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RESUMEN 

El cáncer de próstata es uno de los tipos más comunes de cáncer que afectan a los hombres. 

Una manera de diagnosticar y tratar este tipo de cáncer es a través de manualmente segmentar 

la región prostática y analizar su tamaño o consistencia con imágenes de resonancia magnética. 

Sin embargo, este proceso requiere de un radiólogo experimentado, toma una buena cantidad 

de tiempo y es susceptible a errores humanos. Recientemente, las redes neurales 

convolucionales o CNN han sido utilizadas para automatizar la segmentación de la próstata. 

En particular, la arquitectura U-net se ha convertido en el estándar por su eficacia y 

rendimiento. No obstante, las CNN son incapaces de aprender sobre dependencias a un alcance 

elevado por lo que recientemente Transformers han sido traídos como una alternativa, 

obteniendo mejores resultados en el análisis de imágenes. A pesar de esto, los transformers han 

obtenido resultados competitivos cuando una gran cantidad de imágenes está disponible para 

el entrenamiento. En este trabajo se compararán dos arquitecturas U-net Residual y Unet 

TRansformers (UNETR) en la segmentación haciendo el grupo de imágenes ProstateX. Para 

analizar el efecto y el rendimiento de cada una de las arquitecturas este grupo de imágenes 

serán variadas en intervalos de 30 de las 120 imágenes en 3D. Los experimentos han 

demostrado que la arquitectura UNETR tiene un mayor rendimiento que U-net Residual. En 

promedio UNETR tiene una mejoría del 6% sobre el Unet Residual en base al Dice Score.  

Palabras clave: Prostate Segmentation, Deep Learning, Transformers, Fully Convolutional 

Networks, Residual U-Net, UNetR. 
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ABSTRACT 

Prostate cancer is one of the most common types of cancer that affects men. One way to 

diagnose and treat this type of cancer is by manually segmenting the prostate region and 

analyzing its size or consistency in MRI scans. However, this process requires an experienced 

radiologist, is time-consuming, and prone to human error. Recently, Convolutional Neural 

Networks (CNNs) have been applied to automate the segmentation of the prostate. In particular, 

the U-net architecture has become the de-facto standard given its performance and efficacy. 

However, CNNs are unable to model long-range dependencies.  Hence, transformers have 

emerged as an alternative, obtaining better results than CNNs in image analysis. Nevertheless, 

transformers have obtained competitive results when a large dataset is available for training. 

In this work, a residual U-Net and the transformer UNetR are compared in the task of prostate 

segmentation using the ProstateX dataset. To analyze the effect the size of the dataset has on 

the performance, the training dataset is varied from 30 to 120 3D images. The experiments 

show that the transformer architecture has a better performance than the residual U-Net. In 

average, UNetR has an 6% performance increase in the test Dice Score over the residual U-

Net.  

Key words: Prostate Segmentation, Deep Learning, Transformers, Fully Convolutional 

Networks, Residual U-Net, UNetR. 
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INTRODUCTION 

 

Cancer is the second-leading cause of death around the world, affecting 1 of every 3 people. 

Cancer is a disease caused by the development of abnormal cells growing and dividing 

uncontrollably, infiltrating, and destroying the normal body tissue (Mayo Clinic Foundation, 

n.d.). Furthermore, it is an expensive disease that costs on average $123,400,000 annually per 

patient in medical services and medications (Yabroff, 2021). Prostate cancer is the second most 

frequent type of cancer in men (Rawla, 2019). This type of cancer is more likely to appear at 

older ages and is hard to detect because it has no symptoms until it is in advanced stages. 

Therefore, screening is usually recommended for men after turning 55 and at the start of any 

symptom (The American Cancer Society medical and editorial content team, 2019). 

Many methods have been developed to screen for prostate cancer, such as prostate-specific 

antigen (PSA), ultra-sound guided, transrectal biopsy, and magnetic resonance imaging (MRI) 

(Eklund, et al., 2021). Although, there is no consensus on the test that should be applied to a 

patient (Eldred-Evans, et al., 2020), it is common to use the PSA or Directal Rectal 

Examination (DRE). However, both have their disadvantages. On one hand, PSA values could 

be affected by medications, medical procedures, prostate infection or enlarged prostate 

(Centers for Disease Control and Prevention, 2021). Meanwhile, DRE may result in a high 

number of false positives that could lead to unnecessary biopsy or over-diagnosis and over-

treatment (Naji, et al., 2018). Prostate MRI analysis has gained popularity because it allows to 

identify areas of the prostate suggestive of cancer and improves the accuracy of cancer 

diagnosis (Eklund, et al., 2021).  However, MRI analysis is time-consuming, subjective, and 

prone to human error. Moreover, the diagnosis given after analyzing the images may differ 

from expert to expert (Razzak, Naz, & Zaib, 2017). MRI was chosen over other type of 

screening images type because of the advantages that MRI provides like the increased soft 
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tissue contrast and better motion correction providing images with better resolution (Nie, Cao, 

Gao, Wang, & Shen, 2016). 

Deep learning has improved the analysis of medical data by integrating enormous amounts 

of heterogeneous data for diagnosis and disease recognition (Lundervold & Lundervold, 2019). 

In the area of medical image analysis, Convolutional Neural Networks (CNNs) are the more 

popular architectures in deep learning due to their astonishing results on object recognition and 

segmentation (Yamashita, Nishio, Kinh Gian Do, & Togashi, 2018). CNNs extract features 

from data by applying convolution operations using a structure of artificial neurons which are 

intended to simulate a biological neuron to achieve the simulation of the visual perception (Li, 

Liu, Yang, Peng, & Zhou, 2021).  

In the task of image segmentation, Fully Convolutional Networks (FCN) have become 

dominant. The FCN architecture consists of two symmetric paths, an encoder and a decoder. 

The encoder is a contracting path that extracts features of the images, and the decoder is an 

expanding path that extracts positions. Additionally, the encoder gradually down-samples the 

resolution of the images, getting the feature maps, to improve the computation and on the 

decoder upsamples and start learning via receptive fields (Wang, Li, Duan, & Shenghui, 2021). 

This is done through a nonlinear filter instead of nonlinear function used in a general deep net. 

Based on the FCN structure, various architectures have been derived for prostate segmentation 

such as the U-Net (Ronneberger, Fischer, & Brox, 2015), Z-Net (Zhang, Wu, Chen, Chen, & 

Tang, 2019), PSNet (Tian, Liu, Zhang, & Fei, 2018), 3D Chan-Vese (L. F. da Silva, et al., 

2020), Residual U-Net (Kerfoot, et al., 2019), Densenet-like U-net (Aldoj, Biavati, Michallek, 

Stober, & Dewey, 2020), and Hybrid 3D-2D U-Net (Ushinsky, et al., 2021). With Densenet-

like U-net, results of segmentation for the different parts of the prostate were 91.2% for the 

prostate 89.2% for central zone and 76.4% peripheral zone in dice score (Aldoj, Biavati, 

Michallek, Stober, & Dewey, 2020). Even though, CNNs have obtained an exceptional 
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performance, they struggle at capturing long-range information because of the regional locality 

of convolutional operations and its poor scaling properties (Ramachandran, et al., 2019). This 

work uses Residual U-net which is an enhanced model created over the U-net that improves 

the structure by adding residual connections on the encoding and decoding stages (Kerfoot, et 

al., 2019). 

In natural language processing (NLP), transformers have become the algorithm of choice 

because of their computational efficiency and scalability. Due to their success in NLP 

applications, transformers have been implemented in image processing by splitting an image 

into patches and provided in sequence into the transformer (Dosovitskiy, et al., 2020). 

Moreover, transformers have come to improve the deep learning architectures, this is because 

of the innate global self-attention mechanisms (Jieneng, et al., 2021). Consisting solely of 

attention mechanism, stacks of self-attention, and pointwise fully connected layers, 

transformers are more parallelizable and require less time to train (Vaswani, et al., 2017). In 

computer vision, transformers overcome the lack of representation and process of high-level 

concepts in images which convolutions solely cannot solve (Wu, et al., 2020). Transformers 

architectures that have been developed for the task of medical image segmentation include the 

TrasU-Net (Jieneng, et al., 2021), TransBTSV2 (Li, et al., 2022), Swin UNETR (Hatamizadeh, 

et al., 2022), RTNet (Huang, Li, Xiao, Shen, & Xu, 2022), and U-netR (Hatamizadeh, et al., 

2021). In particular, U-netR is used in this work as it has gained popularity in 3D Medical 

Image Segmentation. This network has achieved a 95% of Hausdorff distance in the 

segmentation of abdominal organs (Hatamizadeh, et al., 2021). 

In computer vision, the main difference between CNN and Transformers is the way they 

analyze the image data. CNN learn by feature representations of the images this is done by 

convolution kernels that are used to compute the different feature maps (Gu, et al., 2018).While 

Transformers encode the images as a sequence of 1D patch embeddings and utilize self-
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attention modules to learn (Hatamizadeh, et al., 2021). This allows transformers to learn the 

information of the image as it would learn in NLP. 

Transformers have shown to outperform CNNs in computer vision tasks when large datasets 

are available. However, given their learning over-flexibility, transformers have a tendency of 

overfitting small datasets. Considering that in medical scenarios acquiring labelled datasets can 

be quite costly and time-consuming, it is indispensable to test their predictive performance in 

these applications. In this work, the transformer U-netR and the CNN Residual U-net are 

compared for the task of prostate MRI segmentation. Datasets ranging from 30 to 120 3D 

images from the PROSTATEx challenge are used to test the performance of the U-Net and 

UNetR architecture using the same test set. The results show that the transformer architecture 

performs better than residual U-Net even with fewer images which shows that transformers are 

capable of learning from context and high-level image features which is an improvement over 

CNN. 
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MATERIALS AND METHODS 

 

Experimental dataset 

The experiments are performed on a prostate MRI dataset from the PROSTATEx Challenge 

(2017)1 (Radboud University Medical Centre, 2022). The dataset consists of volumetric MRI 

images from 150 patients. Images vary in sizes from (320×320×18) to (640×640×27), with an 

inter-slice resolution ranging from 0.3mm × 0.3mm to 0.6mm × 0.6mm, and intra-slice 

resolution between 3mm to 4.5mm. The data has been acquired from two different types of 

Siemens scanners: the MAGNETOM Trio and Skyra. The prostate gland, Central Zone, 

Transitional Zone, and Peripheral Zone have been annotated by expert radiologists of Moffit 

Cancer Center. Each image is read, transposed, and casted into 32-bit float. Normalization is 

applied using a pixel-wise linear transformation to a maximum value of 1 and the minimum 

value to 0, as shown in equation (1).  

outputPixel=(inputPixel-inputMin)×
(outputMax-outputMin)

inputMax-inputMin
+outputMin   (1) 

Where input pixel is the pixel in a given position to be normalized, inputMin is the minimum 

pixel value in the image, inputMax is the maximum pixel value in the image and finally, the 

outputMax is 1 and outputMin is 0. To obtain a normalization between [0-1]. 

The images of the dataset are rescaled to size (256×256×32) and the voxel spacing of 

(0.5mm, 0.5mm, 1.5mm). Each voxel corresponds to a pixel and a slice thickness of the 

volumetric image. In order to resize the images and labels two interpolators are used with the 

help of Simpleitk library2. Specifically, the images are resampled with the b-spline method 

while the labels with the Nearest Neighbor technique. Also, the centroid is calculated for each 

image and label, to maintain the prostate in the center. The trim of the image may produce 

some information loss in each image, like the context around the prostate like the organs that 

 
1 https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=23691656 
2 https://simpleitk.org/ 
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are surrounding the prostate. Furthermore, in case of enlargement of the prostate or its 

surroundings, it may lead to a false diagnosis. Last but not least, for training and testing the 

dataset was randomly divided using a 80:20 ratio for training and testing, respectively, using a 

5-fold cross-validation. Each fold was stored as numpy arrays in different folders the same data 

at each fold is available for both models. 

Models 

The models compared are the Residual U-Net and U-NetR. The Residual U-Net is an 

encoder-decoder architecture as presented in Figure 1. The architecture has a total of 5 residual 

units in the encoder path and 4 up-sample units in the decoder path, resembling a U-shaped 

architecture. Each residual unit consists of a convolutional layer with a stride of 2 that down-

samples the image to half, an instance normalization layer to prevent contrast shifting, a 

parametric rectifying linear unit (PReLU), a convolutional 2D, an instance normalization layer, 

and finally into a PReLU layer. Only the first residual unit has a stride of 1. Meanwhile, the 

up-sample units are composed of a transpose convolutional operation that doubles the size of 

the feature map, a convolutional layer, instance normalization layer, and PReLU activation 

function. The encoder and decoder paths are connected through a concatenation operation by 

the opposite residual and up-sample units. The benefit of these connections is that the low- and 

high-level details are considered to produce the final segmentation.    

The second architecture implemented is the U-netR as shown in Figure 1. U-netR uses both 

a CNN and a Transformer structure. U-NetR is an architecture based on the U-Net model that 

implements a stack of transformers in the encoder path. The encoder is connected skiply with 

the decoder. Since transformers work on 1D input, the 3D images are transformed to 1D by 

flatenning them into uniform non-overlapping patches by 𝑥𝑣 ∈ 𝑅𝑁×(𝑃𝟛𝐶) where (P,P,P) denotes 

the resolution of each patch and N=(H×W×D)/P
3
 is the length of the sequence. Then a linear 

layer is used to project the patches into a K dimensional embedding space. This layer is constant 
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throughout the transformer layers. To preserve the spatial information of the extracted patches, 

an 1D learnable positional embedding is used 𝐸𝑝𝑜𝑠 ∈ 𝑅𝑁 × 𝐾 to the projected patch embedding 

𝐸 ∈ 𝑅(𝑃𝟛𝐶)×𝐾.Then a stack of transformer blocks is used, these blocks comprise multi-head 

self-attention (MSA) and multilayer perceptron (MLP) sublayers. These blocks consist of a 

normalization layer and in the MLP there are two linear layers with Gaussian Error Linear Unit 

(GELU) activation functions. In the MSA layers, there are parallel self-attention (SA) heads 

that calculates its weights by measuring the similarity between two objects according to the 

mapping of the representations finally a softmax function is used. Inspired by Unet, the features 

from multiple resolution of the encoder are merged with the decoder, then a sequence 

representation is extracted from the transformer and then reshaped as the input (Hatamizadeh, 

et al., 2021).  

 

Figure 1: Residual U-net and UNETR architecture. 

Experimental Setup 

Training and Testing. 

The architectures are implemented in PyTorch (PyTorch, 2022) and MONAI (Monai, 2022). 

Both models were trained using a RTX-3060 GPU, AdamW optimizer with a learning rate of 

0.00001, and a batch size of 3 due to memory restriction. No pre-trained wieghts were used. 
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The size of the training set was varied during training from 30, 60, 90, and 120 images to 

evaluate the performance of each model as the dataset increases were used and varied in both 

models to test the performance of each. The loss function optimized during training is a 

combination of the soft dice loss and cross-entropy loss as displayed in Eq.(2). In which 𝐼 is 

the number of voxels, 𝐽 is the number of classes, 𝑌𝑖,𝑗 is the probability output and 𝐺𝑖,𝑗 is the 

ground truth, for class 𝑗 at voxel 𝑖. The test dataset was not changed in any fold, being the same 

test dataset for every training set in order to have a fair comparison. In an interval of 5 epoch 

the model is tested using the Dice Score Eq.(𝟑), 95% Hausdorff Distance (HD) Eq.(𝟒) and 

Jaccard Distance Eq.(𝟓). The 95-percentile Hausdorff Distance is a distance metric that 

calculates the maximum distance between the ground truth and the nearest point of the 

segmented zone. The 95th percent of the boundaries are reported to eliminate the impact of 

outliers. The Dice Score and Jaccard Distance are overlap based measures. The Dice measures 

the volumetric overlap between the predicted segmentation and the ground truth segmentation, 

while the Jaccard Distance calculates the extent of overlap between the ground truth and the 

prediction zone. 

ℒ(𝐺, 𝑌) = 1 −
2

𝐽
∑

∑ 𝐺𝑖,𝑗𝑌𝑖,𝑗
𝐼
𝑖=1

∑ 𝐺𝑖,𝑗
2𝐼

𝑖=1 + ∑ 𝑌𝑖,𝑗
2𝐼

𝑖=1

𝐽

𝑗=1

−
1

𝐼
∑ ∑ 𝐺𝑖,𝑗 log 𝑌𝑖,𝑗

𝐽

𝑗=1

𝐼

𝑖=1
    (2) 

𝑫𝒊𝒄𝒆(𝑮, 𝑷) =
𝟐 ∑ 𝑮𝒊𝑷𝒊

𝑰
𝒊=𝟏

∑ 𝑮𝒊
𝑰
𝒊=𝟏 + ∑ 𝑷𝒊

𝑰
𝒊=𝟏

     (𝟑) 

𝑯𝑫(𝑮′, 𝑷′) = 𝒎𝒂𝒙{𝒎𝒂𝒙𝒈′∈𝑮′𝒎𝒊𝒏𝒑′∈𝑷′||𝒈′ − 𝒑′||, 𝒎𝒂𝒙𝒑′∈𝑷′𝒎𝒊𝒏𝒈′∈𝑮′||𝒑′ − 𝒈′||}.   (𝟒) 

𝓓𝓙(𝑮′, 𝑷′) =
|𝑮′ ∪ 𝑷′| − ∑ 𝑮𝒊

′𝑷𝒊
′𝑰

𝒊=𝟏

|𝑮′ ∪ 𝑷′|
    (𝟓) 

Selection Criteria. 

The metrics to determine the best model are the Dice and the 95 Hausdorff distance, the 

other metrics shown are to check congruence and the performance of each prediction in 
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comparison with the ground truth. The results are an average all 5-folds with its respective 

standard deviation. The best loss values are when they are low, dice metrics are calculated over 

percentage therefore higher values are better. The other metrics, since they are distances, lower 

values are better because it shows that the ground truth and the label predicted are closer, i.e. a 

better segmentation work. 

RESULTS AND DISCUSSION 

The experiments done in all the groups of images of the dataset demonstrate improved 

performance of UnetR over Residual U-net. Specifically, UnetR achieves a better segmentation 

dice score even when the data is scarce. When the data is scarce UnetR shows a better 

performance of a 6% over Residual Unet as seen in Table 1. This is because UnetR uses 

transformers and also because of the attention mechanisms it captures both global and local 

dependencies improving segmentation. In an average UnetR outperforms 6% over CNN. In 

Figure 2 the predictions made by the models show that when trained on scarce data on UnetR 

the prediction is closer and have less variations as the prediction of Residual Unet. 

Furthermore, when trained on the complete dataset the predictions are more accurate and the 

borders are closer to the expected label. 

Moreover, as shown in the Table 1these results are congruent with the loss score, showing 

that when you have a larger dataset the models reduce the information lost. Furthermore, as 

seen on the segmentation results Figure 2, while the dataset is larger the segmentation 

improves, when the dataset is of 30 the predictions are more misshapen, and the borders are 

misplaced but with the augmentation of the data the predictions start to be more accurate and 

the borders became closer to the ground truth. The best model was the UnetR with a dice score 

of 0.84. Nevertheless, Jaccard score of this model shows that the prediction even when is closer 

to the ground truth has more difference than the prediction of the residual Unet. Finally, the 
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graphs of the Loss versus Epochs for each group of data were analyzed in order to check if 

there was an overfitting on the models and to ensure the correct learning as seen on Figure 3. 

Both models show a fair learning and no overfitting. 

Arch. UNETR 

Data Loss ± σ  Dice ± σ Jaccard ± σ 95 HD ± σ 

120 0.32 ± 0.14 0.84 ± 0.03 0.73 ± 0.04 9.90 ± 3.90 

90 0.46 ± 0.12 0.83 ± 0.04 0.71 ± 0.05 11.85 ± 4.68 

60 0.45 ± 0.12 0.82 ± 0.04 0.70 ± 0.05 12.93 ± 4.14 

30 0.76 ± 0.05 0.74 ± 0.11 0.61 ± 0.11 34.52 ± 22.04 

Arch. Res. U-net 

Data Loss ± σ  Dice ± σ Jaccard ± σ 95 HD ± σ 

120 0.56 ± 0.16 0.75 ± 0.06 0.61 ± 0.07 20.82 ± 6.59 

90 0.61 ± 0.13 0.74 ± 0.04 0.60 ± 0.05 23.46 ± 5.34 

60 0.69 ± 0.07 0.71 ± 0.06 0.57 ± 0.06 29.92 ± 10.30 

30 0.76 ± 0.05 0.61 ± 0.11 0.61 ± 0.11 34.52 ± 22.04 

Table 1: Average Results obtained from UnetR and Residual Unet for the different datasets 

groups 

 

 
Figure 2: Results of UnetR and Residual Unet segmentation, on the first row the predictions 

of UnetR. On the second row the predictions of Residual Unet. 
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Figure 3:Training plots comparison (UnetR vs. Residual Unet) - Epochs vs. Loss: No signs of 

overfitting is shown. 

CONCLUSIONS AND FUTURE WORK 

Transformers have come to improve computer vision with deep learning. The experiments 

have shown that convolutional layers combined with transformers have a great improvement 

in segmentation. In this case study, prostate segmentation, transformer networks improve 6\% 

over CNN networks. When the data is scarce, both models have similar performance but as the 

data increases so the performance of the Transformers network. For further investigations 

Transformers could improve even more with more data or using data augmentation. Finally, 

using Transformers and CNN networks could be helpful in the segmentation of prostate zones 

and cancer classification. 
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