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RESUMEN 

En el presente trabajo se estudia la importancia de garantizar la capacidad de prueba de 

un producto y como implementarla durante el proceso de diseño de un circuito integrado. 

Durante este estudio se analizaron y aplicaron distintos estándares utilizados a nivel industrial 

en el diseño de chips como el IEEE 1149.1 para garantizar la capacidad de prueba en los 

dispositivos. Se desarrolló una comparación del uso de dos herramientas “TASS” y “IJTAG” 

para el diseño de pruebas utilizadas por la compañía NXP Semiconductors. Se estudió, 

modificó y automatizó el flujo completo de diseño de pruebas de la compañía utilizando un 

producto ya desarrollado y probado como vehículo de prueba. Finalmente se analizaron los 

resultados de la comparativa demostrando las ventajas y desventajas del uso de las dos 

herramientas en función de los requerimientos de la compañía y el equipo de trabajo para 

futuros proyectos.  

 

Palabras clave: System on Chip, Design for Test, Circuito Integrado, Automatización, 

TASS, IJTAG. 
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ABSTRACT 

This work studies the importance of guaranteeing the testability of a product and how to 

implement it during the design process of an integrated circuit. During this study, different 

standards used at an industrial level in chip design such as IEEE 1149.1 were analyzed and 

applied to guarantee the testability of the devices. A comparison of the use of two tools "TASS" 

and "IJTAG" was developed for the design of tests used by the company NXP Semiconductors. 

The company's entire test design flow was studied, modified, and automated using an already 

developed and tested product as a test vehicle. Finally, the results of the comparison were 

analyzed, demonstrating the advantages and disadvantages of the use of the two tools based on 

the requirements of the company and the work team for future projects. 

 

Key words: System on Chip, Design for Test, Integrated Circuit, Automation, TASS, IJTAG. 
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SOC DESIGN FOR TEST AUTOMATION 

 

 

1 Introduction 

1.1 NXP Semiconductors France  
 

NXP Semiconductors is a worldwide known semiconductor design and manufacture 

company with headquarters in Eindhoven, Netherlands. Stablished in 2006, it is currently 

present in 33 countries around the word. NXP is internationally recognized and considered as 

one of the most important providers for the automotive, communications and mobile industries. 

It has been the first supplier of microcontrollers with 19% of market share for very prestigious 

consumers [1].    

NXP in France includes 4 sites located in Toulouse, Caen, Paris and Mougins. The 

R&D (Research and Development) site on Cote d’Azur in Mougins is well known thanks to 

the development of secure connectivity solutions [2]. Thus, the NXP business line inspired in 

these solutions is C&S (Connectivity and Security), responsible to design mixed signal devices 

for secured transactions (NFC and/or Secure Element Controllers) specially for the mobile 

devices market. 

 

1.2 Context 

During the process of Digital SoC Design it is fundamental to guarantee the testability 

of the product. Ensuring the quality and correct operation of electronics is fundamental to keep 

and improve the market position of a brand or company, it reduces the design and production 

testing times, resulting in economic benefits. Detecting failures in the earliest stages of a 

product development is fundamental to save costs and time. Due to this reason, it is necessary 

to add certain features to the design to make easier the testability of the product and to ensure 

that all possible failures generated during the manufacture process are covered and able to be 

detected before reaching the costumer. 

 DFT (Design for Test) is a design process that describes how testing must be done. 

This process includes several stages such as the development of the DFT design specifications, 

the translation of this specifications into DFT structures and the corresponding RTL description. 

The flow continues with the Verification of this DFT structures and their interconnections and 

ends with the Software (test patterns) creation with its corresponding testbench. 

This internship study aims to analyze and compare two DFT tools used in the Software 

(test patterns) creation and verification. This comparison will be useful in the migration process 

from the current NXP DFT tool “TASS” to the desired third part tool “IJTAG” (Siemens former 

Mentor Graphics proprietary). The result of this work is the automation of the DFT design 

process through scripting (using Shell, TCL, Perl and/or Python).  
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The motivation for this work is to determine if the new tool accomplishes with the 

requirements of the NXP DFT team for pattern generation. Finally, it is necessary to provide 

enough proofs through a deep analysis and simulation results in order to demonstrate that the 

desired tool for the migration is or is not adequate and provides significative benefits during 

the NXP DFT flow in terms of design time, complexity, costs, among others. 

 

1.2 Objectives 

 

Identify the differences between TASS and IJTAG, their benefits and drawbacks for pattern 

description and generation. 

Adapt and/or create a new NXP DFT flow for the new tool and report the main changes for the 

new flow. 

Handle the corresponding test pattern creation. 

Simulate the test patterns and debug them on RTL and Gate-Level Netlist using Cadence 

Xcelium tool.  

Develop the DFT design process automation through scripting methods in order to generate 

automatically the files/directories for the new flow. 

Make a proof of concept through on-silicon trials using an ATE with test patterns generated by 

the new IJTAG tool.  

Demonstrate if the migration is feasible and represents a real benefit for the new DFT flow and 

if not, give enough proofs and arguments to justify this decision. 

 

2 State of the Art 
 

In order to guarantee the testability of an IC (Integrated Circuit) it is necessary to have 

physical access to its internal components, be able to configure desired features and have the 

capability to measure the response of the circuit based on the applied stimulus. Because of 

those requirements, a four-port serial interface called JTAG (Joint Test Action Group) was 

developed in the late 1980s [3]. This is the basis of the IEEE Standard 1149.1, the IEEE 

Standard TAP (Test Access Port) and the Boundary-Scan Architecture which together support 

the mentioned testability requirements [4].     

 

2.1 IEEE Standard 1149.1 
 

The IEEE Standard 1149.1 also known as JTAG, or boundary-scan stablishes a four-

port serial JTAG interface to access the embedded logic of an IC. This debug port interface is 

connected to a TAP embedded on-chip which acts as a JTAG main controller during the test. 

The TAP interface includes four main signals: TCK (Test clock), TMS (Test Mode Select), 
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TDI (Test Data Input) and TDO (Test Data Output); and an optional reset signal TRST (Test 

logic reset). 

The JTAG standard for the architecture stablishes one Instruction Register (IR) with 

several Data Registers (DR). Through these structures it is possible to load or configure specific 

features for the IC as well as read or measure its response.  The IR is responsible for providing 

the necessary address and control signals to access a specific DR. This control is done by the 

TAP by loading a specific OPCODE (Operation Code or Instruction) in the IR. The DR is 

responsible of controlling specific test configurations for the IC when it is written.  Besides, 

the DR is in charge of capturing some internal signals data to be read or shifted out for test 

purposes. 

The size of the IR and the number of supported instructions depends on the design and 

requirements (e.g., an 8-bit IR supports up to 256 instructions). Each DR is linked to an 

Instruction but not all instructions require a DR. The JTAG standard stablishes three mandatory 

instructions (BYPASS, EXTEXT, SAMPLE/PRELOAD). The other DR and instructions 

depend on the IC design.  

The NXP DFT Reference Architecture propose two main types of Data Registers which 

are TCB (Test Control Block) and TPR (Test Point Register). TCBs can control some IC 

features depending on the “mode” that is written on them, but they are not physically designed 

to capture internal data to be read or shifted it out.  Moreover, TPRs can control some IC 

features when writing on them but also, they can capture internal signals data to be shifted out. 

Through Figure 1 it is observed a basic JTAG TAP control structure example with TCBs and 

TPRs chains.  

 

Figure 1: JTAG TAP TCB-TPR Control Structure [5]. 

 



17 

 

 
 

It is seen that the JTAG TAP interface corresponds to the JTAG standard port interface 

including the four main signals and the reset optional signal. It is interesting to mention that in 

the design TDI is broadcast directly to the TCBs and TPRs while the clock signal TCK is gated 

through the JTAG TAP structure to the DR blocks through the JTAG TCB and TPR control 

buses. The data out signals from each DR is gated through the JTAG TAP to the TOP level 

TDO. Furthermore, through Appendix Figure 1 it can be observed each of the control signals 

delivered both to the DRs and the IR. 

 

 

2.2 Test Access Port Architecture 

 

The IEEE Standard 1149.1 stablishes a default structure for the TAP controller FSM 

(Finite State Machine) which can be found through Figure 2. The TAP is controlled thanks to 

the test clock TCK, and the test mode select TMS inputs. Consequently, these inputs are in 

charge of handling the access to the DRs and IRs in order to write and/or read them. According 

to the JTAG standard the test bus uses both clock edges of TCK. TMS and TDI signals are 

sampled on the rising edge of TCK while TDO output changes after the falling edge of TCK. 

 

 

 

Figure 2: TAP Finite State Machine. 
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 The adjacent value shown close to each state transition indicates the required TMS 

signal on the rising edge of TCK to generate the state change. The JTAG Standard stablishes 5 

steady states when TMS is 0: Run Test/Idle, Shift-DR, Pause-DR, Shift-IR, Pause-IR; but only 

1 steady state when TMS value is 1: Test Logic Reset. This particular feature of the TAP FSM 

allows to reset the test logic (i.e., soft reset) by setting TMS input high during at least 5 TCK 

cycles independently of the current state. 

 

2.3 JTAG Data formats & Pattern Description  

 

As mentioned above, the main goal of DFT is to ensure the testability of an IC. To achieve this, 

it is necessary to develop software that allows signals to be input to the IC and executed to test 

the device. This software is known as test patterns which are nothing more than a group of 

stimulus or signals applied to the chip in order to measure or test specific features and ensure 

the device is working properly. Those patterns generate a signal response that are analyzed by 

comparing them with a testbench simulation. In order to describe this software, it is necessary 

to have a link with the hardware defined previously. This link is generated through a hardware 

representation using a data format that supports IEEE Std 1149.1. Currently there are several 

data formats capable to understand the DFT hardware structures such the ones mentioned in 

the JTAG standard. One of this data formats is the industry standard language originated from 

VHDL: Boundary-Scan Description Language (BSDL) (along this document it will be studied 

other data formats for similar capabilities and purposes). The main objective of BSDL and 

other languages is to describe how the IEEE Std 11.49.1 is implemented in the IC and specially 

how to access and control it.  

 

 Once there is a representation of the DFT hardware, it is possible to write or describe 

the test patterns representing the stimulus and expected response. There are many ways to 

describe test patterns, one of them is by using a pattern generation tool (such as TASS or 

IJTAG). These tools receive as an input the pattern description in a human-readable format. 

Then, they are going to verify that the DFT hardware description is compliant with the standard 

and automatically create a pattern description in a supported language for a test equipment or 

ATE (Automatic Test Equipment) which validates physically the IC with the patterns. 

Additionally, these tools are used to generate simulation testbenches to verify the expected 

behavior and debug the pattern description if necessary.  
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3 My Project: Design For Test Automation 

 

3.1 Context 

 

3.1.1 TASS 

 

One of the pattern generation tools widely used on NXP during DFT flow is TASS or 

Test Pattern Assembler [6]. TASS is an internal tool part of the NXP DFT package designed 

to assemble test patterns in order to generate test vectors for ATE test systems and simulation 

testbenches. The used version on this study is TASS 8.0.6. Through Figure 3 it is observed the 

basic flow to use TASS tool.   

TASS inputs consist of one or more of the following files: 

1.  Test Data Files (.td) 

2.  Application Test Files (.atf) 

3.  Waveform Generation Language Files (.wgl) 

4.  Test Protocol Files (.tpf) 

5.  STIL Files (.stil) 

6.  Waveset Definition Files (.wdf) 

7.  Command files (.cmd) 

 

Figure 3: TASS Flow Diagram [6]. 

 For the study purposes the most important inputs are TD (Test Data files), TDL (Test 

Description Language, i.e. .tpf files), ATF (Application Test Files) and STIL (Standard Test 

Interface Language). 



20 

 

 
 

 The first step of the flow is to read the TD files. These are one type of data format files 

which contain all the necessary information regarding the JTAG network such as the chip pin 

definition, DFT structures, etc. Next step is to start the vector processor by calling the 

corresponding interpreter depending on the input pattern format. The pattern description could 

be done through one or several TDL, ATF or STIL, or a combination of them. TDLs are usually 

manually described patterns created by DFT engineers, so it is based on a human-readable 

format, TDL language is NXP property. On the other hand, ATF and STIL are formats typically 

created by design tools (e.g., NXP or Siemens/Mentor-Graphics design tools). 

 Each interpreter will deliver its results which are the test vectors and waveforms. With 

this information the vector processor develops the timing calculations to generate the wavesets 

(timing related definitions specifying the events on each tester cycle). Finally, TASS 

postprocessor is going to transform the generated data by the interpreters into an ATE pattern 

sequence format (such as STIL) and a corresponding testbench output file (such as a Verilog 

testbench). Other possible outputs such as debug purpose files (e.g., ATF) could also be 

generated by TASS. 

 

3.1.2 IJTAG 

 

 Tessent IJTAG or simply IJTAG is a third-party pattern generation tool property of 

Siemens (former Mentor Graphics). IJTAG is one sub-product or component of the main 

Tessent Siemens product. Tessent is a tool and IP package offering many solutions for several 

DFT phases such as pattern generation, debug, design as well as manufacturing test solutions 

[7]. For this study it was used the version Tessent 2022.1. Through Figure 4 it is shown the 

IJTAG flow. 

The main IJTAG inputs are: 

1.  Instrument Connectivity Language files (.icl) 

2.  Procedural Description Language pattern files (.pdl) 

3. Optional user defined TCL files (.tcl) 

 

 

Figure 4: Tessent IJTAG Flow. 
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As well as TASS, IJTAG needs a file which defines the JTAG network and their 

components. The ICL network description is formed by one or more .icl files which describes 

all the DFT “instruments” (i.e., all the DFT blocks/components such as DRs, IRs, TAPs, etc.) 

and their interconnections [8]. The main objective of ICL for IJTAG as TD for TASS is to 

describe the test access view of the instruments so that the tool can understand the DFT 

architecture and target the high-level pattern commands to the desired instruments in order to 

transform them into a test sequence. 

The second main input for IJTAG are the PDL patterns. The PDL files describe the 

instrument usage on a targeted level [8]. In other words, PDL can describe patterns through a 

high-level description language if there is an ICL description of the targeted instrument, its 

interconnections and a clear description of the hierarchy that guarantees the access to it. PDL 

takes the advantage of TCL language as .pdl files are considered as tcl DOfiles [8]. Because of 

the high level and human-readable format of PDL language, it is as easy to read/write as TDL 

language for TASS. 

 As observed in Figure 4, IJTAG flow starts with an Internal Database containing all the 

required ICL and PDL files. Then, the tool builds the ICL hierarchy by reading the ICL 

instruments definition and instantiations. During this step IJTAG is understanding the way to 

move or access different hierarchy levels and consequently each of the DFT components. 

Thanks to that, IJTAG is capable to execute and understand what to do with specific PDL 

commands. Third step is to check the design rules (DRC) on the ICL hierarchy and instrument 

levels. The fourth step (Retarget PDL) objective is to read the PDL files, create the 

corresponding pattern sets and finally write the PDL patterns in STIL format and with a 

testbench (Verilog format). IJTAG supports other industry standard output files such as SVF 

(Serial Vector Format) which is a standard ASCII format representing test patterns [9]. PDL 

Retargeting step is the main step in Tessent IJTAG flow, and it has its own flow which is going 

to be analyzed in section 4.3 (Non-ATPG IJTAG Pattern Generation Flow). 

 

3.2 EOS B2 (Handled with TASS) 

 

For this migration study it was necessary to use an already developed project as a test 

vehicle. The selected project for this purpose was EOS B2 which is already on silicon, so it 

passed successfully all the DFT flow with the internal tool TASS. EOS is a TSMC-28nm 

Secured NFC Controller (NFC + Secure Element). A top level SoC diagram of EOS is observed 

through Figure 5 (Secure Element Domain is represented as a black box because it is NXP 

confidential). Regarding DFT for EOS, it is important to consider some constraints, 

requirements and design specifications.  

EOS DFT JTAG architecture is based on a star hierarchical approach. Another 

consideration is the control and data interfaces handling, EOS DFT was designed with a TAM 

(Test Access Mechanism) and a DAM (Data Access Mechanism) for this purpose. Final 

consideration is the pattern approach, EOS uses a Modular Pattern Approach in which each 

modular is part of the complete pattern sequence which represents a specific feature or 

configuration. All these design characteristics provide benefits but also contain some 

constraints that must be handled during the DFT Flow. 
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Figure 5: EOS Top SoC Block Diagram [10]. 

 

3.3 TAM/DAM Mechanisms 

 

In order to handle the data between the IC and the tester machine ATE during the 

execution of DFT pattern tests, it is needed a DFT interface. This interface is formed by a 

mandatory control interface and an optional, but widely used in NXP, data interface. The main 

objective of these access components is to handle the JTAG port signals and all other port 

signals used for control and data during pattern tests. In case of EOS, it has a Test Access 

Mechanism (TAM) in charge of the control interface and a Data Access Mechanism (DAM) 

handling the data interface.  As observed through Figure 6 in both cases for control and data, 

the interfaces are shared thanks to TAM and DAM. This means that the top pads are always 

the same and TAM/DAM are in charge of handling the signals between the pads and the 

different Sub-IPs.   

 

Figure 6: EOS DFT Interface Specifications. 

 

NFC Domain                                                            SE Domain  

NXP – Company Confidential 
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The TAM block is in charge of handling the signals TDO and TCK between the sub-

IPs and the top level as shown in Figure 7. In case of TDI, TMS and TMER (Test Mode Entry 

Request, DFT test reset signal), they are broadcast directly to the sub-IPs. TAM structure is 

formed by 3 main blocks which are TAM Gating, the TAP controller and the Top TAM TCB. 

TAM Gating is the block which handles the signals between the sub-IPs and the TOP, it is 

controlled through some selector signals coming from the TCB. The TAP contains the IR. This 

last one could be configured with instructions defined by the IEEE Std 1149.1, some NXP 

common instructions and an instruction to access to the top TAM TCB. Finally, the top TAM 

TCB or UP TCB is a data register that can be configured with different modes in order to access 

the sub-level TAPs and therefore, it controls the signals between the sub-IPs and the top level 

through the TAM and DAM. 

 

Figure 7: Shared Control Interface. 

 

Figure 8 shows the Data Access Mechanism structure. This block receives selectors 

signals from the TAM TCB which are used to control the data signals between the sub-IPs and 

the TOP level IOs.  As the IOs are bidirectional, the top cell bidirectional buffers receive 3 

signals A, ZI and OEN. From the cell perspective, A is an input from the core logic (from the 

IC to the exterior), ZI is an output to the core logic (from the exterior to the IC) and EN is the 

active low enable output driver (when 0 the pad works as output, when 1 as input). A functional 

diagram of the MFIO1V8SF bidirectional cell is found in the Appendix Figure 2 [11]. 
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Figure 8: Shared data interface 

 

Between the TOP IOs and the DAM there are other structures such as functional muxes 

which are necessary to use the IOs in different functional modes. Boundary Scan Chains (BSC) 

are also inserted at top level to test and control the IOs. Finally for each sub-IP level, there are 

TMUX blocks or test mux to control the IOs direction during the tests. 

 

3.4 JTAG Star Architecture 

 

The EOS DFT JTAG Star Architecture is a hierarchical design in which there is a 

clearly defined structure based on a multi-level approach. Different from Daisy Chain 

Architecture in which there is a single level with multiple TAP serially connected, in Star 

Architecture, there is a TOP TAM Mechanism and multiple sub-level either TAP or TAM 

structures. If a N-level structure has sub-levels, this sub-hierarchy must be handled by a TAM 

block like the TOP TAM, as observed in level 2d in Figure 9 . Thanks to TAM architecture 

previously analyzed, it is possible to gate TCK and TDO, so that there is the possibility to talk 

to a single sub-level TAP without affecting the others. On EOS design, a TAP reset spy logic 

was implemented to avoid resetting the TOP TAM and the TCB UP, therefore, the TAP 

controller of the TOP level is always “listening” what happens with the sub-level TAPs [12]. 

 

The basic flow to access a specific hierarchy level is the following. First, start the chip 

in test mode (Execute a Test Mode Entry Request, TMER) by a bootstrap initialization (force 

the JTAG ports to specific constant values to initialize the test mode). Then, it is necessary to 

program the TOP level TAM in order to root the desired sub-level. To do this, the TOP TAP 

controller IR must be set with the corresponding instruction to select the UP TCB data register. 

Once the UP TCB is selected, this one can be configured to access the desired sub-level. Finally, 

after having reached to the sub-level TAP, it is possible to access the corresponding Data 

Registers and DFT structures of this level. 
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Figure 9: EOS DFT Star Hierarchy design. 

 

 

3.5 Modular Pattern Approach 

 

EOS Modular Pattern Approach is based on partial pattern descriptions representing a 

specific feature or configuration in which each modular is part of the complete test sequence. 

These features could be power, clock, hierarchical access, core patterns (e.g., BIST for SRAM 

tests) and the chip startup. 
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Thanks to this modularity there are several benefits: 

 

- Multiple input pattern formats: Modular patterns could be TDL, STIL or ATF. Useful 

when the patterns are delivered by IPs from other NXP teams or external providers 

(TSMC). 

- Regularity and file optimization: As many test sequences could be considerably similar, 

through modular approach it is not necessary to rewrite the complete sequence but only 

to modify the desired modular. 

- Tester and simulation time reduction: Thanks to SDM modular (System DFT Mode) it 

is possible to change from one DFT test mode to another concatenating the right 

modulars without rebooting the device (TMER modular). 

 

 

  

Figure 10: Modular Pattern Approach. 

 

 

 

 



27 

 

 
 

3.6 EOS NXP DFT Flow (TASS-based) 

 

Through Figure 11 it is shown the complete EOS NXP DFT Flow with the current 

pattern generation tool TASS. The main 3 stages are DFT Generation, Verification and Pattern 

Generation. This flow describes each of the stages starting from the DFT blocks specifications 

until the generation of pattern sequences and testbenches. The main objective of stage 1, DFT 

Generation, is the RTL generation of the different DFT blocks such as TCBs, TPRs, TAPs and 

TMUXs; to then integrate them to the design and develop the synthesis of the Gate Level Netlist. 

During DFT Verification, the objective is to validate the DFT blocks generated on the 

previous flow, verify their interconnections with the JTAG network, that means ensure that 

there is a hierarchical definition to access and configure them. Finally, during Verification it is 

created the DFT Database with the required files for the pattern generation tool (Test data files 

for TASS). Last step on the flow is the Pattern and Testbench generation in which starting from 

the DFT database and a high-level pattern description (e.g., TDL) it is generated the pattern 

sequences and the corresponding testbenches.  

 

 

Figure 11: EOS NXP DFT Flow with TASS tool. 
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3.6.1 DFT RTL Generation 

 

DFT RTL Generation Flow starts from the DFT specifications. This corresponds to the 

description of each DFT block, their signals and functionality. This information is specified in 

multiple excel spreadsheets. Through some excel macros it is possible to translate these 

specifications into specific file formats (.nif and .csv) understandable by the DFT tools TimNet 

and DFTBuilder. These tools are NXP DFT internal tools and each of them is in charge of 

generating specific DFT structures. In case of TimNet, it generates the RTL corresponding to 

the Data Registers: TCB and TPR. On the other hand, DFTBuilder generates the RTL for the 

TAP controllers and the TMUXs. 

Other outputs of this flow are the DFT views through the TD files. They contain the 

information of each TCB and TPR, the register signals and the configurable modes. There is 

also generated a BSDL representation containing the JTAG port definition and the information 

regarding the interconnection between the DFT blocks. 

 

 

Figure 12: DFT RTL Generation with TimNet & DFTBuilder. 
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3.6.2 DFT Verification 

 

DFT Verification Flow inputs are the generated outputs from DFTBuilder and TimNet. The 

internal NXP DFT tool used during this flow is DFTShell. This tool starts with the DFT views 

of the TD files and executes a verification process of the TCB and TPR chains. During this 

process it checks that the design information regarding instances and ports are defined correctly, 

as well as the test protocols of the Data Registers [13]. Then it develops a JTAG network 

validation in which it is check that there is the possibility to access to each of the hierarchy 

levels through a preamble setup (i.e., through the TAM/DAM Mechanisms). 

 After verification is done, DFTShell generates a database with the deliverable files for 

Pattern Generation. These files are the TD chains which are a simplified and concatenated 

version of the TD views of the previews flow. It is also generated some configuration TCL 

files. 

 

 

 

Figure 13: DFT Verification with DFT Shell. 
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3.6.3 Non-ATPG DFT Pattern and Testbench Generation Flow 

 

The main objective of Non-ATPG patterns is to generate test sequences using the 

pattern generation tool TASS, starting from a high-level description of the patterns. As 

explained in Section 3.1.1 TASS, TASS targets the input pattern description to the 

corresponding DFT structure in the JTAG network. Patterns are mainly described in TDL NXP 

DFT language. But there are also some particular cases for third party IPs or blocks designed 

by other teams. In these situations, it could be a specific DFT network design for those 

structures and therefore, unique patterns to test them which could be represented as a modular 

according to EOS modular approach. For this reason, TASS is capable to support other input 

patterns formats such as STIL or ATF corresponding to external source patterns. This could be 

the case of Secure Element team patterns (ATF) or third party TSMC IPs patterns (STIL). 

The final objective is to obtain a test equipment pattern description (STIL) of each 

modular pattern (part of the whole test sequence) and an equivalent testbench for the complete 

sequence. 

 

 

Figure 14: DFT non-ATPG Pattern & Testbench generation. 
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3.6.4 ATPG DFT Pattern and Testbench Generation Flow 

 

Automatic Test Pattern Generation (ATPG) is a DFT automation methodology widely 

use on SoC design. The main advantage of ATPG is that it generates a plenty amount of pattern 

sequences to detect or cover possible manufacturing defects of the IC. Due to the complexity 

of ICs, it is a difficult task to have a complete fault coverage with manual written patterns, then 

ATPG becomes fundamental.  

NXP ATPG DFT Flow uses two tools: TASS and the third-party tool Tessent Shell. 

TASS objective is to provide Tessent a Test Setup. A Test Setup is a test procedure that contains 

force, expect and pulse event statements in order to set ports to specific values, read and 

compare values from them and initialize clocks [14]. Generally, this procedure is used at the 

beginning of the test sequence. In this flow, the Test Setup is in charge of all the startup 

sequence, hierarchy access and necessary configurations for ATPG tests. In EOS case with 

TASS, it generates an ATF sequence corresponding to the Test Setup patterns. Using some 

internal scripts, this file is transformed into Tessent Shell test procedure format (.testproc). 

Thanks to a DOfile (TCL based file) it is possible to evoke Tessent Shell and 

sequentially run all the required commands to call the Test Procedure and launch the ATPG 

test generation. As expected, the result is a STIL pattern description with a testbench. 

 

 

 

Figure 15: DFT ATPG Pattern & Testbench generation 
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3.7 General EOS DFT Design Requirements Summary 

 

Through Table 1 it is shown a summarized version of the features that are expected with the 

new IJTAG flow considering the current TASS situation. 

 

Table 1: EOS DFT Features. 

Topic Feature TASS 

JTAG Network 

Description 

The pattern generation tool must be able 

to understand the multiple tap network 

and generate the pattern sequence to 

handle the hierarchy access before 

accessing the DFT target element (e.g., 

TCB or TPR). 

Limited hierarchical understanding 

but possibility to manually write a 

TDL cycle-based function to handle 

the hierarchy access. 

Modular approach 
Test sequence generation based on a 

supported modular approach. 

Modular approach completely 

supported through independent 

modular TDL pattern files. 

Multiple input pattern 

sources 

Modular patterns could be TDL 

(manually written) or delivered by 

external teams (ATF or STIL). 

TASS support multiple sources: 

TDL, ATF and STIL on the same 

test sequence generation. 

Non-ATPG patterns 
Complete control to force JTAG ports 

and multiple timing definition. 

TASS has absolute control over 

JTAG ports, being able to force, 

expect and pulse signals manually 

as well as generating multiple 

timing definition in the same TDL 

file. 

ATPG patterns 
Accurate simulation, multiple timing 

definition. 

TASS Test Setup does not include 

neither the bootstrap initialization 

nor multiple timing definition 

(Feasible but not implemented). 

Annotation on pattern 

files 

Detailed annotations on STIL pattern 

output files 

TASS generates per cycle and 

highly detailed annotations on STIL 

outputs. 
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4 IJTAG Analysis Results 

4.1 New EOS NXP DFT Flow (IJTAG-based) 

 

 

 One difference between TASS and IJTAG tools is the JTAG network description. As 

explained previously, TASS uses TPR and TCB TD chain files representation while IJTAG 

needs an instrument based ICL description. Due to this new input, the NXP DFT Verification 

flow must be modified, specifically the DFT database generation. However, the most important 

modifications are developed in the Pattern and Testbench Generation Flow. The TDL-based 

modular patterns database was changed by PDL. It was necessary to develop several TCL and 

Shell scripts in order to automate non-ATPG pattern generation flow. On ATPG case, the NXP 

base scripts were adapted for the new flow. 

 

 

 

Figure 16: EOS NXP DFT Flow with new IJTAG tool. 
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4.2 ICL Generation 

 

 The ICL generation was an additional step implemented in the EOS DFT Verification 

Flow. The original TASS flow finishes with the TCB and TPR chains generation. On IJTAG 

case, it is necessary to create the TOP ICL Network representation through the chains using 

DFTShell NXP internal tool. The chains will provide the complete information regarding the 

register signals and the modes. Additionally, it is necessary to provide DFTShell other TD files 

such as the pin and jtag description, they have information regarding the device input/output 

pins and the IR OPCODES (Instructions). With all this information, DFTShell writes the JTAG 

network representation in ICL format to an output file. All these processes were developed 

through Shell/TCL scripts to evoke DFTShell tool and generate the files automatically. 

 

 

Figure 17: DFT New Validation Flow for ICL generation. 

 

It is possible to analyze the ICL network through Tessent Visualizer which is the 

Tessent visualization and debug graphic environment. Through Figure 18, it is shown the ICL 

schematic from the network generated by DFTShell. As observed, the result differs from the 

original DFT design for EOS since the multiple-tap architecture is not represented. DFTShell 
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only generates a single tap ICL which in this case corresponds to the NFC sub-IP tap. Since 

there is not the TOP TAM tap, TCK (GPIO1) is not gated before NFC tap so it is broadcast 

directly from the TOP to the NFC sub-IP same as the other JTAG signals (TDO or GPIO0, TDI 

or GPIO2 and TMS or GPIO5).  

Since there is not a hierarchical representation, when generating patterns with this ICL, 

IJTAG will identify NFC sub-IP as the unique level. Therefore, generated patterns targeting 

one TCB/TPR will contain the sequence only for NFC tap. For this reason, if it is used the ICL 

from DFTShell without any post-process, it is necessary to describe manually the patterns for 

the hierarchy access, in this case from TOP TAM tap to NFC tap. In IJTAG case this is done 

through cycle based sub-procedures. These are one kind of Tessent procedures which used on 

basic patterns allow three things: force primary inputs, measure primary outputs and pulse the 

capture clock [14]. Which means it is possible to manipulate the JTAG ports to write a cycle 

based (per cycle defined) sequence to describe the access from one level to another. Sub-

procedures can only be called within another procedure, therefore, cannot be used in PDL. It 

is necessary to use Test Setup procedure to call them. 

 

 

Figure 18: ICL Schematic from DFTShell on Tessent Visualizer. 
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4.3 Non-ATPG IJTAG Pattern Generation Flow 

 

Through Figure 19 it is observed the new Pattern Generation Flow using IJTAG for 

non-ATPG patterns.  The main IJTAG input is the ICL description, with which IJTAG will 

know the instrument (DFT blocks) description, how to access and target the PDL commands 

in order to create patterns. The ICL description has information only about DFT structures and 

JTAG ports, if the patterns include information regarding on-JTAG ports it is necessary to read 

the TOP Verilog interface which contains information about the whole device ports. Analog 

ports must be removed from the Verilog interface as are unsupported by the tool. 

 

 The most common pattern description input format for IJTAG is PDL, but it is also 

possible to use SVF and test procedure patterns (e.g., Test Setup). The Siemens recommended 

flow suggests using a Test Setup procedure at the beginning of the test sequence before PDL 

patterns (left yellow flow from Figure 19) [8]. The objective of this Test Setup is to initialize 

the test and describe the bootstrap start. The main benefit of this procedure is that it could force 

and pulse all the ports (included JTAG ports) which is not possible to be done with IJTAG 

PDL patterns (JTAG port manipulation is not allowed). Nevertheless, Test Setup can only be 

used at the beginning of the sequence, therefore, with this flow it is not possible to manipulate 

the JTAG ports during the test sequence. This flow is developed completely in patterns -ijtag 

context. The context specifies certain features and the current usage of Tessent Shell. Patterns 

-ijtag context provide functionality related to IJTAG Pattern generation, ICL extraction and -

ijtag switch enables PDL commands on pattern sets. Once Test Setup is read, it is possible to 

open multiple pattern sets, within patterns sets it is possible to read and populate the PDL 

pattern files and define timing features through timeplates (analog to wavesets for TASS TDL 

files). 

 

 Another possible flow is through only Test Setup based patterns (right blue flow from 

Figure 19). As mentioned, through Test Setup it is possible to force JTAG ports which is the 

main advantage of this flow. However, in order to be able to use PDL commands inside the 

Test Setup Procedure, it is necessary to change the context to patterns -scan. The scan switch 

on pattern context is usually used on ATPG patters as it enables Tessent TestKompress 

(Siemens DFT product to implement compression or EDT logic) [15]. On non-ATPG flow it 

is useful to enable PDL usage and JTAG ports manipulation both inside Test Setup. As seen in 

Figure 19, before reading the test setup, it is necessary to source the procedural files. It contains 

all the sub-procedures which manipulates directly the JTAG ports with force or pulse 

commands, these sub-procedures are called inside the Test Setup. 

 

 Both flows finish with the Write Patterns step, which is generating a STIL equivalent 

pattern file either for each pattern set or for each Test Setup. It is also generated a complete 

sequence Testbench in Verilog format. During both flows it is usually necessary to change the 

system mode. This feature enables the usage of different commands by the tool during the flow. 

Setup mode is specially used for initial settings such as read the input files (ICL, Verilog, PDL, 
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Test Setup) while Analysis mode is used for PDL retargeting during pattern set creation, 

Procedural Files analysis and Pattern/Testbench generation. 

 

 

 

Figure 19: PDL Retargeting Flow for Pattern Generation. 
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4.3.1 Non-ATPG IJTAG Pattern Simulation Results 

 

Hierarchy Access, IR and DRs management.  

 

Figure 20: Non-ATPG IJTAG Testbench with Manual Hierarchy Access. 

 

 Due to multiple-tap hierarchical DFT design of EOS, in order to access and write/read 

a data register (TCB/TPR) it is required a particular pattern sequence which is described in 

Figure 20. The mentioned example shows the sequence to access the NFC level, control the 

NFC tap and access a TPR to read it. It is shown in blue the JTAG signals TDO, TCK, TDI 

TMS (GPIO0, GPIO1, GPIO2_AO, GPIO5 respectively) and the TM (Test Mode) signal. In 

green it is shown the TOP DAM tap signals from the IR and the FSM state. In orange it is 

represented the UP TCB signals and in purple the NFC tap signals corresponding to the IR and 

the FSM state. 

 The first part of the sequence is to access the IR of the TOP DAM tap and write the 

OPCODE 0x02 which corresponds to the address of the UP TCB. Since the ICL generated by 

DFTShell only represents the NFC tap structure, the access must be done manually through 

cycle based sub-procedures as IJTAG has not enough information to do it automatically. As 

observed, the sequence starts with the TOP TAM tap in state “1101” that according to the FSM 

diagram of Figure 2 corresponds to Run Test/Idle state to modify the IR it is necessary to access 

it and shift the data inside. It is done through TMS signal which when it is a logic 1 during two 

rising edges of TCK it is possible to reach Select IR Scan state. Once IR it selected next state 

is Capture IR, through the waveforms it is observed in green the ir_capture signal which 

indicates when the FSM is in this state. Finally, it is selected UP TCB by shifting inside the IR 

its OPCODE, during Shift IR state the signal ir_shift is set to 1. In order to check if the 

OPCODE is correct and the UP TCB is selected it could be analyzed the ir_reg value which as 

observed is 0x02.  

 Next part of the hierarchy access is to configure the UP TCB. This is a DR controlled 

by the TOP TAM tap which can be programed with 5 modes. Each of the modes allows to 

select a specific sub-tap such as NFC, SE, NV (non-volatile or flash), CMB (Control Master 

TCK:  GPIO1 

TDI:   GPIO2 

TDO: GPIO0 

TMS: GPIO5 

Select UP TCB 

from TAM TAP 

OPCODE 0x02 

Configure 

UP TCB with  

NFC Mode 

Select a 

TPR from 

NFC TAP 
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Block) or to return the control to the TOP TAM tap. Through the right TMS sequence it is 

reached the Shift DR state to shift-in data to UP TCB, during the shift process the tcb_hold 

orange signal changes to 0. It is interesting to observe that TCK and TDI signals for the TCB 

are driven directly from the top as observed in the ICL schematic. Once shift is over, tcb_hold 

returns to 1 and tcb_update signal is asserted during one TCK cycle indicating that the TCB 

output is valid and visible. At this time, it is possible to see that TCB signals related to NFC 

are set to 1 (datain_sel_nfc, dataout_sel_nfc, tap_sel_nfc, tdo_sel_nfc). 

 After UP TCB is configured with NFC mode, TCK (purple TCK signal) is transmitted 

to NFC tap (as mentioned sub-IPs TCK is gated). Until this part of the pattern the sequence 

was defined manually, but once NFC tap is selected, it is possible to use PDL commands to 

write and read data from the DRs. Since this point the approach is very similar as with TOP 

TAM tap, it means, set the IR OPCODE to 0x0A which corresponds to PCRM_STATUS TPR 

and read expected values from it. The whole process is developed by IJTAG after using an 

“iRead” command inside PDL. To use this command, it is necessary to provide the information 

about the instrument path (hierarchy defined in the ICL network description) and the expected 

values for one or more bits of the DR. When it is needed to write, it is used “iWrite”. Same as 

previously, it is required to give the path and define the value to be written. 
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4.4 New Test Sequence Approaches  

4.4.1 Approach 1: Instrument Level PDL pattern description 
 

 One of the main targets in pattern description is to maintain the Modular Approach used 

with TASS tool. IJTAG offers different ways to write test sequences. First of them and highly 

recommended by Siemens IJTAG manual [8] is through an Instrument Level description. As 

shown through Figure 21, this approach starts with a PDL description targeting each DFT Data 

Register (TCB or TPR). Inside this PDL files it is used procedures (iProc) with PDL commands 

to read, write and, in general, to manipulate the instrument. Second level is the pattern set level 

which is the equivalent to Modular Approach. Each pattern set represents a unique modular 

pattern and it is described in a different PDL file. Inside this PDL pattern set, the instrument 

level PDL commands are called in order to generate the complete pattern description for the 

modular feature. It could be called as many instrument PDL procedures as needed. 

 Finally, the Test Setup and the modular pattern sets are concatenated to generate the 

complete test sequence. The main drawback of this flow is the limitation to force JTAG port 

only on Test Setup. Despite Modular Approach is kept, it is necessary an extra level (Instrument 

Level) to describe patterns. Last point to consider is the limitation to only one timeplate per 

pattern set. Therefore, if a modular requires more than one timeplate, Modular Approach is 

affected since the modular must be separated into multiple pattern sets.  

 

 

Figure 21: Instrument Level PDL pattern description approach. 
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4.4.2 Approach 2: TOP Level PDL pattern description 

 

 A second PDL-based pattern description approach could be developed through a TOP 

level targeting. In this approach instead of using procedures to target instruments (iProc), the 

TOP level of the design is targeted through a particular procedure (iTopProc). The main 

improvement of this approach is that it keeps modular approach as each iTopProc PDL 

corresponds to one modular, without needing an extra instrument level description. As 

observed through Figure 22, all the pattern description is done on the first TOP PDL level, 

therefore, pattern sets are only simple wrappers, each of them calls one TOP procedure. 

Consequently, it is not mandatory to use a PDL for pattern set representation, a pattern set 

could be opened by calling directly the TOP procedure (iCall command).  

 Test sequences generation is the same as previews approach. It is the possibility to 

concatenate a Test Setup at the beginning of the sequence. Nevertheless, there is still the 

limitation to force JTAG ports and have multiple timeplates in the same PDL. The main 

advantage of this new method compared with the last one is that this is closer to modular 

approach design as it targets the TOP level (same as TDL patterns).  

 

 

Figure 22: TOP Level PDL pattern description approach. 
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4.4.3 Approach 3: Test Setup pattern description 

 

 Last approach is Test Setup based as observed in Figure 23. Different from the two 

previous options in which Test Setup procedure was used at the beginning of the sequence only 

for the chip startup, some initial patterns and the hierarchy access, in this approach Test Setup 

contains the complete sequence. Mainly, only cycle based sub-procedures are used in Test 

Setup; in order to use PDL, it is necessary to follow a different IJTAG flow described through 

Figure 19 in section 4.3 Non-ATPG IJTAG Pattern Generation Flow. The main 

advantage of this new approach is the possibility to force JTAG pins at any part of the sequence 

through cycle based sub-procedures. 

 However, there are some limitations regarding Modular Approach and multiple 

timeplates patterns. First, it is necessary to consider that there are some patterns in which it is 

necessary to force JTAG ports for specific modulars. In that case, previous flow supported this 

feature through TDL (TASS flow), now it is necessary to use sub-procedures since PDL does 

not support this feature. That means, it is necessary to split those patterns into multiple PDL 

plus sub-procedures as observed in third modular of  Figure 23. As a result, Modular Approach 

is affected. 

 Second issue is multiple timeplates usage inside the same PDL or sub-procedure. On 

PDL case, it was determined that for each timeplate it is necessary a different PDL, splitting a 

modular in as many PDLs as timeplates used. In case the same PDL is recalled within Test 

Setup but with a different timeplate definition it can be done thanks to -timeplate switch on 

iCall command available only on Test Setup environment and patterns -scan context. 

Nevertheless, with sub-procedures this option is not available, so even if it is needed to reuse 

the same sub-procedure with a different timeplate, a new sub-procedure is required to be 

written. Same as PDL, in sub-procedures it is not possible to define more than one timeplate. 

 Last consideration concerns to the ICL network state. Since from IJTAG solver 

perspective it is not possible to understand what happened to the network during a sub-

procedure when required it is necessary to use iState command. iState is used to manipulate 

the internal IJTAG network state, so that it is possible to manually describe what was done 

during a sub-procedure only if the network was modified. 

 

  

Figure 23: TOP Level PDL pattern description approach. 
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4.5 New ATPG Flow 

 

 The first main objective of the new ATPG flow using IJTAG PDLs patterns is to 

simplify the flow steps and therefore to reduce the bug’s risk during pattern generation. The 

second main objective is to guarantee ATPG testbench simulation is accurate and matches real 

output patterns used for ATE. 

 Analyzing previous TASS flow from Figure 15 it was determined that in order to 

generate Test Setup procedure for Tessent Shell it is required an intermediate step to transform 

ATF output from TASS into a .testproc file understandable by Tessent Shell. To do so it was 

used some internal scripts. This extra step could be the source of some bugs, so it is always 

better to avoid it. In the new ATPG flow with IJTAG from Figure 24 it is used directly Test 

Setup in .testproc format as a Tessent input.  

 ATPG Test Setup is written following Approach 3 (Test Setup based sequence), so that 

it is possible to use both PDL and sub-procedures. In the new flow, Test Setup procedure is 

copied into the main atpg.testproc file which contains other necessary procedures for ATPG. 

In order to use PDLs in Test Setup, it is necessary to read the TOP level ICL network.  

 

 

Figure 24: New ATPG Flow with IJTAG PDL Test Setup. 
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4.5.1  ATPG PDL-based Test Setup 

 

 Through Figure 25 it is observed the differences between Test Setup for ATPG patterns 

from TASS and IJTAG. First advantage from new IJTAG Test Setup is the possibility to 

include the bootstrap startup at the beginning of the sequence which corresponds to Modular 1 

or TMER modular. This means that the startup will also be included in the testbench, generating 

more accurate results between simulation and ATE patterns. In TASS case it was not done (but 

it is possible), so it was only used a sub-procedure and some adaptations in the DOfile script 

in order to force the entry without the bootstrap sequence in the testbench.  

 Second IJTAG Test Setup advantage is the possibility to simulate multiple timeplates. 

Initial TASS Test Setup was limited to only one timeplate for the complete sequence 

(represented as Timeplate 0 in Figure 25) and TCK pulsed each two cycles to match the timing. 

However, this does not match the ATE patterns reality in which each modular could have one 

or more different timeplate. With IJTAG Test Setup it is possible to use as many timeplates as 

desired with the already discussed limitation of only one timeplate per sub-procedure or PDL. 

Since some modulars have different timeplates or they are forcing JTAG ports, they must be 

separated in several files (ATPG modular case). 

 

 

Figure 25: ATPG Test Setup modification using IJTAG PDL patterns. 

 Since some ATPG modulars are only in charge of the hierarchy access, they are pure 

sub-procedures on IJTAG Test Setup (represented in blue as Level Access, Figure 25).  Due to 

the DFTShell generated ICL does not match the hierarchy design, IJTAG is not capable to 

understand the multi TAP architecture (same as TASS) and that is the reason why hierarchy 

access can only be developed through a manually described cycle-based sequence both on 
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TASS and IJTAG. In case multi Tap architecture is defined, hierarchy access could also be 

developed through an iTopProc using PDL-based commands inside a PDL file. 

 It has been mentioned that it is required to use external modular patterns from other 

NXP teams such as the case of Secure Element patterns (SE). In that case, patterns format is 

neither TDL nor PDL necessarily but could be ATF or STIL. As ATF is an internal NXP format, 

the only option for IJTAG is to receive STIL patterns as it is a standard format. Unfortunately, 

STIL is not supported in the current IJTAG version (2022.1) both on pattern -ijtag and pattern 

-scan contexts.   

 

 

4.5.2  ATPG Tests and Simulations 

 

 EOS ATPG tests are designed based on three main islands which are: GP – ADC 

(General Purpose Analog-to-Digital Converter) represented as G, the boost island or B, and the 

Secure Element or S. Both the G and B islands are digital islands inside the analog module. 

Depending on if the scan chains are enabled or not, the islands are represented as 1 (enabled) 

or 0 (disabled). Therefore, as an example, the first test is G0B0S0 meaning that the scan chains 

from all the islands are disabled, and the test target is only the TOP level scan chains. The 

second test is G1B1S0, in which the scan chains from both digital islands inside the analog 

module are enabled. The last case is G1B1S1, in which all the islands scan chains are enabled.  

 ATPG pattern tests could be classified depending on the test model, the test type, the 

compression configuration, and the testbench type, this last one applies only for simulation. 

Table 2 shows the ATPG test classification. 

    

Table 2: ATPG Test Classification 

Fault Model Test Type Compression Testbench 

Transition Chain test (shift only) ON (EDT ON) Serial (First N patterns) 

Stuck-At 
Full ATPG test (shift + 

capture) 
OFF (EDT Bypass) 

Parallel (Full patters, no 

shift) 

 

A. Test Model 

 

The fault model is the way to describe and simulate manufacturing defects within the 

IC. The most traditional test is call Stuck-At, which targets the gate level of the design (logic 

gates, basic logic structures, etc.) and test their interconnections. This test is efficient to test 

several production defects of the IC and quantify the fault coverage.  The Stuck-At test models 

the IC logic stuck-at 1 and 0 based on the logic operation of the gates. As an example, from 

Figure 26, a stuck-at 0 fault could be analyzed through an OR gate easily, the target is to 
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demonstrate that the gate is not stuck-at 0 so controlling only one of it inputs with a logic 1 is 

enough to observe the fault. Summarizing, this fault model tests if a logic structure, due to 

manufacturing defects, is stuck-at 1 or 0 irrespective of any value changes on the inputs. 

However, Stuck-At model does not include timing considerations such as a possible 

gate delay larger than the expected. Due to manufacturing defects, timing characteristics 

changes from one IC to another and in some cases, this could be severe enough to generate 

faults in the desired behavior. This gate delay issues causes a node value to change but not in 

the time it should, that is why this type of faults occurs during transition giving the name to the 

Transition Model.  

A Transition Model could be understood as a Stuck-At test within a time window. This 

means that a Transition Model test can cover some Stuck-At faults. The process to obtain the 

equivalent Stuck-At faults covered by Transition is called Fault Grading. This process rates the 

testability with the percentage of possible Stuck-At faults to detect thanks to Transition Model 

compared with the total fabrication defects. At the end of all the ATPG tests, the objective is 

to have the maximum test coverage (100%), however this is only an ideal case. In real cases 

test coverage is around 98%. 

 

 

Figure 26: Single Stuck-At Fault example. 

 

B. Test Type 

 

For each of the two Fault Models used on EOS ATPG, it is possible to execute two 

types of tests: Chain test and the ATPG Full test. During  the design flow (between Synthesis 

and Backend) it is developed the Scan Chain Insertion or DFT Insertion process (Appendix 

Figure 3). During this step the standard Flip-Flops of the design are converted into Scan Flip-

Flops (SFF). The main feature of SFF is that they are capable to work on two operation modes: 

normal and test mode. 

In order to test a node and detect a stuck-at fault, the node must be controllable and 

observable. In other words, it is necessary to have full access to the input and output of the 

node which is related to combinational logic. To solve this issue, SFFs are connected serially 

generating Scan Chains during the Synthesis Scan Chain Insertion process, a simple 
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implementation example is found in Figure 27. Using scan chains, it is possible to connect the 

Scan flip-flop input either to the combinational logic output (Normal Mode and Test Mode) or 

to the Scan-in pin (only Test Mode) [16]. During normal mode, the scan enable signal is 0 and 

the SFF can only perform a “Capture” operation which means take the input data and apply it 

on the next clock cycle. Normal mode is equivalent to the original behavior of the Flip-Flop 

before the Scan Chain Insertion. During test mode, the scan enable signal starts at 1, this allows 

the SFF to perform “Shift” operation, which means, the SFF shift-in the data (test pattern 

control stimuli). Then, SFF load the response (Capture) of the combinational logic by the SFF 

functional input during one cycle (for stuck-at faults). Finally, the SFF shift-out the observed 

response through scan-out. 

 

 

Figure 27: Scan Flip-Flop (left) and Scan Chain (right) [16]. 

The first test to verify is the Chain or Scan Chain test, its main objective is to evaluate 

that there are issues that prevent the use of scan chains, therefore, to control and observe the 

SFFs. During Scan Chain test, the Scan Chains work on scan mode but they do not execute the 

“Capture” step, only the “Shift” steps.  Therefore, Scan Chain test is a shift-only test as 

mentioned in Table 2. The basis of Chain test is to introduce a pattern into the different chains 

and compare it with the chain output. As the SFFs are never capturing the combinational 
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response, the output must be the same as the input pattern since the chain is only working as a 

shift register. However, if it is needed to evaluate a stuck-at fault which is related to 

combinational logic, it is necessary to execute the full test mode flow, this is called Full ATPG 

test which is formed by the two “Shift” steps, plus “Capture” in between. 

 

Finally, it is important to remark that during a shift-out process it could also be executed 

a shift-in as observed through the waveforms of Figure 28. 

 

 

Figure 28: Full ATPG Stuck-At test: shift-in, capture, shift-out. 

 

Through Figure 28 it is observed a complete ATPG sequence since it has the 3 stages 

(shift-in, capture, shift-out) and it corresponds to a Stuck-at fault test as there is only one 

Capture cycle. In case of Transition fault tests, it is required two cycles during Capture.  

 

 

 

C. Compression 

As mentioned, scan chains are formed by SFFs serially connected through their scan-

in and scan-out signals. However, in very complex designs there could be a large amount of 

scan chains depending on the amount of SFFs. In EOS case, it has 416 scan chains. However, 

EOS has only 4 channel-in and 4 channel-out. The channels are the physical external ports that 

could be used as scan-in or scan-out ports. Therefore, in order to keep a good pattern generation 

throughput in terms of test time and quality, it is necessary to implement some techniques to 

compress and decompress the test patterns.  
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Siemens offers through Tessent a sub-tool called TestKompress which helps to 

implements compression techniques to create test patterns with considerably less test data 

volume and therefore reduced test times on ATE. The compression architecture is described 

through Figure 29, it is formed by two blocks the Decompressor and the Compactor. The 

Decompressor objective is to handle the compressed input patterns and through some 

techniques extract the patterns, decompress them and input the scan chains. At the scan chains 

inputs, it is necessary to recompress the patterns which is the task of the Compactor. 

When the compression process is applied it is called EDT (Embedded Deterministic 

Test) ON. However, for debug purposes compression could be disabled. In that case it is said 

that the compression is bypassed (EDT Bypass). Evidently when bypassing the compression, 

the test time is severally affected since the 416 scan chains are connected in a way, they form 

only 4 chains (for the available channels). Since test time is very important, using compression 

is very necessary. 

 

 

Figure 29: Tessent TestKompress Decompressor and Compactor Structures [15]. 

 

D. Testbench Type 

 

Last ATPG tests feature is the testbench type. The standard testbench is known as Serial 

testbench which represents exactly the behavior of the patterns used for ATE. However, due to 

the large number of  scan chains (416) and SFFs, this testbench takes a considerable amount of 

time to be simulated. The steps which affect the most the simulation time are the shift-in and 

shift-out processes. While as mentioned, Capture is only one or two cycles. In some cases, 

including EOS, Serial testbench generation is configured to include only the first N patterns (N 

complete shift-in, capture, shift-out processes) where N is between 10 and 100. This way 

simulation time is reduced. 
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 For simulation purposes it could not be very necessary to simulate the shifts processes 

since their main objective is to load the SFFs with the desired input pattern sequence before 

capturing the combinational logic response. But the most important objective is to analyze that 

the response of the logic is the correct. To simulate this behavior directly without having to 

load and unload the chains each time, it is designed a Parallel testbench. It is called Parallel 

testbench because all the chains are forced to the desired final values (after shift-in). Same way, 

in order to avoid shift-out process, Parallel testbench reads directly the values from the registers 

saving all the simulation time required for shift-out.  This technique is valid only on simulation 

since physically there is no way to read the SFFs or program them without the shift processes. 

 

4.5.3  ATPG Testbenches 

G0B0S0: Transition, Chain test, Compression ON, Serial Testbench. 

 

 

Figure 30: ATPG Test 1. 

 Figure 30 shows a G0B0S0 test which means that the scan chains from all the islands 

are disabled, and the test target is only the TOP level scan chains. Fault model is Transition 

however this is not relevant since it is a Chain test, therefore, the objective is to test the integrity 

of the SFFs chains and not to perform Capture. Compression is ON (EDT ON), that means that 

decompressor and compactor are enabled. Finally, it is a Serial testbench since the objective in 

this case is to simulate the complete shift-in and shift-out processes. 

 This simulation ensures that the device can be correctly configured into scan mode and 

that they are able to shift data in and out through the scan chains at a targeted frequency. A way 

to test this is to analyze that the scan-in patterns are equivalent to scan outputs response. Since 

it is G0B0S0 this affirmation is only valid for TOP level scan chains but not sure for the islands. 

Due to Compression is ON and it is a Serial testbench it is also possible to confirm that the 

EDT is working as expected. In case of an EDT configuration mismatch or timing violation, 

the chain test will fail and the mismatches on the scan outputs will be displayed in Cadence 

SimVision Console. A possible cause of a wrong behavior of the Decompressor or the 

Compactor could be an incorrect setting during Test Setup. It is important to mention that 

Test Setup 
Test 

Setup 

Ends 

Shift-in 

NO 

Capture 

Shift-

out + 

Shit in 

TCK: Blue 

Scan-in: Green (dark) 

Scan-out: Green (light) 

Scan EN: Pink 
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during Test Setup some TCBs and TPRs are programed in order to set the required 

configurations for ATPG tests. 

From Figure 30 it can be observed TCK, Scan INs, Scan OUTs and Scan Enable signals. 

TCK which is the clock signal is represented in blue color and corresponds to GPIO1. It is 

observed that TCK is not toggling when Scan Enable (GPIO2_AO) is 0. This is expected since 

it is a Chain test, and it is not desired to execute Capture operation. As described previously, 

EOS has 4 scan-in channels which correspond to (GPIO5, GPIO 4, TM and I3C_SCL) and 4 

scan-out channels (GPIO0, GPIO3_AO, GPIO6, I3C_SDA). Due to some of these ports are 

GPIOs, they are not only used as scan ports but also as JTAG ports which is the case of GPIO0, 

GPIO2_AO and GPIO5 which correspond to TDO, TDI and TMS respectively. JTAG ports 

are used during Test Setup configuration which corresponds to all patterns 

before ”tcb_scanen_update” signal observed at  Figure 30. This last signal shows the last TCB 

(SCAN_CONFIG_tcb) that is configured during Test Setup procedure before starting ATPG 

test to isolate the TAP from its control signal (TMS) to prevent a JTAG FSM state modification, 

therefore an undesired change on the DR setup. 

The final step to analyze the waveforms is to understand the shift-in and shift-out 

processes. During shift-in, scan enable is 1 (GPIO2_AO pink signal), as it is a serial testbench, 

each chain must be loaded serially. Same process must be done when unloading the chains 

(shift-out). As mentioned, during a shift-in it is possible to execute a shift-out so data is read 

and write on the chains. However, as observed it is only possible after the second patterns 

because during first pattern there is no data to shift-out (red waves on scan-out ports). 

 

G0B0S0: Stuck-At, Full ATPG test, Compression ON, Parallel Testbench. 

 

Figure 31: ATPG Test 2. 

This second case corresponds to Stuck-At fault test. Due to it is a Full ATPG test, 

Capture is developed to obtain the response of the logic and capture it on the chains. However, 

since it is a parallel testbench, shift-in and shift-out are not simulated. Instead, the chains are 

preloaded directly with the right values (instead of shift-in) and directly read in parallel (instead 
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read              

7 cycles 



52 

 

 
 

of shift-out). Since it is a parallel testbench, it is not relevant if Compression is enabled or 

disabled because on simulation the stimuli are forced at the SFFs level. 

As observed through Figure 31 during scan enable signal equal to 1 (which means shift-

in, shift-out), there are only 7 pulses of TCK, during these pulses the chains are parallelly 

loaded and read, this is equivalent to the shift processes. Those 7 pulses are also necessary to 

load some parallel flip-flops which are not part of the chains, so cannot be preloaded as SFFs. 

Then, it is observed a long TCK pulse which is the required clock pulse to test Stuck-At faults, 

during this pulse the response of the logic is captured by the chains. Since for this simulation 

the data is not loaded to the chains through the scan channels ports, they are not giving relevant 

information. To analyze if the captured data is correct, it is necessary to check directly at the 

SFF level after the Capture. 

For EOS parallel testbenches, TCK period during the 7 shift cycles is adjusted. 

Originally on Serial testbenches the shift period is 30ns, however on Parallel it must be changed 

and the time between the falling edge and releasing the chain forces is needed to be 11ns. The 

objective is to have a longer time to avoid timing issues due to clock propagation. It also needed 

to have a delay time between the forces are released and the Primary Inputs (PI) are forced for 

the two events not to happen at the same time to prevent simulation issues, that is why the 

forces occurs 1ns after the beginning of the new cycle. Finally, as observed through Appendix 

Figure 4, the period is increased to 41ns with the same ON time (15ns) but adding 11ns OFF 

after. These modifications to avoid timing issues are developed by post processing the 

testbench using scripts to automate the process. 

 

G0B0S0: Transition, Full ATPG test, Compression OFF, Serial Testbench. 

 

Figure 32: ATPG Test 3. 

The third example from Figure 32 corresponds to a Full ATPG Transition test in which 

the compression is bypassed, it was simulated a Serial testbench. Different from previous 

simulations in this case the shift-in and shift-out are not developed using TestKompressor 

algorithms since the decompressor and compactor are disabled. Since this feature is not used, 

the simulation time is severally affected because the shift-in and shift-out processes requires 

Shift-in Capture 

2 Cycles 

(Transition) 

Shift-out + 

Shit in 
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more cycles to be completed. Due to this reason, through the DOfile it is configured to generate 

the testbench for a limited number of patterns (10 first patterns). 

 Since it is a Transition fault test, it is required two cycles during Capture to perform it. 

As observed through Figure 32 during Capture,  the scan enable signal (GPIO2_AO, pink) is 

set to 0 meaning normal mode, during this time, TCK (GPIO1, blue) pulses twice (thanks to an 

internal clock generator). After Capture is done, the chains return to test mode in order to shift-

out the data and shift-in the next patterns. Due to it is a Serial testbench it is possible to 

demonstrate through it if the chains are working properly but since compression is OFF, it is 

not feasible to confirm if the decompressor and compactor operates in the right way.  
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5 Improvements for Future Projects 

 

5.1 Multiple TAP ICL representation  

 

 As described through Figure 7 EOS DFT architecture matches a multi-TAP Star design 

in which there is a TOP tap controller and multiple sub-level Taps, therefore there is a multi-

level structure with a clearly defined hierarchy. Unfortunately, TASS is not capable to represent 

this architecture since it can only support a single tap design. In IJTAG case the ICL network 

generated by DFTShell contains a single tap architecture. Consequently, both TASS and 

IJTAG work based on a single tap DFT design corresponding to NFC sub-IP tap.  

 For EOS project purposes both representations are enough since the hierarchical access 

is handled manually (cycle-based patterns) which is a desired feature, and because external 

sub-IPs delivers their own patterns (SE and TSMC-flash). However, for future projects NFC 

tap will be separated into two independent taps in such case it is mandatory to handle a 

hierarchical design. In that case, the most critical issue is that multiple data registers from 

different sub-IP taps (TCB/TPR) could have the same address (IR OPCODE). In that case 

representing the design with a single tap is not feasible with the current approach. 

 

 

5.1.1  Merged Tap Controller IJTAG 

 

 First approach using IJTAG is based on representing a multiple-tap architecture through 

a single merged main tap. During IJTAG flow there is no verification between the real RTL 

design and the ICL representation since the RTL is only used to read the interface (TOP level 

input/output ports) and not the instances (sub-IP RTLs). This means that it is not necessary the 

ICL to match the real RTL design and this methodology takes advantage of this. However, it 

is necessary to consider that through this approach since the design is not matching the real 

design, there is a higher risk to have undesirable effects on the patterns. 

 

 The objective is to merge all the data registers into a single tap instance. The main issue 

is that IJTAG is not able to work in case of two or more data registers with the same address 

within the same tap sub-IP. Therefore, it is needed to modify the ICL description manually in 

order to make IJTAG understand that even if two data registers have the same address, they 

are different. To do so, the proposal is to add an extra bit (LSB) in the instruction register in 

case of two DR with the same address. This extra bit is used during the OPCODEs definition 

to make a difference between two identical addresses. Through Figure 33 a hierarchical design 

with two sub-taps is transformed into a single-tap representation. As observed, IR is 8-bit 

length and there are two TCBs with the same address but in different taps. To merge them a 

LSB is added to the IR, and it is assigned a unique value for this new bit for each TCB. 
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Figure 33: Multi-tap into merged single-tap architecture. 

  

The flow using this approach could be: 

- Generate the ICL description of each sub-IP tap through DFTShell in independent 

sessions. 

 

- Concatenate all the data registers (TCB/TPR) instruments from all the taps into a single 

ICL file. 

 

- Modify the single-tap IR by adding the extra LSB, if the address is repeated more than 

once, it could be added extra bits at the end of the IR. 

 

- Define the OPCODEs by assigning a unique value of the added bits to the DRs with 

same addresses. 

 

From IJTAG perspective the IR has 9 bits instead of 8 (from Figure 33 and Figure 34 

example), therefore it is going to generate the sequences based on this. Figure 34 shows a test 

case in which it was defined the same address intentionally for a TCB and a TPR and used an 

extra bit to indicate IJTAG they are different instruments. The effect in patters is that there will 

be an extra cycle due to the new bit, however this extra bit will be over shifted so the real 

behavior is not going to be affected. The extra cycle is not significant compared with the 

complete test sequence so it will not affect the simulation or tester time. Despite through this 

approach it is possible to handle a hierarchical design it is still not a representation of it. This 

means that the hierarchy access must be done manually as it has been done previously. 
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Figure 34: DFT understood architecture by IJTAG (Tessent Visualizer). 

 

5.1.2  Merged Tap Controller TASS 

 

There is the possibility to develop a similar solution for TASS in order to handle the 

mentioned scenario of a multiple tap design with same DR addresses. In IJTAG case it was 

necessary to add an extra IR bit since the tool executes an ICL network validation and declare 

as an error if two DR have the same address. With TASS it is possible to do implement the 

same solution. However, TASS does validate the TD input files (DR and tap interconnections) 

so, it can use multiple data registers even if they have the same address. The only requirement 

for them is to have different paths and names.  

Therefore, for a multi-tap architecture it is possible to merge it into a single-tap 

architecture by concatenating the TD chains and describing all the OPCODEs in the same tap 

TD file. The drawback is that it is not matching the real design, so the hierarchical access must 

be handled manually. 

 

5.1.3  TDO-Gated Multi-Tap Representation IJTAG 

 

The third solution is based on modifying the ICL network in order to generate a 

hierarchical representation of the multi-tap Star architecture. First trials were developed to gate 

TCK in order to match the original design as observed in Figure 35. The target is to implement 

a ClockMux controlled by the UP TCB (TCB in charge of selecting the sub-IP taps) before the 

TCK input each TAP level. Despite the clock gating is done within the TAM block level using 

this ClockMux is the closer ICL description compared with the original design. 

However, trials demonstrated that IJTAG is not able to work based on an ICL network 

in which TCK is gated. During the ICL elaboration and check, IJTAG reports an ICL semantic 

error. IJTAG does not allow to use a ClockMux output as an input of a sub-IP TCK port. 
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Unfortunately, this error cannot be downgraded into a warning, so it is necessary to change the 

approach to handle a multi-tap architecture.  

 

 

Figure 35: TCK gated ICL design. 

 

 Since there is no possibility to gate TCK it was decided to gate TDO. The main 

objective is to describe a hierarchical architecture that IJTAG understands and supports. This 

way, during pattern generation it is expected the tool to generate the sequences for the different 

tap accesses. It is proposed to gate TDO through a ScanMux controlled by UP TCB as observed 

in Figure 36. During IJTAG flow it was observed an ICL error because the ScanMux is 

deselecting the TAM TAP controller. It means that the main tap loses control and will never 

be retargetable. 

 In practice, this is not the case because the TAM TAP was designed in order to spy the 

signals, meaning that the TAM TAP never lose control and it is retargetable. Also, it was 

implemented some extra logic to prevent the top tap to reset accidentally when resetting the 

sub-IP taps [12]. However even if these features work as expected at hardware level, it is not 

possible to represent them into an ICL description. Therefore, for IJTAG since the UP TCB is 

configured by the TAM TAP and this TCB is in charge of selecting the TDO, the tool must 

generate the patterns to select the right TAP related with a TDO and the desired DR to be 
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read/written. Once this new TAP is selected there is no way for IJTAG to retake TAM TAP 

control and rewrite UP TCB to select another TAP. 

 

Figure 36: TDO gated ICL design. 

Nevertheless, the ScanMux error can be downgraded into a warning. Consequently, 

IJTAG understands the multiple tap architecture and the TDO gating mechanism. It is shown 

through Figure 37 the IJTAG ICL schematic on Tessent Visualizer tool for EOS project TOP 

TAM tap and FSM tap. 

 

 

Figure 37: Hierarchical ICL network description understood by IJTAG. 
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As mentioned, for IJTAG it is not possible to retake TAM TAP control. Because of that, 

it is necessary to use iState command in the PDL pattern description when it is required to 

access a different sub-IP or to retake TAM TAP control. With iState it is possible to manually 

define the state of the ICL network, but it does not generate any patterns. The flow is as follows: 

 

Figure 38: Hierarchical PDL example using iState. 

 

5.2  Force JTAG Ports on PDL patterns 

 

As mentioned on previous chapters (4.4 New Test Sequence Approaches) the only 

way to force JTAG ports with IJTAG is through sub-procedures used on Test Setup. However, 

complex functions which require loops, arguments or different timeplates are hard to 

implement through sub-procedures since their language is very limited as it is designed to 

describe simple cycle-based functions. The second drawback is that this is available only with 

Approach 3 in patterns -scan context losing all the advantages of patterns -ijtag context and 

pattern sets. 

Therefore, the target is to use PDL to force JTAG ports since PDL is a language with 

more flexibility and as mentioned, it is compatible with TCL commands. Finally, PDL can be 

used on patterns -ijtag context taking advantage of pattern sets. The way to force and compare 

the IC ports is through iForcePort and iComparePort PDL commands however this is limited 

for non-JTAG ports. Siemens propose a Tessent IJTAG command called 

iSuspendPdlRetargeting in order to force JTAG ports. This command is going to stop the 

IJTAG retargeting tool which is in charge of analyzing the state of the ICL network. In other 

words, through it, there is the possibility to force JTAG ports within PDL patterns and IJTAG 

will not complain about it or any modification of the ICL network state. However, after this 

command is used it is mandatory to use an iReset command which purpose is to give control 

again to IJTAG retargeting tool. Since the ICL network state could be modified during this 

process it is necessary to use iState to specify the modifications (network end state, e.g., TCB 

or TPR changes). A flow diagram for iSuspendPdlRetargeting is shown through Figure 39. 
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Figure 39: iSuspendPdlRetargeting flow to force JTAG ports. 

 

 However, on current releases (up to Tessent 2022.2) the only way to give control again 

to the retargeting tool is through iReset command. Unfortunately, this command also generates 

a soft reset (TMS set to 1 during 5 TCK cycles). This is an undesired behavior that could affect 

the TAP FSM state. The second issue is the limitation to force all JTAG ports. It is not possible 

to use any command to force TCK port, so it is always pulsed as a clock during PDL patterns 

and does not react to iForcePort. The way to solve these issues is through a workaround to 

modify the iReset effect and force TCK port. 

 In order to eliminate iReset effect it is proposed to develop a post-processing step of 

the output files (STIL and Testbench) to remove the soft reset. The first step is to create a new 

PDL procedure called “iResume” which will contain the iReset command but also some 

comments (through iNote PDL command) before and after it. These commands are useful to 

automate the post-processing. In case of STIL patterns, the file is post-processed using a script 

that searches the comments and forces TMS signal to 0 during iReset, this way it prevents the 

soft reset. For the Verilog Testbench, there is the possibility to add special Tessent comments 

(tessent_pragma) before and after iReset that which will force the TMS GPIO to 0 during the 

iReset and releases it at the end before exiting iResume. This way it is not necessary to post-

process through scripts the Testbench. 

 For TCK port (GPIO1) issue the proposal is to create a pseudo-port to replace TCK. 

The original TCK from the ICL definition will be pulsed during all the PDL pattern sequence, 

but the pseudo-port since it is not TCK, it can be manipulated freely. The first step is to declare 

it as a clock in the DOfile. Then it is needed to pulse inside all the timeplates definition in 

which it will be used as TCK (e.g., for a part of TMER modular since TCK is forced to a fixed 

value during bootstrap, it must not be pulsed in the corresponding timeplate). Since this pseudo-

port, different from TCK, is not pulsed by default, it is necessary to pulse it at the beginning of 

each PDL pattern when required. Finally, when writing the patterns (write_patterns command) 

the original TCK is overwritten or replaced by the pseudo-TCK which matches the real 

requirements (using the command set_write_pattern_options). 
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Figure 40: Force JTAG ports flow through pseudo-TCK and iResume. 

 

5.3 Use of external IP Patterns 

Due to some IPs deliver their own patterns it is necessary to integrate them into the test 

sequence for simulation. This is the case for Secure Element patterns that must be integrated 

in test setup for ATPG patterns, or the Flash patterns coming from TSMC. Since IJTAG 

supports only PDL or SVF input pattern formats, it is not possible to directly use STIL input 

patterns. First approach was to use a Tessent utility called STIL2MGC (STIL2TESSENT on 

last Tessent version 2022.2) This is a tool that converts STIL files into a DOfile and a test 

procedure file. The objective is to call this sub-procedure into test setup as other cycle-based 

procedure. The main limitation with this solution is that it works only with test setup approach, 

since sub-procedures cannot be called within PDL files. Therefore, for ATPG patterns, the 

solution fits adequately, but for non-ATPG patterns it can only be used with pattern Approach 

3 (Test Setup Pattern Description). 

 It was developed some trials with several STIL pattern files, but the tool presented some 

limitations. It is only possible to use STIL2MGC for STIL patterns with chain definition (scan 

structures and scan chains). Due to this constraint, it is not possible to generate a procedure file 

for all STIL files. 

 Second solution is the development of internal NXP scripts to transform STIL into PDL. 

This is the best option and the selected one for future projects because PDL format is allowed 

in all pattern generation approaches. Additionally,  the external STIL patterns (both from SE 

and Flash) are cycle based described, meaning that there will be a one-by-one transformation 

into cycle based (iForcePort and iComparePort) PDL commands. An example for SE patterns 

used on Test Setup for ATPG is shown through Figure 41. 
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Figure 41: Test Setup for ATPG using STIL to PDL transformation. 

 

5.4 Detailed Annotations using iReadVar/iWriteVar 
 

One important requirement is based on the annotation level of the STIL output patterns. 

Due to the generated patterns will be used by test engineers on ATE, the delivered STIL files 

must be well commented for debugging purposes. The minimum requirement is to have per-

cycle annotations with the information of the JTAG bits. Detailed annotations regarding the 

read and write processes are also required. However, IJTAG does not give detailed comments 

on STIL such as the full DR information when using iWrite/iWrite commands for specific DR 

bits. On the other hand, TASS supports all these features, that is the reason way annotation is 

considered an IJTAG weakness. 

 IJTAG annotations are created through iNote PDL command which prints the 

comments in the output pattern files. iNote is a command that can be used before or after and 

iRead/iWrite, so it is not possible to add a comment during the iRead/iWrite process.  

Nevertheless, IJTAG supports the association of an iRead or iWrite command with a symbolic 

variable such as iReadVar and iWriteVar [8]. There is the possibility to use a 

“TESSENT_PRAGMA annotation” within an iNote. This particular annotation command 

allows the tool to track the symbolic variables during the PDL retargeting process and replace 

them with an associated ICL instance (e.g., TCB/TPR). Which means that it is possible to 

associate the symbolic variables to each of the DRs of the ICL description and then, generate 

the pattern output file such as STIL with a high annotation level. 

 The process starts with the extraction of the ICL DRs and their “aliases”. An alias is a 

name for a virtual vector signal that contains one or several signals from an ICL structure such 

as a TCB or TPR [8]. Aliases help to understand better the function/origin of the TCB/TPR 

register signals. Then, it is necessary to create one iNote using the new symbolic variable 

approach for each alias of the TCB/TPR. This process must be repeated several times for each 

TCB and TPR. Due to and iRead can only be associated with an iReadVar and an iWrite with 
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an iWriteVar respectively, it is required two iNote commands for each DR alias (except for 

TCB which does not support iRead). Finally, since iNote is a PDL command it is possible to 

develop an iTopProc for each TCB/TPR which can be saved in a PDL file to be added to the 

PDL include database. This iTopProc can be used according to user needs before an 

iRead/iWrite. A general overview of the flow is shown through  Figure 42. 

   

Figure 42: iNote iTopProc PDL procedures generation using symbolic variables. 
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6 TASS & IJTAG Comparison Summary 

 

Table 3: TASS vs. IJTAG comparison. 

Topic Feature IJTAG TASS 

Basic Patterns √ √ 

 Timing √ ≈ 

 Modular Approach √ √ 

Force JTAG Ports ≈ √ 

 iSuspendPdlRetargeting X  

 Test Setup Approach 3 ≈  

 Test procedures from TCL ≈  

 iResume ?  

External STIL Patterns Reuse ? √ 

 SVF/PDL + ICL ≈  

 STIL2MGC X  

 STIL input support X √ 

 STIL to cycle based PDL ?  

ATPG √ ↓ 

 Bootstrap on simulation √ ≈ 

 Accurate Timing on TS √ ≈ 

Annotation Level X (≈) √ 

 Current: Per Cycle Annotations √ √ 

 Expected: Detailed Annotations X √ 

 iWriteVar / iReadVar  √  

User Friendly √ ↓ 

Hierarchy Understanding √  X (≈) 
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This comparison study was based on 7 main topics as observed in Table 3. The features for 

each topic were evaluated for both tools based on the risk and difficulty to implement. The 

symbols definition is the following: 

√       : No risk, implemented and tested, workarounds do not represent a risk. 

↓        : Slight disadvantage compared with the other tool, but feasible without risks. 

≈        : Moderate risk, feasible but required workaround or post-process. 

X        : Not feasible. 

?         : Moderate risk, workaround is not completely tested. 

X(≈)   : Limited workaround which does not accomplish all the requirements. 

 

First one is Basic Patterns which corresponds to only PDL or TDL based patterns for 

IJTAG and TASS respectively. It has been determined that IJTAG supports multiple timing 

definitions through timeplates while TASS does the same through wavesets. In IJTAG case, 

when multiple timeplates must be used within a modular it is required to open a new pattern 

set. However, for TASS to use multiple wavesets in the same modular it is necessary a script-

based workaround, that is why TASS timing feature is marked as “≈”. Nevertheless, both tools 

can support and represent successfully the Modular approach and all its requirements, reason 

why Basic Pattern is “√” for both.   

Second topic is how to force JTAG ports. This requirement is fundamental since it is 

used for the bootstrap initialization, cycle-based functions such as the manual multi-tap access 

and in some specific modular patterns. In case of TASS, TDL language supports this 

characteristic without any risk or limitation. However, in case of IJTAG as observed in 

previous chapters, it is not possible to force JTAG ports with PDL directly, therefore some 

workarounds are required. Since there is the soft reset issue when using 

iSuspendPdlRetargeting command with iReset, this solution is discarded. Second possibility is 

to use Approach 3 which is based on sub-procedures, but as mentioned these are based on a 

very limited language. A third possibility which is an extension of Approach 3 is to automate 

the sub-procedures creation by using TCL scripts. However, both last two solutions are not 

worth due to time and complexity. 

Therefore, the only feasible solution to force JTAG ports with IJTAG is to use the 

iResume approach (5.2  Force JTAG Ports on PDL patterns) which requires a 

workaround, but it fulfill successfully the required feature. 

The third requirement is related with external IP patterns in STIL format. Since IJTAG 

only supports either PDL or SVF the initial solution is to ask one of this pattern formats. 

However, this is not possible for third party patterns (TSMC case). As it was mentioned, 

STIL2MGC tool is not suitable on this case. Finally, IJTAG does not support STIL format in 

all its pattern contexts. Consequently, the only feasible solution is the STIL to PDL 

transformation through scripts (5.3 Use of external IP Patterns). Since this solution has not 

been completely tested it is marked as “?”. 
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Fourth topic is ATPG patterns in this case, IJTAG has no limitations compared with 

TASS. Additionally, as shown previously (4.5.1  ATPG PDL-based Test Setup) 

IJTAG simulates the bootstrap and is more accurate in timing since it supports multiple 

timeplates in Test Setup procedure. Currently, these two features are not supported with TASS, 

but they are feasible with additional workarounds. In conclusion ATPG patterns are both well 

supported by IJTAG and TASS with some benefits from IJTAG. 

The next requirement is based on the annotation level of the STIL output patterns. It 

has been mentioned that this characteristic is fundamental because it is a requirement used not 

only by DFT engineers but also test engineers. Since IJTAG does not accomplish the detailed 

annotation requirement, it was developed a workaround to solve it. Different from other 

proposed solutions, this one requires only PDL manipulation. However, it requires certain 

automation through scripting in order to generates the PDL procedures. Which is a 

disadvantage compared with TASS that fulfills this requirement without additional work. 

Next topic aims to compare TDL and PDL languages from the user perspective. After 

the different test developed on this study it was determined that PDL has certain advantages. 

Since PDL is based on TCL, it is user friendly and easy to learn while TDL has its own structure 

for variable creation, loops, others. PDL files also have a clear modularity and hierarchy. It is 

possible to target the instrument level and then create pattern sets to reach the Modular 

approach or it is possible to target the top level avoiding independent PDL for each instrument, 

therefore PDL is flexible. But, in terms of functionality all what is possible to do with PDL is 

also possible with TDL. 

Final requirement is based on how accurate it is possible to represent the EOS DFT 

design (hierarchical multi-tap architecture). Initially, the ICL or TD delivered by DFTShell 

does not match the real design since the tool generates a single tap representation, therefore, in 

both cases it is necessary a post-processing stage. In case of TASS, the tool does not understand 

a hierarchical architecture. TASS workaround is useful to avoid a blocking point and handle a 

multi-tap scenario, but the real design is not represented by the TD, so the hierarchical access 

must be described manually. In case of IJTAG is has been observed that it is possible to post-

process the ICL in order to represent the hierarchical architecture, but it gates TDO and not 

TCK so even if the tool understand there is a multi-tap structure, the representation does not 

match the real design. In conclusion, IJTAG is better than TASS in terms of hierarchy 

management since there is a possibility to represent a multi-tap design but with some 

limitations.   
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7 Proof of Concept using MUTEST 

 

The final objective of this study is to develop a proof of concept of IJTAG pattern 

sequences through on-silicon trials using an ATE. MUTEST is a FPGA-based ATE system 

used by NXP DFT engineers to debug patterns before their final deliver to test engineers. This 

step permits to reduce drastically the pattern debug time, so the DFT engineer is able to make 

his own on-silicon trials. 

In order to test pattern sequences both for ATPG and non-ATPG it is necessary to post-

process the STIL files. During this step it is used a script which is going to analyze the STIL 

and develop some modifications required by MUTEST. For example, this ATE does not allow 

STIL patterns to start or end with loops, so the post-process step prevent this. Additionally, 

MUTEST does not support STIL timing variables, so it was developed a solution through an 

IJTAG flow modification plus scripting to remove the variables and equations from STIL and 

replace them with numerical values. 

 MUTEST works with MuTool IDE which is capable to import and generate tests for 

each STIL file and allows to assign different power and timing features to each of them [17]. 

This ATE can also concatenate the tests into complete flows, therefore MUTEST and MuTool 

are compatible with Modular Approach. Multiple ATPG and non-ATPG pattern sequences 

were tested giving positive results. It is observed through Figure 43. A passing trial in MuTool 

environment. 

 

 

Figure 43: Pattern sequence test example using MuTool IDE. 
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Through MUTEST, it is possible to perform SHMOO plots to test the device under 

different conditions of voltage and frequency. SHMOO plots have a great importance in the 

debugging process. Through them, it is possible to detect pattern failures related with pattern 

stability issues [18]. In order to develop exhaustive tests, test engineers have to develop several 

trials of the patterns provided by DFT engineers under different process conditions and with  

several combinations of voltages and frequencies. To represent all these tests, this information 

is print into a SHMOO plot. Basic SHMOO plots are formed by two axis X-Y, where X-axis 

usually represents frequency (or period) while voltage is represented through Y-axis. But there 

is also the possibility to vary a third variable through a third-dimensional SHMOO plot [18]. 

 

Through Figure 44 it is observed a SHMOO plot generated with MuTool IDE. It 

corresponds to a MBIST (Memory Build-In Self-Test) ROM test in which the two parameters 

are VDDC which is the logic/RAM/ROM VDD voltage and TCK period. The default TCK 

period is 30ns which corresponds to 33 MHz while VDDC default value is 0.9V. These 

conditions guarantee the pattern stability. On this test, TCK was swept from 50% to 120% its 

default value, similarly, it was done with VDDC but between the 60% and 100% of its default 

value. It is shown in green all the tests in which the patterns succeeded and in red the failing 

cases. It is observed that when increasing VDDC voltage, patterns succeed at higher 

frequencies until reaching a threshold close to TCK ≈ 18.5ns after this point, patterns fail for 

faster frequencies despite VDDC increment. On the other hand, for VDDC voltages lower than 

∼575mV, patterns always fail regardless of VDDC. 

 

Figure 44: SHMOO Plot generated with MuTool IDE. 
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8 Conclusions 

 

This study shows the importance to guaranty product testability and how to implement 

it during the design process of an IC. This encourages the development and application of 

different standards such as the IEEE 1149.1 which ensures device testability. The usage of 

standards is fundamental in the industry because guarantees that the design and its architecture 

is compatible with market tools used during the DFT flow such as the ones used for pattern 

generation. The main objective of this work was to compare and analyze two of these DFT 

tools (TASS and IJTAG) for a possible migration for future projects. The key point to analyze 

was if the new tool accomplishes with the requirements of NXP for DFT pattern generation by 

giving enough proofs and arguments to take a decision.   

Thanks to this work it was possible to study each of the steps of the DFT flow such as 

the DFT RTL Generation, DFT Verification and DFT Pattern and Testbench Generation. Due 

to the importance of DFT, it is involved during many steps of the IC design development. 

Therefore, this study demonstrates that choosing a tool instead of another is a complex task in 

which many parameters must be considered. To analyze them and describe the different test 

cases and possible challenging scenarios during the DFT flow, it was used on an already tested 

test vehicle (EOS).   

First constraint is related with feasibility which means how easy or convenient is to 

implement certain feature. As a general conclusion it was demonstrated that there are no 

blocking points for none of the two tools, but some characteristics does not accomplish all the 

requirements. This is the case of the expected annotation level with the new IJTAG tool that 

even if does not block the pattern generation flow, it represents a considerable risk for 

debugging purposes during testing. 

Closely related with feasibility it is complexity. Some blocking points were solved 

through different workaround processes. Nevertheless, some of them are hard to develop and 

increases the difficulty of the flow which means risk to commit errors. As an example, it is 

found the iResume workaround to force JTAG ports with IJTAG, which is feasible and fulfill 

the requirements of the project but requires additional steps that even if they are tested, they 

always represent a disadvantage compared with a tool such TASS that can cover this feature 

without any additional step.  

Furthermore, complexity means more time for development and test. In case of external 

patterns, there is no possibility to use STIL with IJTAG tool, therefore it is necessary to develop 

a workaround to solve it. Which means additional time to test the workaround and close the 

new flow. Consequently, all these parameters indicate how feasible is the migration.   

However, all these challenges allowed to develop a deep analysis of the current DFT 

flow which means understand the purpose of each step, their inputs, outputs and how to 

improve the automation process. Nowadays, automation is fundamental since it reduces cost 

and time by taking advantage of design regularity. That is why there are tools such as Timnet 

and DFTBuilder to automate the RTL generation of the DFT structures. Besides, it is always 

the task of the engineer to design and set the specifications according to the requirements of 

the project. However, automation is conditioned by the flexibility and characteristics of the 

tools. 
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Through this study, it is explained that even if TASS and IJTAG tools could do the 

same tasks, automation is restricted by some tool’s limitations which in the worst case the task 

cannot be fully automated and require manual manipulation. This is the case of multiple-tap 

access. In which to access a sub-level tap such as NFC from the TOP TAM tap, the patterns 

must be described manually cycle by cycle (TASS and initial IJTAG case). This requires a high 

understanding of the tap controller state as well as the IR and DRs configuration. 

During the last stage of this work, it was simulated and debugged several ATPG 

patterns. It was determined the importance of ATPG and the different available tests in order 

to detect faults related with manufacture processes. The main target of these patterns is to have 

the highest possible coverage in order to eliminate the risk to deliver a faulty chip to a costumer. 

Those simulations were compared with on-silicon trials on ATE which is the final step to 

ensure that patterns developed with the new IJTAG tool are working as expected. 

Finally, through this internship it was possible to have a real experience on the 

semiconductor design industry with a leading company such as NXP. From a technical 

perspective, this work allowed to work with unique design and simulation tools, often available 

only for the industry, which allowed the development of strong skills and the application of 

concepts learned during academic life to the design of real products that will reach a costumer. 

Additionally, and importantly, being able to work in an international environment with 

passionate engineers committed to their work was essential for the development of fundamental 

interpersonal skills for communication both with the internal team and with external technical 

support providers. 
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Appendix 

 

Additional Figures & Tables 

 

 

 

Appendix Figure 1: TAP Control Output Interconnect Diagram [9]. 
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Appendix Figure 2: Functional Diagram of MFIO1V8SF bidirectional cell [11]. 

 

 

Appendix Figure 3: Chip Design Flow vs. DFT Flow Tasks [19]. 
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Appendix Figure 4: Timing adjustment on shift period for parallel patterns. 
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Acronyms 

 

Table 4: Acronyms Table. 

Acronym Description 

ATE Automatic Test Equipment 

ATF Application Test File 

ATPG Automatic Test Pattern Generation 

BIST Built In Self-Test 

BSC Boundary Scan Chain 

CCB Clock Control Block 

DAM Data Access Mechanism 

DFT Design for Test 

DR Data Register 

DR Data Register 

DRC Design Rule Check 

EDA Electronic Design Automation 

EDT Embedded Deterministic Test (Mentor Graphics test compression logic) 

FSM Finite State Machine 

GPIO General-Purpose Input/Output 

HFO  High Frequency Oscillator 

IC  Integrated Circuit 

ICL Instrument Connectivity Language 

IP Intellectual Property 

IR Instruction Register 

LDO Low-Dropout Regulator (DC-DC Regulator) 

LFO Low Frequency Oscillator 

NFC Near Field Connection 

OVP Overvoltage Protection Circuit 

PCRM  Power Control and Reset Module 

PDL  Procedural Description Language 

PI  Primary Input  
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PMUANA Power Management Unit (Analog) 

PO  Primary Output  

RTL Register Transfer Level 

SDM System DFT Mode 

SFF Scan Flip-Flop 

SI Secondary Input  

SO Secondary Output 

SPMI System Power Management Interface 

STIL Standard Test Interface Language 

TAM Test Access Mechanism 

TAP Test Access Port 

TASS Test Pattern Assembler (NXP pattern generation tool) 

TCB Test Control Block 

TCK Test Clock 

TD Test Data File 

TDI Test Data Input 

TDL Test Description Language 

TDO  Test Data Output 

TDR Test Data Register  

TMER  Test mode Entry Request  

TMS Test Mode Select 

TMUX Test Multiplexer 

TPF Test Protocol File 

TPR Test Point Register  

TRST  Test Reset 

WGL Waveform Generation Language 

 


