
UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenieŕıas

Parallelization Algorithm for the calculation of
Typical Testors based on YYC

Performance evaluation in synthetic matrices
and application to biodegradable molecules

Ariana Elizabeth Soria Salgado

Matemáticas

Trabajo de fin de carrera presentado como requisito para la obtención del t́ıtulo
de Matemática

Quito, Septiembre de 2022

2

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenieŕıa

HOJA DE CALIFICACIÓN DE TRABAJO DE TITULACIÓN

Parallelization Algorithm for the calculation of Typical Testors based
on YYC

Performance evaluation in synthetic matrices and application to
biodegradable molecules

Ariana Elizabeth Soria Salgado

Nombre del profesor, Titulo académico: Julio Ibarra, M.Sc

Quito, Septiembre de 2022

3

Derechos de Autor

Por medio del presente documento certifico que he léıdo todas las Poĺıticas y Manuales
de la Universidad San Francisco de Quito USFQ, incluyendo la Poĺıtica de Propiedad
Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de
propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Poĺıticas.
Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este
trabajo en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144 de la Ley
Orgánica de Educación Superior.

Ariana Elizabeth Soria Salgado

00201791

1718927203

 Nombres y apellidos:

Código:

Cédula de Identidad:

Lugar y fecha: Quito, Septiembre de 2022

4

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser
considerado como una publicación, incluso a pesar de estar disponible sin restricciones
a través de un repositorio institucional. Esta declaración se alinea con las prácticas y
recomendaciones presentadas por el Committee on Publication Ethics COPE descritas
por Barbour et al. (2017) Discussion document on best practice for issues around theses
publishing, disponible en http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following capstone project is available through Universidad San Francisco
de Quito USFQ institutional repository. Nonetheless, this project – in whole or in part
– should not be considered a publication. This statement follows the recommendations
presented by the Committee on Publication Ethics COPE described by Barbour et al.
(2017) Discussion document on best practice for issues around theses publishing available
on http://bit.ly/COPETheses.

http://bit.ly/COPETheses
http://bit.ly/COPETheses

5

Dedicado a mi familia

6

Resumen

Dentro del área de reconocimiento de patrones, una de las principales preocupaciones es
la de conseguir algoritmos que sean eficientes en términos de tiempo y de reconocimiento.
Motivados por este objetivo, se han desarrollado teoŕıas matemáticas que sirven como
base fundamental para desarrollar algoritmos que reducen la cantidad de caracteŕısticas
necesarias para realizar buenas discriminaciones por clases. Una de estas teoŕıas se
llama: Teoŕıa de Testores.

En el presente trabajo se propone un método innovador para hallar testores t́ıpicos,
los cuales permiten la reducción de caracteŕısticas para realizar procesos de clasificación
o reconocimiento. El método está respaldado por fundamentos matemáticos que vienen
de Teoŕıa de Testores. El algoritmo propuesto consiste en dividir una matriz básica en
bloques, luego se hallan los testores t́ıpicos de los bloques definidos y para encontrar
los testores t́ıpicos de la matriz básica completa se prueban uniones entre los elementos
de estos conjuntos obtenidos de los bloques. Se desarrolla un criterio para determinar
cuándo las uniones de testores t́ıpicos de Bloques forman testores t́ıpicos de su matriz
básica completa.

Para hallar los testores t́ıpicos de los bloques se optó por usar el algoritmo YYC. El
desempeño del método es evaluado mediante el uso de matrices sintéticas. Se compararan
los tiempos de ejecución del método tanto en su versión paralelizada como secuencial y
se contraste con el algoritmo YYC usado para la matriz básica completa.

Se detallan las caracteŕısticas de las matrices en las cuales el método propuesto
resulta ser más eficiente. Se discuten las razones por las cuales el algoritmo puede llegar
a ser deficiente y cómo podŕıa ser implementado con algoritmos diferentes al YYC para
obtener los testores t́ıpicos de los bloques en el proceso de paralelización. Finalmente,
se analiza su desempeño en una base de datos obtenida del Repositorio UCI [23].

Palabras clave: reconocimiento de patrones, clasificación, testores, clasificación, testores
t́ıpicos, redes neuronales, precisión, eficiencia computacional, tiempo de ejecución.

7

Abstract

Within the area of pattern recognition, one of the main concerns is to achieve algorithms
that are efficient in terms of time and recognition. Motivated by this goal, mathematical
theories have been developed that serve as a fundamental basis for developing algorithms
that reduce the number of features needed to make good class discriminations. One of
these theories is called: Theory of Testors.

In the present work, an innovative method is proposed to find typical testors, which
helps reduce the number of features needed to carry out classification or recognition
processes. The method is supported by mathematical foundations that come from Testor
Theory. The proposed algorithm consists of dividing a basic matrix into blocks, then the
typical testors of the defined blocks are found. To find the typical testors of the complete
basic matrix, unions between the elements of these sets obtained from the blocks are
tested. A criterion is developed to determine when the unions of typical testors of Blocks
form typical testors of their complete basic matrix.

To find the typical testors of the blocks, it was decided to use the YYC algorithm.
The performance of the method is evaluated through the use of synthetic basic matrices.
The execution times of the method in both its parallelized and sequential versions are
compared and contrasted with the YYC algorithm applied to the complete basic matrix.

The characteristics of the matrices in which the proposed method turns out to be
more efficient are detailed. In addition, the reasons why the algorithm can become
deficient and how it could be implemented with algorithms other than YYC to obtain
the typical testors of the blocks in the parallelization process are discussed. Finally, its
performance is analyzed in a database obtained from the UCI Repository [23].

Keywords: pattern recognition, classification, testors, typical testors, irreducible
testors, neural networks, accuracy, computational efficiency, time execution.

8

Contents

List of Tables 11

List of Figures 14

1 INTRODUCTION 16

2 MATERIALS AND METHODS 18

2.1 Testor Theory . 19

2.2 Connection between Testor Theory and Hypergraph Theory 22

2.3 YYC Algorithm . 24

2.3.1 Compatible Sets . 25

2.3.2 YYC Algorithm-Code . 26

2.4 Blocks Algorithm Description . 27

2.4.1 Two Blocks of a Basic Matrix . 27

2.4.2 YYC in the Blocks Approximation 28

2.4.3 Blocks Approximation Algorithm 28

2.4.4 Parallelization of Blocks Algorithm 29

9

2.5 Experimental setup . 31

2.5.1 Synthetic Basic Matrices . 32

2.5.2 Parallel Computing and Basic Synthetic Matrices 36

2.5.3 Dataset from UCI Machine Learning Repository 36

3 RESULTS AND DISCUSSION 37

3.1 Evaluation Results Synthetic Matrices . 37

3.1.1 Basic Matrix I5 Experiments . 38

3.1.2 Basic Matrix A Experiments . 42

3.1.3 Basic Matrix B Experiments . 45

3.1.4 Basic Matrix M1 Experiments . 47

3.1.5 Basic Matrix M2 Experiments . 52

3.1.6 Basic Matrix M3 Experiments . 56

3.2 Parallel Computing and Basic Synthetic Matrices 60

3.2.1 Basic Matrix I5 Experiments Parallelization 61

3.2.2 Basic Matrix A Experiment Parallelization 63

3.2.3 Basic Matrix B Experiment Parallelization 64

3.2.4 Basic Matrix M1 Experiment Parallelization 65

3.2.5 Basic Matrix M3 Experiment Parallelization 66

3.3 Application to QSAR biodegradation Data Set 67

4 CONCLUSIONS AND FUTURE WORK 70

10

5 ANNEXES 72

5.1 Full Tables of Results for the Set of Synthetic Test Matrices 72

5.1.1 Complete Results for I5 . 73

5.1.2 Complete Results for A . 77

5.1.3 Complete Results for B . 80

5.1.4 Complete Results for M1 . 82

5.1.5 Complete Results for M2 . 85

5.1.6 Complete Results for M3 . 87

References 90

11

List of Tables

3.1 Results for I5 using the γ operator. 38

3.2 Results for I5 using the θ operator. 39

3.3 Results for I5 using the φ operator. 41

3.4 Results for A using the θ operator. 42

3.5 Results for A using the φ operator. 44

3.6 Results for B using the θ operator. 45

3.7 Results for B using the γ operator. 46

3.8 Results for M1 using the γ operator. 48

3.9 Results for M1 using the θ operator. 50

3.10 Results for M1 using the φ operator. 51

3.11 Results for M2 using the γ operator. 53

3.12 Results for M2 using the θ operator. 54

3.13 Results for M2 using the φ operator. 55

3.14 Results for M3 using the γ operator. 56

3.15 Results for M3 using the θ operator. 58

12

3.16 Results for M3 using the φ operator. 59

3.17 Results parallelization for I5 using the γ operator. 61

3.18 Results parallelization for I5 using the θ operator. 62

3.19 Results parallelization for A using the θ operator. 63

3.20 Results parallelization for B using the θ operator. 64

3.21 Results parallelization for M1 using the θ operator. 65

3.22 Results parallelization for M3 using the θ operator. 66

3.23 Confusion Matrix for the model trained with all attributes 68

3.24 Executions times . 68

3.25 Confusion Matrix for the model trained with only selected features 69

5.1 Complete results for I5 using the γ operator. 73

5.2 Complete results for I5 using the θ operator. 74

5.3 Complete results for I5 using the φ operator. 74

5.4 Complete results for I5 using the operator γ. 75

5.5 Complete results for I5 using the θ operator. 76

5.6 Complete results for A using the θ operator. 77

5.7 Complete results for A using the φ operator. 78

5.8 Complete results for A using the θ operator. 79

5.9 Complete results for B using the θ operator. 80

5.10 Complete results for B using the γ operator. 80

5.11 Complete results for B using the θ operator. 81

13

5.12 Complete results for B using the γ operator. 81

5.13 Complete results for M1 using the γ operator. 82

5.14 Complete results for M1 using the θ operator. 82

5.15 Complete results for M1 using the φ operator. 83

5.16 Complete results for M1 using the γ operator. 83

5.17 Complete results for M1 using the θ operator. 84

5.18 Complete results for M2 using the γ operator. 85

5.19 Complete results for M2 using the θ operator. 85

5.20 Complete results for M2 using the φ operator. 86

5.21 Complete results for M2 using the γ operator. 86

5.22 Complete results for M2 using the θ operator. 86

5.23 Complete results for M3 using the γ operator. 87

5.24 Complete results for M3 using the θ operator. 87

5.25 Complete results for M3 using the φ operator. 88

5.26 Complete results for M3 using the γ operator. 88

5.27 Complete results for M3 using the θ operator. 89

14

List of Figures

2.1 Step 1. Define Blocks . 30

2.2 Step 2. Find the typical testors for each block 31

2.3 Step 3. Test unions of typical testors from Blocks 31

3.1 Results for I5 using the γ operator. 39

3.2 Results for I5 using the θ operator. 40

3.3 Results for I5 using the φ operator. 41

3.4 Results for A using the θ operator. 43

3.5 Results for A using the φ operator. 44

3.6 Results for B using the θ operator. 46

3.7 Results for B using the γ operator. 47

3.8 Results for M1 using the γ operator. 49

3.9 Results for M1 using the θ operator. 50

3.10 Results for M1 using the φ operator. 51

3.11 Results for M2 using the γ operator. 53

3.12 Results for M2 using the θ operator. 54

15

3.13 Results for M2 using the φ operator. 55

3.14 Results for M3 using the γ operator. 57

3.15 Results for M3 using the θ operator. 58

3.16 Results for M3 using the φ operator. 59

3.17 Parallelization Results for I5 using the γ operator. 62

3.18 Parallelization Results for I5 using the θ operator. 63

3.19 Parallelization Results for A using the θ operator. 64

3.20 Parallelization Results for B using the θ operator. 65

3.21 Parallelization Results for M1 using the θ operator. 66

3.22 Parallelization Results for M3 using the θ operator. 67

16

Chapter 1

INTRODUCTION

Since childhood, humans are able of preforming complex cognitive tasks. Our brain
allows us to memorize, learn, recognize and identify objects, people, animals, and others.
The fast pace at which technology has evolved has allowed scientists and researchers to
successfully implement these complex cognitive capabilities in computational algorithms.

Neural networks are a clear example of this. They can solve several types of classifi-
cation problems such as hand-writing, face, and object recognition, among others.

Although the results obtained have great accuracy, computational efficiency may
be considered a significant issue [1]. Briefly, a testor is a feature subset which allows
complete differentiation of objects from different classes. A typical testor, in short words,
is minimum set of characteristics that allow us to classify elements of different classes
[5].

In general, logic-combinatry approachs in pattern recognition have become an aux-
iliar criterion for medical diagnosis. Testor theory can be applied in various fields of
innovation. One of the most important is the field of health. There are works in which
typical testors have been used successfully for the diagnosis or classification of diseases.

For example, typical testors have been used in order to find a minimum set of char-
acteristics that best describes benign or malignant breast cancer cells [33]. Testor theory
has helped to obtain a minimum combination of symptoms and a combination of equally
discriminating characteristics (typical testors) that allow diagnoses of diseases [34].

In addition to using testor theory to identify reduced sets of significant features
to discriminate objects of different classes, computationally we can speak of parallel
algorithms.

17

In general, classical numerical methods have not explored the alternative of using
multiple processors and other hardware alternatives to improve the efficiency of their
algorithms [35].

Familiar algorithms can be reformed to create efficient parallel algorithms. For ex-
ample, within linear algebra there are algorithms that turn out to be more efficient when
parallelized [35]. For example, matrix multiplication can be transformed into a parallel
algorithm. In particular, a three-dimensional case of matrix multiplication an algorithm
for massively parallel processing system has been presented [36].

18

Chapter 2

MATERIALS AND METHODS

Real life problems often involve dealing with high-dimensional data-sets, but not every
variable in the data-set have the same level of significance in the understanding of the
problem of interest. Reducing the dimension of the original data can be transformed
into a computational advantage in terms of efficiency. This can be done by using Testor
Theory [1].

In mathematical terms, we start with a p-dimensional variable that contains all the
information of an object x = (x1, x2, x3, . . . , xp)

T . We want to find a lower dimensional

representation, s, s = (s1, s2, s3, . . . , sk)
T , k < p, of x (lower number of characteristics)

that can still properly define the object we are dealing with.

Non-Statistical methods for dimensional reduction representations were proposed in
the former Soviet Union and later in Cuba [1]. These proposed methods gave birth to
what we now know as “Testor Theory”. The concepts of Non-reducible Testor or typical
testor were introduced first introduced by Yablonskii and Cheguis [2], [3]. Years later
Dimitriev et. al. [4] applied this theory to classification problems.

In this chapter, the theoretical background is introduced in order to understand every
step of the proposed algorithm. The proposed method and the experimental setup are
also explained in detail.

19

2.1 Testor Theory

Let U be the universe of objects of our study, where each object has p characteristics
that define it.

For each object of our universe, we have a set P={x1, x2, x3 . . . , xp} of attributes,
which is a p-dimensional variable. The objects of our universe can be classified into N
disjoint classes, with N > 1.

Definition 2.1.1 By comparing feature by feature each pair of objects belonging to
different classes we can construct a Differentiation Matrix MD.

MD = [mij]N×p , mij ∈ {0, 1}

If mij = 0, the pair of objects i are similar in the jth attribute. If mij=1, the pair of
objects i are different in the jth attribute.

Here is a small example to show how to get a differentiation matrix given a dataset with
two classes (named A and B). Class A has 3 members and class B has two:

Example 1

Class Object X1 X2 X3 X4

A O1 4 23 true 0.5

A O2 5 15 false 0.2

A O3 10 41 false 0.1

B O4 10 57 false 0.5

B O5 3 41 true 0.2

Let’s compare each pair of objects of different classes, feature by feature. If the two
objects for a feature j take the same value, in the differentiation matrix we put zero in
this entry, otherwise we put one. We carry out this process until all possible pairs of
objects of different classes have been compared.

The differentiation matrix for this example is shown below:

20

Comparison X1 X2 X3 X4

O1O4 1 1 1 0

O1O5 1 1 0 1

O2O4 1 1 0 1

O2O5 1 1 1 0

O3O4 0 1 0 1

O3O5 1 0 1 1

Definition 2.1.2 Let f and g be any two rows of MD. We say that f is less than g if
∀i fi ≤ gi and ∃j such that fj ̸= gj .

Definition 2.1.3 The row f is a basic row of MD if there is no row g such that g is
less than f in MD.

Definition 2.1.4 The matrix M that only contains the basic rows of MD is called the
basic matrix of MD.

Going back to Example 1, we will now obtain the basic matrix. If we look closely at
the differentiation matrix of this example, we notice that row O1O5 and row O2O4 are
the same. Therefore, they are comparable (as in Definition 2.1.2. Thus, one must be
eliminated (no matter which one). This also happens for rows O1O4 and O2O5. On the
other hand, row O3O4 is less than row O1O5 according to Definition 2.1.2. Finally, we
can check that rows O1O4, O3O4 and O3O5 meet the characteristic of being basic rows
according to Definition 2.1.3. Hence, the matrix that is only formed by these rows is a
basic matrix that follows the Definition 2.1.4:

Comparison X1 X2 X3 X4

O1O4 1 1 1 0

O3O4 0 1 0 1

O3O5 1 0 1 1

Definition 2.1.5 A feature subset T ⊆ P , T = {jk1 , jk2 , jk3 . . . , jks} is a testor if and
only if when all features are eliminated, except those in T , there is not any pair of similar
subdescriptions in different classes.

Therefore, a testor is a feature subset, which allows complete differentiation of objects
from different classes [5].

21

If T ⊆ P , we define M|T as the matrix obtained from M by eliminating all the
columns of M that do not belong to the set T .

In terms of M , we say that T is a testor if M|T does not have any rows of zeros.

Definition 2.1.6 The attribute jkr ∈ T is typical with respect to T and M if ∃q,
q ∈ {1, 2, 3, . . . , s} such that fiqjkr = 1 and ∀l ̸= q, fiqjkl = 0.

Thus a set T has the typical property with respect to the matrix M if all its elements
are typical attributes with respect to T and M .

Proposition 2.1.1 A set T = {jk1 , jk2 , jk3 . . . , jks} ⊆ P has the typical property with
respect to the matrix M if and only if we can obtain an identity matrix in M|T by
exchanging and eliminating some rows [6].

Going back to Example 1, we are going to show how Proposition looks in practice.

Within the set of all testors, there are some testors, which are irreducible. These
kinds of testors are called typical testors [5]. The set of characteristics T = {X1, X4}
has the typical property and therefore we can visualize an identity matrix by taking only
these columns of the basic matrix:

Comparison X1 X4

O1O4 1 0

O3O4 0 1

O3O5 1 1

As can be seen, the identity matrix 2× 2 is formed with rows O1O4 and O3O4 when
we restrict the basic matrix to the set T .

Definition 2.1.7 A feature subset T ⊆ P is a typical testor or irreducible testor if and
only if T is a testor and there is no other testor τ such that τ ⊂ T . This means that
every feature in T is essential, so if we eliminated any, the resulting set is no longer a
testor.

Once again, we return to Example 1. It has already been shown that the set T =
{X1, X4} has the typical property, now we will see that it is a typical testor. If we delete
the column X1, we are left with:

22

Comparison X1

O1O4 1

O3O4 0

O3O5 1

This can no longer be a testor since it has a row of zeros.Now if we remove the feature
X4, we get:

Comparison X4

O1O4 0

O3O4 1

O3O5 1

Similarly, a row of zeros is obtained. According to the Definition 2.1.7 the set T is a
typical or irreducible testor of the basic matrix.

In terms of the basic matrix M , T is a typical testor of M if it is a testor and has
the typical property with respect to M .

Proposition 2.1.2 Let Ψ(MD) be the set of all typical testor of MD and Ψ(M) be the
set of all typical testor of M , with M the basic matrix of MD then

Ψ(MD) = Ψ(M).

By Proposition 2.1.2, we conclude that in terms of computational efficiency, it is
better to work with M than with MD because M has less or equal number of rows than
MD, which can make algorithms work faster to obtain the typical testors [6].

In the next section, the connections between Testor Theory and Hypergraph Theory,
a highly studied area in the field of Mathematics, will be explored.

2.2 Connection between Testor Theory and Hypergraph
Theory

Within the field of discrete mathematics, one of the most important topics is graph
theory. Graph theory studies mathematical structures used to model pairwise relations

23

between objects through mathematical objects known as graphs. Moreover, within graph
theory, graphs can be generalized. Hypergraphs are generalizations of graphs in which
an edge can join any number of vertices. This allows more than only pairwise relations.

Berge was the first person to introduce Hypergraphs in 1973 [7], [8], [9]. Graphs only
admit pairwise relationships, that is an edge can only join one vertex. On the other hand,
Hypergraphs support multi-adic relationships so they become a more natural model of
real life problems [7].

Definition 2.2.1 An hypergraph is an ordered pairH= (V, E), where V = {v1, v2, . . . , vn}
is a finite set of objects, and E = {E1, E2, . . . , Em} is a family of subsets of V.

Definition 2.2.2 The set V is the set of vertices or nodes and the elements of E are
called hyperedges. So in a hypergraph, a hyperedge can links one or more vertices.

Definition 2.2.3 The incident matrix A of H is and n ×m matrix whose rows corre-
spond to the number of vertices of the hypergraphs and the columns correspond to the
number of hyperedges of H:

A = [aij]n×m , aij ∈ {0, 1}

In such a way that aij = 1 if vi ∈ Ej and aij = 0 otherwise.

Definition 2.2.4 A hypergraph H is called simple if for every pair (Ei, Ej), if Ej ⊆ Ei,
then j = i.

Definition 2.2.5 Let H = (V, E) be a hypergraph. A set τ ⊆ V is called a transversal
of H if it intersects all its hyperedges. In other words, (∀Ei ∈ E) τ ∩ Ei ̸= ∅.

A transversal τ is called minimal if no proper subset τ ′ of τ is a transversal of H.

Definition 2.2.6 The transversal hypergraph Tr(H) of a hypergraph H if the family
of all minimal transversals of H.

Until now, we presented definitions of two, apparently, different theories. But, there
exists a relation between Testor Theory and Hypergraph Theory [10]. Based on the def-
initions of basic matrix, incidence matrix and simple hypergraph, the following theorem
can be stated.

Theorem 2.2.1 A transposition over the incidence matrix of a simple hypergraph, re-
sults in a matrix that fulfills all required properties to be a basic matrix.

Theorem 2.2.1 allows us to obtain the typical testors of the basic matrix obtained
by transposing the incidence matrix. The complete set of irreducible testors turns out
to be the transversal hypergraph of the original hypergraph [10]. Futhermore, there is a
relationship between Typical Testor and Minimal Transversal.

24

Theorem 2.2.2 Let Ψ(B∗)={τ1, τ2, . . . , τs} be the complete family of irreducible testors
from a basic matrix B. Let Tr(H) be the transversal hypergraph for a simple hy-
pergraph H whose incidence matrix is exactly the transposed matrix of B, BT , then
Ψ∗(B)=Tr(H).

Theorem 2.2.2 states the equivalence between computing typical testors from the
transposed incidence matrix of a simple hypergraph H and minimal transversals of H
[10]. The most important fact of this theorem is that the computation of irreducible
testors and minimal transversal can be performed by using any known algorithm designed
for one task or the other.

In Graph Theory, the Transversal Hypergraph Generation Problem is the problem
of generating the set Tr(H) of a given hypergraph H. There exist several algorithms to
fulfill this task such as the Kavvadias-Stavropoulos Algorithm (KS) [12], Berge’s Algo-
rithm [13], Khachiyan’s Algorithm (improvement of Berge’s Algorithm) [14], Simbolic
Learning to improve the performance of transversal algorithms [27] and others.

In Testor Theory, algorithms have also been developed to find the set of irreducible
testors of a given basic matrix B. The Binary-Recursive Algorithm (BR) [15], BT
Algorithm [16], LEX Algorithm [18], YYC [17], among others.

It should be noted that although it is true that there is a relationship between typical
testors and minimum transversal, in this paper we will use the mathematical language
of Testor Theory. The objective of this section is to note that this relationship must be
taken into account since it allows transferring the results of typical testors to this area,
which is also highly studied today.

Next, the characteristics of the algorithm to find typical testors that have motivated
this work will be detailed: Algorithm YYC. Key concepts on which their programming
is based are introduced and resumed. In addition, we detail how it will be used in the
proposed approach to find irreducible testors.

2.3 YYC Algorithm

The YYC Algorithm was introduced in 2014 by Eduardo Alba, Salvador Godoy, Julio
Ibarra and Fernando Cervantes as a new computacional technique to find the complete
set of typical testors of any basic matrix [17]. The algorithm is based on the strategy of
breaking down the calculation of typical testors up to some i row, instead of calculating
the typical testors of the whole matrix at once. Once the algorithm generates irreducible
testors up to some row i, with respect to the submatrix constituted up to the first i rows,

25

it uses this set to build a set of irreducible testors up to row i+ 1 and so on.

One of the most novel contributions of the YYC Algorithm is that it introduces
the concept of compatible sets [17], [18] into its programming and this algorithm can
be parallelized to improve computational efficiency [29]. Moreover, the characteristic
of the YYC algorithm to build the typical testors row by row motivated the idea of
parallelization for the proposed algorithm, since this calculation of typical testors can
be done separately in a partition by rows of the basic matrix.

2.3.1 Compatible Sets

Definition 13. Let B be a basic matrix and E a set of elements. E is said to form a
compatible set if under some row and column rearrangement, those elements shape into
an identity matrix [17].

If some elements of a basic matrix B form a compatible set, then the corresponding
subset form a typical testor of B if and only if the submatrix corresponding to those
columns has no rows of zeros [17]. This statement guarantees the typicity and testor
conditions.

In the work of Eduardo Alba, Salvador Godoy, Julio Ibarra and Fernando Cervantes
[17], a function to find compatible sets is proposed. Based on their work, we propose
the following algorithm 1:

Algorithm 1 Find Compatible Set

Input: Tj indices of testor columns, xm index of column of basic matrix B and f
the number of row of B.

Output: True if the set {Tj , xm} form a typical testor (compatible set) and False

if they do not.

1: Define U = {Tj , xm} ▷ We want to check if this new set is a typical testor or not.
2: Define SM as a submatrix of B up to the f -th row with the columns define by U .
3: Redefine SM including only unique basic rows. ▷ This will simplify the number of

iterations of the algorithm to check if there exists a compatible set or not.
4: Define nb as the number of basic rows.
5: if nb ≥ length(U) then
6: for <i=1 up to the last column of SM> do
7: if the sum of the all the columns in SM in the row i is equal to zero then
8: return False

9: return True

10: else
return False

26

2.3.2 YYC Algorithm-Code

In this subsection we will present our own version of the YYC Algorithm 2.3.2 imple-
mented in Matlab 2022a. The code is based on the work of the authors Eduardo Alba,
Salvador Godoy, Julio Ibarra and Fernando Cervantes [17].

Algorithm 2 YYC Algorithm

Input: B basic matrix.
Output: Ψ complete set of typical testors of B.

1: Read only the first row of basic matrix B. Define the vector ones.
2: for <j=1 up to the last column of B> do
3: if the first row of B has a 1 in that column then
4: Add i to the vector ones. ▷ For the first row, each column with a value 1 is

a typical testor for that row.

5: Let Ψ = ones.
6: for <i=2 up to the last row of B> do
7: Define Ψ∗ = ∅.
8: for <each τj ∈ Ψ∗> do
9: if ∃xp ∈ τj [ri[xp] = 1] then

10: Add τj to Ψ∗

11: else
12: Define the vector onescol.
13: Using the function find, search for all xp in ri such that ri[xp] = 1 and

store it in onescol. ▷ find is a function of Matlab.
14: for <each xp in onescol > do
15: if FindCompatibleSet(τj, xp) is True then
16: Add τj ∩ {xp} to Ψ∗

17: Let Ψ = Ψ∗

return Ψ

The YYC Algorithm has been reported to become slower as the number of compatible
sets or the number of rows grow. This has been one of the main motivations for this
work.

In the next section work we introduced a new approach for finding typical testors.
An innovative way of applying YYC will be presented as part of a new algorithm to find
typical testors of a basic matrix.

27

2.4 Blocks Algorithm Description

During this work we present a new approach to obtain typical testors of a basic matrix
B. The strategy is inspired on the phrase ”divide and conquer”. Based on typical testors
of blocks of B we will find typical testors of all of B. In addition to seeking to propose
a more efficient algorithm to obtain irreducible testors of a given basic matrix, we want
to propose one that can be parallelized.

Definition 2.4.1 A block B of M is a submatrix of M consisting of all columns but
only some rows.

Proposition 2.4.1 Let B be a basic matrix. Define B1 as a block of B. Then B1 is a
smaller basic matrix.

Proof: Because B is a basic matrix, it is composed only by basic (incomparables) rows.
Thus if we choose just some rows of B but all of its columns, we end up with a smaller
matrix that fulfills all the properties to be a basic matrix since its formed only by basic
rows. □

2.4.1 Two Blocks of a Basic Matrix

In this section, we explore relationships between testors of two different blocks of a basic
matrix. Although we will only work with two blocks, in the case we have more the ideas
can be generalized.

Proposition 2.4.2 Let B be a basic matrix, T1 and T2 be testors of B then T1 ∪ T2 is
also a testor of B.

Proof: Define the set T = T1 ∪ T2. By Definition 5, B|T1
and B|T2

do not have any rows
of zeros. Therefore when we considered the matrix B|T it will be a submatrix of B that
will no have any rows of zeros, i.e. T is a testor of B. □

Proposition 2.4.3 Let B be a basic matrix. Suppose T1 and T2 are any typical testors
of two different blocks of B, with T1 ̸= T2 and T1 ∩ T2 ̸= ∅, then the intersections of
typical testors of blocks will not form typical testors of B.

Proof: Let T = T1∩T2. Without loss of generality assume there are one or more features
that have been eliminated from T1, then since T1 is a minimal set if we eliminated any
feature the resulting set is no longer a testor. Thus B|T will have one or more rows of
zeros, i.e. T is not a testor of B. □

Following a similar argument as above, the operation of difference of sets is not of
our interest because it can eliminate essencial features. From now on, we will focus only

28

on typical testors of B that are the result of the union of typical testors of the blocks of
B.

Proposition 2.4.4 Let B be a basic matrix, B1 and B2 be blocks of B. Suppose T1

is a typical testor of B1 and T2 is a typical testor of B2. If T1=T2 then T1 is a typical
testor of B.

Proof: By Proposition 2.4.2, we know that T1 is a testor of B since T1∪T2 = T1. Because
T1 has the typical property in B1 and B2, then by Proposition 2.1 we can find an identity
matrix in B|T1

. Hence, T1 has the typical property with respect to B and is a testor so
T1 must be a typical testor of B. □

2.4.2 YYC in the Blocks Approximation

The YYC algorithm has been designed to find the complete set of typical testors of a
basic matrix, and since it builds typical testors up to a row i, it needs to reach the last
row of the basic matrix to find its irreducible testors. This causes the algorithm to slow
down if the number of rows is large. Also, since it uses the concept of finding compatible
sets, the algorithm becomes slower as the number of compatible sets grows.

To deal with these disadvantages, we will apply the Blocks Approximation. We will
partition a basic matrix into two blocks. We will apply the YYC algorithm to each of
its blocks to obtain the complete set of typical testors of the blocks and then using these
two sets as inputs we will find the typical testors of the entire matrix.

2.4.3 Blocks Approximation Algorithm

Given we divide the basic matrix into two blocks and we know the entire sets of typical
testors of the blocks, we can test unions of elements of these sets to find irreducible
testors.

By Proposition 2.4.2, we know that the union of typical testors of different blocks is
a testor of the whole matrix. Thus, we only need to verify that the union has the typical
property with respect to the entire basic matrix. To test whether the union results in a
typical testor we can make use of Proposition 2.1 and formulate an extended version for
our proposed method:

Proposition 2.4.5 Let B be a basic matrix. Suppose T1 and T2 are any typical testors
of two different blocks of B. The set T = T1 ∪ T2 has the typical property with respect
to the matrix B if and only if we can obtain an identity matrix in B|T by exchanging
and eliminating some rows. Futhermore, T is a typical testor of B.

29

Recall that mathematical unions of sets cannot guarantee the uniqueness property,
we need to take this consideration into account to determine that each typical testor
obtained by the union of typical testors of the blocks is unique in the final result of the
blocks function. With this idea in mind, we proceed to write the algorithm 3.

Algorithm 3 Blocks Algorithm

Input: TB1 complete set of typical testors of B1 and TB2 complete set of typical
testors of B2.

Output: TT complete set of tyical testors of the entire basic matrix B.

1: Define TT=∅.
2: Define l1 as the number of elements in TB1.
3: Define l2 as the number of elements in TB2.
4: for <i=1 up to l1> do
5: for <j=1 up to l2> do
6: if Find compatible set between the testor i of the set TB1 and the testor j

of the set TB2 then ▷ Programming based on Proposition 2.4.5.
7: if the union of testor i of the set TB1 and the testor j of the set TB2 is

not in the set TT then
8: Add the union of testor i of the set TB1 and the testor j of the set

TB2 to TT .

return TT

2.4.4 Parallelization of Blocks Algorithm

Technological innovation has advanced on a large scale in recent decades and one of the
most recent areas of computational development is programming or parallel comput-
ing. Currently, the existence of computers with multicore processors or hyper-threading
makes parallel computing more economically feasible [30].

Although in everyday programming it is not so common to apply parallel program-
ming for computationally intensive processes, its use is highly recommended. This is
why one of the advantages of the way the proposed algorithm works is that it can be
parallelized and improve its performance.

For the Block approximation, the parallelization occurs in the phase in which the
complete set of testors typical of the Blocks that have been defined is found. Instead
of obtaining the complete set of typical testors sequentially, we can perform this task
simultaneously by taking advantage of the available cores.

Due to the fact that this work is a first proposal of a more efficient algorithm, the
proposed parallelization will serve for two blocks as the first stage.

30

Using Matlab 2022a and Parallel Computing Toolbox, the following algorithm can be
defined that will perform the calculation of complete typical testors of the two blocks
simultaneously.

Algorithm 4 Parallel Blocks Aproximation

Input: B complete basic matrix, n = 2 number of blocks, ind number of the last
row of Block 1.

Output: T = {TT1, TT2}. Where TT1 is the complete set of tyical testors of the
B1 and TT2 is the complete set of tyical testors of Block 2.

1: Define the set T=∅
2: Define Block 1: B1 = BM(1:ind,:)
3: Define Block 2: B2 = BM(ind+1:end,:)
4: parfor <i=1 up to n> ▷ parfor is a Matlab command, which executes for-loop

iterations in parallel on workers.
5: Apply Algorithm 2.3.2 on Bi an saved in T (i)

return T

Now we present a diagram detailing step by step and graphically the process of the
algorithm proposed in this work.

The first step is to divide the basic matrix into Blocks. It is important to mention
that the Blocks have that are formed are disjoint and the number of rows that each block
has can vary. For computational convenience the rows are chosen in an orderly manner.

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 · · · · · · amn

︸ ︷︷ ︸

Basic Matrix

B1 =

 a11 · · · a1n
...

. . .
...

a(k−1)1 · · · a(k−1)n

B2 =

ak1 · · · akn
...

. . .
...

as1 · · · asn

Bl =

ap1 · · · apn
...

. . .
...

am1 · · · amn

...

Figure 2.1: Step 1. Define Blocks

31

The second step consists in obtaining the set of typical testors for each block. This
is the part of the algorithm that is going to be parallelized so that the calculations are
done simultaneously.

[Block 1]

[Block 2]

[Block l] Tl = {Typical testors of Bl}

T2 = {Typical testors of B2}

T1 = {Typical testors of B1}

......

7−−−−−−−−→

7−−−−−−−−→

7−−−−−−−−→

Y Y C

Y Y C

Y Y C

Figure 2.2: Step 2. Find the typical testors for each block

The last step consists of taking all the sets of typical testors obtained in Step 2
and testing unions of irreducible testors of these sets to obtain typical testors for the
complete basic matrix.

T1

T2

...
Tl

Test unions typical
testors of Blocks

TF = {Typical testors of B}7−−−−−−−−−−−→
Blocks Algorithm

Figure 2.3: Step 3. Test unions of typical testors from Blocks

Once it has been detailed how the proposed algorithm works in each of its stages and
the mathematical concepts that motivated its creation are clear, it is possible to move
on to the experimentation phase in order to explore the strengths and limitations of the
algorithm.

2.5 Experimental setup

With the aim of testing the proposed approach we used develop a set of synthetic basic
matrices using operators [6], [19] and we used a real–world dataset taken from UCI
machine learning repository [22].

32

2.5.1 Synthetic Basic Matrices

To test the proposed method, we construct a set of synthetic basic matrices that will help
us to make the conclusions of this work. The advantage of using synthetic basic matrices
is that we can know a prior the exact number of typical testors or minimal transversals
[6], [11], [19]. So is a good practice to test algorithms with a set of synthetics matrices
and this practice has become more common in recent years.

Definition 2.5.1 Let A and B be two basic matrices:

A = [aij]m×n, B = [bij]m×n′

We define φ-Operator that acts over A and B in the following way:

φ(A,B) = [A B]

We call this operation simple fusion.

Definition 2.5.2 Let A and B be two basic matrices:

A = [aij]m×n, B = [bij]m′×n′ .

Then

θ(A,B) =

a11 a12 · · · a1n b11 · · · b1n′

a11 a12 · · · a1n b21 · · · b2n′

...
...

...
...

...
...

...
a11 a12 · · · a1n bm′1 · · · bm′n′

...
...

...
...

...
...

...
am1 am2 · · · amn b11 · · · b1n′

...
...

...
...

...
...

...
am1 am2 · · · amn bm′1 · · · bm′n′

We call this operation combinatory fusion.

Definition 2.5.3 Let A and B be two basic matrices:

A = [aij]m×n, B = [bij]m′×n′ .

33

We define the operator γ as:

γ(A,B) =

a11 · · · a1n 0 · · · 0
...

. . .
...

...
. . .

...
am1 · · · amn 0 · · · 0
0 · · · 0 b11 · · · b1′n′

...
. . .

...
...

. . .
...

0 · · · 0 bm′1 · · · bm′n′

One the most important things about using these operators in basic matrices is that
the resultant matrix will be a basic matrix. All the operators are said to preserve the
property of rows incomparability [6].

Because the resultant matrix is still a basic matrix and the arguments of the operators
are basic matrices, then the operators are associative [19].

Notation: ON (A) means the operator O has been aplied N times to the basic matrix A.

Let A be a basic matrix and Ψ∗(A) be the complete set of irreducible testors of A.
Let CA = {x1, · · · , xn} be the set of columns in A and let xj ∈ CA. We denote [xj]N =
{xj , xj+n, · · · , xj+(N−1)n} the class of all columns in φN (A) exactly equal to xj . Given
S ⊆ CA and S = {xj1 , xj2 , · · ·xjs}, [S]N will denote the family of subsets of columns
from φN (A) that can be obtained by replacing one or more columns in S with another
column in the same class.

Moreover, if A and B are basic matrices such that their sets of typical testors Ψ∗(A)
and Ψ∗(B) are known, then the following propositions can be proved [19]:

Proposition 2.5.1 Ψ∗(φN (A)) = {[T]N | T ∈ Ψ∗(A)}.

This proposition states that the set of typical testors of a N times concatenated
matrix with itself is the set of all classes of typical testors of A [19]. Thus, we can
previously know the number of typical testors of the matrix Ψ∗(φN (A)).

Proposition 2.5.2 Ψ∗(θ(A,B)) = Ψ∗(A) ∪Ψ∗(B).

The set of typical testors of the matrix θ(A,B) is the union of the complete set of
testors of A and B.

Proposition 2.5.3 Ψ∗(γ(A,B)) = {TA ∪ TB | TA ∈ Ψ∗(A) & TB ∈ Ψ∗(B)}.

34

These three propositions give rise to 3 important corollaries about the number of
testors typical of matrices to which operators have been applied [19], [6]:

Corollary 1 The number of typical testors of the matrix φN (A) is given by:∣∣Ψ∗(φN (A))
∣∣ = ∑

T∈Ψ∗(A)

N |T |

Corollary 2 The number of typical testors of the matrix θ(A,B) is:

|Ψ∗(θ(A,B))| = |Ψ∗(A)|+ |Ψ∗(B)| .

Corollary 3 The number of typical testors of the matrix γ(A,B) can be obtained using
the formula:

|Ψ∗(γ(A,B))| = |Ψ∗(A)| · |Ψ∗(B)|

We can now define three matrices on which the operators will act and will allow us
to evaluate the proposed algorithm.

We define the matrix A, which has 4 rows and 5 columns as follows:

A =

x1 x2 x3 x4 x5
1 1 1 0 0
1 0 0 0 1
0 1 1 0 1
0 1 0 1 1

This matrix has the following set of typical testors:

Ψ∗(A) = {{x1, x2}, {x1, x3, x4}, {x1, x5}, {x2, x5}, {x3, x5}}

Then we define the matrix B with the same dimensions as A, as follows:

B =

x1 x2 x3 x4 x5
0 1 1 1 0
1 0 1 0 1
0 1 0 0 1
1 1 0 0 0

Which has the following set of typical testors:

Ψ∗(B) = {{x1, x2}, {x2, x3}, {x2, x5}, {x1, x3, x5}, {x1, x4, x5}}

35

Finally, we define the identity matrix I5 of dimensions 5 × 5 to run the propose
method and test it.

I5 =

x1 x2 x3 x4 x5
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

The complete set of typical testors of I5 is:

Ψ∗(I5) = {{x1, x2, x3, x4, x5}}

The basic matrices defined above will serve as the basis for performing operations
with the operators defined previously to obtain a set of test matrices that is varied
enough to allow us to make relevant conclusions about the Blocks algorithm. We will
find the typical testors of the test matrices in two ways, using the Blocks algorithm and
using YYC.

Once the set of test matrices is obtained, we will characterize each of them to then
apply the YYC algorithm and record its execution time in seconds. Then we will use
the block algorithm. This algorithm will be applied to two different partitions in order
to be able to conclude if the way in which we build the blocks is relevant or not. For
the first partition we will take the top half of the rows for Block 1 and the bottom half
of the rows for Block 2 . For Partition 2, a proportion of 1/4 of the top rows of the
complete basic matrix will be used for Block 1 and the rest of the rows for Block 2.

For each partition we must record the time it takes for the YYC algorithm to obtain
the typical testors of Block 1 and then the time it takes to find the typical testors of
Block 2. Then these sets will be the arguments for the block algorithm. For which it
is also necessary to register the time it takes to execute. It must be taken into account
that this process will be sequential and that the total execution time will be the sum of
these times measured in seconds.

On the other hand, it is necessary to mention that the codes used for this work are
implemented in the Matlab 2022a platform and the experiments carried out were exe-
cuted on a MacBook Pro (13-inch, M1, 2020) personal computer with macOS Monterey
operating system and memory of 8GB.

36

2.5.2 Parallel Computing and Basic Synthetic Matrices

After performing the sequential tests for the Blocks Algorithm (3), tests will be done
implementing parallelization using algorithm 4. The time it takes for the sequential and
parallel Blocks algorithm and the YYC algorithm to find the complete set of irreducible
testors of a basic synthetic matrix will be compare.

2.5.3 Dataset from UCI Machine Learning Repository

To test the performance of the algorithm proposed in this work in application prob-
lems, a dataset from the UCI Repository [22] will be used. The UCI Machine Learning
Repository is a collection of open acces databases that are used by the machine learning
community for the empirical analysis of machine learning algorithms. The archive was
created as an ftp archive in 1987 by David Aha and fellow graduate students at UC
Irvine. Since that time, it has been widely used by students, educators, and researchers
all over the world as a primary source of machine learning data sets [22].

The dataset selected from UCI Repository is called QSAR biodegradation. This
data set was built in the Milano Chemometrics and QSAR Research Group. They study
chemical stricture and biodegradation molecules [23].

This database contains 1055 instances, each with 41 features that are molecular
descriptors. There are two classes: ready biodegradable molecules (356) and non-ready
(699). Therefore, the labels for the classes are: RB (Ready Biodegradable) and NRB
(Not ready biodegradable).

A treatment process must be carried out before the Blocks algorithm can be applied.
The differentiation matrix described in Section 2 in definition 2.1.1 must be implemented.

Once the differentiation matrix MD is obtained, it must be reduced to a basic matrix.
When the basic matrix is obtained, the separation into two blocks is carried out. For
simplicity, only one partition will be used: that of dividing the matrix in half (refered as
Partition 1). With the blocks of the basic matrix defined, the YYC algorithm is applied
to obtain the complete sets of irreducible testors for each block.

With the set of typical testors, one neural network will be trained by using only
the characteristics of one typical testor chosen. Another neural network will be trained
using the full set of features. Neural networks were programmed in Python 3.9 [37] using
libraries: Tensor [39] and Keras [38]. The execution times of the Block Algorithm were
recorded both in its parallel and sequential version.

37

Chapter 3

RESULTS AND DISCUSSION

In this chapter the Blocks Algorithm is applied to a set of basic synthetic matrices
and also to a real base taken from the UCI repository [22]. The execution times of
the Blocks Algorithm are recorded and the possible reasons for its fast or inefficient
execution compared to the YYC Algorithm are discussed.

For each matrix of the set of synthetic test matrices elaborated in Section 2 and
detailed in 2.5.1, there is a section in which a reduced table is shown with the most
relevant results that allow us to perform an analysis of the efficiency of the algorithm
proposed by each operator.

After performing the sequential tests for the Block Algorithm, we implement the
parallelization described in algorithm 4 for a reduced set of the synthetic basic matrices
defined in Section 2.5.1.

At the end of this chapter, the efficiency of the Block Algorithm for a real database
is analyzed as part of application problems.

3.1 Evaluation Results Synthetic Matrices

The tables presented in this section are simplified versions of the results obtained. The
first column tells us the number of times the operator O was applied to the basic matrix
M . Columns two, three and four are characteristic of the basic matrix X = ON (M).
Then TT column refers to the number of typical testor for the matrix X. The column
labeled YYC records the time in seconds that it took this algorithm to find all the typical

38

testors of X. The column labeled Partition 1 tells us the total time (in seconds) the
Blocks Algorithm ran with the first partition. The Partition 2 column indicates the total
time the Blocks Algorithm was executed with the second partition.

The complete tables of results can be found in the Annexes for each matrix for each
applied operator.

3.1.1 Basic Matrix I5 Experiments

I5 is a basic matrix of dimension 5x5 with a density of ones of xxxx. This matrix has a
single typical testor of cardinality 5. To this matrix we will apply each of the operators
defined in this section.

Operator γ applied to I5

By applying the γ operator recursively to the matrix I5 the resulting matrix will increase
the number of rows and columns alike but will keep a single typical testor. The density
of the resulting matrix will be less than that of I5.

Now the table with results is presented:

γN (I5) Rows Columns Density TT YYC Partition 1 Partition 2

1 5 5 0.2 1 0.005368 0.031299 0.031299

2 10 10 0.1 1 0.005935 0.019170 0.024763

3 15 15 0.0667 1 0.006892 0.013305 0.010420

4 20 20 0.05 1 0.006095 0.007149 0.006432

5 25 25 0.04 1 0.010865 0.009869 0.008085

6 30 30 0.0333 1 0.017441 0.010271 0.013504

8 40 40 0.025 1 0.031454 0.015096 0.009752

10 50 50 0.02 1 0.030361 0.015599 0.011771

Table 3.1: Results for I5 using the γ operator.

Based on the results obtained, in this case it can be seen that the Block algorithm is
much more efficient than YYC algorithm when this operator is applied and N increases.

It is observed in graph 3.1 below that a break point at N=4, where the block algo-
rithm becomes more efficient. This can be explained by the fact that the matrix has low
density and only one typical testor. This fact favors the Blocks algorithm since there

39

are not many unions to test, which is evidenced on the tables in the Annex Section 5:
5.1 and 5.4. In them, the number of testors obtained in each block for each partition is
recorded. On the other hand, there is no clear pattern in terms of the efficiency of one
partition or the other.

Figure 3.1: Results for I5 using the γ operator.

Operator θ applied to I5

By applying the θ operator recursively to the matrix I5 the resulting matrix will increase
the number of rows and columns. The resulting matrices will have a very low density, a
large number of rows compared to the number of columns, and few typical testors.

Following the table with results is presented:

θN (I5) Rows Columns Density TT YYC Partition 1 Partition 2

1 5 5 0,2 1 0,003416 0,031299 0,031299

2 25 10 0,08 2 0,059171 0,07695 0,025822

3 125 15 0,024 3 0,05546 0,094993 0,071902

4 625 20 0,0064 4 0,288344 0,291037 0,329386

5 3125 25 0,0016 5 4,557188 3,835996 4,153209

6 15625 30 0,000384 6 425,640116 143,165474 166,028161

Table 3.2: Results for I5 using the θ operator.

40

Below is a graph where you can see the results obtained for this matrix when applying
this operator:

Figure 3.2: Results for I5 using the θ operator.

The Blocks Algorithm turns out to be more efficient than the YYC as this operator is
applied. In this case the number of iterations that the Blocks algorithm had to perform
was relatively small since the number of typical testors found in each of the blocks
(regardless of which partition) was no more than 11, which was computationally more
efficient than perform the full iterations over the number of rows. To see these values
in more detail, you can refer to the Annexes 5 section in the 5.2 and 5.5 tables. On the
other hand, no definite pattern is observed as to which partition turns out to be more
efficient. The Blocks algorithm for the two partitions was able to find the complete set
of irreducible testors for the matrix θN (I5).

Operator φ applied to I5

This operator generates matrices in which the number of rows does not vary. For this
reason we will only apply Partition 1 (half blocks) for the Blocks Algorithm. The number
of columns increases as we apply the operator. The generated matrices keep their density
constant but have a large number of typical testors.

Next the table with results is presented:

41

φN (I5) Rows Columns Density TT YYC Partition 1

1 5 5 0,2 1 0,003416 0,031299

2 5 10 0,2 32 0,014124 0,034755

3 5 15 0,2 243 0,02497 0,330449

4 5 20 0,2 1024 0,049103 4,168582

5 5 25 0,2 3125 0,115917 37,331452

6 5 30 0,2 7776 0,235226 232,989829

8 5 40 0,2 32768 0,742539 14400<

10 5 50 0,2 100000 2,226354 36000<

Table 3.3: Results for I5 using the φ operator.

Now a graph with the results is shown:

Figure 3.3: Results for I5 using the φ operator.

For this case the Blocks algorithm turns out to be very impractical. These matrices
are relatively small in dimension so the YYC algorithm runs very efficiently and in less
time than Blocks. This is due to the fact that there are a large number of typical testors
in matrices that do not exceed 5 rows.

The Block algorithm turns out to be computationally inefficient since it must perform
a large number of iterations to find the unions of irreducible testors of each Block that will

42

be typical testors of the entire matrix. For example, for N = 5, the Blocks algorithm
must perform about 3125 iterations, which takes much longer than the 5 iterations
performed in YYC. For a more detailed report of these values, you can go to the Annexes
Section 5, in the table 5.3. The Blocks algorithm found the complete set of typical testors
for the matrices φN (I5).

3.1.2 Basic Matrix A Experiments

The basic matrix A has dimension 4x5 with a density of ones of 0, 55. This matrix has 5
typical testors, 4 of cardinality 2 and one of cardinality 3. To this matrix we will apply
the operators defined in this section.

Operator θ applied to A

The generated matrices maintain a large number of rows compared to the number of
columns. The density gradually decreases and the number of testors increases progres-
sively as we apply the operator. Below is the table with the recorded times:

θN (A) Rows Columns Density TT YYC Partition 1 Partition 2

1 4 5 0,55 5 0,029548 0,160351 0,160351

2 16 10 0,3438 10 0,037219 0,080564 0,045398

3 64 15 0,1289 15 0,040026 0,066707 0,070502

4 256 20 0,043 20 0,168861 0,228052 0,222462

5 1024 25 0,0134 25 1,982099 1,493741 1,391179

6 4096 30 0,004 30 35,945845 22,669527 21,262211

7 16384 35 0,0012 35 762,991133 445,540981 419,779761

Table 3.4: Results for A using the θ operator.

For this group of matrices, the Blocks algorithm turns out to be much more efficient
than the YYC algorithm since the number of rows is large compared to the number of
typical testors per Block. This means that it is computationally faster to check which
unions of irreducible testors give typical testors of the entire basic matrix than to search
for row-by-row irreducible testors for the entire basic matrix.

One of the reasons why the proposed algorithm turns out to be more efficient is
that the number of typical testors of the blocks turns out to be small compared to
the number of rows of the blocks. Furthermore, as N grows the Blocks algorithm is
increasingly favored by this fact.

43

This can be seen in the comparative graph of the algorithms times vs. the number
of times the operator below:

Figure 3.4: Results for A using the θ operator.

For example, for N = 6, the YYC algorithm must perform 4096 iterations while the
Block Algorithm performs around 784.

To observe the much more detailed report of these values, you can go to the Annexes
Section 5 in table 5.6 and in table 5.8. Furthermore, for each Partition the Blocks
algorithm was able to find the complete set of irreducible testors for the matrix θN (A).
And, in this particular case Partition 2 turns out to be approximately 1% more efficient
than Partition 1. Which indicates that there is no significant gain in terms of efficiency
when performing one partition or the other.

Operator φ applied to A

This operator generates matrices in which the number of rows does not vary. For this
reason we will only apply Partition 1 (half blocks) for the Blocks Algorithm. The number
of columns increases as we apply the operator. The generated matrices keep their density
constant but have a large number of typical testors regarding the dimension of the
resulting matrices. The table with the experimental results obtained is presented:

44

φN (A) Rows Columns Density TT YYC Partition 1

1 4 5 0,55 5 0,029548 0,160351

2 4 10 0,55 24 0,00652 0,041484

3 4 15 0,55 63 0,008336 0,0782

4 4 20 0,55 128 0,010053 0,17203

5 4 25 0,55 225 0,01791 0,413693

6 4 30 0,55 360 0,025413 0,736256

8 4 35 0,55 768 0,044329 14400<

10 4 40 0,55 1400 0,064266 36000<

Table 3.5: Results for A using the φ operator.

A comparative graph between the execution time of the algorithms vs. the number
of times the operator was applied is displayed:

Figure 3.5: Results for A using the φ operator.

For this group of matrices, the most efficient algorithm turns out to be the YYC. This
is because the number of rows is small (four rows) but these matrices have a large number
of irreducible testors. Furthermore, each Block has a large number of typical testors,
which implies that the number of unions to be tested to determine the irreducible testors
of the complete basic matrix is greater than iterating over the rows, which makes this
process less efficient. However, despite being inefficient, the Block Algorithm managed

45

to find the complete set of testors typical of φN (A).

3.1.3 Basic Matrix B Experiments

The basic matrix B has dimension 4x5 with a density of ones of 0, 50. This matrix has
5 typical testors, three testors of cardinality 2 and two of cardinality 3. To this matrix
we will apply the operators defined in this section.

It is worth mentioning that to obtain matrices A and B, an algorithm was used to
reduce a matrix with random binary inputs to a basic matrix.

Operator θ applied to B

When we apply this operator to matrix B, we obtain matrices with a large number of
rows compared to the number of columns. And the amount of testors as well as the
density are small.

Now the reduced table of results is presented to compare the algorithms:

θN (B) Rows Columns Density TT YYC Partition 1 Partition 2

1 4 5 0,5 5 0,00475 0,030756 0,030756

2 16 10 0,3125 10 0,008634 0,033356 0,040685

3 64 15 0,1172 15 0,066651 0,092834 0,092404

4 256 20 0,0391 20 0,552101 0,391459 0,399752

5 1024 25 0,0122 25 11,563568 5,175375 5,608347

6 4096 30 0,0037 30 303,740156 121,208505 135,161253

Table 3.6: Results for B using the θ operator.

The Blocks algorithm turned out to be much more efficient than the YYC algorithm.
This fact is explained by looking at the number of rows in these matrices vs. the number
of typical testors per block and in the entire basic matrix. The number of rows per block
turns out to be larger than the number of typical testors, which indicates that it takes
more time to finish the iterations by rows than to test the unions of typical testors of
the blocks. To observe these values in greater detail, you can go to the Annexes Section
5 in the tables: 5.9 and 5.11.

In this case, the Blocks algorithm found (for each partition) the full set of typical
testors and Partition 1 turned out to be about 1% more efficient. An efficiency greater

46

than 1% does not give us great indications that in practice it is really beneficial to use
Partition 1.

A graph is shown where the efficiency of each algorithm is evidenced:

Figure 3.6: Results for B using the θ operator.

Operator γ applied to B

Applying this operator to this basic matrix results in a small progressive increase in
the number of columns and rows in the resulting matrices. The density progressively
decreases while the number of typical testors increases greatly.

γN (B) Rows Columns Density TT YYC Partition 1 Partition 2

1 4 5 0,5 5 0,00475 0,030756 0,030756

2 8 10 0,25 25 0,011609 0,026731 0,022235

3 12 15 0,1667 125 0,037024 0,12944 0,132935

4 16 20 0,125 625 0,107366 1,566974 1,574165

5 20 25 0,1 3125 0,438356 44,119327 44,082993

6 24 30 0,0833 15625 22,81533 21600< 21600<

Table 3.7: Results for B using the γ operator.

47

A graph is made using the results obtained:

Figure 3.7: Results for B using the γ operator.

Since the number of rows in this family of matrices is small compared to the number
of testors, the YYC algorithm turns out to be much more efficient. The Block Algorithm
turns out to be impractical since there are a large number of iterations to perform due to
the large number of typical testors found in each Block for each of the Partitions made.
For more detail, review the 5.10 and 5.12 tables in the Annexes Section 5.

As seen in the graph 3.7 there is no clear evidence that there is a significant difference
in terms of efficiency in terms of one Partition or the other. The Blocks algorithm found
the complete set of typical testors for each matrix of this family.

3.1.4 Basic Matrix M1 Experiments

From the basic matrices defined in section 2.6.1, we proceed to define another basic
matrix resulting from the application of an operator in order to obtain greater variety
in the experimentation.

Let M1 be the following:

48

M1 = θ(A,B) =

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
1 1 1 0 0 0 1 1 1 0
1 1 1 0 0 1 0 1 0 1
1 1 1 0 0 0 1 0 0 1
1 1 1 0 0 1 1 0 0 0
1 0 0 0 1 0 1 1 1 0
1 0 0 0 1 1 0 1 0 1
1 0 0 0 1 0 1 0 0 1
1 0 0 0 1 1 1 0 0 0
0 1 1 0 1 0 1 1 1 0
0 1 1 0 1 1 0 1 0 1
0 1 1 0 1 0 1 0 0 1
0 1 1 0 1 1 1 0 0 0
0 1 0 1 1 0 1 1 1 0
0 1 0 1 1 1 0 1 0 1
0 1 0 1 1 0 1 0 0 1
0 1 0 1 1 1 1 0 0 0

M1 is a basic matrix of dimension 16x10 with a density of ones of 0, 3281. This

matrix has 10 irreducible testors, seven have cardinality 2 and three have cardinality 3.
To this matrix we will apply each of the operators defined in this section.

Operator γ applied to M1

When the γ operator is applied to the matrix M1, matrices with a progressive increase
in the number of rows and columns are obtained. The density decreases but the number
of typical testors increases greatly.

Now the table with the results is displayed:

γN (M1) Rows Columns Density TT YYC Partition 1 Partition 2

1 16 10 0,3281 10 0,093533 0,242545 0,242545

2 32 20 0,1641 100 0,128282 0,149861 0,199808

3 48 30 0,1094 1000 0,84736 4,880646 5,24383

4 64 40 0,082 10000 10,647505 338,500018 385,16331

5 80 50 0,0656 100000 135,544081 18000< 18000<

Table 3.8: Results for M1 using the γ operator.

Using the information obtained we can make a graph to better visualize the results:

49

Figure 3.8: Results for M1 using the γ operator.

The Blocks algorithm turned out not to be the most efficient in this case. The YYC
algorithm was able to obtain the complete set of typical testors without problems since
the matrices treated are relatively small in dimension despite having a large number of
irreducible testors. As can be seen in the Annexes section 5 in the table 5.13 and in the
table 5.16, as N increases for each block, the number of typical testors found by Block
no matter what partition has been made. This implies a large number of iterations that
the Block Algorithm must perform, which affects its computational efficiency and makes
it impractical in this type of matrix.

It should be noted that the Block Algorithm was able to find the complete set of
typical testors of the complete basic matrix. Although the Block Algorithm was not the
most efficient, Partition 1 turned out to be much faster computationally than Partition
2.

Operator θ applied to M1

In this case, when applying this operator, we obtain resulting matrices whose number
of rows increases much more than the number of columns. The density is low and the
number of irreducible testors increases progressively.

50

Now the table with the results is displayed:

θN (M1) Rows Columns Density TT YYC Partition 1 Partition 2

1 16 10 0,3281 10 0,093533 0,242545 0,242545

2 256 20 0,041 20 0,29709 0,34286 0,287528

3 4096 30 0,0038 30 100,458358 62,073514 58,046076

Table 3.9: Results for M1 using the θ operator.

Using the results obtained, a comparative graph of the execution time of the algo-
rithms can be made:

Figure 3.9: Results for M1 using the θ operator.

To obtain the set of typical testors by applying the θ operator iteratively on the
matrix M1, it turns out to be much more efficient to use the YYC Algorithm. The
proposed algorithm was able to find the complete set of typical testors of the entire
matrix in less time than the YYC algorithm. This fact may be due to the fact that
the matrices have a large number of rows but few typical testors in general and few
irreducible testors in their blocks. This implies that computationally fewer iterations
are done to check which unions of typical Block testors give testors for the entire basic
matrix than to search for testors row by row of the entire matrix. Also since the N = 2
case, Partition 2 turned out to be more efficient.

51

Operator φ applied to M1

By applying this operator the number of rows and the density remain constant in the
resulting matrices. But the number of typical testors greatly increases.

Following is the table with the results obtained:

φN (M1) Rows Columns Density TT YYC Partition 1

1 16 10 0,3281 10 0,093533 0,242545

2 16 20 0,525 52 0,035331 0,136302

3 16 30 0,525 144 0,075568 0,598597

4 16 40 0,525 304 0,197799 2,12069

5 16 50 0,525 550 0,408643 6,354836

6 16 60 0,525 900 0,807671 16,539908

Table 3.10: Results for M1 using the φ operator.

Below is a comparative graph of the algorithms:

Figure 3.10: Results for M1 using the φ operator.

Because there are a large number of typical testors within each block, the Block
Algorithm is impractical. It is much more computationally efficient to do all 16 row

52

iterations than to check which joins will give us a typical testor for the entire matrix.
However, the Blocks algorithm found the complete set of irreducible testors for φN (M1).
To verify the number of testors found for each Block as well as more information on
these results, you can visit the Annexes Section 5, in particular the table 5.15.

3.1.5 Basic Matrix M2 Experiments

Using the matrices defined in section 2.6.1, let M2 be the following basic matrix:

M2 = γ(A,B) =

x1 x2 x3 x4 x5 x6 x7 x8 X9 X10

1 1 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0 0 0

M2 is a basic matrix of dimension 8x10 with a density of ones of 0, 2625. This matrix

has 25 irreducible testors. M2 has twelve typical testors of cardinality 4, eleven typical
testors of cardinality 5, and two testors of cardinality 6. To this matrix we will apply
each of the operators defined in this section.

Operator γ applied to M2

By applying this operator to M2, resulting matrices with a greater number of rows and
columns are obtained. The number of typical testors increases very fast and they are
matrices with a large number of testors in relation to their size. The density progressively
decreases.

In this case, the Block Algorithm does not turn out to be efficient to find the typical
testors of the matrices of the family γN (M2) as can be seen in graph 3.13 and table 3.13.

This can be explained by the fact that they are relatively small dimension matrices
but have a large number of typical testors. If you look at the tables 5.18 and 5.21 in the
Annexes Section 5, you can see that in each block there is a large number of irreducible
testors (regardless of which partition it is). Which implies that a greater number of

53

iterations must be carried out to test the unions that will serve as typical testors for
the entire matrix than to traverse the entire matrix through all its rows. It is worth
mentioning that the Block Algorithm was able to find the complete set of typical testors
for the basic matrix when it was executed. Furthermore, with the recorded results it is
not possible to identify if there is a Partition that is much more efficient than the other.

γN (M2) Rows Columns Density TT YYC Partition 1 Partition 2

1 8 10 0,2625 25 0,013787 0,015825 0,015825

2 16 20 0,1313 625 0,157914 1,717367 1,624205

3 24 30 0,0875 15625 2,165658 938,675906 1165,59522

4 32 40 0,0656 390625 66,21621 25200< 25200<

Table 3.11: Results for M2 using the γ operator.

A comparative graph of the efficiency (measured in seconds) of the tested algorithms
is available:

Figure 3.11: Results for M2 using the γ operator.

Operator θ applied to M2

If the θ operator is applied to M2, the density decreases but both the number of rows
and columns increases in small ranges. However, the number of typical testors increases

54

sharply and stops the size of the resulting matrices.

Following is the table with the results obtained:

θN (M2) Rows Columns Density TT Time Partition 1 Partition 2

1 8 10 0,2625 25 0,013787 0,015825 0,015825

2 64 20 0,0820 50 0,11095 1,60673 1,585995

3 512 30 0,0154 75 2,18726 949,077128 1174,87477

4 4096 40 0,0026 100 117,796907 21600< 21600<

Table 3.12: Results for M2 using the θ operator.

Now a graph is presented that helps to compare the efficiency of the tested algorithms:

Figure 3.12: Results for M2 using the θ operator.

The Block Algorithm turns out to be inefficient and the best computational perfor-
mance to find the typical testors of the matrices of the family θN (M2) is presented by
the YYC algorithm. This is because the arrays are small in dimension and have a large
number of testors. As can be seen in the Appendix Section 5 in the tables 5.19 and 5.22
for any partition, as N grows the number of typical testors for each block whose joins
must be tested grows on a large scale. Which generates that there is a large number of
iterations that the Block Algorithm must perform to obtain the typical testors of the
entire matrix.

55

For the number of results obtained in this case, there is no clear pattern that one
partition turned out to be much more efficient than the other. When the Block Algorithm
was fully executed, it was able to find the complete set of typical testors for the matrix
θN (M2).

Operator φ applied to M2

By applying this operator the number of rows and the density remain constant in the
resulting matrices. The number of columns increases from 10 to 10. And the number of
typical testors increases greatly for the dimensions of the resulting matrices.

φN (M2) Rows Columns Density TT Time Partition 1

1 8 10 0,2625 25 0,013787 0,015825

2 8 20 0,2625 672 0,068181 1,817258

3 8 30 0,2625 5103 0,262985 100,825489

4 8 40 0,2625 22528 0,957787 1974,79877

Table 3.13: Results for M2 using the φ operator.

Below is a graph based on the results in the table 3.13:

Figure 3.13: Results for M2 using the φ operator.

56

The YYC Algorithm presented a better performance in this case. Although the
Blocks Algorithm was able to find the full set of typical testors for φN (M2), its perfor-
mance was quite slow compared to the YYC Algorithm. As can be seen in the table
5.20 of the Annexes Section 5, the number of typical testors found per block was high.
This implies that a large amount of time must be spent testing each of the possible
joins, which greatly slows down the execution time of the Blocks Algorithm. These
observations can be verified by looking at the graph shown below.

3.1.6 Basic Matrix M3 Experiments

A new basic matrix M3 is defined using the operators defined in section 2.6.1:

M3 = φ(A,B) =

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
1 1 1 0 0 0 1 1 1 0
1 0 0 0 1 1 0 1 0 1
0 1 1 0 1 0 1 0 0 1
0 1 0 1 1 1 1 0 0 0

M3 is a basic matrix of dimension 4x10 with a density of ones of 0, 5250. This matrix

has twenty-four irreducible testors, fifteen of cardinality 2 and nine of cardinality 3. To
this matrix we will apply each of the operators defined in this section.

Operator γ applied to M3

By applying this operator to this basic matrix, a set of resulting matrices is obtained
whose number of rows and columns grows progressively and density decreases as N
increases. They are small matrices in relation to the number of irreducible testors they
have.

Following is the table with the results obtained:

γN (M3) Rows Columns Density TT YYC Partition 1 Partition 2

1 4 10 0,525 24 0,049014 0,060935 0,060935

2 8 20 0,2625 576 0,063097 1,358063 1,701933

3 12 30 0,175 13824 0,968452 863,766025 848,675431

4 16 40 0,1313 331776 26,494519 21600< 21600<

Table 3.14: Results for M3 using the γ operator.

57

Below is a comparative graph of the computational efficiency of the algorithms based
on the results of the table above:

Figure 3.14: Results for M3 using the γ operator.

Of the tested algorithms, the most efficient is YYC. This algorithm found in much
smaller execution times the complete set of irreducible testors for each matrix γN (M3).

Although the Blocks Algorithm was able to accomplish the same goal, the time it
finished performing this task was slowed down by the number of typical testors found in
each Block for each partition, as can be seen in the tables 5.23 and 5.26 of the Annexes
Section. This means that many union tests must be performed in order to find typical
testors of the entire matrix. On the other hand, the matrices of the family γN (M3) have
a very small number of rows compared to the number of irreducible testors. This fact
makes it a better strategy to search for irreducible testors by row than to search for
them in the possible unions of typical testors of the blocks. On the other hand, there is
no clear evidence that one of the two partitions was more efficient than the other.

Operator θ applied to M3

If the θ operator is applied to the basic matrix M3, the resulting matrices are obtained
whose number of rows grows much faster than the number of columns. The density
drops and the number of testors increases as N increases.

58

Now the table with the results is displayed:

θN (M3) Rows Columns Density TT YYC Partition 1 Partition 2

1 4 10 0,525 24 0,049014 0,060935 0,060935

2 16 20 0,525 48 0,08538 0,137144 0,127581

3 64 30 0,2461 72 0,41647 0,45491 0,438584

4 256 40 0,082 96 14,806416 6,03836 6,984725

5 1024 50 0,0256 120 806,866905 265,149842 326,694497

Table 3.15: Results for M3 using the θ operator.

A comparative graph of the performance of the algorithms is displayed:

Figure 3.15: Results for M3 using the θ operator.

The Blocks Algorithm turns out to be the one with the best computational per-
formance to find the typical testors of the θN (M3) matrices for each N . This is a
consequence of the fact that the matrices are of large dimension compared to the num-
ber of irreducible testors they have. As can be seen in the results table, as N grows
the number of rows grows at a large scale, which slows down the YYC algorithm. If it
is observed in the Annexes Section 5, the table 5.24 for Partition 1, it is evident that
the number of typical testors found for each block is less than the number of rows of
the block since the case N = 3 which favors the performance of the proposed algorithm.
The Block Algorithm was able to find the complete set of typical testors for the matrix

59

θN (M3) for each N . Also, Partition 2 turned out to be more efficient than Partition 1
in this particular case.

Operator φ applied to M3

By applying this operator the number of rows and the density remain constant in the
resulting matrices. The number of columns increases from 10 to 10. And the number of
typical testors increases greatly for the dimensions of the resulting matrices.

Next is the complete table of results:

φN (M3) Rows Columns Density TT YYC Partition 1

1 4 10 0,525 24 0,049014 0,060935

2 4 20 0,525 132 0,011605 0,187471

3 4 30 0,525 378 0,0283447 0,89801

4 4 40 0,525 816 0,048724 3,724487

5 4 50 0,525 1500 0,072615 11,831504

Table 3.16: Results for M3 using the φ operator.

Now a comparative graph of the performance of the algorithms:

Figure 3.16: Results for M3 using the φ operator.

60

The best algorithm to apply in this case is the YYC. Its execution time was always
less than the time recorded for the Blocks Algorithm. This result can be explained by
observing the table 5.25 in the Annexes Section 5, where it is evident that for each block
there were a large number of typical testors. That is, there were a lot of joins to test.
So, for this case it is better to search for the typical testors by row than to test unions
of typical testors of the blocks. It should be noted that the Block Algorithm was able
to find the complete set of testors typical of the φN (M3) matrices for each N .

3.2 Parallel Computing and Basic Synthetic Matrices

As mentioned in the previous section, the efficiency of the Blocks algorithm drops con-
siderably when the number of unions of typical testors to be tested is very large. This
drawback of the method could be combated by not using the full set of typical testors
for the blocks but the parallelization process will not help the proposed method much
in this case.

Thus, in order to properly analyze the efficiency of parallelizing the algorithm we will
focus only in tests with basic synthetic matrices in which the Sequential Blocks Algorithm
has turned out to be more efficient than the YYC Algorithm. This is because if the Blocks
Algorithm in its first sequential phase turned out to be very inefficient compared to the
YYC algorithm, parallelization is unlikely to become a significant improvement.

The basic matrices I5, A, B, M1 and M2 will be used. As before, we will apply
operators to these matrices. Also, by using some of the results of the previous section
we can more completely compare the improvement of parallel computing.

Secondly, since there is no conclusive evidence that it is relevant (in terms of compu-
tational efficiency) to perform Partition 1 or Partition 2, for this stage of experimentation
we will use only Partition 1.

We will now explain the meanings of the labels of the columns of the tables that
contain the results for this section. The first column tells us the number of times the
operator O was applied to the basic matrix M . Columns two, three and four are char-
acteristic of the basic matrix X = ON (M). Then TT column refers to the number of
typical testors for the matrix X. The column labeled YYC records the time in seconds
that it took to this algorithm to find all the typical testors of X. The column labeled
Sequential tells us the total time (in seconds) the Blocks Algorithm took to execute se-
quentially. The column labeled Parallel records the total time measured in seconds that
it took for the Blocks Algorithm to execute completely when parallelization is applied
by using algorithm 4.

61

3.2.1 Basic Matrix I5 Experiments Parallelization

Due to the favorable results for the Sequential Blocks Algorithm (3) detailed in the
previous section for the matrix I5, tests are performed using the Parallelized Blocks
Algorithm (4) making use of two of the three operators defined in Section 2.5.1.

Operator γ applied to I5

The γ-Operator was recursively applied to the matrix I5, the complete basic matrix was
divided into two blocks trying to have the same number of rows. Below is the table with
the experimental results obtained in this case:

γN (I5) Rows Columns Density TT YYC Sequential Parallel

1 5 5 0.2000 1 0.00537 0.03130 0.06524

2 10 10 0.1000 1 0.00594 0.01917 0.06323

3 15 15 0.0667 1 0.00689 0.01330 0.05930

4 20 20 0.0500 1 0.00610 0.00715 0.04792

5 25 25 0.0400 1 0.01087 0.00987 0.05457

6 30 30 0.0333 1 0.01744 0.01027 0.05623

8 40 40 0.0250 1 0.03145 0.01510 0.06147

10 50 50 0.0200 1 0.03036 0.01560 0.04705

Table 3.17: Results parallelization for I5 using the γ operator.

In this case, the parallelization of the algorithm turns out to be inefficient. This
may be due to the fact that the dimension of the matrices obtained by applying the
operator θ on the matrix I5 is relatively small in dimension. Being small in size, it
is not computationally efficient to distribute tasks to workers and to apply paralleling
computation.

In other words, for the time it takes for the computer to distribute the tasks to its
workers, it takes more time than carrying out the process sequentially.

This result may be an indicator that in the case of small-dimensional matrices, the
parallelization process would not necessarily be more efficient. In fact, the Blocks Al-
gorithm could be used sequentially and avoid the computer having to distribute tasks
internally. As before, the complete set of typical testors was found.

These observations can be seen if we make a comparative graph of the efficiency of
the algorithms based on table 3.17:

62

Figure 3.17: Parallelization Results for I5 using the γ operator.

Operator θ applied to I5

When we apply the θ-Operator recursively to the matrix I5, the following experimental
results are obtained:

θN (I5) Rows Columns Density TT YYC Sequential Parallel

1 5 5 0.200000 1 0.003416 0.031299 0.089988

2 25 10 0.080000 2 0.059171 0.076950 0.113450

3 125 15 0.024000 3 0.055460 0.094993 0.116216

4 625 20 0.006400 4 0.288344 0.291037 0.239069

5 3125 25 0.001600 5 4.557188 3.835996 2.545781

6 15625 30 0.000384 6 425.640116 143.165474 52.509040

Table 3.18: Results parallelization for I5 using the θ operator.

In this case, the parallelization of the algorithm turns out to be very successful. Of
the three algorithms tested, the most efficient is the Parallelized Blocks Algorithm.

A graph obtained from the experimental results is shown in Figure 3.18. In this
graph, it is evident that as N becomes larger, the efficiency of the parallelized algorithm

63

also increases. That is, the distribution of tasks within the multicores turns out to be
efficient. This makes sense when looking at the dimension of the matrices on which the
algorithm preformed better. As before, the complete set of typical testors was found.

Figure 3.18: Parallelization Results for I5 using the θ operator.

3.2.2 Basic Matrix A Experiment Parallelization

If the operator θ is applied to the basic matrix A recursively and the Blocks sequential
algorithm, its parallelized version and the YYC algorithm are applied, the following
execution times dependent on N are obtained:

θN (A) Rows Columns Density TT YYC Sequential Parallel

1 4 5 0.5500 5 0.02955 0.16035 0.20046

2 16 10 0.3438 10 0.03722 0.08056 0.12627

3 64 15 0.1289 15 0.04003 0.06671 0.12347

4 256 20 0.0430 20 0.16886 0.22805 0.18971

5 1024 25 0.0134 25 1.98210 1.49374 0.99190

6 4096 30 0.0040 30 35.94585 22.66953 14.12854

7 16384 35 0.0012 35 762.99113 445.54098 276.71959

Table 3.19: Results parallelization for A using the θ operator.

64

Next, a comparative graph of the performance of the algorithms:

Figure 3.19: Parallelization Results for A using the θ operator.

As evidenced in table 3.19 and in graph 3.19, the best performance for this family of
matrices is carried out by the Parallelized Blocks algorithm. It is efficient that the tasks
are distributed to the multicores that the computer has and this improves the efficiency
of the sequential algorithm.

3.2.3 Basic Matrix B Experiment Parallelization

Next the experimental results obtained for B matrix when θ operator is applied:

θN (B) Rows Columns Density TT YYC Sequential Parallel

1 4 5 0.5000 5 0.004750 0.030756 0.078621

2 16 10 0.3125 10 0.008634 0.033356 0.070697

3 64 15 0.1172 15 0.066651 0.092834 0.108287

4 256 20 0.0391 20 0.552101 0.391459 0.293576

5 1024 25 0.0122 25 11.563568 5.175375 3.289233

6 4096 30 0.0037 30 303.740156 121.208505 77.532677

Table 3.20: Results parallelization for B using the θ operator.

65

The following is a comparative graph of the performance of the algorithms:

Figure 3.20: Parallelization Results for B using the θ operator.

The algorithm that manages to obtain the complete set of typical testors for this
family of basic matrices faster is that of Parallelized Blocks. In other words, it is worth
doing the parallelization process as it does increase the efficiency of the sequential method
discussed in the previous section.

3.2.4 Basic Matrix M1 Experiment Parallelization

Below are the results obtained for M1:

θN (M1) Rows Columns Density TT YYC Sequential Parallel

1 16 10 0.3281 10 0.093533 0.242545 0.281115

2 256 20 0.041 20 0.29709 0.34286 0.266416

3 4096 30 0.0038 30 100.458358 62.073514 38.160306

Table 3.21: Results parallelization for M1 using the θ operator.

Due to the large amount that is obtained, even when applying the θ operator to

66

this basic matrix a few times, the process of parallelizing the Blocks algorithm greatly
increases the efficiency of the method. This can be visually evidenced in the following
graph:

Figure 3.21: Parallelization Results for M1 using the θ operator.

3.2.5 Basic Matrix M3 Experiment Parallelization

Following is the table with the results obtained:

θN (M3) Rows Columns Density TT YYC Sequential Parallel

1 4 10 0.525 24 0.049014 0.060935 0.094418

2 16 20 0.525 48 0.08538 0.137144 0.162983

3 64 30 0.2461 72 0.41647 0.45491 0.369814

4 256 40 0.082 96 14.806416 6.03836 3.80871

5 1024 50 0.0256 120 806.866905 265.149842 151.159575

Table 3.22: Results parallelization for M3 using the θ operator.

In this case, implementing parallelization in the Blocks Algorithm turns out to be
very helpful. The method greatly increases efficiency, which means that the distribution
of tasks in multicores does present an improvement.

67

A graph is presented to observe the efficiency curves of the tested algorithms:

Figure 3.22: Parallelization Results for M3 using the θ operator.

3.3 Application to QSAR biodegradation Data Set

First, the classification neural network was designed using the full number of base fea-
tures. Of the 1055 instances, 500 were used for the training process and 555 for testing.
Because the base is not balanced, 250 random items from each class were taken for the
training process. The remaining elements of each class were part of the test set. The
basic matrix obtained in this case had a dimension of 706×41.

In the training stage, the Aaccuracy of the neural netword was 90, 00%. What
turns out to be acceptable considering that the base is not equitable in the number of
elements per class. For the test stage, the neural network had 85.77% accuracy. Below
is the confusion matrix obtained for the neural network using all the features:

68

Predicted
RB NRB

A
ct
u
al RB 87,74% 12,26%

NRB 14,70% 85,30%

Table 3.23: Confusion Matrix for the model trained with all attributes

The percentage of elements of the RB class and NRB class that are misclassified as
NRB are due to the fact that the base does not have an equal distribution of elements
of classes. As they are 356 ready biodegradable molecules and 699 non-ready. But this
is a risk of working with real bases, that a priori we don’t know if it will be possible to
obtain an equitable percentage of training for each class.

This preamble helps us to analyze the database and the neural network. Now the
proposed method and the results obtained for classification using only selected features
are applied.

Below is a table that records the ejecution time (measured in seconds) to find the
typical testors of the basic matrix for the biodegradable base QSAR [23]:

Algorithm Total Execution Time

YYC 18.8944

Sequential Blocks Algorithm 10.6227

Parallel Blocks Algorithm 7.9238

Table 3.24: Executions times

Once the typical testors for this base were obtained, the same neural network used
aboved was trained using only the characteristics belonging to one single testor of length
six. We preserved the structure of the neural network that allowed us to obtain the table
3.3.

Out of a total of 41 characteristics, the new classification model only needs 6 to
be able to predict. In other words, we reduce by approximately 85% the number of
characteristics necessary to know if a molecule is ready or not ready biodegradable.

The characteristics selected for the neural network are the following:

• Number of heavy atoms

• Frequency of C-N at topological distance 3

69

• Frequency of C-O at topological distance 3

• Number of CRX3

• Leading eigenvalue from adjacency matrix (Lovasz-Pelikan index)

• Second Mohar index from Laplace matrix

It is worth mentioning that to obtain the detailed list of all the characteristics, you can
go to the reference [23].

In general, the new model for the training set obtains an accuracy of 84,20%. For
the test set, we obtained 81,57% of accuracy.

Below is the confusion matrix obtained after training the neural network only with
the selected features using Testor Theory:

Predicted
RB NRB

A
ct
u
al RB 88,68% 11,32%

NRB 19,60% 80,40%

Table 3.25: Confusion Matrix for the model trained with only selected features

Although in this case we are still affected by the inequality of elements by class of
the base, the percentage of well classified for RB increases. This is favorable since it
is the class of which there are fewer members. On the other hand, the number of well
classified if an element belongs to the NRB class has been reduced about 5%. This is
not entirely inefficient considering that we only used 6 of 41 variables.

70

Chapter 4

CONCLUSIONS AND FUTURE
WORK

Regarding the performance of the proposed algorithm on the set of basic synthetic test
matrices, it can be concluded that it is not appropriate to apply it in all cases. The
success cases turn out to be when the matrix has a large number of rows, or is generally
large in dimension, but has relatively few typical testors or the goal is not to find the
complete set of irreducible testors. Regarding the parallelization of the proposed method,
it can be concluded that it is successful when the dimension of the matrix is large.

Regarding the application on a real basis, we conclude that the method allows to
perform acceptable classifications using neural networks and greatly reducing the number
of attributes needed to classify. This is an advantage of great importance when working
with massive databases with many various and looking for quick results in the short
term for classification.

One of the advantages of the method proposed but yet to be explore is that when
using the Blocks algorithm in real databases as an application form, the number of typical
testors that to find can be limited. In real application problems, it is not necessary to
find the complete set of typical testors. For example, in classification problems it is
enough to find one typical testor that efficiently classifies the classes and thus a neural
network can be trained more efficiently without using the full set of features.

On the other hand, it is possible to improve much more the performance of the
proposed algorithm. In future works, the idea would be to try defining more than two
blocks for large arrays. And then test the unions. In this case applying parallelization
could be even more profitable for the method.

71

Also, the set of typical testors could for each block could also be limited. In other
words, not to use the complete set but only a part of it, taking into account that to train
a neural network by trial and error it is not necessary to obtain the complete set. This
could reduce the time it takes for the Blocks Algorithm to run as it would have fewer
unions of typical testors to test.

Another possible improvement would be the fact of parallelizing more the algorithm.
By this I mean to parallelized the YYC as mentioned in [29].

Also as part of future work, it would be interesting to use other types of algorithms to
find typical testors in the Blocks. Depending on the characteristics of the basic matrices,
the most efficient algorithm for that case could be chosen and used in Step 1 of the Blocks
Algorithm. The rest of the method process would remain the same. With this, we want
to note that this proposed method can be used with algorithms other than YYC and
could be beneficial in computational terms.

72

Chapter 5

ANNEXES

5.1 Full Tables of Results for the Set of Synthetic Test
Matrices

In this section we present the complete tables of results obtained during the experimen-
tation part of the Blocks Algorithm for all the basic matrices defined in this work.

The number of rows of each block is shown, the time that the YYC algorithm took to
obtain all the testors for each block, the time that the Blocks algorithm took to execute
to obtain the typical testors of the basic matrix, the total time of this process and the
percentage of typical testors obtained that coincide with those of the complete basic
matrix obtained previously. Time is measured in seconds.

73

5.1.1 Complete Results for I5

We present the complete tables of results obtained for the matrix I5.

Tables of Results of I5 with Partition 1

Below is the table with the complete results for matrix I5 using Partition 1 and the
Blocks algorithm for the γ operator.

γN (I5) Rows TT YYC Blocks Total Time Comparisons

1
B1 2 1 0.004228 0.025588 0.031299

100%
B2 3 1 0.001483

2
B1 5 1 0.002940 0.015140 0.019170

100%
B2 5 1 0.001090

3
B1 8 1 0.002422 0.009060 0.013305

100%
B2 7 1 0.001823

4
B1 10 1 0.001936 0.002708 0.007149

100%
B2 10 1 0.002505

5
B1 13 1 0.003732

0.001409 0.009869 100%
B2 12 1 0.004728

6
B1 15 1 0.003496

0.003586 0.010271 100%
B2 15 1 0.003189

8
B1 20 1 0.005202

0.005900 0.015096 100%
B2 20 1 0.003994

10
B1 25 1 0.007096

0.004726 0.015599 100%
B2 25 1 0.003777

Table 5.1: Complete results for I5 using the γ operator.

74

Now the table with the complete results for matrix I5 using the Partition 1 and the
Blocks algorithm for the θ is presented.

θN (I5) Rows TT YYC Blocks Total Time Comparisons

1
B1 2 1 0,004228

0,025588 0,031299 100%
B2 3 1 0,001483

2
B1 12 3 0,013435

0,052456 0,07695 100%
B2 13 3 0,011059

3
B1 62 5 0,025168

0,046309 0,094993 100%
B2 63 5 0,023516

4
B1 312 7 0,094012

0,046236 0,291037 100%
B2 313 7 0,150789

5
B1 1563 9 1,382594

0,248859 3,835996 100%
B2 1562 9 2,204543

6
B1 7813 11 84,24754

6,133656 143,165474 100%
B2 7812 11 52,784278

Table 5.2: Complete results for I5 using the θ operator.

Following, we present the table with the complete results for matrix I5 using Partition
1 and the Blocks algorithm for the φ operator.

φN (I5) Rows TT YYC Blocks Total Time Comparisons

1
B1 2 1 0,004228

0,025588 0,031299 100%
B2 3 1 0,001483

2
B1 2 4 0,00262

0,023827 0,034755 100%
B2 3 8 0,008308

3
B1 2 9 0,001376

0,325295 0,330449 100%
B2 3 27 0,003778

4
B1 2 16 0,001733

4,158029 4,168582 100%
B2 3 64 0,00882

5
B1 2 25 0,002016

37,320405 37,331452 100%
B2 3 125 0,009031

6
B1 2 36 0,004124

232,970714 232,989829 100%
B2 3 216 0,014991

8
B1 2 64 0,00428

14400< - -
B2 3 512 0,030842

10
B1 2 100 0,012028

36000< - -
B2 3 1000 0,045941

Table 5.3: Complete results for I5 using the φ operator.

75

Tables with Results of I5 with Partition 2

Below is the table with the complete results for matrix I5 using Partition 2 and the
Blocks algorithm for the γ operator.

γN (I5) Rows TT YYC Blocks Total Time Comparisons

1
B1 2 1 0,004228

0,025588 0,031299 100%
B2 3 1 0,001483

2
B1 3 1 0,001305

0,021207 0,024763 100%
B2 7 1 0,002251

3
B1 4 1 0,001176

0,006567 0,01042 100%
B2 11 1 0,002677

4
B1 5 1 0,000965 0,002408

0,006432 100%
B2 15 1 0,003059

5
B1 6 1 0,001982

0,00176 0,008085 100%
B2 19 1 0,004343

6
B1 8 1 0,005526

0,001636286 0,013504286 100%
B2 22 1 0,006342

8
B1 10 1 0,002052

0,002739 0,009752 100%
B2 30 1 0,004961

10
B1 12 1 0,002241

0,004696 0,011771 100%
B2 38 1 0,004834

Table 5.4: Complete results for I5 using the operator γ.

76

Now the table with the complete results for matrix I5 using the Partition 2 and the
Blocks algorithm for the θ is presented.

θN (I5) Rows TT YYC Blocks Total Time Comparisons

1
B1 2 1 0,004228

0,025588 0,031299 100%
B2 3 1 0,001483

2
B1 6 3 0,001825

0,014337 0,025822 100%
B2 19 3 0,00966

3
B1 32 5 0,006821

0,017784 0,071902 100%
B2 93 5 0,047297

4
B1 156 7 0,056168

0,044925 0,329386 100%
B2 469 7 0,228293

5
B1 782 9 0,441939

0,273044 4,153209 100%
B2 2343 9 3,438226

6
B1 3906 11 15,520486

7,742165 166,028161 100%
B2 11719 11 142,76551

Table 5.5: Complete results for I5 using the θ operator.

77

5.1.2 Complete Results for A

We present the complete tables of results obtained for the matrix A.

Tables of Results of A with Partition 1

Below is the table of the complete results for matrix A using Partition 1 and the Blocks
algorithm for the θ operator.

θN (A) Rows TT YYC Blocks Total Time Comparisons

1
B1 2 3 0,004093

0,152553 0,160351 100%
B2 2 3 0,003705

2
B1 8 8 0,006703

0,06968 0,080564 100%
B2 8 8 0,004181

3
B1 32 13 0,02154

0,035069 0,066707 100%
B2 32 13 0,010098

4
B1 128 18 0,091338

0,066581 0,228052 100%
B2 128 18 0,070133

5
B1 512 23 0,824677

0,155648 1,493741 100%
B2 512 23 0,513416

6
B1 2048 28 13,4796

0,65395 22,669527 100%
B2 2048 28 8,535977

7
B1 8192 33 274,900442

6,248284 445,540981 100%
B2 8192 33 164,392255

Table 5.6: Complete results for A using the θ operator.

78

Following, we present the table with the complete results for matrix A using Partition
1 and the Blocks algorithm for the φ operator.

φN (A) Rows TT YYC Blocks Total Time Comparisons

1
B1 2 3 0,004093

0,152553 0,160351 100%
B2 2 3 0,003705

2
B1 2 10 0,001239

0,038489 0,041484 100%
B2 2 8 0,001756

3
B1 2 21 0,001994

0,073963 0,0782 100%
B2 2 15 0,002243

4
B1 2 36 0,004188

0,164785 0,17203 100%
B2 2 24 0,003057

5
B1 2 55 0,005292

0,40576 0,413693 100%
B2 2 35 0,002641

6
B1 2 78 0,005193

0,728804 0,736256 100%
B2 2 48 0,002259

8
B1 2 136 0,010563

10800< - -
B2 2 80 0,00514

10
B1 2 210 0,013255

28800< - -
B2 2 120 0,008555

Table 5.7: Complete results for A using the φ operator.

79

Table of Results of A with Partition 2

Below is the table with the complete results for matrix A using Partition 1 and the
Blocks algorithm for the θ operator.

θN (A) Rows TT YYC Blocks Total Time Comparisons

1
B1 2 3 0,004093

0,152553 0,160351 100%
B2 2 3 0,003705

2
B1 4 8 0,004893

0,032878 0,045398 100%
B2 12 8 0,007627

3
B1 16 13 0,008998

0,038179 0,070502 100%
B2 48 13 0,023325

4
B1 64 18 0,042162

0,06365 0,222462 100%
B2 192 18 0,11665

5
B1 256 23 0,203067

0,13454 1,391179 100%
B2 768 23 1,053572

6
B1 1024 28 2,30793

0,715668 21,262211 100%
B2 3072 28 18,238613

7
B1 4096 33 41,602925

6,950251 419,779761 100%
B2 12288 33 371,226585

Table 5.8: Complete results for A using the θ operator.

80

5.1.3 Complete Results for B

Tables of Results of B with Partition 1

Below is the table of the complete results for matrix B using Partition 1 and the Blocks
algorithm for the θ operator.

θN (B) Rows TT YYC Blocks Total Time Comparisons

1
B1 2 5 0,002954

0,025685 0,030756 100%
B2 2 2 0,002117

2
B1 8 10 0,006173

0,023826 0,033356 100%
B2 8 7 0,003357

3
B1 32 15 0,029414

0,041003 0,092834 100%
B2 32 12 0,022417

4
B1 128 20 0,203483

0,06655 0,391459 100%
B2 128 17 0,121426

5
B1 512 25 3,218218

0,157563 5,175375 100%
B2 512 22 1,799594

6
B1 2048 30 77,883362

0,828213 121,208505 100%
B2 2048 27 42,49693

Table 5.9: Complete results for B using the θ operator.

Following is the table with the complete results and the Blocks algorithm for the γ
operator.

γN (B) Rows TT YYC Blocks Total Time Comparisons

1
B1 2 5 0,002954

0,025685 0,030756 100%
B2 2 2 0,002117

2
B1 4 5 0,001681

0,023282 0,026731 100%
B2 4 5 0,001768

3
B1 6 25 0,006473

0,120388 0,12944 100%
B2 6 10 0,002579

4
B1 8 25 0,008278

1,550225 1,566974 100%
B2 8 25 0,008471

5
B1 10 125 0,018182

44,087545 44,119327 100%
B2 10 50 0,0136

6
B1 12 125 0,05613

21600< - -
B2 12 125 0,035807

Table 5.10: Complete results for B using the γ operator.

81

Tables of Results of B with Partition 2

Below is the table with the complete results for matrix B using Partition 1 and the
Blocks algorithm for the θ operator.

θN (B) Rows TT YYC Blocks Total Time Comparisons

1
B1 2 5 0,002954

0,025685 0,030756 100%
B2 2 2 0,002117

2
B1 4 8 0,001688

0,02976 0,040685 100%
B2 12 9 0,009237

3
B1 16 13 0,011469

0,040069 0,092404 100%
B2 48 14 0,040866

4
B1 64 18 0,067944

0,064226 0,399752 100%
B2 192 19 0,267582

5
B1 256 23 0,632752

0,167011 5,608347 100%
B2 768 24 4,808584

6
B1 1024 28 13,07284

0,911034 135,161253 100%
B2 3072 29 121,177379

Table 5.11: Complete results for B using the θ operator.

Following is the table with the complete results for matrix B using Partition 2 and
the Blocks algorithm for the γ operator.

γN (B) Rows TT YYC Blocks Total Time Comparisons

1
B1 2 5 0,002954

0,025685 0,030756 100%
B2 2 2 0,002117

2
B1 2 5 0,001882

0,016967 0,022235 100%
B2 6 10 0,003386

3
B1 3 5 0,001442

0,121124 0,132935 100%
B2 9 50 0,010369

4
B1 4 5 0,001672

1,542139 1,574165 100%
B2 12 125 0,030354

5
B1 5 15 0,002105

43,989237 44,082993 100%
B2 15 500 0,091651

6
B1 6 25 0,003593

21600< - -
B2 18 1250 0,19521

Table 5.12: Complete results for B using the γ operator.

82

5.1.4 Complete Results for M1

We present the complete tables of results obtained for the matrix M1.

Tables with Results of M1 with Partition 1

Below is the table with the complete results for matrix M1 using Partition 1 and the
Blocks algorithm for the γ operator.

γN (I5) Rows TT YYC Blocks Total Time Comparisons

1
B1 8 8 0,009885

0,225385 0,242545 100%
B2 8 8 0,007275

2
B1 16 10 0,021829

0,106078 0,149861 100%
B2 16 10 0,021954

3
B1 24 80 0,065116

4,746237 4,880646 100%
B2 24 80 0,069293

4
B1 32 100 0,073914

338,340506 338,500018 100%
B2 32 100 0,085598

5
B1 40 800 0,506273

18000< - -
B2 40 800 0,592656

Table 5.13: Complete results for M1 using the γ operator.

Now the table with the complete results for matrix M1 using the Partition 1 and the
Blocks algorithm for the θ is presented.

θN (M1) Rows TT YYC Blocks Total Time Comparisons

1
B1 8 8 0,009885

0,225385 0,242545 100%
B2 8 8 0,007275

2
B1 128 18 0,152795

0,079967 0,34286 100%
B2 128 18 0,110098

3
B1 2048 28 38,064186

0,75932 62,073514 100%
B2 2048 28 23,250008

Table 5.14: Complete results for M1 using the θ operator.

Following, we present the table with the complete results for matrix M1 using Par-
tition 1 and the Blocks algorithm for the φ operator.

83

φN (M1) Rows TT YYC Blocks Total Time Comparisons

1 B1 8 8 0,009885
0,225385 0,242545 100%

B2 8 8 0,007275

2
B1 8 38 0,015327

0,111082 0,136302 100%
B2 8 36 0,009893

3
B1 8 102 0,041917

0,526178 0,598597 100%
B2 8 96 0,030502

4
B1 8 212 0,067842

1,99583 2,12069 100%
B2 8 200 0,057018

5
B1 8 380 0,102456

6,179356 6,354836 100%
B2 8 360 0,073024

6
B1 8 618 0,182065

16,227804 16,539908 100%
B2 8 588 0,130039

Table 5.15: Complete results for M1 using the φ operator.

Tables with Results of M1 with Partition 2

Below is the table with the complete results for matrix M1 using Partition 2 and the
Blocks algorithm for the γ operator.

γN (I5) Rows TT YYC Blocks Total Time Comparisons

1
B1 8 8 0,009885

0,225385 0,242545 100%
B2 8 8 0,007275

2
B1 8 8 0,002799

0,132712 0,199808 100%
B2 24 80 0,064297

3
B1 12 10 0,005406

4,718812 5,24383 100%
B2 36 800 0,519612

4
B1 16 10 0,0095

384,324964 385,16331 100%
B2 48 1000 0,828846

5
B1 20 80 0,035205

18000< - -
B2 60 8000 8,403873

Table 5.16: Complete results for M1 using the γ operator.

Now the table with the complete results for matrix M1 using the Partition 2 and the
Blocks algorithm for the θ is presented.

84

θN (M1) Rows TT YYC Blocks Total Time Comparisons

1
B1 8 8 0,009885

0,225385 0,242545 100%
B2 8 8 0,007275

2
B1 64 18 0,046841

0,076909 0,287528 100%
B2 192 18 0,163778

3
B1 1024 28 6,68468

0,782022 58,046076 100%
B2 3072 28 50,579374

Table 5.17: Complete results for M1 using the θ operator.

85

5.1.5 Complete Results for M2

We present the complete tables of results obtained for the matrix M2.

Tables with Results of M2 with Partition 1

Below is the table with the complete results for matrix M2 using Partition 1 and the
Blocks algorithm for the γ operator.

γN (M2) Rows TT YYC Blocks Total Time Comparisons

1
B1 4 5 0,00195

0,010342 0,015825 100%
B2 4 5 0,003533

2
B1 8 25 0,029793

1,677296 1,717367 100%
B2 8 25 0,010278

3
B1 12 125 0,028583

938,615053 938,675906 100%
B2 12 125 0,03227

4
B1 16 625 0,086856

25200< - -
B2 16 625 0,106558

Table 5.18: Complete results for M2 using the γ operator.

Now the table with the complete results for matrix M2 using the Partition 1 and the
Blocks algorithm for the θ is presented.

θN (M2) Rows TT YYC Blocks Total Time Comparisons

1 B1 4 5 0,00195
0,010342 0,015825 100%

B2 4 5 0,003533

2 B1 32 30 0,008957
1,591246 1,60673 100%

B2 32 30 0,006527

3 B1 256 55 0,029354
949,01814 949,077128 100%

B2 256 55 0,029634

Table 5.19: Complete results for M2 using the θ operator.

Following, we present the table with the complete results for matrix M2 using Par-
tition 1 and the Blocks algorithm for the φ operator.

86

φN (M2) Rows TT YYC Blocks Total Time Comparisons

1
B1 4 5 0,00195

0,010342 0,015825 100%
B2 4 5 0,003533

2
B1 4 24 0,00328

1,809769 1,817258 100%
B2 4 28 0,004209

3
B1 4 63 0,005971

100,809195 100,825489 100%
B2 4 81 0,010323

4
B1 4 128 0,011858

1974,770176 1974,798767 100%
B2 4 176 0,016733

Table 5.20: Complete results for M2 using the φ operator.

Tables with Results of M2 with Partition 2

Below is the table with the complete results for matrix M2 using Partition 2 and the
Blocks algorithm for the γ operator.

γN (M2) Rows TT YYC Blocks Total Time Comparisons

1
B1 4 5 0,00195

0,010342 0,015825 100%
B2 4 5 0,003533

2
B1 4 5 0,002277

1,587369 1,624205 100%
B2 12 125 0,034559

3
B1 6 25 0,004047

1165,424106 1165,595216 100%
B2 18 1250 0,167063

4
B1 8 25 0,003025

25200< - -
B2 24 15625 2,165193

Table 5.21: Complete results for M2 using the γ operator.

Now the table with the complete results for matrix M2 using the Partition 2 and the
Blocks algorithm for the θ is presented.

θN (M2) Rows TT YYC Blocks Total Time Comparisons

1
B1 4 5 0,00195

0,010342 0,015825 100%
B2 4 5 0,003533

2
B1 16 28 0,001405

1,552421 1,585995 100%
B2 48 40 0,032169

3
B1 128 53 0,004316

1174,698747 1174,874773 100%
B2 384 65 0,17171

Table 5.22: Complete results for M2 using the θ operator.

87

5.1.6 Complete Results for M3

We present the complete tables of results obtained for the matrix M3.

Tables with Results of M3 with Partition 1

Below is the table with the complete results for matrix M3 using Partition 1 and the
Blocks algorithm for the γ operator.

γN (M3) Rows TT YYC Blocks Total Time Comparisons

1
B1 2 14 0,003765

0,051675 0,060935 100%
B2 2 7 0,005495

2
B1 4 24 0,003326

1,352554 1,358063 100%
B2 4 24 0,002183

3
B1 6 336 0,031085

863,711086 863,766025 100%
B2 6 168 0,023854

4
B1 8 576 0,063481

21600< - -
B2 8 576 0,065862

Table 5.23: Complete results for M3 using the γ operator.

Now the table with the complete results for matrix M3 using the Partition 1 and the
Blocks algorithm for the θ is presented.

θN (M3) Rows TT YYC Blocks Total Time Comparisons

1
B1 2 14 0,003765

0,051675 0,060935 100%
B2 2 7 0,005495

2
B1 8 38 0,018294

0,10857 0,137144 100%
B2 8 31 0,01028

3
B1 32 62 0,13427

0,221068 0,45491 100%
B2 32 55 0,099572

4
B1 128 86 3,529959

0,506778 6,03836 100%
B2 128 79 2,001623

5
B1 512 110 170,282129

1,727866 265,149842 100%
B2 512 103 93,139847

Table 5.24: Complete results for M3 using the θ operator.

Following, we present the table with the complete results for matrix M3 using Par-
tition 1 and the Blocks algorithm for the φ operator.

88

φN (M3) Rows TT YYC Blocks Total Time Comparisons

1
B1 2 14 0,003765

0,051675 0,060935 100%
B2 2 7 0,005495

2
B1 2 52 0,00493

0,178556 0,187471 100%
B2 2 22 0,003985

3
B1 2 114 0,006755

0,887681 0,89801 100%
B2 2 45 0,003574

4
B1 2 200 0,008401

3,711539 3,724487 100%
B2 2 76 0,004547

5
B1 2 310 0,014673

11,809716 11,831504 100%
B2 2 115 0,007115

Table 5.25: Complete results for M3 using the φ operator.

Tables with Results of M3 with Partition 2

Below is the table with the complete results for matrix M3 using Partition 2 and the
Blocks algorithm for the γ operator.

γN (M3) Rows TT YYC Blocks Total Time Comparisons

1
B1 2 14 0,003765

0,051675 0,060935 100%
B2 2 7 0,005495

2
B1 2 14 0,001872

1,67779 1,701933 100%
B2 6 168 0,022271

3
B1 3 21 0,002914

848,469166 848,675431 100%
B2 9 2880 0,203351

4
B1 4 24 0,003894

21600< - -
B2 12 13824 0,968085

-

Table 5.26: Complete results for M3 using the γ operator.

Now the table with the complete results for matrix M3 using the Partition 2 and the
Blocks algorithm for the θ is presented.

89

θN (M3) Rows TT YYC Blocks Total Time Comparisons

1
B1 2 14 0,003765

0,051675 0,060935 100%
B2 2 7 0,005495

2
B1 4 30 0,00506

0,104147 0,127581 100%
B2 12 38 0,018374

3
B1 16 54 0,044593

0,189301 0,438584 100%
B2 48 62 0,20469

4
B1 64 78 0,488683

0,515952 6,984725 100%
B2 192 86 5,98009

5
B1 256 102 18,141178

1,720689 326,694497 100%
B2 768 110 306,83263

Table 5.27: Complete results for M3 using the θ operator.

90

Bibliography

[1] Vázquez R.,Godoy S. 2007. Using testor theory to reduce the dimension of neural
network models. Special Issue in Neural Networks and Associative Memories. 28,
93-103.

[2] Cheguis I.A., Yablonskii S.V. 1955. About testors for electrical outlines. Usp. Mat.
Nauk,4(66): 182-184.

[3] Cheguis I.A., Yablonskii S.V. Logical methods for controlling electrical systems.
Trudy MIAN ime V.A. Steklova, LI :270-360, 1958.

[4] Dimitriev A. N., Zhuravlev Y.I. and Krendeliev F.P. 1966. About mathematical prin-
ciples of objects and phenomena classification. Diskretni Analiz 7.

[5] Mart́ınez J. F., Santos J. A., Carrasco A. 2004. Feature Selection using Typical
Testors applied to Estimation of Stellar Parameters. Computación y Sistemas [en
linea], 8(1), 15-23. ISSN: 1405-5546. Disponible en: https://www.redalyc.org/

articulo.oa?id=61580103

[6] Alba, E., & Santana, R. 2010. Generación de matrices para evaluar el desempeño de
estrategias de búsqueda de testores t́ıpicos. ACI Avances En Ciencias E Ingenieŕıas,
2(2). https://doi.org/10.18272/aci.v2i2.23

[7] Ouvrard, X. 2020. Hypergraphs: An introduction and review. arXiv.org. Retrieved
June 1, 2022, from https://arxiv.org/abs/2002.05014

[8] Berge C. 1970. Graphes et hypergraphes. Dunod, Paris.

[9] Berge C. 1973. Graphs and hypergraphs. North-Holland publishing company Ams-
terdam.

[10] Alba E., Godoy S., Lazo M., Trinidad F. & Carrasco J. 2019. On the Relation
Between the Concepts of Irreducible Testor and Minimal Transversal. IEEE Access,
7:82809– 82816.

https://www.redalyc.org/articulo.oa?id=61580103
https://www.redalyc.org/articulo.oa?id=61580103
https://doi.org/10.18272/aci.v2i2.23
https://arxiv.org/abs/2002.05014

91

[11] Guevara I. J. 2021. Implementación Computacional del Algoritmo LEX para el
cálculo de testores t́ıpicos usando aprendizaje simbólico [Tesis previa a la obtención
del t́ıtulo de Ingeniera Matemática]. Escuela Politécnica Nacional.

[12] Kavvadias D. J., Stavropoulos C. E. 2005. An Efficient Algorithm for the Transver-
sal Hypergraph Generation. Journal of Graph Algorithms Appl. Vol 9, 239-264.

[13] Berge C. 1989. Hypergraphs: Combinatorics of Finite Sets. vol. 45. Amsterdam,
The Netherlands: Elsevier.

[14] Khachiyan L., Boros E., Elbassioni K., Gurvich V. 2005. A new algorithm for the
hypergraph transversal problem. Computing and Combinatorics. Berlin, Germany:
Springer, pp. 767–776.

[15] Lias-Rodŕıguez A., Pons-Porrata A. 2009. BR: A new method for computing all
typical testors. Progress in Pattern Recognition, Image Analysis, Computer Vision,
and Applications (Lecture Notes in Computer Science), vol. 5856. New York, NY,
USA: Springer, pp. 433–440.

[16] Ruiz-Shulcloper J., Bravo M., Aguila F. 1982. Algoritmos BT y TB para el cálculo
de todos los tests t́ıpicos. Revista Ciencias Matemáticas, 6(2).

[17] Alba E., Ibarra J., Godoy S., Cervantes F. 2014. YYC: A fast performance in-
cremental algorithm for finding typical testors. Iberoamerican Congress on Pattern
Recognition, pp. 416–423. Springer.

[18] Santiesteban-Algaza, Y., Pons-Porrata, A. LEX: A New Algorithm for the Calculus
of all Typical Testors. Vol. 1, pp. 85–95.

[19] Alba E., Ibarra J., Godoy S. 2016. Generating synthetic test matrices as a bench-
mark for the computational behavior of typical testor-finding algorithms. Pattern
Recognition Letters, 80:46–51.

[20] Eiter T., Gottlob G. 2002. Hypergraph Transversal Computation and Related Prob-
lems in Logic and AI. European Workshop on Logics in Artificial Intelligence,
549–564, Springer.

[21] Bache, K., Lichman, M. 2013. UCI machine learning repository. https://archive.
ics.uci.edu/ml/index.php

[22] Dua, D. Graff, C. 2019. UCI Machine Learning Repository. Irvine, CA: University
of California, School of Information and Computer Science. [http://archive.ics.
uci.edu/ml

[23] Mansouri, K., Ringsted, T., Ballabio, D., Todeschini, R., Consonni, V. 2013.
Quantitative Structure - Activity Relationship models for ready biodegradability of
chemicals. Journal of Chemical Information and Modeling, 53, 867-878. https:

//archive.ics.uci.edu/ml/datasets/QSAR+biodegradation

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
[http://archive.ics.uci.edu/ml
[http://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml/datasets/QSAR+biodegradation
https://archive.ics.uci.edu/ml/datasets/QSAR+biodegradation

92

[24] Gallegos, A., Torres, D., Álvarez, F., Torres, A. 2017. Identificación de Carac-
teŕısticas de Células de Cáncer de Mama por medio de testores t́ıpicos. Research in
Computing Science, 140(1), 43–54. https://doi.org/10.13053/rcs-140-1-4

[25] Lazo-Cortes, M., Ruiz-Shulcloper, J., Alba-Cabrera, E. 2001. An overview of the
evolution of the concept of testor. Pattern Recognition, 34(4), 753–762. https://
doi.org/10.1016/s0031-3203(00)00028-5

[26] G. Sánchez, M. Lazo, O. Fuentes. 1999. Genetic algorithm to calculate minimal typi-
cal testors. Proceedings of the IV Iberoamerican Symposium on Pattern Recognition.
207-214.

[27] González-Guevara V., Godoy-Calderon S., E. Alba-Cabrera E., Calvo H. 2019.
Symbolic Learning for Improving the Performance of Transversal-Computation Algo-
rithms. IEEE Access, vol. 7, pp. 19752-19761, doi: 10.1109/ACCESS.2019.2895296.

[28] Sanchez-Diaz G., Lazo-Cortes M.S., Aguirre-Salado C.A. et al. 2022. A review of
algorithms to computing irreducible testors applied to feature selection. Artif Intell
Rev.

[29] Piza-Davila I., Sanchez-Diaz G., Lazo-Cortes M. S., Noyola-Medrano, C. 2017. En-
hancing the performance of YYC algorithm useful to generate irreducible Testors.
International Journal of Pattern Recognition and Artificial Intelligence, 32(01),
1860001. https://doi.org/10.1142/s0218001418600017

[30] Rauber, T., Rünger, G. 2013. Parallel programming (pp. 169-226). Berlin, Ger-
many:: Springer.

[31] Agarwal, R. C., Balle, S. M., Gustavson, F. G., Joshi, M., Palkar, P. 1995. A three-
dimensional approach to parallel matrix multiplication. IBM Journal of Research and
Development, 39(5), 575-582.

[32] Gupta, A., Kumar, V. 1993. Scalability of parallel algorithms for matrix multiplica-
tion. In 1993 International Conference on Parallel Processing-ICPP’93 (Vol. 3, pp.
115-123). IEEE.

[33] Gallegos, A., Torres, D., Álvarez, F., Soto, A. T. 2016. Feature Subset Selection and
Typical Testors Applied to Breast Cancer Cells. Res. Comput. Sci., 121(1), 151-163.

[34] Ort́ız-Posadas, M. R., Mart́ınez-Trinidad, J. F., Ruiz-Shulcloper, J. 1996. A new
approach to differential diagnosis of diseases. International journal of bio-medical
computing, 40(3), 179-185.

[35] Heller, Don 1978. A Survey of Parallel Algorithms in Numerical Linear Algebra.
SIAM Review, 20(4), 740–777. https://doi.org/10.1137/1020096

[36] Agarwal, R. C., Balle, S. M., Gustavson, F. G., Joshi, M., Palkar, P. 1995. A three-
dimensional approach to parallel matrix multiplication. IBM Journal of Research and
Development, 39(5), 575-582.

https://doi.org/10.13053/rcs-140-1-4
https://doi.org/10.1016/s0031-3203(00)00028-5
https://doi.org/10.1016/s0031-3203(00)00028-5
10.1109/ACCESS.2019.2895296
https://doi.org/10.1142/s0218001418600017
https://doi.org/10.1137/1020096

93

[37] Van, R. G., Drake, F. 2019. Python 3 Reference Manual. CreateSpace, Scotts Valley,
CA.

[38] Francois Chollet et al. 2015. Keras. https://github.com/fchollet/keras

[39] Abadi M., Agarwal A., et al. 2015. TensorFlow: Large-scale machine learning on
heterogeneous systems. Software available from tensorflow.org

https://github.com/fchollet/keras
tensorflow.org

	List of Tables
	List of Figures
	INTRODUCTION
	MATERIALS AND METHODS
	Testor Theory
	Connection between Testor Theory and Hypergraph Theory
	YYC Algorithm
	Compatible Sets
	YYC Algorithm-Code

	Blocks Algorithm Description
	Two Blocks of a Basic Matrix
	YYC in the Blocks Approximation
	Blocks Approximation Algorithm
	Parallelization of Blocks Algorithm

	Experimental setup
	Synthetic Basic Matrices
	Parallel Computing and Basic Synthetic Matrices
	Dataset from UCI Machine Learning Repository

	RESULTS AND DISCUSSION
	Evaluation Results Synthetic Matrices
	Basic Matrix I5 Experiments
	Basic Matrix A Experiments
	Basic Matrix B Experiments
	Basic Matrix M1 Experiments
	Basic Matrix M2 Experiments
	Basic Matrix M3 Experiments

	Parallel Computing and Basic Synthetic Matrices
	Basic Matrix I5 Experiments Parallelization
	Basic Matrix A Experiment Parallelization
	Basic Matrix B Experiment Parallelization
	Basic Matrix M1 Experiment Parallelization
	Basic Matrix M3 Experiment Parallelization

	Application to QSAR biodegradation Data Set

	CONCLUSIONS AND FUTURE WORK
	ANNEXES
	Full Tables of Results for the Set of Synthetic Test Matrices
	Complete Results for I5
	Complete Results for A
	Complete Results for B
	Complete Results for M1
	Complete Results for M2
	Complete Results for M3

	References

