf/cm^{2})$$
$$f^{-} = \frac{M_{sd}^{-}}{Sn_{sd}} \times 100 \ (kgf/cm^{2})$$

Donde,

 $\begin{array}{lll} M_{sd}^{+} & \text{Momento positivo en la lámina (kgf-m).} \\ M_{sd}^{-} & \text{Momento negativo en la lámina no compuesta (kgf-m).} \\ f^{+} & \text{Esfuerzo positivo en la lámina (kgf/cm2).} \\ f^{-} & \text{Esfuerzo negativo en la lámina (kgf/cm2).} \\ Sp_{sd} & \text{Módulo de sección Superior } (cm^{3}/m). \\ Sn_{sd} & \text{Módulo de sección Inferior } (cm^{3}/m). \\ f_{y} & \text{Resistencia a la fluencia del acero } (kgf/cm^{2}). \end{array}$

Una vez reemplazadas las fórmulas por los valores correspondientes, se obtienen los

resultados, los cuales se presentan en la siguiente tabla:

ESFUERZOS DE LA PLACA				
f+	1267.6795	kg/cm2		
f-	1396.4237	kg/cm2		
Fy admisible	1560	kg/cm2		
OK				

Tabla 57. Cálculo de los esfuerzos de la placa.

Se verifica que, la siguiente condición sí cumple:

$$f^+ \le 0.6f_y \dots CUMPLE$$

 $f^- \le 0.6f_y \dots CUMPLE$
 $f^+ > 0.6f_y \dots REQUIERE REDISEÑO$
 $f^- > 0.6f_y \dots REQUIERE REDISEÑO$

Chequeo de los esfuerzos en el sistema compuesto

Para realizar el cálculo de este chequeo, se hace uso de las siguientes fórmulas:

• Momento de inercia de la sección transformada fisurada: $I_{c} = \frac{b * Y_{cc1}^{3}}{3} + n * As_{sd} * Y_{cs}^{2} + n * I_{sd}$ Donde,

$$\rho = \frac{As_{sd}}{b * d}$$

$$n = \frac{E_s}{E_c}$$

$$I_{cc1} = d * \left(\sqrt{2 * \rho * n + (\rho x n)^2} - \rho x n\right)$$

• Momento de inercia de la sección transformada no fisurada:

$$\begin{split} I_c &= \frac{b * t_c^3}{12} + b * t_c * (Y_{cc2} - 0.5 * t_c) + n * I_{sd} + n * A_s * Y_{es}^2 + \frac{b}{C_s} \\ & \quad * \left\{ w_r * h_r \left[\frac{h_r^2}{12} + (t - Y_{cc2} - 0.5 * h_r)^2 \right] \right\} \end{split}$$

Donde,

$$I_{cc2} = \frac{0.5 * b * t^{2} + n * As_{sd} * d - (C_{s} - w_{r}) * b * \frac{h_{r}}{C_{s}} * (t - 0.5 * h_{r})}{b * t + n * As_{sd} - \frac{b}{C_{s}} * h_{r} * (C_{s} - w_{r})}$$

Con:

Cs:Espacio entre ejes de valles contiguos (cm).Wr:Ancho medio del valle del Deck utilizado (cm).d:
$$t - Y_{sb}$$

• Momento de inercia efectivo.

$$I_e = \frac{I_u + I_c}{2}$$

Se determina:

$$Y_{prom} = \frac{Y_{cc1} + Y_{cc2}}{2}$$
$$S_{ic} = \frac{I_e}{t - Y_{prom}}$$

Una vez reemplazadas las fórmulas por los valores correspondientes, se obtienen los resultados, los cuales se presentan en la siguiente tabla:

ESFUERZOS EN EL SISTEMA COMPUESTO				
As (cm)c	0.502654825	cm2		
р	6.3E-06	-		
d (cm)	8	cm		
Ycc	0.0846	-		
Espesor total de la losa (cm)	10	cm		
Ycc2	3.331	-		
Ycs	4.669	-		
Ic	284.844	cm4/m		
Iu	6618.988	cm4/m		
Ie	3451.916	cm4/m		
Yprom	1.708	-		
Sic	416.274	cm3		
Msd	106.434	kg-m		
Mlsd	81	kg-m		
45.027	OK			

Tabla 58. Cálculo de los esfuerzos en el sistema compuesto.

Se verifica que, la siguiente condición sí cumple:

$$\frac{Md_{sd} + Ml_{sd}}{S_{ic}} * 100 \le 0.6 * f_y$$

Donde,

$$\begin{split} Md_{sd} &: \textit{Momento producido en la losa por las cargas muertas (kgf-m).} \\ Md_{sd} &= \frac{\Psi * Wd_{sd} * L_{sd}^2}{8} \\ Ml_{sd} &: \textit{Momento producido en la losa por las cargas vivas (kgf-m).} \\ Ml_{sd} &= \frac{Wl_{sd} * L_{sd}^2}{8} \\ Wl_{sd} &: \textit{Carga sobre impuesta (kgf/m).} \end{split}$$

 Ψ : Factor de reducción de carga según apuntalamiento.

Chequeo de la resistencia a flexión

Existen dos tipos de conexiones para determinar la resistencia a la flexión o momento último, para este proyecto se trabajará para una losa sub-reforzada, que toma a la condición más crítica de la capacidad de la lámina.

$$\rho_b = \frac{0.85 * \beta_1 * f'_c}{f_y} * \frac{0.003 * (t - h_r)}{\left(0.003 + \frac{f_y}{E_s}\right) * d}$$

A continuación, se presenta el valor en la siguiente tabla:

RESISTENCIA A FLEXIÓN				
El diseño debe ser subreforzado				
pb 7.6E-06 -				
El diseño es subreforzado				

Tabla 59. Cálculo de la resistencia a flexión.

Se verifica que, la siguiente condición sí cumple:

$$\rho \leq \rho_b \dots DISE \tilde{N}O SUB - REFORZADO$$

 $\rho > \rho_b \dots DISE \tilde{N}O RÍGIDO$

Chequeo de la resistencia a corte

Para determinar este chequeo, se debe saber que, el corte es tomado por la losa de concreto con un aporte de la lámina para la resistencia a corte. Se usa las siguientes fórmulas:

$$V_n = 0.53 * \sqrt{f'c} * A_c$$
$$V_u = \frac{\Psi * Wd_{sd} * l_{sd}}{2} + \frac{Wl_{sd} * L_{sd}}{2}$$

Una vez remplazadas las fórmulas con los valores correspondientes, se arma la siguiente tabla de valores:

Tabla 60. Cálculo de la resistencia a corte.

RESISTENCIA A CORTE				
ØVn>Vu				
Ac 66.25 cm2				
Vn	543.961	kg		
Vu 416.52 kg				
OK				

Se verifica que, la siguiente condición sí cumple:

 $V_u \le \varphi * V_n \dots RESISTE \ A \ CORTE$ $V_u \le \varphi * V_n \dots NO \ RESISTE \ A \ CORTE$

Chequeo de conectores

Para finalizar, se realiza el cálculo para determinar un tipo de conector para la losa compuesta. En la siguiente tabla se presentan los valores calculados, donde se usa fórmulas detalladas en el manual de Acero Deck, la principal es la siguiente:

$$\propto = \frac{0.85}{\sqrt{Nr}} * \frac{Wr}{hr} * \frac{(hs - hr)}{hr}$$

Diseño de conectores de corte					
Fluencia del conector	3772.95	kg/cm2			
Longitud del vástago	6.35	cm			
Diámetro del vástago	1.27	cm			
Diámetro de la cabeza	2.54	cm			
Altura de la cabeza	0.85	cm			
Número de conectores por valle	1	u			
Área de la viga de apoyo	28.5	cm2			
Altura de la placa deck	5	cm			
Área efectiva del ala la losa	145	cm2			
Área transversal	10.224	cm2			
Ec concreto	202944.327	kg/cm2			
Ac*Fu	38572.7543	kg			
35674.9756	OK				
Wr/2	13.25	cm			
Hs	7.2	cm			
0.9911	ОК				
Wr/hr	2.65	-			
Número de conectores por m	1	u			

Tabla 61. Cálculo del diseño de conectores.

Se verifica que, la siguiente condición sí cumple:

$\propto \leq 1.0 \dots CUMPLE$ $\propto > 1.0 \dots REQUIERE REDISEÑO$

Análisis y modelado de la estructura en ETABS 2018

Con base al análisis sísmico realizado, los parámetros de las normas establecidas y de los resultados obtenidos anteriormente, se propone la idealización general a través de una breve descripción del proceso realizado en la herramienta de ETABS, con el fin de aclarar el procedimiento de diseño estructural. Se empieza definiendo la grilla, materiales y tipo de secciones que se van a usar en todo el modelado. Las siguientes imágenes explican el orden del proceso de diseño, donde cada una de ellas evidencian los valores ingresados en el programa, valores que fueron determinados por medio de un análisis de normas, manuales y catálogos, con el fin de tener un modelo excelente y que cumpla con todas las verificaciones establecidas por la NEC.

El valor del Módulo de Elasticidad del Hormigón se calculó con la siguiente fórmula: E = $13100 \times \sqrt{fc}$ para hormigón.

General Data			
Material Name	Hormigon fc=	240	
Material Type	Concrete		~
Directional Symmetry Type	Isotropic	,	~
Material Display Color		Change	
Material Notes	Modify	//Show Notes	
Material Weight and Mass			
Specify Weight Density	O Spec	cify Mass Density	
Weight per Unit Volume		2402.77	kgf/m³
Mass per Unit Volume		245.014	kgf-s²/mª
Mechanical Property Data			
Modulus of Elasticity, E		2029443273	kgf/m²
Poisson's Ratio,U		0.2	
Coefficient of Thermal Expansion,	A	0.000099	1/C
Shear Modulus, G		845601363.92	kgf/m²
Design Property Data			
Modify/Show	Material Property	Design Data	
Advanced Material Property Data			
Nonlinear Material Data		Material Damping Pro	perties

Figura 39. Definición del módulo de elasticidad del hormigón.

Propiedades de los materiales

- Acero A572Gr50.
- Acero A653SQGr50.

町 Material Property Data			
General Data			
Material Name	A572Gr50		7
Material Type	Steel	```	/
Directional Symmetry Type	Isotropic	· · · · · · · · · · · · · · · · · · ·	/
Material Display Color		Change	
Material Notes	Modify/S	how Notes	
Material Weight and Mass			
Specify Weight Density	O Specify	Mass Density	
Weight per Unit Volume		7849.05	kgf/m³
Mass per Unit Volume		800.38	kgf-s²/m⁴
Mechanical Property Data			
Modulus of Elasticity, E		20389019158	kgf/m²
Poisson's Ratio, U		0.3	
Coefficient of Thermal Expansion, A		0.0000117	1/C
Shear Modulus, G		7841930445	kgf/m²

Figura 40. Definición del Acero A572Gr50.

町 Material Property Data

\sim
\sim
ity
kgf/m³
kgf-s²/m⁴
971 kgf/m²
1/C
43 kgf/m²

Figura 41. Definición del Acero A653SQGr50.

Propiedades de los elementos estructurales y perfiles empleados

Columnas

Para los elementos COLUMNA DE ACERO, se utilizó elementos tipo "frame" con secciones de W18X86, W18X175.

- W18X86
- W18X175

rame Section Property Data			
General Data			
Property Name	W18X86-1		
Material	A572Gr50	~	2
Display Color	Change		2
Notes	Modify/Show Notes		
Shape			
Section Shape	Steel I/Wide Flange	\sim	
Section Property Source			1
Source: AISC14	Convert To User Defined		
Section Dimensions			Property Modifiers
Total Depth	0.46736	m	Modify/Show Modifiers
Top Flange Width	0.28194		Currently Default
Top Flange Width	0.01956		
top riange i nickness	0.01336	m	
Web Thickness	0.01219	m	
Bottom Flange Width	0.28194	m	
Bottom Flange Thickness	0.01956	m	

Figura 42. Definición de la sección W18X86-1.

Frame Section Property Data General Data W18X175 Property Name Material A572Gr50 ~ ... Display Color Change... Notes Modify/Show Notes... Shape Section Shape Steel I/Wide Flange Section Property Source Source: AISC14 Convert To User Defined Property Modifiers Section Dimensions Modify/Show Modifiers... 0.508 Total Depth m Currently Default 0.28956 Top Flange Width m 0.04039 Top Flange Thickness m 0.02261 Web Thickness 0.28956 Bottom Flange Width 0.04039 Bottom Flange Thickness m 0.01016 Fillet Radius m OK

Figura 43. Definición de la sección W18X86-1.

Vigas principales y secundarias

Para los elementos VIGAS DE ACERO, se utilizó elementos tipo "frame" con secciones de IPE300, IPE200.

- IPE 300
- IPE 200

ieneral Data			
Property Name	IPE300		
Material	A572Gr50	~	2
Display Color	Change.		3
Notes	Modify/Show Notes		ě †
Shape			
Section Shape	Steel I/Wide Flange	\sim	
Section Property Source			J
Source: Euro	Convert To User Define	ed	
Section Dimensions			Property Modifiers
Total Depth	0.3	m	Modify/Show Modifiers
Top Flange Width	0.15	m	Currently Default
Top Flange Thickness	0.0107	m	
Web Thickness	0.0071	m	
Bottom Flange Width	0.15	m	
Bottom Flange Thickness	0.0107	m	
-			

Figura 44. Definición de la sección IPE 300.

Frame Section Property Data

General Data			
Property Name	IPE200		
Material	A572Gr50	~	2
Display Color	Change		3
Notes	Modify/Show Notes		
Shape			
Section Shape	Steel I/Wide Flange	\sim	
Section Property Source			
Section Property Source			
Source: Euro	Convert To User Define	d	
ection Dimensions			Property Modifiers
Total Denth	0.2	m	Modify/Show Modifiers
	0.1		Currently Default
lop Hange Width	0.1	m	
Top Flange Thickness	0.0085	m	
Web Thickness	0.0056	m	
Bottom Flange Width	0.1	m	
Bottom Flange Thickness	0.0085	m	
Fillet Dedition	0.012	m	OK

Figura 45. Definición de la sección IPE 300.

Combinaciones y casos de carga

Combinaciones de carga

Las combinaciones y casos de carga utilizadas, según la Nec 2015.

Según lo establecido por la NEC-SE-DS, NEC-SE-AC, AISC 360 se colocarán las siguientes cargas:

Combinations		Combinations	
0,9D+EspectX	^	0,9D+Sy	
0,9D+ExpectY		0,9D-EspectX	
0,9D+Sx		0,9D-ExpectY	
0,9D+Sy		0,9D-Sx	
0,9D-EspectX		0,9D-Sy	
0,9D-ExpectY		1.2D+1.6L	
0,9D-Sx		1.2D+L+EspectX	
0,9D-Sy		1,2D+L+EspectY	
1,2D+1,6L		1,2D+L+Sx	
1,2D+L+EspectX		1,2D+L+Sy	
1,2D+L+EspectY		1,2D+L-EspectX	
1,2D+L+Sx		1,2D+L-EspectY	
1,2D+L+Sy		1,2D+L-Sx	
1,2D+L-EspectX		1,2D+L-Sy	
1,2D+L-EspectY	¥	14D	

Figura 46. Definición de combinaciones de cargas.

Casos de carga

Load Case Name	Load Case Type	^
Live	Linear Static	
ACM	Linear Static	
SX	Linear Static	
SY	Linear Static	
ESPECT X	Response Spectrum	
ESPECT Y	Response Spectrum	
Pandeo Gravitacional	Buckling	
Pandeo Sx	Buckling	
Pandeo Sv	Buckling	

Figura 47. Definición de casos de cargas.

Diseño de elementos estructurales

Demanda/Capacidad de Pórticos con Conexión a Momento (PEM)

Figura 48. Demanda/Capacidad de una vista en planta.

Figura 49. Demanda/Capacidad de toda la estructura en una vista 3D.

Como se puede observar en las figuras, la norma AISC 360-16 verifica que los perfiles de las vigas y columnas tengan un rango inferior a 1, en relación a la D/C, son capaces de soportar las capacidades de carga, por lo que se demanda por las cargas gravitacionales, las de pared y las sísmicas.

Diseño de Losa Deck

Los conectores de corte en Stud deben estar a una distancia de 0.70-1.2 en caso de requerir más es un diseño sobre cargado y se debe incrementar espesor en la placa deck u hormigón, también vigas secundarias.

Plan View - Story1 - Z =	3.24 (m) Composite	Design - Design Data	(Sections, Stud, Cam	ber) (AISC 360-10) 🛛 👻 🗙
Ŧ	+	l , , , 1	·	
-	IPE200 (5)	erson (no. 1191622020(55)4)	sets IPE200 (4)	
	IPE200 (5)		.xetr IPE200 (4)	
	IPE200 (5)	contra i IP (192020(5)(4)	andr IPE200 (4)	
-	·			
1			. 1	
	300/0 IPE200 (5)	(<u>)</u> // IPE200 (4)	isete.	
	NOR IPE200 (5)	IPE200 (4)	aver IPE200 (4)	
	105300 (5)	105200 (4)		
	NCD: IPE200 (5)	(<u>xe)</u> : IPE200 (4)	xep: IPE200 (4)	
	<u> </u>		+	
	IPE200 (5)		IPE200 (4)	
	IPE200 (5)	concise i PERZEDZED(05)(4) .	.xetr. IP 03000(0)(4)	
	IPE200 (5)		andre IPE200 (4)	
	<u> </u>		-	
	IPE200 (5)	are to	IPE200 (4)	
	. xx IPE200 (5)	(<u>xe)</u> , IPE200 (4)	acto IPE200 (4)	
		(av)/ IPE200 (4)	.xcl/. IPE200 (4)	
	<u>+</u>	, ,	·	
	IPE200 (5)	IPE200 (4)	acto IPE200 (4)	
	105200 (5)	105200 (4)	105300 (4)	
	PL200 (5)	Cardy IPE200 (4)	ACD: 1PE200 (4)	
	IPE200 (5)	(ac): IPE200 (4)	act: IPE200 (4)	
	+;	ļļ	++	
0.00	0.50	0. <mark>7</mark> 0	0. <mark>90</mark>	1.00

Figura 50. Demanda/Capacidad de vigas secundarias.

Se observa que, con respecto a la D/C todas las secciones cumplen con los parámetros según la AISC 360-10.

RESULTADOS

Verificaciones

Periodo de vibración

El período de modelación de la estructura será menor que el período de vibración calculado con la NEC-SE-DS.

 $T_{ESTRUCTURA} < 1.3 T_{NEC}$

0.887 < 1.005 ...*CUMPLE*

Figura 51. Periodo de modelación.

Distorsión torsional

La estructura debe desplazarse en sus dos primeros modos de vibración traslacionalmente,

y se calcula mediante la siguiente ecuación:

$$\frac{Rz}{Um\acute{a}x(x,y)} \le 20\%$$

	PARTICIPACIÓN DE MASA Y MODOS DE VIBRACIÓN													
Case	Mode	Period	UX	UY	UZ	SumUX	SumUY	SumUZ	RX	RY	RZ	SumRX	SumRY	SumRZ
		sec												
Modal	1	0.878	0.0023	0.7992	0	0.0023	0.7992	0	0.2074	0.0007	0.0005	0.2074	0.0007	0.0005
Modal	2	0.823	0.7852	0.0024	0	0.7876	0.8016	0	0.0006	0.2234	0.0003	0.208	0.2241	0.0008
Modal	3	0.731	0.0003	0.0005	0	0.7879	0.8021	0	0.0001	0.0001	0.7944	0.2081	0.2242	0.7952
Modal	4	0.265	0.0001	0.1117	0	0.788	0.9138	0	0.5664	0.0004	0.00002739	0.7745	0.2246	0.7952
Modal	5	0.24	0.1187	0.0001	0	0.9067	0.9139	0	0.0004	0.5333	0.0001	0.775	0.7578	0.7953
Modal	6	0.216	0.0001	1.69E-05	0	0.9068	0.9139	0	0.0001	0.0003	0.1146	0.7751	0.7582	0.9099
Modal	7	0.139	9.4E-06	0.046	0	0.9068	0.9599	0	0.085	0.00002099	0	0.8601	0.7582	0.9099
Modal	8	0.12	0.0498	6.77E-06	0	0.9566	0.9599	0	0.00001245	0.0984	0.00004241	0.8601	0.8566	0.91
Modal	9	0.111	4.7E-05	0	0	0.9566	0.9599	0	8.403E-07	0.0001	0.048	0.8601	0.8567	0.958
Modal	10	0.088	1.4E-06	0.0241	0	0.9566	0.984	0	0.0931	3.415E-06	3.186E-06	0.9532	0.8567	0.958
Modal	11	0.074	0.0259	6.92E-07	0	0.9825	0.984	0	3.151E-06	0.0913	0.00004739	0.9532	0.948	0.958
Modal	12	0.069	4.7E-05	0	0	0.9826	0.984	0	0	0.0002	0.0252	0.9532	0.9482	0.9832
Modal	13	0.064	0	0.0117	0	0.9826	0.9958	0	0.032	8.298E-07	5.389E-06	0.9852	0.9482	0.9832
Modal	14	0.052	0.0003	0.0041	0	0.9829	0.9999	0	0.0144	0.0009	7.835E-06	0.9996	0.9491	0.9832
Modal	15	0.052	0.013	0.0001	0	0.9959	1	0	0.0004	0.0368	0.00002518	1	0.9859	0.9832
Modal	16	0.05	3.3E-05	9.38E-06	0	0.9959	1	0	0.00003388	0.0001	0.0126	1	0.986	0.9959
Modal	17	0.042	0.0041	0	0	1	1	0	0	0.0139	0.00002126	1	0.9999	0.9959
Modal	18	0.04	1.9E-05	0	0	1	1	0	9.366E-07	0.0001	0.0041	1	1	1

Tabla 62. Cálculo de los modos de vibración.

Modo 1:

$$\frac{Rz}{Um\acute{a}x(x,y)} \le 20\%$$

 $\frac{0.0005}{0.7992} = 0.06\% \dots OK$

Modo 2:

$$\frac{Rz}{Um\acute{a}x(x,y)} \le 20\%$$

 $\frac{0.0003}{0.7852} = 0.04\% \dots OK$

Participación de masa

La masa de la estructura en el análisis modal deberá ser mayor al 90%, se considera

modos de vibración a partir de la participación de masa correspondiente a su carga muerta y

ACM de tipo Eingel Ux, Uy y Rz.

Tabla 63. Cálculo de la participación de masa.

 Modal
 6
 0.216
 0.0001
 1.69E-05
 0
 0.9068
 0.9139
 0
 0.0001
 0.0003
 0.1146
 0.7751
 0.7582
 0.9099

 Dicho
 chequeo
 cumple
 en
 el
 sexto
 modo
 de
 vibración.

Pandeo global de la estructura

Los factores NO deben estar en el rango de -1 a 1 en caso de estar en este rango la

estructura es propensa a pandearse.

PANDEO GLOBAL							
CASO	Modo	Factor	CHECK				
Pandeo Gravitacional	1	42.457	ОК				
Pandeo Gravitacional	2	49.598	ОК				
Pandeo Gravitacional	3	60.849	ОК				
Pandeo Gravitacional	4	74.85	ОК				
Pandeo Gravitacional	5	90.096	ОК				
Pandeo Gravitacional	6	96.148	ОК				
Pandeo Sx	1 46.31		ОК				
Pandeo Sx	2 56.28		ОК				
Pandeo Sx	3 72.455		ОК				
Pandeo Sx	4 82.089		ОК				
Pandeo Sx	5 99.088		ОК				
Pandeo Sx	6	100.146	ОК				
Pandeo Sy	1 48.203		ОК				
Pandeo Sy	2	51.606	ОК				
Pandeo Sy	3	77.785	ОК				
Pandeo Sy	4	84.907	ОК				
Pandeo Sy	5	86.927	ОК				
Pandeo Sy	6	92.618	ОК				

Tabla 64. Cálculo del pandeo global.

Por lo tanto, la estructura es totalmente estable.

Calibración del cortante basal

Partiendo del período de vibración de la estructura obtenido anteriormente, se calibra la aceleración espectral modal Sa (Tmodal).

$$Sa = n * z * Fa * \left(\frac{Tc}{Tmodal}\right)^{r}$$

Si no,

$$Sa = n * z * Fa$$

Donde,

n: Relación de amplificación espectral.

z: Valor de factor Z.

Fa: Amplificación del suelo en período corto.

Tc: Período límite de vibración en el espectro elástico de aceleraciones en el sismo de diseño.

R: Factor usado en el espectro de diseño elástico.

Tmodal: Período de vibración de la estructura en el primer modo.

 $V(modal) = \frac{I * Sa \ modal}{R \phi P \phi E}$

Si Tmodal ≤ 0.5 , entonces K = 1.0

Si Tmodal \leq 2.5, entonces K = 0.75 + 0.5 Tmodal

Si Tmodal > 2.5, entonces K = 2

Cotante	Inte Basal Período NEC Cotante Basal Período Máximo			Cotante Ba	sal Período Softtware			
Т	0.773	Tmax (1.3T)	1.005	Tmodal (s)	0.878			
Sa (T)	0.975	Sa (Tmax)	0.975	Sa (Tmodal)	0.975			
V	0.975	V (Tmax)	0.122	V (Tmodal)	0.122			
k	1.137	k(max)	1.253	k(modal)	1.189			
Wr	217.653	V min	21.221					

Tabla 65. Cálculo del cortante basal.

町 Seismic Load Pattern - User Defined

X Dir	Y Dir	Base Shear Coefficient, C	0.122
🗹 X Dir + Eccentricity	Y Dir + Eccentricity	Building Height Exp., K	1.189
X Dir - Eccentricity	Y Dir - Eccentricity	Stony Range	
Ecc. Ratio (All Diaph.)	0.05	Top Story	Story6
Overwrite Eccentricities	Overwrite	Bottom Story	Base

Figura 52. Calibración para el coeficiente C.

El factor de calibración se aplica para Sx y Sy.

Validación del estado dinámico

La relación entre el cortante estático y el cortante dinámico debe ser mayor al 80% en sentido X y Y:

$$\frac{V_{DIN\dot{A}MICO}}{V_{EST\dot{A}TICO}} \ge 85\%$$

Espectro X:

Figura 53. Estado dinámico en el Espectro X.

Espectro Y:

Sx:

Figura 54. Estado dinámico en el Espectro Y.

Figura 55. Estado dinámico en el cortante basal Sx.

Figura 56. Estado dinámico en el cortante basal Sy. Cortante Vx:

$$\frac{V_{X \text{ DIN}\acute{A}\text{MICO}}}{V_{X \text{ EST}\acute{A}\text{TICO}}} \ge 85\%$$
$$\frac{77602.932}{84908} \ge 85\%$$
$$91\% \ge 85\%$$

Cortante Vy:

$$\frac{V_{y \text{ DIN}\acute{A}\text{MICO}}}{V_{y \text{ EST}\acute{A}\text{TICO}}} \ge 85\%$$
$$\frac{72109.65}{84908} \ge 85\%$$

Para lograr esto, se realiza una calibración en el valor de gravedad de la carga espectral mediante la siguiente ecuación:

Factor de calibración por gravedad = $\frac{0.85V_{ESTÁTICO}}{V_{DINÁMICO}}$

Finalmente, se multiplica el valor de la gravedad = 9.81 m/s2 por el Factor de calibración de gravedad.

Derivas estáticas

Para que cumplan con el criterio, las derivas estáticas deben ser menores al 2% para el cortante basal en Sx y Sy.

Cortante basal Sx:

Figura 57. Estado del cortante basal Sx.

Se calcula con la siguiente fórmula:

$$\Delta_m = 0.75 * R * \Delta_{ELAST} \le 2\%$$

$$\Delta_m = 6 * 0.003002 = 1.812\% \le 2\% \dots OK$$

Cortante basal Sy:

Figura 58. Estado del cortante basal Sy.

Se calcula con la siguiente fórmula:

$$\Delta_m = 0.75 * R * \Delta_{ELAST} \le 2\%$$

$$\Delta_m = 6 * 0.002978 = 1.786\% \le 2\% \dots OK$$

Derivas dinámicas

De la misma manera, para que cumplan con el criterio, las derivas dinámicas deben ser menores al 2% para la carga espectral en X y Y.

Carga espectral X:

Figura 59. Estado de la carga espectral X.

Se calcula con la siguiente fórmula:

$$\Delta_m = 0.75 * R * \Delta_{ELAST} \le 2\%$$

$$\Delta_m = 6 * 0.002716 = 1.63\% \le 2\% \dots OK$$

Carga espectral Y

Figura 60. Estado de la carga espectral Y.

Se calcula con la siguiente fórmula:

$$\Delta_m = 0.75 * R * \Delta_{ELAST} \le 2\%$$

$$\Delta_m = 6 * 0.00252 = 1.51\% \le 2\% \dots OK$$

CONCLUSIONES

Se ha creado un espectro de diseño según lo establecido en la NEC SE DS 15, para la estructura propuesta y bajo los parámetros geográficos de la estructura a implantarse. El diseño realizado es sismo resistente para los parámetros establecidos en la NEC con un espectro reducido, R=8, según lo que establece la NEC SE DS 6.3.4 b).

Debido a que las derivas estáticas y dinámicas cumplen con lo dispuesto en la NEC SE DS 15 al ser menores que el 2% pero mayores que 1,5%; se establece que todos los pórticos sean de características SMF, ya que si se colocara otros marcos la estructura superaría las derivas inelásticas permitidas.

Se ha propuesto dos tipos de conexiones precalificadas: WUF W y RBS, las cuales están establecidas en el AISC 358-16, y se ha comprobado que los perfiles cumplan con los requisitos de cada conexión precalificada, en los cuales se realiza dos propuestas: una edificación en su totalidad con conexión RBS y otra propuesta para toda la edificación WUF W. Según el AISC 341, se ha diseñado pórticos especiales a momento.

El período de vibración de la estructura es de 0,877 seg, lo cual es menor al máximo establecido por la NEC: 1,005; la estructura se desplaza en su totalidad de manera traslacional en los dos primeros modos de vibración por lo que no se produce torsión y dichos, la participación de masa de la estructura es mayor al 90% en el sexto modo de vibración (se ha considerado tres modos de vibración tipo eigel por piso), la estructura no sufre de pandeo global al no estar en el

rango de 1 a -1, para validar el estado dinámico se ha tenido que incrementar el valor de la gravedad a $11,25 \text{ m/s}^2$ en dirección X y $10,28 \text{ m/s}^2$ en dirección Y, las derivas estáticas y dinámicas son menores al 2%.

Recomendaciones

Se podría realizar un análisis de segundo orden no lineal con un espectro de diseño el cual tenga un período de retorno de 475 años, 1000 años y 2500 años, para verificar el nivel de desempeño de la estructura.

Realizar un análisis de precios unitarios para ambas conexiones precalificadas para determinar cuál es más viable y un análisis más profundo comparando pro y contra entre WUF W Y RBS.

REFERENCIAS BIBLIOGRAFICAS

- Canova, I. (22 de 11 de 2021). *f3arquitectura*. Obtenido de https://www.f3arquitectura.es/estructuras/acero/
- Chamba, A. (21 de 09 de 2020). *Expreso*. Obtenido de https://www.expreso.ec/ciencia-y-tecnologia/son-7-volcanes-activos-ecuador-90400.html
- Gil, A. (31 de 08 de 2020). *elordenmundial*. Obtenido de https://elordenmundial.com/mapas-y-graficos/placas-tectonicas/
- Hernández, E. (07 de 02 de 2019). *e-zigurat*. Obtenido de https://www.ezigurat.com/blog/es/revision-y-aplicacion-zona-panel-porticos-resistentes-momentoacero/
- Normativa Ecuatoriana de la Construccion. (10 de 01 de 2015). *habitatyvivienda*. Obtenido de https://www.habitatyvivienda.gob.ec/wp-content/uploads/downloads/2015/02/NEC-SE-AC-Estructuras-de-Acero.pdf
- Pannillo, G., Chacón, M., & Riera, H. (03 de 06 de 2018). *redalyc*. Obtenido de https://www.redalyc.org/jatsRepo/5703/570360789006/html/index.html
- Ron, A. L. (23 de 11 de 2020). *PUCE*. Obtenido de Geografía y Clima del Ecuador: https://bioweb.bio/fungiweb/GeografiaClima/
- Salazar, A. (12 de 06 de 2018). *blog.laminasyaceros*. Obtenido de https://blog.laminasyaceros.com/blog/estructuras-de-acero-para-construcciones

Varela, A., & Ron, S. (23 de 11 de 2020). *PUCE*. Obtenido de Geografía y Clima del Ecuador: https://bioweb.bio/fungiweb/GeografiaClima/

AISC (American Institute of Steel Construction). 2016. *Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications*. AISC 358-16.

AISC (American Institute of Steel Construction). 2016. *Specification for Structural Steel Buildings*. AISC 360-16.

AISC (American Institute of Steel Construction). 2016. Seismic Provisions for Structural Steel Buildings. AISC 341-16.

ANEXO A: DISEÑO DE VIGAS PRINCIPALES (SMF)

	Materiales	
Tipo de Acero	50	kei
- CEIO	2100000	NSI
E	2100000	kg/cm2
	Datos de viga	
bt	15	cm
tf	1.07	cm
h	30	cm
tw	0.71	cm
Cb	1.0	
IPE	300	40.7
A	51.88	cm2
Ix	7998.99	cm4
ly	602.71	cm4
Sx	533.27	cm3
Sy	80.36	cm3
Zx	602.10	cm3
Zy	123.89	cm3
rx	12.42	cm
ry	3.41	cm
fy	3513.7	kg/cm2
ho	28.93	cm
rts	4.04	cm
Jc	9.70	cm4
ct2	0.00063	
Lr	412	cm

Geometría de la viga				
1	57	-		
LV 5.7 m				
Cnequeo	Secciones Sisi	nicas		
cte	24.45			
b/t	7.46	COMPACT		
Df/2tf	7.01			
cw1	59.91	DUCTIL		
h/tw	42.2535211			
Chequeo Pa	ndeo Lateral I	orsional		
Lb	446.857521	in		
Lb	175.928158	cm		
Lb	37.2381267	ft		
L min	142.5	cm		
L min	56.1023622	in		
Mr	2020.82636	kip-in		
Mr	23.2823163	T-m		
Prb	0.55001792	kips		
Prb	38.6519975	kg/cm2		
Lon	gitud de apoyo	5		
Espaciamiento	11.5	ft		
L	57.4457841	in		
L	4.78714868	ft		
L	145.912292	cm		
	ОК			
А	poyo Nodal			
βbr	41.1808072	k/in		
βbr	47434.714	kg/cm		
θ	11.6182764			
Rigidez del apoyo				
к	716392.604	kg/cm		
	ОК			
Chequeo D/C Momento flexionante				
Lp	147	cm		
фМр	1904036	kg-cm		
	19.04	t-m		
D/C	0.318			

Demada de cargas		
MD	6.06176	T-m
VD	8.54355	Т

Chequeo D/C a corte		
φVn	44.90513	Т
D/C	0.19025	7772

Limitaciones conección RBS		
OK		
ОК		
ОК		
ОК		

19

ANEXO B: DISEÑO DE VIGAS SECUNDARIAS

	Materiales	
Tipo de Acero	50	ksi
E	2100000	kg/cm2
	Datos de viga	
bf	10	cm
tf	0.85	cm
h	20	cm
tw	0.56	cm
Cb	1.0	
IPE	200	21.4
А	27.25	cm2
Ix	1845.59	cm4
ly	141.93	cm4
Sx	184.56	cm3
Sy	28.39	cm3
Zx	209.66	cm3
Zy	43.93	cm3
rx	8.23	cm
ry	2.28	cm
fy	3513.7	kg/cm2
ho	19.15	cm
rts	2.71	cm
Jc	3.22	cm4
ct2	0.00091	
Lr	289	cm

Geometría de la vigas secundarias		
Lv	4.5	m
Lt principal	4	m
N. Vigas	3	m
Chequ	eo Secciones Sís	micas
cte	24.45	
b/t	7.46	COMPACT
bf/2tf	5.88	
cw1	59.91	DUCTIL
h/tw	35.71428571	
Demad	la de apoyos de .	la viga
Ct1	Ok	(
Ct2	ОК	
Apoyos	3	u
Lds	1	m
Cu	3.931504272	t
Wr	0.873667616	t/m
Mu	2.211471153	t-m
Chequeo	D/C Momento fle	exionante
Lp	98	cm
фМр	663013	kg-cm
	6.63	t-m
D/C	0 3335/	8430

Demada de cargas			
CARGA	NO		
SOFTWARE			
CV	0.12	T/m2	
CM	0.44	T/m2	
Cu (manual)	0.848	T-m2	
MD software	4.8	T-m	
VD	3.98	Т	

Chequeo D/C a corte			
φVn	23.6120871	Т	
D/C	0.168557738		

ANEXO C: DISEÑO DE COLUMNAS (SMF)

ANEXO D: COLUMNA FUERTE-VIGA DEBIL.

D	atos de columi	าต
	W18X86	
bf	28.194	cm
tf	2.21	cm
h	47.244	cm
tw	1.359	cm
	Datos de viga	
bf	15	cm
tf	1.07	cm
h	30	cm
tw	0.71	cm
IPE	300	0.0

	Mpr Vigas	
фМр	19.04	t-m
	Mpr Columnas	5
фМрх	118.880675	Tm
фМру	29.6608086	Tm
3.9007	Columna fu	erte-v debil

ANEXO E: LOSA COMPUESTA.

DATOS DE DISEÑO		
Descripción	Valor	Un id ad
Limite de fluencia de la placa deck kg/m2	2600	kg/cm2
Altura de la placa deck	0.05	m
Peso específico del hormigón	2400	kg/m3
Espesor del hormigón (m)	0.05	m
Módulo de elasticidad del acero	2039000	kg/cm2
Espesor de Placa	0.65	mm
Peso de la placa	6.37	kg/m2
Luz Libre de Losa Lsd (m)	1.8	m
Número de tramos	3	u
Inercia segun el espesor Is (+)	29.3	cm4/m
\$s+	9.61	cm3/m
Ss-	14.54	cm3/m
n	9	-
phi de la malla electro soldada (cm)	0.8	cm
Wr Ancho superior del valle deck utilizado (cm)	14.5	cm
Resistencia a compresión del hormigón kg/cm2	240	kg/cm2
Limite de fluencia de la malla electrosoldada kg/cm2	6000	kg/cm2
Wr Ancho inferior del valle deck utilizado (cm)	12	cm
Cs Espacio entre ejes de valle contiguos (cm)	26.5	cm
Cuantificación de cargas	5	
Carga Muerta total	360	kg/m2
Carga viva total	200	kg/m2
Cu	752	kg/m2
Momento Positivo kg-m	121.824	kg-m
Momento Negativo kg-m	203.04	kg-m

CHEQUE	DS	
Peso del hormigón kg/m2	120	kg/m2
Peso total Wd	126.37	kg/m2
Deflexión Admisible*	1	cm
DEFLEXIÓN DE L	A PLACA	
Para un tramo	0.2887	cm
Para dos tramos	0.1199	cm
Para tres tramos	0.1532	cm
OK		
ESFUERZOS DE L	A PLACA	
f+	1267.6795	kg/cm2
f-	1396.4237	kg/cm2
Fy admisible	1560	kg/cm2
OK		
ESFUERZOS EN EL SISTE	MA COMPUESTO)
As (cm)c	0.502654825	cm2
p	6.3E-06	
d (cm)	8	cm
Ycc	0.0846	
Espesor total de la losa (cm)	10	cm
Ycc2	3.331	
Yes	4.669	
Ic	284.844	cm4/m
Iu	6618.988	cm4/m
Ie	3451.916	cm 4/m
Yprom	1.708	
Sic	416.274	cm3
Msd	106.434	kg-m
Misd	81	kg-m
45.027	OK	
RESISTENCIA A	FLEXIÓN	
El diseño debe ser s	ubreforzado	
pb	7.6E-06	
El diseño es subr	eforzado	
RESISTENCIA A	CORTE	
ØVn>Vt	1	

OK

543.961 416.52

kg kg

Diseño de conectores de corte				
Fluencia del conector	3772.95	kg/cm2		
Longitud del vástago	6.35	cm		
Diámetro del vástago	1.27	cm		
Diámetro de la cabeza	2.54	cm		
Altura de la cabeza	0.85	cm		
Numero de conectores por valle	1	u		
Área de la viga de apoyo	28.5	cm2		
Altura de la placa deck	5	cm		
Área efectiva del ala la losa	145	cm2		
Área transversal	10.224	cm2		
Ec concreto	202944.3273	kg/cm2		
Ac*Fu	38572.75433	kg		
35674.9756	OK			
Wr/2	13.25	cm		
Hs	7.2	cm		
0.9911	OK			
Wr/hr	2.65	-		
Número de conectores por m	1	u		

W*L^2/12 W*L^2/8

ANEXO F: CONEXIÓN RBS.

Г

	waterules	
Tipo de Acero	50	ksi
E	2100000	kg/cm2
	Datos de viga	
bf	15	cm
tf	1.07	cm
h	30	cm
tw	0.71	cm
Cb	1.0	
IPE	300	40.7
А	51.88	cm2
Ix	7998.99	cm4
ly	602.71	cm4
Sx	533.27	cm3
Sy	80.36	cm3
Zx	602.10	cm3
Zy	123.89	cm3
rx	12.42	cm
ry	3.41	cm
fy	3513.7	kg/cm2
fu	4569.95257	kg/cm2
1	21.32	cm

	Diseño de la	conexión RB.	s
Longitud Viga	5.	75	m
Vu	545	1.57	kgf
Lh	4	.6	m
	CONSIDE	RACIÓN I	
7.50	< a <	11.25	9.38
19.50	< b <	25.50	22.50
1.50	< c <	3.75	3.00
	CONSIDE	RACIÓN II	
Zvsr		416.367775	Э
	CONSIDE	RACIÓN III	
Cpr	1.150304251		-
Mpr	20896	326.32	kgf-cm
	CONSIDE	RACIÓN IV	
Vvsr	78134	.44417	kgf
	CONSIDE	RACIÓN V	
Sh	20.625		cm
Mf	22507849.24 kgf-cm		
	CONSIDE	RACIÓN VI	
Mpe	26269	243.2	kgf-cm
	CONSIDER	ACIÓN VII	
Mpe > Mf	CORRECTO		
	CONSIDER	ACIÓN VIII	
V	u	8358	36.01417

CONSIL	JERACION IA	
DISEÑO DE	PLACA DE COR	TE
Fy (Placa de corte)	2531.05065	kg/cm2
dcp(Placa de corte)	25	cm
tcp(Placa de corte)	2	cm
φv VV	94914.3995	kgf
φv VV> Vu	CORF	RECTO
DISEÑO	D DE PERNOS	16-
Fnv	4780	kg/cm2
ΦD	1.6	cm
LR	2.208	cm
Ag	3.5328	cm2
Ry	16886.784	kgf
Cantidad de tornillos	1	5
Ancho de la placa	6.04	cm
dcp de la placa	25	cm
CC	RRECTO	
DISEÑO DE PLA	CA DE CONTINU	JIDAD
Datos	de columna	
v	V18X86	92.5.
bf	28.194	cm
tf	2.21	cm
h	47.244	cm
tw	1.359	cm
tp	10.7	mm
lp	42.824	cm
ар	12.738	cm
Verificación	de Zona de par	nel
dz	28.58	cm
WZ	42.824	cm
No neces	ita placa doble	

CONCIDERACIÓN IN

ANEXO G: CONEXIÓN WUF-W

	Materiales	
Tipo de Acero	50	ksi
E	2100000	kg/cm2
	Datos de viga	
bf	15	cm
tf	1.07	cm
h	30	cm
tw	0.71	cm
Cb	1.0	
IPE	300	40.7
А	51.88	cm2
lx	7998.99	cm4
ly	602.71	cm4
Sx	533.27	cm3
Sy	80.36	cm3
Zx	602.10	cm3
Zy	123.89	cm3
rx	12.42	cm
ry	3.41	cm
fy	3513.7	kg/cm2
fu	4569.95257	kg/cm2
Lp1	2.22	cm

	Columnas	
	C2 W18X86	i
bf	28.194	cm
tf	2.21	cm
h	47.244	cm
tw	1.359	cm
	C1 W18X17	5
bf	28.956	cm
tf	2.8956	cm
h	50.8	cm
tw	2.261	cm

Limitaciones conexion V	iga WUF W
Vigas Roladas I	ОК
d (max)<= 920 mm W36	ОК
Peso <=224 kg/m	ОК
Lv/h>7	OK
tf<25 mm	OK
Limitaciones conexión Col	umna WUF W
d (max)<= 920 mm W36	ОК

-

O DE PLACA DE CO	ORTE
os	2
1.905	cm
4780	kg/cm2
2.6289	cm
5.0081	cm2
17953.87538	kgf
0.71	cm
6.985	cm
11.43	cm
ОК	
6-12	mm
>25	mm
>20°&<40°	mm
>50	mm
>12<25	mm
	O DE PLACA DE CO os - 1.905 - 4780 - 2.6289 - 5.0081 - 17953.87538 - 0.71 - 6.985 - 11.43 - OK - 6-12 - >20°&<<40°

Diseñ	o de la conexión	WUF W
Longitud Viga	5.75	m
Vu	5451.57	kgf
	CONSIDERACIÓI	v <i>i</i>
Cpr	1.4	
Mpr	10095105.0	kgf-cm
	CONSIDERACIÓN	
Sh	0	
(CONSIDERACIÓN	
Vh	5451.57	kgf
(CONSIDERACIÓN	IV
Muv	128776.9865	kgf-cm
∑Mf	10223882.0	kgf-cm
Ru	353400.6924	kgf
Rn	135357.546	kgf
	CULE PLACAS DO	
tp	2.5	cm
Rn	384359.6543	kgf
n 2	OK	
1	CONSIDERACIÓN	IV
φVn	44905.13001	Т
D/C	0.1214	
	CONSIDERACIÓN	IVI
DISEÑO L	DE PLACA DE COI	NTINUIDAD
tp	10.7	mm
lp	42.824	cm
ap	12,738	cm

