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RESUMEN

El análisis de las imágenes de las cámaras trampa, aunque fundamental para la

conservación de los hábitats y las especies, suele ser una tarea manual, larga y costosa. Para

el proyecto de cámaras trampa de la Estación de Biodiversidad Tiputini (TBS), la

automatización de este proceso permitiría una investigación a gran escala de las especies de

este foco de biodiversidad. El objetivo de este trabajo es crear dos modelos de detección y

clasificación de objetos a nivel de especie mediante el uso de dos arquitecturas de última

generación, YOLOv5 y Faster R-CNN, para dos especies: pecarí de labio blanco y pecarí de

collar, utilizando imágenes TBS de 2004 a 2011. El conjunto de datos para los modelos

contiene 7.733 imágenes obtenidas tras el aumento de datos. Los modelos se entrenan en el

70\% del conjunto de datos, se evalúan en el 20\% y se prueban en el 10\% de los datos

disponibles. El modelo Faster R-CNN alcanzó un promedio de mAP de 0,26 en un umbral de

0,5 IoU y de 0,114 en un umbral de 0,5 a 0,95 IoU, lo que es comparable a los resultados de

la prueba original del conjunto de datos Faster R-CNN MS COCO. El mAP medio de

YOLOv5 en un umbral de 0,5 IoU es de 0,5525, mientras que su mAP medio en un umbral

de 0,5 a 0,95 IoU es de 0,37997. Por lo tanto, el modelo YOLOv5 demostró ser más robusto,

teniendo menos pérdidas y un valor mAP general más alto que el entrenamiento de Faster

R-CNN y YOLO en el conjunto de datos MS COCO. Este es uno de los primeros pasos hacia

la automatización del análisis de proyectos de cámaras trampa TBS y se sugiere que se

mejore aún más en términos de optimización de hiper parámetros para un mayor rendimiento

y un mayor uso de las especies nativas.

Palabras clave: YOLOv5, Faster R-CNN, deep learning, conservación, cámaras trampa
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ABSTRACT

Camera trap images analysis, although critical for habitat and species conservation, is

often a manual, time-consuming and expensive task. For the Ecuadorian Tiputini Biodiversity

Station's (TBS) camera trap project, the automatization of this process would allow a

large-scale research on biodiversity hotspot species. This paper aims to create two deep

learning species-level object detection and classification models, using two state-of-the-art

architectures, YOLOv5 and Faster R-CNN, for two species: \emph{white-lipped peccary}

and \emph{collared peccary}, using TBS images from 2004 to 2011. The dataset for the

models contains 7,733 images obtained after data augmentation. The models are trained on

70\% of the dataset, evaluated on 20\% and tested on 10\% of the available data. Faster

R-CNN model achieved an average mAP of 0.26 at a 0.5 IoU threshold and 0.114 at a 0.5 to

0.95 IoU threshold, which is comparable to the original Faster R-CNN MS COCO Dataset

test’s results. YOLOv5's average mAP at a 0.5 IoU threshold is 0.5525, while its average

mAP at a 0.5 to 0.95 IoU threshold is 0.37997. Therefore, YOLOv5 model proved to be more

robust, having lower losses and a higher overall mAP value than Faster R-CNN’s and

YOLO’s training on the MS COCO dataset. This is one of the first steps towards automating

TBS camera trap project analysis and it is suggested that it is further improved in terms of

hyper-parameter optimization for higher performance and a higher use of native species.

Key words: YOLOv5, Faster R-CNN, deep learning, conservation, camera traps
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I. INTRODUCTION

Detailed, up-to-date and accurate information about the location and behavior of

animals is necessary for their study and conservation. Considering human threats and their

impact on natural habitats, there is an increasing urgency to monitor animal population

trends. Trap cameras are an efficient method to do this job, as they allow for a permanent

sampling in remote areas in a cheap and discrete way [1] [2]. They are also used for locating

endangered species, identifying important habitats and monitoring areas of interest.

Nevertheless, to extract information from their images is a manual, expensive and

time-consuming task [2]. Moreover, although there is an increasing availability of deep

learning models, their practical use for wildlife monitoring is limited, mainly because of the

complexity of this technology and its high computing requirements [3]. It has also been a

challenge to apply models trained in a specific region to images collected in a different

geographical area, because of background changes and the presence of previously unseen

species. Additionally, 70\% of images taken do not contain animals, because of a high rate of

false triggers [4]. Consequently, to use these images for analysis, one must manually filter,

count and classify them, using an expert opinion on the species present on each image.

Tiputini Biodiversity Station (TBS), a remote research center in the Yasuní Reserve in

the Ecuadorian Amazon, is surrounded by a biodiversity hotspot. From 2006 to 2016, their

camera trap project has produced about 100.000 photos and videos of approximately 70 wild

species, some endangered or rare. It is difficult to label such a huge collection, and the task

becomes increasingly harder as the database grows. TBS is now able to estimate a total

species population by identifying the species in each image, rather than by identifying

individuals in them. Although this is a much more efficient process than identifying
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individuals within each species, it is still a time-consuming task. The automatization of this

process would allow for a large-scale analysis easing manual workload of experts [5].

There have been several attempts to use deep learning to automate camera trap image

analysis, through object detection tasks. For example, RetinaNet and Faster R-CNN were

used in the UAS dataset, and it was found that the latter had a better performance [6]. Faster

R-CNN has also been used to detect and classify individual pigs, to know how much food

they would consume daily, in order to optimize their breeding process [7]. There was also a

comparison between three state of the art object detection CNN-based algorithms: YOLO v3

(You Only Look Once), SSD (Single Shot Detector) and Faster R-CNN (Region-based

Convolutional Neural Networks) using Microsoft’s open-source COCO dataset. It concluded

that YOLO v3 has an overall better performance and is better suited for real time video

analysis, while Faster R-CNN works well with a small dataset that does not require speed in

its analysis and SSD has a good balance between speed and accuracy [8]. Additionally,

YOLO v5 was implemented for a species-level object detection and classification in a

temperate polish forest, Bialowieza. This was the first time this architecture was used for an

automated mammal recognition using camera trap images. It achieved an average accuracy of

85\% F1-score for the identification of the 12 most common mammal species in the forest,

with a total of 2,659 images with animals [3]. YOLO v5 was used as well for identifying

individual feral cats on an unbalanced small dataset [9]. In another study, YOLO v5 was

applied for an automated pest detection in protected forests, with a 97\% accuracy rate, as a

lightweight and efficient method for IoT devices [10].

The usability of a pre-trained Faster R-CNN + InceptionResNet v2 model has also

been tested. It was applied to ten different wild mammal species on color and black \& white

images, with a 93\% accuracy rate on classification. It concluded that this rate could improve
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with a specific training on European mammal species [11]. Another study detected and

classified more than 15 animal species using R-CNN architecture with two different

backbones for training: ResNet-101 and InceptionResNet v2; and Inception v3 for

classification. Faster R-CNN and YOLO were compared on their performance for

identification, quantification and localization of the desert bighorn sheep, using camera trap

images [12]. Finally, Cheema and Anand [13] successfully used Faster R-CNN as an object

detection framework to detect animal individuals of patterned species, such as zebras, tigers

and jaguars.

One threatened species of interest in the Yasuní Reserve is the jaguar (Panthera onca),

the largest predator in Central and South America. Although information on tropical felids is

key to their conservation, these species are difficult to study, as they have low densities, large

home ranges, an elusive nature and a frequent nocturnal behavior. Nevertheless, camera traps

have proven to be an efficient technique for this task. Specifically, there are various studies

evaluating jaguar populations using this method in different habitats, and a few in lowland

wet Amazon forests [14]. There was also a study that used camera traps to examine jaguar

prey availability, which allowed a better understanding of jaguar foraging strategies [15].

Influences of increased landscape access in the Yasuní Reserve on the prey community were

also studied through a survey of prey and jaguar abundance with camera traps, evaluating

prey occurrence and estimating jaguar density. These types of analyses are essential for

conservation and management of these wildlife populations, so significant effort should be

invested in managing jaguar prey, as a jaguar conservation effort. White-lipped peccary

(Tayassu pecari) and collared peccary (Dicotyles tajacu) are a primary target for hunters and

one of the main prey for jaguars. In fact, white-lipped peccary populations are threatened by

hunting and habitat loss [16].
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A deep learning approach towards automating jaguar's prey detection in camera trap

images could allow a better analysis of the jaguar population density and behavior, as well as

possible threats to them and their prey. Neural convolutional networks have proven high

accuracy scores when recognizing species, not only for high resolution images, but within the

camera trap paradigm. Although there are limitations in this approach, such as an

under-representation of endangered species and a predisposition towards false positives,

various data augmentation techniques can be used to reduce this bias [5]. Therefore, this

research will attempt to create a deep learning species-level object detection and

classification model of white-lipped peccary and collared peccary using Faster R-CNN and

YOLOv5, trained specifically with camera trap images taken from 2004 to 2011 in the

Tiputini Biodiversity Station. Not only will this work help classify future camera trap images

in the station, but it could also benefit other research centers in The Amazon. This would

allow a large-scale analysis of population and habitat trends of white-lipped peccary and

collared peccary in these hotspots, in benefit of their conservation and the jaguar's.
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II. MATERIALS AND METHODS

A. Database

The pre-processing stage consists of an automated and manual classification of

images. MegaDetector software is used for this purpose, a machine learning tool for camera

trap images, which is able to find and locate animals in them, from a variety of ecosystems,

but not identify them [4]. This reduces the database pre-processing time, filtering images that

contain animals from those which contain people or vegetation only. Afterwards, a manual

verification is needed to filter out any images wrongly classified as animals. Roboflow's

Annotation tool is used for labeling, in order to have a dataset of representative images with

bounding box annotations around the animals that ought to be detected. This research draws

images taken from 2004 to 2011 from the Tiputini Biodiversity Station camera trap database.

Within this time range, there are a total of 25,855 images, of which 22,314 contain animals.

Out of these, 3,233 images containing white-lipped and collared peccaries were labeled. The

total annotations from this dataset are 7,341.

B. Deep learning models

A deep model is a neural network with deep architecture. It is based on a typical

Convolutional Neural Network (CNN) model and its input layer is a 3D matrix of pixel

intensity. Object detection involves object localization, which determines the location of an

object in the image, and object classification, which determines the object's category. Deep

learning-based object detection models work differently from traditional approaches, as they

have the ability to learn sophisticated features and a robust training algorithm. Generic object

detectors localize an object using a rectangular bounding box to indicate the confidence of the

object in the image and to classify it with a label. These detectors are divided into region

proposal based detectors, which include Faster R-CNN, and regression/classification based,

such as YOLO v5 [17].
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The R-CNN model architecture has three modules: region proposal, deep CNN-based

features extraction and classification/localization [17]. R-CNN extracts region proposals

using selective search, resizes all the extracted crops, passes them through a network, which

assigns a category from C+1 categories (including the 'background' label) for a given crop,

and finally predicts delta Xs and Ys to shape a given crop. The Selective Search algorithm

groups regions together based on pixel intensities. Regions with a minimum of 0.5

Intersection Over Union (IoU) (the intersection area between predicted and ground truth

boxes, divided by their union area, as shown in equation 1) [18] are labeled and those with an

IoU less than 0.3 are considered background. In the bounding-box regression, the CNN

predicts the bounding box parameters (position and size) [19]. Faster R-CNN uses the same

process as a R-CNN, but uses another CNN, the Region Proposal Network (RPN), to

generate region proposals, and the Fast R-CNN as a detector network, consisting of a CNN

backbone, a Region of Interest (ROI) pooling layer, fully connected layers and two sibling

branches of classification and bounding box regression. In general, the Fast R-CNN

framework consists of a pre-trained CNN and a ROI pooling layer. On the other hand, Faster

R-CNN shares the full image convolutional features with the RPN, which is able to predict

object bounding box and class confidence scores simultaneously [17]. Faster R-CNN network

architecture is shown in Figure 1 [20].

(1)

https://www.codecogs.com/eqnedit.php?latex=IoU%20%3D%20%5Cfrac%7B%5Ctext%7BArea%20of%20Overlap%7D%7D%7B%5Ctext%7BArea%20of%20Union%7D#0
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Figure 1: Faster R-CNN’s architecture

While the region-proposal-based framework includes various correlated phases and,

therefore, time spent handling different components, regression/classification object detectors

reduce this time, as they are a single-stage framework based on class probabilities, mapping

directly from image pixel to coordinates and global regression/classification. You Only Look

Once (YOLO) predicts the bounding box that uses the topmost-feature map and evaluates

class probabilities directly. The idea behind this algorithm is to divide the image into S x S

grid cells, and each cell is responsible for predicting the center of the object in the grid cell

[17]. Each cell will predict B bounding boxes and a confidence score for each one, which is

the Intersection Over Union.

Although a cell can predict various bounding boxes and confidence scores, it can only

predict one class. Each prediction will have a shape C + B*5, where C is the number of

classes, B is the number of predicted bounding boxes and 5 is the number of elements in each

box (x, y, width, height, and confidence). Therefore, for the S x S matrix, the shape will be S
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x S x (C + B*5) [21]. YOLO's architecture has three components, head, neck and backbone,

which work to first extract the image visual features and then classify and limit them. The

backbone includes convolutional layers, which detect key features in an image and process

them. The neck uses the features of the convolution layers with fully connected layers, in

order to predict bounding box probabilities and coordinates. The head is the final output layer

[21]. YOLO v4 uses CSPDarknet53 as a backbone and Path Aggregation Network (PAN, an

instance segmentation method) for parameter aggregation. YOLO v3 head is used in YOLO

v4. YOLO v5 is very similar to YOLO v4, with a few differences. While YOLO v5 is based

on the PyTorch framework, YOLO v4 was released in the Darknet framework [22]. This

framework allows a 16 bit floating point precision, which improves the model's inference

time. YOLO v5 is based on the YOLO architecture, which consists of four main parts: input,

backbone, neck and output, as seen in Figure 2. The input terminal involves data

preprocessing (such as mosaic data augmentation and adaptative image filling). The

backbone network uses a cross-stage partial network (CSP) and spatial pyramid pooling

(SPP) to extract feature maps of different sizes from the input image by multiple convolution

and pooling. Specifically, BottleneckCSP is used, which reduces calculations and increases

the inference speed, while the SPP structure extracts features from different scales for the

same feature map and generates three-scale feature maps, which improves the detection

accuracy. In the neck network, on the other hand, feature pyramid structures of FPN and PAN

are used. FPN conveys strong semantic features from the top feature maps into the lower

feature maps, while PAN conveys strong localization features from lower feature maps to

higher feature maps. The head is the final detection step, used to predict targets of different

sizes on feature maps [23]. YOLO v5's network structure is shown in Figure 2. Glenn et. al in

[24] list several recommendations for best performance for YOLOv5, i.e., at least 1,500

images per class and at least 10,000 labeled objects per class.
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Figure 2: YOLOv5’s architecture

C. Proposed method

One model for each object detector type is trained and evaluated for two classes:

``Taypec" (white-lipped peccary) and ``Taytaj" (collared peccary). These models are to be

compared in terms of performance between them and the state-of-the-art results, in order to

find improvement points and further tune the hyperparameters and increase the size of the

dataset. This research focuses on setting up a baseline in order to pursue hyper parameter

optimization in the future.

Faster R-CNN input is resized to a minimum of 600px for its shortest side and a

maximum of 1024 for its larger side, keeping the aspect ratio. The feature extractor used is
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Inception V2, using batch normalization and producing an output stride of 16px. For the

Region of Interest (ROI) pooling layer, a bilinear interpolation based technique is used. For

Max Pooling, in this layer, the kernel size is 2. The batch size used is 1 and the learning rate

is constantly 0.0002. A Stochastic gradient descent (SGD) momentum optimizer is used as

well. ReLU activation function is used for hidden layers and Softmax for the output layer.

Gradient clipping method is used, using norm as a clipping threshold. Random horizontal flip

is used in addition to those data augmentation techniques described in the preprocessing stage

(please refer to section II-D1). The total steps \footnote{An epoch is an iteration over all

training data, while a step is a gradient update, in which as much data as determined as

batch-size is processed. An epoch has as many steps as the number of training images divided

by the batch-size.} for the model's training are 180K.

YOLO v5's model is trained with an initial learning rate of 0.001 and a final learning

rate of 0.1, using a once cycle policy. A SGD momentum optimizer is used too. The

activation functions used are Leaky ReLU (for hidden layers) and Sigmoid (for the detection

final layer). The batch size is the largest the hardware allows, 64, and the total epochs for the

training stage is set to 300. YOLOv5s architecture is used, with 191 layers in total.

D. Experimental setup

1) Data processing

In this initial research, a total of 3,233 images containing two species (White-lipped

peccary and collared peccary) have been labeled. Instances of all classes in all images are

labeled and labels closely enclose each object, without spaces between objects and their

bounding boxes. On average, there are 2.3 annotations per image across the two classes.

Also, to make sure there is image variety in the dataset, images from different times

of day, weather, lighting and angles are used. Background images have also been added to the

dataset to reduce False Positives. To prevent train/test bleed, duplicate images are removed
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automatically by Roboflow. Roboflow's Dataset Health Check tool shows the average image

size is 2.27 mp and the median image ratio is 1840 x 1232.

Roboflow's preprocessing tools are used to apply image transformations to all images.

Auto-orient is used in order to strip the images of their EXIF data and standardize pixel

ordering. Images are resized as well to a 416 x 416 dimension.

Data augmentation is also used, so the model generalizes better through multiple

variations of each source image. Several bounding box level augmentation techniques have

been used as well, which alter the content within each bounding box. Horizontal and vertical

flips (at image and bounding-box levels) were added to help the model be less sensitive to

subject orientation. Random crop technique (at image and bounding-box levels) is also used,

in order to create a random subset of each image, increasing resilience to subject translations

and camera position, which helps the model recognize animals that may not always be

completely in frame or constantly at the same distance from the camera, which is the case for

most of the camera trap images from the database. Gray-scale augmentation is also used, as it

allows to increase training variance but not discard color information during testing. Hue

augmentation is used as well, as it randomly alters color channels of each image, helping the

model to consider alternative color schemes for objects and scenes, which is useful in this

dataset as the animals and their backgrounds change colors depending on the time of the day

or weather and even the camera's hardware state. Because of this, saturation augmentation is

applied as well, adjusting how vibrant each image is. Brightness and exposure augmentation

techniques are also applied (at image and bounding-box levels), helping the model be more

resilient to lighting and camera setting changes. Several camera trap images do show a

change in camera focus, so a random Gaussian blur augmentation is used as well (at image

and bounding-box levels), helping the model be more resilient to camera focus. There are

many images as well that contain animals located behind other objects, so cutout
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augmentation helps the model detect these better by adding randomly generated black boxes

on top of the images and, by doing so, encouraging the model to learn more distinguishing

features about each class of object. Additionally, bounding-level noise variations help the

model be more resilient to camera artifacts. With this step, the dataset contains 7,733 images.

2) Training and test sets

After labeling the images, Roboflow helps split the dataset into a training set (6,800

images), a testing set (340 images) and a validation set (643 images). As a rule of thumb,

70\% of the dataset is allocated to the training set, 20\% to the validation set and 10\% to the

test set. This allocation ratio helps the training set have enough data to learn, the validation

set get a proper tuning of the model and the testing set inform its final accuracy.

For Faster R-CNN, TFRecord files are needed. Roboflow's Annotation Tool is used as

well to create two separate datasets and their respective TFRecord files.

On the other hand, for YOLOv5, files in YOLO V5 PyTorch format are exported.

This zip is extracted, and its train and test folders contain the dataset used for the model’s

training, validation and detection.

3) Model configuration

The Faster RCNN model's hyperparameters are determined as follows. The number of

classes is 2. The number of steps for the model's training is 180K.

For the RPN, the input image is fed to the backbone CNN. The minimum size

constraint is 600 and the maximum is 1024. The model resizes the input image satisfying

these constrains and keeping the aspect ratio (the shortest side is at least 600px and the longer

side doesn't exceed 1024px).

The feature extractor used is Inception V2, the second generation of the Inception

CNN architecture, which uses batch normalization, removing local response normalization.

Batch normalization allows the use of higher learning rates, reduces the need for a careful
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parameter initialization, acts as regularization and, consequently, reduces the training steps

needed [25].

The output stride is 16, which determines the output features size, as the consecutive

pixels in the backbone output features correspond to points 16 pixels apart in each input

image.

The anchors placed on the input image for each location on the output feature map,

which show possible objects in different sizes and aspect ratios at each location, are set as

well. The anchor generator's scales are set to [0.25, 0.5, 1.0, 2.0], the aspect ratios to [0.5, 1.0,

2.0], the height stride and the width stride to 16. The number of proposals for the first stage

(region proposal network) is set to 300.

Non Max Supression (NMS), a greedy algorithm, is used to reduce the number of

bounding boxes each object gives rise to, as, for each class, it checks for the IoU value

between all the bounding boxes and, according to an IoU threshold, determines which refer to

the same object and discards the lowest confidence score box. NMS loops over all the classes

[26]. The score threshold for NMS for the RPN is set to 0, as recommended for Faster

R-CNN. Boxes with a lower score than this number are suppressed. The IoU threshold for

NMS on the boxes predicted by the RPN is set to 0.7.

For the Region of Interest (ROI) pooling layer, ROI Align, a bi-linear interpolation

based technique, is used to crop a patch from a feature map based on a region proposal and

resize it in order to extract a small feature map from each ROI [27] [28]. The initial bi-linear

interpolation's output size is set to 14. Additionally, the kernel size (pool size or filter size) of

the max pooling operation on the cropped feature map during ROI pooling is set to 2 with a

stride of 2.



23

For the Second Stage Box Predictor, dropout's regularization technique is not used, so

the value for the dropout keep probability in a hidden layer is set to 1.0. This means that the

probability at which outputs of the layer are retained is 1.0.

As for training, the batch size is set to 1, as in one step the model feeds one image at a

time.

The momentum optimizer is used with a value of 0.9. This is a method that helps

accelerate SGD in the relevant direction and dampens oscillations. It increases for dimensions

whose gradients point in the same directions and reduces updates for dimensions whose

gradients change directions, gaining faster convergence and reduced oscillation [29].

The learning rate is set to 0.0002, which is the Faster RCNN Inception V2 model's

original training learning rate.

Gradient clipping is used in order to clip the error derivative to a threshold during

backward propagation, in order to avoid exploding gradients. The gradient clipping-by-norm

variable is used, with a threshold of 10.0. This means the gradients are clipped multiplying

the unit vector of the gradients with the threshold.

One augmentation option is used: random horizontal flip, which randomly flips each

image with a 50\% chance.

The proposed YOLO v5 model has several parameters: img (input image size), batch

(batch size), epochs (number of training epochs), data (the dataset location), weights (a path

to weights to start transfer learning from) and the cache (cache images for faster training).

YOLO v5's documentation explains that most of the time there is no need to change the

model or training settings, provided that the dataset is sufficiently large and well labelled.

However, several recommendations for best performance are listed [24].

YOLO v5's data-configurations file, which describes the dataset parameters, is edited,

providing the number (2) and the names of the classes ('Taypec', 'Taytaj'). The
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model-configurations file, which describes the model architecture, is edited as well providing

the number of classes.

The initial learning rate is 0.01 and the final learning rate is 0.1. The once cycle policy

for learning rates is applied. This means that in one learning cycle (epoch) there are 2 steps of

equal length where in the first step one goes from a lower learning rate to the higher learning

rate and then back to the lower learning rate in step 2. In the last iterations, the learning rate is

set below the lower learning rate value [30]. This helps the speed of training and the

discovery of the maximum practical learning rate.

The SGD momentum is 0.937. The warmup epochs are set to 3, which are the number

of epochs in which the model will adjust to the dataset. The IoU threshold is set to 0.2.

Several augmentations are also used in the model, such as image mosaic (1.0 probability),

image horizontal flip (0.5), image scale (+/- 0.5 gain), image translation (0.1), image

HSV-Hue augmentation (0.015), image HSV-Saturation augmentation (0.7) and image

HSV-Value augmentation (0.4).

When running the training phase, the input image size is set to 640 x 640, the batch

size is set to 64, the number of training epochs is set to 300 and the weights are initialized

from pretrained weights, which is recommended for small to medium size datasets. Then, the

model's accuracy is validated over the testing set, with a batch size of 64.

The model is finally used for detection, using the testing set, setting the confidence

threshold to 0.6 and using the augmented inference parameter (test-time augmentations or

TTA), in order to improve the accuracy.

4) Assessment metrics

Mean Squared Error (MSE) metric is used, as it calculates the average of the squared

differences between inferred and actual values, as shown in equation 2. Cross-Entropy (CE)

loss is used as well, summarizing the average difference between actual and predicted
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probability distributions for predicting class 1. In binary classification, cross entropy, binary

cross entropy (BCE), is calculated with equation 3, while in multi class classification it is

calculated with equation 4.

(2)

(3)

(4)

YOLOv5 loss function is composed of the bounding box regression loss (Mean

Squared Error), the objectness loss or confidence of the object presence (Binary Cross

Entropy) and the classification loss (Cross Entropy). The bounding box regression

(localization loss) is the loss due to a box prediction nor covering an object, the objectness is

the loss due to a wrong box-object IoU prediction and the classification is the loss due to

deviations from predicting

“1” for the correct classes and “0” for all the other classes for the object in the box. These

loss functions are computed for the training and the validation set. In this case, the results

from the latter will be discussed. Faster RCNN loss function uses the same losses:

classification, objectness and localization. However, it calculates localization loss for both the

RPN and the Box Classifier.

Precision (P) and recall (R) are measured as well, the first quantifying how many

positive class predictions actually belong to the positive class and the latter how many

positive class predictions were made out of all positive instances. In YOLOv5, it describes

how much of the bbox predictions are correct or how accurate the predictions are, as shown

in equation 5. On the other hand, for this model, recall measures how much of the true bbox

were correctly predicted, using equation 6.

https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BMSE%7D%20%3D%20%5Csum_%7Bi%3D1%7D%5E%7BD%7D(x_i-y_i)%5E2#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BBCE%7D%20%3D%20-%7B(y%5Clog(p)%20%2B%20(1%20-%20y)%5Clog(1%20-%20p))%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BCE%7D%20%3D%20-%5Csum_%7Bc%3D1%7D%5EMy_%7Bo%2Cc%7D%5Clog(p_%7Bo%2Cc%7D)#0
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(5)

(6)

The Mean Average Precision (mAP), as an accuracy function (see equation 8), is also

used as a metric, as it incorporates the trade-off between precision (prediction accuracy) and

recall (number of predictions) and considers false positives (FP) and false negatives (FN).

Average Precision is the weighted mean of precisions at each threshold, having the increase

in recall from the previous threshold as the weight. It is calculated with equation 7. Mean

Average Precision is the average of AP of each class. It is calculated at IoU, calculated with

equation 1, threshold of 0.5 and over different IoU thresholds (0.5 to 0.95). Calculating mAP

over an IoU threshold range avoid the ambiguity of arbitrarily choosing an optimal IoU

threshold. This metric compares the ground-truth bounding box to the predicted box. The

higher the score, the more accurate the model is at prediction.

(7)

(8)

https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BP%7D%20%3D%20%5Cfrac%7B%5Ctext%7BTrue%20Positives%7D%7D%7B%5Ctext%7BTrue%20Positives%7D%20%2B%20%5Ctext%7BFalse%20Positives%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BR%7D%20%3D%20%5Cfrac%7B%5Ctext%7BTrue%20Positives%7D%7D%7B%5Ctext%7BTrue%20Positives%7D%20%2B%20%5Ctext%7BFalse%20Negatives%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BAP%7D%20%3D%20%5Csum_n%20(R_n%20-%20R_%7Bn-1%7D)%20P_n#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BmAP%7D%20%3D%20%5Cfrac%7B1%7D%7BN%7D%5Csum_n%20AP_n#0
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III. RESULTS AND DISCUSSION

A. Performance evaluation

Figure 3: YOLOv5 metrics

Figure 4: Faster R-CNN metrics

Overall, as seen in Figures 3 and 4, YOLOv5 shows a better mAP over classes

averaged over an IoU threshold range of 0.5 to 0.95 than Faster-RCNN, which suggests it has

a better accuracy and is a more robust model. The graph shows that an early stage (less than
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20 epochs) the value increases significantly and then fluctuates. At 130 epochs

approximately, the fluctuation decreases. There is an overall convergence effect observed. On

the other hand, Faster R-CNN shows a slower increase in mAP over each step and

fluctuations that do not affect the increasing trend.

Although mAP over classes averaged over an IoU of 0.5 for Faster R-CNN is still

lower than YOLOv5, at this IoU threshold it does show better values than at the range from

0.5 to 0.95. This shows that at higher threshold values it is less accurate.

For Faster R-CNN, the mAP for small, medium and large objects shows there is a

better accuracy when the model detects larger objects, as mAP for small objects does not

show convergence and has large fluctuations, especially from 80K to 180K steps, while mAP

for medium and large objects does show convergence and less significant fluctuations. This is

true for Faster R-CNN as an architecture itself, as it still faces a challenge in detecting small

objects. Therefore, improvements like introducing shallow features into the backbone

network and ensuring sufficient spatial information for detecting small objects [31] could

help improve this value.

It was also observed that Faster R-CNN's average recall with 100 detections per

image has less fluctuations and is higher as the object size increases. This means that the

larger the object, the more accurate the model is while predicting the object class. One can

observe that between 10K to 30K steps the recall value significantly increases and then has

small fluctuations after 70K steps.

Faster R-CNN classification's loss does not show convergence, as YOLOv5's does,

but remains less than 0.15 for most of the training. The classification loss for YOLOv5 shows

values under 0.04. The loss fluctuates until 120 epochs and then stabilizes approximately to

0.0325. This shows that deviations from predicting ``1” for the correct classes and “0” for all
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the other classes for the object in the box are generally low for both models, but rarely

happen in YOLOv5's model. This is probably due to the dataset having just two classes.

The Box Classifier localization loss increases over each step (with fluctuations after

80K steps), but, overall, the values are below 0.1. The RPN localization loss decreases until

about 120K steps, when it increases and fluctuations become more significant. This value is

constantly below 0.110. For YOLOv5, the value initially fluctuates (until about 120 epochs)

and then stabilizes to approximately 0.0425. It is mostly below 0.025. Therefore, YOLOv5

proves to be better at having box predictions cover the objects in the images.

For Faster R-CNN, the objectness loss does not converge, seems to increase and

fluctuates significantly after each step. This means that the model does not perform well at

box-object IoU prediction. It is also observed that for YOLOv5 there is an initial spike in this

value, it decreases, then slowly increases and fluctuates from 10 to 70 epochs and finally

stabilizes at approximately 0.04. For YOLOv5, it is shown that the objectness loss value is

mostly below 0.0425, while for Faster R-CNN it is between 0.25 to 0.29 approximately.

It was observed that Faster R-CNN's model had a better performance when detecting

objects that were alone in the image, as it is shown in Figures 5, 6 and 8. However, for

images with multiple objects, often overlapping between each other, it usually detected the

animals that were less covered by others, as shown in Figure 7. This suggests that it is

challenging for the model to discriminate instance boundaries, given that the features of the

instances overlap between each other.
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Figure 5: Faster R-CNN’s detection result 1

Figure 6: Faster R-CNN’s detection result 2

Figure 7: Faster R-CNN’s detection result 3
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Figure 8: Faster R-CNN’s detection result 4

Figure 9: YOLOv5’s detection result 1

Figure 10: YOLOv5’s detection result 2
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Figure 11: YOLOv5’s detection result 3

Figure 12: YOLOv5’s detection result 4

As seen in Figures 9, 10, 11 and 12, YOLOv5 model tends to label images that

contain objects as background when the weather and lighting conditions make the contrast

between the object and the background less visible. This could be improved by adding

background images to the dataset, so the model could learn to differentiate it better.

Moreover, color augmentations could be tuned in order to help the model be less sensitive to

these changes. As for crowded images, it seems to perform better than Faster R-CNN,

inferring several objects in images, even when there are overlapping.
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These results suggest that, for improving the overall accuracy of Faster R-CNN, it

may be useful to increase the number of steps, as its mAP value increased slowly over each

step. Another method would be to use more augmentation options. Also, although Non Max

Suppression is used, it may be improved by increasing the score threshold, in order to do a

minimum filtering of proposals, which would help stabilize the training and have a better

convergence. IoU threshold for NMS could also be lowered, given that this dataset does show

a dense distribution of objects in each image, as the animals tend to appear in large numbers

and close together. Repulsion Loss [32] and AggLoss [33] are two modified losses that may

help reduce the sensitivity of results to the NMS IoU threshold, ensuring tighter bboxes.

Additionally, there are several attempts to redesign NMS in order to handle occlusion, such as

Adaptative NMS [34].

Learning rate scheduling could also help improve the overall model accuracy, as it has

done for YOLOv5 using a Once Cycle Policy, and its training stability.

One could also improve accuracy using the alternating optimization algorithm, which

allows RPN and Fast R-CNN to be trained to share convolutional features. This is a more

accurate method than approximate joint training, because the latter ignores the weight's

gradients with respect to the region proposals. With the alternation optimization, the RPN is

first trained to generate region proposals, while the weights of the shared convolutional layers

are initialized based on a pre-trained model on ImageNet and the other weights of the RPN

are initialized randomly. After the region proposals boxes are produced, the weights of the

RPN and shared convolutional layers are tuned. The proposals by the RPN are used to train

the Fast R-CNN. The weights of the shared convolutional layers are initialized with the tuned

weights by the RPN and the other Fast R-CNN weights are initialized randomly. The weights

of Fast R-CNN and the shared layers are tuned while the fast R-CNN is trained. Then, the
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tuned weights in the shared layers are used again to train the RPN and the process is repeated

[35].

As a preprocessing step, analysing the geometry of the image objects would also be

useful, as it would allow a better tuning of the anchor aspect rations and it would show the

distribution for height to width and width to height ratios. Moreover, increasing the dataset

adding more images would also be beneficial for both models' performance, as this type of

dataset displays a somewhat high intra-class variety, having different animal sizes, positions

and angles.

B. State of art based comparison

Faster R-CNN's performance was tested for MS COCO dataset with 300 proposals.

For the validation test, it achieved a 0.415 mAP@.5 score and a 0.212 mAP@[.5, .95] [35].

On the other hand, YOLOv5 achieved a 0.54 mAP@.5 score and a 0.35 mAP@[.5, .95] [24].

As shown in table 1, for this experiment, Faster R-CNN's mAP@.5 score is 0.26 and

mAP@[.5, .95] is 0.114, while YOLOv5's mAP@.5 score is 0.5525 and mAP@[.5, .95] is

0.37997.

Table 1: Metrics Comparison

Model Average mAP@.5 Average mAP@[.5, .95]

YOLOv5 0.5525 0.37997

Faster R-CNN 0.26 0.114

In terms of speed (FPS), it is difficult to make comparisons, as they are usually

measured at different mAP values. However, a comparison of accuracy and speed tradeoff

may be easier to determine, depending on the application. In terms of Faster R-CNN, the

feature extractor used does change the overall mAP achieved in a certain GPU time [24]. In

this experiment, Inception V2 was used, which gives one of the lower accuracies in
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comparison to other feature extractors [24]. On the other hand, it has been shown that

Inception Resnet V2 gives the highest accuracy at 1 FPS [24]. Therefore, the overall mAP

achieved in this experiment by Faster R-CNN could be further improved by using Inception

Resnet V2, as it does not require more GPU time to do this.

In general, Faster R-CNN has shown a low performance on small objects in

comparison to other methods [24]. This was seen in this experiment, as it achieved higher

mAP values for medium and large objects.
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IV. CONCLUSIONS AND FUTURE WORK

In a nutshell, this experiment managed to train and evaluate two state-of-the-art object

detection and classification models for the white-lipped peccary and the collared peccary

from 7,733 camera trap images from the Tiputini Biodiversity Station. In terms of

performance, Faster R-CNN achieved an average mAP of 0.26 at a 0.5 IoU threshold and

0.114 at a 0.5 to 0.95 IoU threshold, which is comparable to the original Faster R-CNN MS

COCO Dataset test's results. On the other hand, YOLOv5 achieved an average mAP of

0.5525 at a 0.5 IoU threshold and 0.37997 at a 0.5 to 0.95 IoU threshold. Therefore, YOLOv5

model proved to be more robust, having lower losses and a higher overall mAP value than

Faster-RCNN's and YOLO's training on the MS COCO dataset. Although several

optimization techniques were used in each model to improve performance, it is recommended

that the dataset is augmented and both models hyperparameters are further tuned. Moreover,

for a more extensive use of these models, it is suggested to train more classes (Tiputini

species).
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