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ABSTRACT 

 

Deep learning algorithms have advanced due to rapid technological breakthroughs and the 

dramatic increase in the large-scale storage of public databases.  Deepfake content has evolved 

by improving the techniques used in computer processing vision, natural language, and image 

detection. Many deepfakes tamper with data and generate fake content, influencing and 

impacting society positively and negatively. The algorithms behind deepfakes enable a 

generation of counterfeit images and videos that are hard to distinguish from authentic ones. 

Such is the case of the reenactment deepfakes, which are used to manipulate facial expressions 

and poses from source to target. Many consider deepfakes as an underlying cause behind 

current social issues such as identity theft, threatening democracy and national security through 

fake news, and financial scams caused by attackers.  

This paper is a survey of reenactment deepfake algorithms that are used to create deepfakes 

with Generative Adversarial Networks (GANs), autoencoders, and transformers. We 

chose  StarGAN and DaGAN models of reenactment deepfakes and compared them in terms 

of training time, computational complexity, and overall quality and performance. 

 

Key words: Deep learning, Deepfake, Autoencoders, GAN, Complexity Measurements, Facial 

Expressions, Reenactment.  
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INTRODUCCIÓN 

The recent phenomenon of deepfakes implicates the manipulation of multimedia 

content which can now provide a very advanced level of realism. In particular, the advancement 

in machine learning and the availability of powerful and easy-to-use deep learning tools have 

increased interest from the research community.  Due to the realism of tampered content, 

deepfakes have become popular among a wide range of developers with varying computer 

skills, from senior-level to entry-level professionals. 

Artificial intelligence applications like deepfakes have both positive and negative 

impacts on society. Some benefits are in the creative or productive sway in photography, video 

games, virtual reality, movie production, entertainment, historical education through the 

reanimation of historical figures, and allowing individuals to virtually try on clothes while 

shopping, among others. Contrastingly, deepfakes have added a new layer of complexity to the 

misinformation effect submitted on the internet as part of fake news (civil and political), non-

consensual pornography, and overall insecurity (economic, private, and social). 

Therefore, society is involved in an environment that blurs the boundary between what 

is real and what is not. As a result, online users are wrapped in a tide of distrust and uncertainty 

regarding online information through the multiple discrepancies and disorienting messages that 

malicious actors introduce into digital media. Consequently, it may yield harmful 

psychological effects leading to social uncertainty. Hence,  many countries and regions have 

actively carried out the refinement of relevant digital laws and regulations. 

In a technical definition, deepfakes are multimedia content generated by an artificial 

neural network, a branch of machine learning (The Creation and Detection of Deepfakes: A 

Survey: ACM Computing Surveys: Vol 54, No 1, 2022). They use these algorithms to digitally 

overlap one person’s face and voice onto other people’s videos (Kugler and  Pace, 2021). They 
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are composed of target and source identities (we use 𝑡 to denote the target and 𝑠 to denote the 

source). We also represent 𝑥𝑠 and 𝑥𝑡 for each image of these identities of videos and 𝑥𝑔 as the 

deepfake image generated from 𝑠 and 𝑡. Its first internet appearance took place in 2017 on 

Reddit forums through computer-generated pornographic videos y that swapped faces of public 

figures with people in the pornography industry (Kugler and  Pace, 2021). Meanwhile, another 

user developed an app DeepNude, which allows anyone to generate fake nude images of 

women and other applications used in different contexts like FakeApp, FaceSwap, and ZAO 

(Masood et al., 2021). 

Other open-source projects on GitHub also use publicly available Autoencoders and 

Generative Adversarial Networks. These allow the user to examine a person’s facial 

expressions and movements to synthesize on faces of other people (Nguyen et al., 2022). 

Furthermore, popular applications such as Synthesizing Obama allow for synchronized speech 

with audio recording or text-based editing with a technique called lip-sync (The Creation and 

Detection of Deepfakes: A Survey: ACM Computing Surveys: Vol 54, No 1, 2022) and 

(Tolosana et al., 2020). Finally, current investigations are looking into creating full-body 

deepfakes  (The Creation and Detection of Deepfakes: A Survey: ACM Computing Surveys: 

Vol 54, No 1, 2022), (Masood et al., 2021) and the generation from a single image (Verdoliva, 

2020) or a lower image amount. Thereby, deepfakes have a broad ecosystem categorized into 

sections and subsections identified in (The Creation and Detection of Deepfakes: A Survey: 

ACM Computing Surveys: Vol 54, No 1, 2022) and (Tolosana et al., 2020). 
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CATEGORIES OF DEEPFAKES 

Mirsky and Lee in (2022) describe that Deepfakes fall into two principal categories: 

primary and secondary, which are  explained as follows. 

Primary 

This category describes the quantity of source and targets to manage in the deepfake 

generation. 

One to one (identity [target] to identity [source]). 

A model that uses a specific identity to drive a specific identity. 

Many to one (multiple identities [target] to a single identity [source]). 

A model that uses a specific identity to drive a specific identity. 

Many to many (multiple ids to multiple ids). 

A model that uses any identity to drive any identity. 

Secondary 

This category is based on a context of human taxonomies to tamper with facial or 

body representations to obtain fake content.  

Reenactment. 

It refers to an expression, mouth, gaze, poses, or body of 𝑥𝑡  managed by 𝑥𝑠. Hence, 

facial reenactment represents a pattern of gesture tampering, adjusting the target subject eyes, 

mouth, nose, forehead, and jaw in video output to reflect those of the source subject. 

• Expression 
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• Mouth 

• Pose 

• Body 

Replacement. 

This consists of replacing the face of person with another in a video. Hence, the 

forgery of   𝑥𝑡 by its replacement with the identity of 𝑥𝑠, preserving the 𝑠 identity. 

• Transfer 

• Swap 

Editing and synthesis. 

This works on the attributes of 𝑥𝑡 , where they can be added, altered, or removed in 

subject.  For example, this includes changing a target’s clothes, facial attributes, age, weight, 

beauty, and ethnicity. 

• Entire Face Synthesis 

• Attribute Manipulation 

• Lip-sync 

SOCIAL IMPACTS 

Negative Impacts 

In academic debates, deepfakes trigger two types of harm in society. First, it affects 

each subject's identity depicted in images or videos and his/her privacy. The second one 

impacts in mass psychology within a community with misleading information. The following 

subsections provide a brief explanation and examples of current and potential negative and 

positive social impacts of the use of deepfakes. 
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Fake News. 

Deepfakes affect individuals’ perceptions of truth and a sense of distrust to the 

information they convey. Finally, this reduces people’s trust in news on social media (Vaccari 

& Chadwick, 2020). 

Pornography. 

The non-consensual pornography laws has aligned with the deepfakes because it cause 

harm to the target’s reputation and his/her standing in a community. In consequence, the subject 

suffers a breakdown in emotional well-being due to a damaged perception self-identity identity 

in society  (Harris, 2019). 

Security. 

In this AI era, national security can be affected by fake satellite images of Earth that 

contain objects that do not exist to mislead military analysts. For example, creating a fake 

bridge across a river although there is no such a bridge in reality (Tolosana et al., 2020). 

Positive Impacts 

Education. 

The digital reanimation may aid in film restoration, helping to preserve cultural artistic 

heritage and historical works. Hence, it let new generations learn about historical characters, 

or acquire more accurate knowledge of a period of time in history (Tolosana et al., 2020). 

Entertainment. 

In the multimedia industries, the ease of editing and synthetically replacing actor’s 

dialog or other aspects of their performance would mean cost reductions and time saved in 

the editing and post-production spheres. Also, foreign films can have realistic video dubbing 

(Tolosana et al., 2020). 
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REENACTMENT DEEPFAKE MODELS 

The previous classification helps to understand the specific aims at the creation of 

deepfakes. In particular, each class uses a specific model which characterizes its architecture 

or mechanisms of learning. For this research, we selected the deepfake reenactment which is 

distinguished with manipulation of facial expression, mouth, gaze, pose, or body according to 

aim (Nirkin et al., 2020) In this case, we focused on studying tampering facial expression and 

pose with deep learning models such as StarGAN V2 and DaGAN. 

Diverse Image Synthesis for Multiple Domains (StarGAN V2) 

The StarGAN V2 model was designed with four modules that generate diverse images 

across multiple domains. Here, a domain is a set of images grouped in terms of distinctive 

features category. Also, each image has a style that renders a unique appearance. Therefore, 

this model learns the mappings between all available domains using a single generator. The 

generator also uses domain label as an additional input, for the model learns to transform an 

image into the corresponding domain (Choi et al., 2019). 

Network architecture. 

Generator. 

The task of the generator is to translate an input image 𝑥 into an output image 𝐺(𝑥, 𝑠), which 

reflects the style code of a specific domain. In fact, this style code supply by a style encoder 𝐸, 

or mapping network 𝐹. The style encoder extracts the style code from a given reference image, 

while the mapping network acquires transforming random Gaussian noise into a style code. 

Also, generator uses AdaIN (Adaptive Instance Normalization) layers to inject 𝑠 into 𝐺, 

through learned affine transformations provide scaling and shifting vectors (Choi et al., 2019). 



16 
 

 

The Style domain represents as 𝑠 that helps 𝐺 only deal with synthesizing images of all 

domains. Table 1 contains information of network architecture. 

Mapping network. 

The mapping networking 𝐹 comprised of MLP (Multilayer Perceptron) with multiple 

output branches to provide style codes for all available domains. So, 𝑘 represents a number 

domains and output in a model. In such a way, a number of domains 𝑘  share four utterly 

connected layers, and each domain has connected four fully layers.  Table 2 contains the 

architecture details of this network. Also, 𝐹 produces the diverse style codes by sampling the 

latent vector 𝑧 in 𝑍 and the domain 𝑦 in 𝑌 at random. In fact, latent code has to sample from 

the standard Gaussian distribution. The dimensions of the latent code, the hidden layer, and the 

style code define with 16, 512, and 64, respectively. 

Style encode. 

The style encoder has a multi-task learning setup as well as 𝐹. It consists of CNN with 

𝑘 domains and output branches. It works with an extraction of style code 𝑠 = 𝐸𝑦(𝑥)  of, and  

𝐸𝑦(∙) is the output of 𝐸 with the respective domain. Likewise, the E processes different 

reference images to generate diverse style codes that help 𝐺 to synthesize style reflecting of 

reference image 𝑥. In definitively, all domains share six pre-activation residual blocks, and 

each domain has one specific fully connected layer and more information present in Table 3 of 

network architecture. 

Discriminator. 

A multi-task discriminator contains multiple linear output branches, and each branch 

𝐷𝑦 has to train a binary classification. This classification distinguishes a real image of domain 
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𝑦 or a fake image 𝐺(𝑥, 𝑠) generated by 𝐺, whereon the output dimension is one set for real/fake 

classification. It has the network architecture showed in  Table 3. 

Losses weights. 

Style reconstruction. 

The style reconstruction manages with style reconstruction loss that aims to train in a 

single encoder 𝐸 to develop diverse output for multiple domains. The encoder 𝐸 allows 

generator 𝐺 training a single encoder 𝐸 to convert the input image into a reflection style of the 

reference image. 

Style diversification. 

The generator has to generate diverse images, so 𝐺 is regularized with the diversity sensitive 

loss to find significant features for a generation. 

Preserving source characteristics. 

The cycle consistency loss helps to maintain the domain's original features in input 

image 𝑥 like pose. So, the input image keeps its features while it gets a style. 

Layer Resample Norm Output Shape 

Image x - - 256 × 256 × 3 

Conv1×1 - - 256 × 256 × 64 

ResBlk AvgPool IN 128 × 128 × 128 

ResBlk AvgPool IN 64 × 64 × 256 

ResBlk AvgPool IN 32 × 32 × 512 

ResBlk AvgPool IN 16 × 16 × 512 

ResBlk - IN 16 × 16 × 512 

ResBlk - IN 16 × 16 × 512 

ResBlk - AdaIN 16 × 16 × 512 

ResBlk - AdaIN 16 × 16 × 512 

ResBlk Upsample AdaIN 32 × 32 × 512 

ResBlk Upsample AdaIN 64 × 64 × 256 

ResBlk Upsample AdaIN 128 × 128 × 128 

ResBlk Upsample AdaIN 256 × 256 × 64 

Conv1×1 - - 256 × 256 × 3 

Table 1. Generator Architecture StarGAN V2 
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Type Layer Activation Output Shape 

Shared Latent z - 16 

Shared Linear Relu 512 

Shared Linear Relu 512 

Shared Linear Relu 512 

Shared Linear Relu 512 

Unshared Linear Relu 512 

Unshared Linear Relu 512 

Unshared Linear - 512 

Unshared - - 64 

Table 2. Mapping network architecture StarGAN V2 

Layer Resample Norm Output Shape 

Image x - - 256×256×3 

Conv1×1 - - 256 ×256×64 

ResBlk AvgPool - 128×128×128 

ResBlk AvgPool - 64×64×256 

ResBlk AvgPool - 32×32×512 

ResBlk AvgPool - 16×16×512 

ResBlk AvgPool - 8×8×512 

ResBlk AvgPool - 4×4×512 

LReLU - - 4×4×512 

ResBlk - - 1×1×512 

LReLU - - 1×1×512 

Reshape - - 512 

Linear * k - - D*k 

Table 3. Style encoder and discriminator architectures of StarGAN V2 

 

Figure 1. First test: different hairstyle of  

StarGAN V2 ( CelebA-HQ) 

 

Figure 2. Second test  different ages of 

StarGAN V2  (CelebA-HQ) . 
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Depth-aware generative adversarial network for talking head video Generation 

(DaGAN) 

DaGAN consists of a generator and a discriminator to reach talking head video 

generation. This model is described in  Table 4 which presents a set of neural network modules 

to produce a synthetic human face video. This is done based on a source image and a driving 

video that contains the identity and pose information respectively. 

Generator Discriminator 

* Self-Supervised Depth Learning  

 

 

Classification of  

Real or Fake 

Images 

Face Depth Network Encoder 

Decoder 

* Depth-guide Facial Keypoints Detection 

Face Depth Network Encoder 

Decoder 

Keypoints Estimator 

*Cross Modal Attention Mechanism 

Depth Encoder 

Featured Encoder Occlusion estimator 

Table  4. Representation of DaGAN model with the Net and Subnets. 

Figure 3. Test which translate style atributes 

and expressions of StarGAN V2. 

 

Figure 4. Test which translate facial emotion 

expressions of StarGAN V2. 
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Hong et. al. in (Hong et al., 2022) present an approach proposed to leverage DaGAN with: 

1. Learning pixel-wise face depth maps in a self-supervised mode to recoup the 

dense 3D facial geometry from the training face videos.  

2. A depth-guided facial keypoints detection to combine both the geometry 

representations from depth maps with the appearance representations from the 

images to predict more accurate facial keypoints.  

3. Learning of dense depth-aware attention map employing depth maps to constrict 

the motion field. Thus, the generation of fine-grained details of facial structure 

and movements are acquired accurately. 

Network architecture. 

Face depth network. 

Training of depth estimation uses twice successive frames from a face video of 

VoxCeleb1 in a self-supervised manner. So, it allows us to estimate the depth maps of entry 

face images that are employed in the model's mechanisms for talking head generation. This 

module comprises an encoder and a decoder. The architecture of this module is detailed in 

Table 9. 

Keypoint estimator. 

It does a concatenation of the RGB image and its corresponding depth map issued by 

𝜀𝑑. Thereby, the concatenated appearance and geometry information are used as inputs, toward 

getting the accurate prediction of sparse key points set in the human face. The architecture of 

this module is in detailed in Table 7. 

Occlusion estimator. 

Taking input from the initial warped feature map to predict a motion flow mask 𝑀𝑚 

and an occlusion map 𝑀𝑜 (Hong et al., 2022). The motion flow mask 𝑀𝑚 is an outcome of the 
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masked motion field with diverse confidence values of dense 2D motion field estimated. 

Meanwhile, occlusion map 𝑀𝑜 hides regions the feature map of driving video that can not be 

painted in source image movements.  This architecture is presented in Table 8. 

Feature encoder. 

𝜀𝑖 extracts the appearance feature map learned from the source image to preserve the 

highest identity of the source image while maintaining the head motion information between 

two faces for wrapping. Also, it contains two DownBlocks that preserve the low-level texture 

image. The architecture of this module is described in  Table 5. 

Depth encoder. 

Taking a source depth map 𝐷𝑠 as input to encode a depth feature map 𝐹𝑑 that will 

generate dense guidance for the human face generation.In fact, an output of the dense depth-

aware attention map contains 3D guidance geometric, which allows obtain better detail facial 

structures and micro-movements representations. The architecture of this module is presented 

in Table 5. 

Discriminator. 

It performs binary classification of real or fake images with a simple architecture used 

in FOMM (First order motion model) in (Siarohin et al., n.d.). It collects the intermediate 

feature maps and feeds them into the GAN loss 𝐿𝐺 . Also, it is a single-scale discriminator used 

for training 256 × 256 images. 
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Losses weights. 

Perceptual Loss. 

In fact, an output of the dense depth-aware attention map contains 3D guidance 

geometric, which allows obtain better detail facial structures and micro-movements 

representations. 

GAN loss. 

An output of the dense depth-aware attention map contains 3D guidance geometric, 

which allows for obtaining better detail of facial micro-movements and face structures. Hence, 

model can minimize featuring matching loss in the discriminator. 

Equivariance loss. 

The equivariance loss assures consistency of image-specific keypoints to tamper facial 

expressions. 

Keypoints distance loss. 

The keypoints distance loss fits the detected facial keypoints around a small 

neighborhood with a penalization of distance if keypoints fall out a predefined threshold. 

Layer Resample Activation Norm Output Shape 

Conv7x7 - Relu BN 64x128x128 

Conv3x3 AvgPool Relu BN 128x256x256 

Conv3x3 AvgPool Relu BN 256x512x512 

Table 5. Depth and Feature encoder architecture of DaGAN 

 

Layer Resample Activation Norm Output Shape 

Conv4x4 AvgPool Relu - 8x1x1 

Conv4x4 AvgPool Relu BN 64x8x8 

Conv4x4 AvgPool Relu BN 128x64x64 

Conv4x4 - Relu BN 256x128x128 

Conv1x1 - - - 512x256x256 

Table 6. Discriminator Architecture of DaGAN. 
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Layer Resample Activation Norm Output Shape 

Conv3x3 AvgPool Relu BN 8x64x64 

Conv3x3 AvgPool Relu BN 64x128x128 

Conv3x3 AvgPool Relu BN 128x256x256 

Conv3x3 AvgPool Relu BN 256x512x512 

Conv3x3 AvgPool Relu BN 512x1024x1024 

Conv3x3 Interpo Relu BN 1024×512×512 

Conv3x3 Interpo Relu BN 512×256×256 

Conv3x3 Interpo Relu BN 256×128×128 

Conv3x3 Interpo Relu BN 128×64×64 

Conv3x3 Interpo Relu BN 64×32×32 

Conv7x7 - - - 1×64×64 

Table 7. Keypoint estimator Architecture of DaGAN 

 

Layer Resample Activation Norm Output Shape 

Conv3x3 AvgPool Relu BN 64x128x128 

Conv3x3 AvgPool Relu BN 128x256x256 

Conv3x3 AvgPool Relu BN 256x512x512 

Conv3x3 AvgPool Relu BN 512x1024x1024 

Conv3x3 AvgPool Relu BN 512x1024x1024 

Conv3x3 Interpo Relu BN 512x1024x1024 

Conv3x3 Interpo Relu BN 1024×512×512 

Conv3x3 Interpo Relu BN 512×256×256 

Conv3x3 Interpo Relu BN 256×128×128 

Conv3x3 Interpo Relu BN 128×64×64 

Conv7x7 

Conv7x7 

- 

- 

- 

- 

- 

- 

1×64×64 

1×64×64 

Table 8. Occlusion Estimator Architecture of DaGAN 

 

Layer Resample Activation Output Shape 

Conv3×3 - Relu 256 

Conv3×3 - Relu 256 

Conv3×3 Interpo Relu 128 

Conv3×3 - Relu 128 

Conv3×3 Interpo Relu 64 

Conv3×3 - Relu 64 

Conv3×3 Interpo Relu 32 

Conv3×3 - Relu 32 

Conv3×3 Interpo Relu 16 

Conv3×3 - Relu 16 

Conv3x3 - - 1 

Table 9. Face depth network decoder Architecture of DaGAN 

 



24 
 

 

 

 

Image src     Driving vid.     Result 

 

Image src    Driving vid.    Result 

 
Figure 5. An example of DaGAN with test of a 

male source and male driving video. 

Figure 7.  An example of DaGAN with 

test of a female source and female 

driving video. 

Figure 6. An example of DaGAN with test of a 

female source and male driving video. 

Figure 8. An example of DaGAN with test of a 

male source and female driving video. 

Image src     Driving vid.     Result 

 

Image src     Driving vid.     Result 
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COMPLEXITY IN DEEP LEARNING MODELS 

Computational complexity 

It is measured with floating point operations (FLOPs) to determine model performance 

(Zhang et al, 2021). The counting of FLOPs is relied in measure in terms of the amount of 

additions, subtractions, and multiplications which allows do a fair comparisons among training 

models. Also, FLOPs are significant to understand a performance in a chip or devices using 

the model. 

EXPERIMENTATION 

Database 

The dataset used for  StarGAN V2 experimentation is CelebA-HQ. This dataset has a 

set of images with different resolutions, portrait images, and crowds of several people (Karras 

et al., 2017). A data processing phase ensures consistent high quality, and that the images are 

centered on the facial region. The dataset has images of 1024 x1024 with high-quality 

resolution. This data set is divided into two domains of male and female. 

For StarGAN V2, one can use a data set with face expressions (J. Oheix , 2018) with 

seven domains such as angry, happy, disgust, fear, neutral, sad, and surprise. This dataset has 

a size of 48 x48 to focus on facial expressions in gray scale. 

       Image src             Driving vid.                Depth map 

 Figure 9. Depth maps with a gray scale of driving image (video) to 

tamper image source. 
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The DaGAN uses a VoxCeleb1 dataset which has a database of YouTube videos. This 

database has a great number of expressions of 1,251 celebrities. These videos involve 

interviews of a wide variety of ethnicities, gender, and ages. Moreover, these interviews 

evolve in several environments like  outdoors, professional expositions, and on the red carpet. 

These videos are resized to 256 x256 for training. 

Deep learning models 

We use generative adversarial networks to achieve image-to-image translations and 3D 

object generation for the experiments. These models are explained in the section Reenactment 

Deepfake Models in a subsection of Network Architecture. 

Proposed method 

The proposed experiment has been done with the StarGAN V2 and DaGAN models to 

learn about their architectures. These architectures are composed by learning mechanisms that 

allow getting map features for images or sequence images. Indeed, feature maps help outline 

style and appearance representations of the source, which will generate fake images or videos. 

From this, we proceeded to train our models to obtain a field with checkpoints that afford to 

compile some tests, and we could define their result performance. Also, we decided to measure 

the complexity of both models to determine differences in their training performance. 

Hence, we used the library DeepSpeed for PyTorch, which helps us get these measurements 

into the training workflow. In order to use this library, we imported FlopsProfiler, which shows 

a model profile after training with functions such as start, stop, and end with steps assigned to 

the profile. 

Experimental setup 
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The training experiment is implemented on an NVidia DGX workstation with 4 GPU- 

NVIDIA Tesla V100-DGXS-32GB with 32 GB per GPU (128 GB total) of GPU memory. 

Data processing. 

StarGAN V2. 

Therefore, images stand processed with the removal and artifacts of JPEG and super-

high resolution to achieve a high visual quality. Also, the image is extended through mirror 

padding and Gaussian filtering to produce a visually satisfactory depth-of-field effect. Finally, 

facial landmark positions help make an ideal crop to find a high-quality resampling with a final 

image-specific resolution. So, we reproduce this data processing to improve our performance 

results. In the case of Face expression recognition, a dataset with a gray scale with seven 

domains use the same preprocessing to obtain a zoom face image. So, after this processing, we 

resized images to 48 x 48 with only faces to get an expression as styles to tamper in our sources. 

DaGAN. 

For the preprocessing of the VoxCeleb data set containing 22,496 videos extracted from 

YouTube, an initial bounding box is obtained from the first frame of the video. The initial 

bounding box helps us to track the face until it is far enough. Afterward, the video frame cuts 

down into a minimal crop containing all bounding boxes that repeat until the last sequence. 

Also, the dataset excludes the lower-resolution videos, and the rest are resized to 256 x 256 

(Siarohin et al., n.d.). 

Training and test sets. 

StarGAN V2. 

The StarGAN V2 dataset has 28,000 images of celebrities with 17,943 female images  

and 10,057 male images for training. The evaluation dataset has 1,000 images in each domain. 

The test dataset has source and reference folders that contain images of females and males. In 
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the case of Face expression recognition, the gray scale image dataset has 4,000 images for 

seven domains and validations for 1,000 images each one.  

DaGAN. 

Over the preprocessing, we acquired 12,331 videos for training, while the test has 44 

videos with frame lengths from 64 to 1,024. Further, we create a test set through sampling 

2,083 image sets of 100 videos selected at random for testing. 

Model configuration. 

StarGAN V2. 

The configuration of the hyperparameter is found in tables: Table 11 and 12. 

Hyperparameters StarGAN V2 

Learning rate D, E and G 10−4 

F 10−6 

Adam Optimizer β1 0 

β2 0.99 

Batch size 8 

R1 regularization 1 

Cyclic Consistency Loss 1 

Style Reconstruction Loss 1 

Diversity Sensitive Loss 1 

 

Table 11. Training hyperparameters of StarGAN V2 model with CelebA-HQ dataset 

 

Hyperparameters StarGAN V2 

Learning rate D, E and G 10−4 

F 10−6 

Adam Optimizer β1 0 

β2 0.99 

Batch size 8 

R1 regularization 1 

Cyclic Consistency Loss 3 

Style Reconstruction Loss 3 

Diversity Sensitive Loss 3 

 

Table 12. Training hyperparameters of StarGAN V2 model with Facial expression 

recognition dataset 
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DaGAN. 

The hyperparameter configuration is shown in tables: Table 13. 

Hyperparameters    DaGAN 

Batch size 8 

 

Learning rate 

Generator 2−6 

Discriminator 2−4 

KP Detector 2−4 

 

Loss weights 

Generator 1 

Discriminator 1 

Kp distance 10 

Equivariance 10 

Transform parameters σaffine 0.05 

σtps 0.005 

 

Table 13. Trainig hyperparameters of DaGAN model with VoxCeleb1 

 

Assessment metrics. 

In the collection of evaluation metrics in the library DeepSpeed of FlopsProfiler class, 

we have used the following functions that return a profile model numbers of  floating-point 

operations (FLOPs). These measurements are collected during training. We collect latency, 

flops, and the number of parameters by model. 

Measures StarGAN V2 DaGAN 

fwd flops per GPU: 2902834.73 G 103490221.33 G 

fwd latency 1.95 s 5.89 s 

bwd latency 5.24 s 10.02 s 

fwd FLOPS per GPU 1488.63 TFLOPS 1757049.59 TFLOPS 

bwd FLOPS per GPU 1107.95218 TFLOPS 2065673.08 TFLOPS 

fwd+bwd FLOPS per GPU 1211.19668 TFLOPS 1951418.37831 TFLOPS 

Table 10. Results presentation complexity measurements of FLOPS in model training. 

 

RESULTS AND DISCUSSION 

Throughout this project, we found out different types of deepfakes that are used with 

diverse purposes. However, some of them are used to inflict damage on others with fake 
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content. We found different forms to create deepfakes, as with some GitHub projects and apps. 

Thus, deepfakes creation is at reach by any person who has an application, and developer skills 

who can improve a model to generate better fake content. Also, many datasets of deepfakes are 

extracted from social media that present as stealing content with a no-consensual owner. 

Moreover, an attacker can not be found because this fake content is uploaded anonymously. 

Furthermore, to enrich the discussion of available content for deepfake creation, in this project, 

we analyzed tow models measured under different metrics during training. 

Result visualization 

For an analysis of the results of the StarGAN V2 model, we have to emphasize the 

improvement in the style encoder and mapping network. Because these modules extract a style 

code for the generator which focuses to use style. So, these styles are rendered in the image 

sources. Also, figure 1 and figure 2 allow us to check a successful style capture of references 

to translate into the source. We determine the model can synthesize the identity of the origin 

in various appearances that reflect the styles of the reference images as hairstyle, makeup, 

beard, and age. Also, figure 1 shows that the poses and expressions translate in a reasonable 

manner in the source images from the reference ones. In figure 1 and figure 2 , we have to 

know that each row is an identity that transfers into different styles, and the relationship of 

columns is a style that reflects different identities. Afterward, it determines that the styles 

extracted from the reference images are represented in the original images correctly. 

Besides, in the Face expression recognition dataset, we find in figure 3 and figure 4 focuses on 

facial expressions. Because we try to prove to transfer facial expressions on source images as 

a style in learning. Therefore, we can determine whether this model can be used to create a 

reenactment deepfake with image content. Thereby, the model presents rich styles across 
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multiple domains, which generate remarkably outperforming images from the previous 

methods. 

On model training, the 3D dense face geometry recovers as depth maps in figure 9 

which reveal a proper generation of talking heads. Indeed, depth maps enable to obtain of facial 

keypoints estimated to reflect a face structure that produces motion fields for feature warping 

into source images from driving video. The examples figure 5, figure 6, and figure 7 tested 

allow understanding with results depth map functionality. Based on a gray scale that relates to 

the surface distances (closer is lighter or deep is darker). For these reasons, we can look a 

reflected flow motion fields in warping source images in time by driving video. Therfore, the 

DaGAN model, we look at an acceptable visual facial expression movements performance in 

figures 5, 6, 7, and 8. Therefore, the results show us how some driving videos can give proper 

visual performance through video. However, other videos are harmed with a different form of 

the head person on video driving, opposite face position, and space of source image to move 

as  Figure 6 in image source 3. We conclude that this model can create reenactment deepfakes, 

but it has to improve in the keypoints detection. Thereby, keypoints generate adaptive 

movements for the source image through time. 

In the analysis of models, we determined that both employ extraction feature maps to 

tamper facial expression and pose. Also, both models could be used to do reenactment 

deepfakes which shows some real results with their training. Moreover, a chosen dataset 

training allows us to generate specific results. For example, in DaGAN we have a dataset of 

interviews, hence in terms of the expressions there are few or none samples of sadness, fear, 

or surprise. 

Complexity evaluation 
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The complexity measurements gained in both training models submit the prime source 

of complexity that stems from the operations required per sample. For this purpose, our work 

uses a running complexity that shows results in table 10 of both models. The comparison of 

both models allows us to determine the model StarGAN V2 has better performance than 

DaGAN because StarGAN V2 needs a lower amount of FLOPs to train the model. 

Furthermore, in (Nicosia et. Al, 2021) it is explained that the amount higher of FLOPs indicates 

lower performance and slower running. Therefore, the results show a StarGAN V2 is a less 

complex model than DaGAN.  

The complexity is determined by its architecture, inputs, and output data by a model in 

a given device. Moreover, in the same reference (see (Nicosia et. Al, 2021) for more detail), it 

is explained that convolution layers are one the most computationally intensive layers in Neural 

Networks. Hence, StarGAN V2 utilizes an image database with a 256 x 256 size, for it trains 

with four modules learning to transfer styles. The modules have a lower quantity of 

convolutional layers that require lower floating point operations to generate a fake image. 

Instead, DaGAN is a model with video data inputs that train as an image frame of video. Hence, 

processing a video dataset requires a higher complexity during learning. 

 

CONCLUSIONS AND FUTURE WORK 

In conclusion, the research on deepfakes allowed us to learn about their types based on 

the features tampered in a target. Accordingly, deepfake creation depends on the training model 

and its data set, because both shape the learning of the model to get the target results. Therefore, 

in the case of StarGAN V2, it contains an image dataset that focuses on characteristics such as 

hair, beard, and age. This model produced results based on physical features. While the other 
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data set has facial expressions that allow us to transfer facial expressions in source images. 

Instead, in the DaGAN, we found that a dataset of interview videos prevents reenactment with 

extreme expressions of astonishment, fear, and sadness. Further, deepfakes also need extraction 

of intermediate representations that allows for capturing feature representation for their 

manipulation based on a facial or body taxonomy. 

Measuring complexity could be understood as the total time spent to finish a specific 

set of algorithms in a given device (Zhou et. al, 2022). Hence, the deep learning algorithms 

analyzed show us the computational quantity required of a model to work with its input features 

and output per layer. Also, the FLOPS is a measure of computer performance that allows one 

to obtain a speed unit to measure the instructions per second.  

In a review of the study, we found other focal points to enhance the models tested. 

Hence, we could try new datasets with DaGAN that allows us to make extreme expressions 

such as anger, sadness, fear, and surprise. While in the case of StarGAN V2, we can also 

improve its results by training it with a physical pose, and expression features to get better 

reenactment deepfakes. 
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