
UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Posgrados

SoC Design For Test Automation

Tesis en torno a una hipótesis o problema de investigación y su

contrastación

Raúl André Borja Cajiao

Luis Miguel Prócel, Ph.D.

Director de Trabajo de Titulación

Trabajo de titulación de posgrado presentado como requisito

para la obtención del título de Magíster en Nanoelectrónica

Mención en Sistema Embebido e Integración

Quito, 7 de diciembre de 2022

2

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

COLEGIO DE POSGRADOS

HOJA DE APROBACIÓN DE TRABAJO DE TITULACIÓN

SoC Design For Test Automation

Raúl André Borja Cajiao

Nombre del Director del Programa: Luis Miguel Prócel

Título académico: Doctor of Philosophy

Director del programa de: Maestría en Nanoelectrónica

Nombre del Decano del colegio Académico: Eduardo Alba

Título académico: Doctor of Philosophy

Decano del Colegio: Colegio de Ciencias e Ingenierías

Nombre del Decano del Colegio de Posgrados: Hugo Burgos

Título académico: Doctor of Philosophy

Quito, diciembre 2022

3

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales

de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad

Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad

intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este

trabajo en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación

Superior del Ecuador.

Nombre del estudiante: Raúl André Borja Cajiao

Código de estudiante: 00323173

C.I.: 1722643275

Lugar y fecha: Quito, 7 de diciembre de 2022.

4

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado como una

publicación, incluso a pesar de estar disponible sin restricciones a través de un repositorio institucional.

Esta declaración se alinea con las prácticas y recomendaciones presentadas por el Committee on

Publication Ethics COPE descritas por Barbour et al. (2017) Discussion document on best practice for

issues around theses publishing, disponible en http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following graduation project is available through Universidad San Francisco de Quito USFQ

institutional repository. Nonetheless, this project – in whole or in part – should not be considered a

publication. This statement follows the recommendations presented by the Committee on Publication

Ethics COPE described by Barbour et al. (2017) Discussion document on best practice for issues around

theses publishing available on http://bit.ly/COPETheses.

http://bit.ly/COPETheses
http://bit.ly/COPETheses

5

AGRADECIMIENTOS

El tiempo que pasé en NXP Semiconductors como pasante de marzo a agosto de 2022 ha sido

realmente valioso para mí, ya que enriqueció mi experiencia tanto a nivel personal como

profesional. Me permitió explotar mi potencial en un equipo internacional altamente

competitivo y comprometido, ayudándome a desarrollar y descubrir nuevas habilidades

invaluables que moldearán para siempre mi vida profesional y mi crecimiento personal.

En primer lugar, me gustaría expresar mi más sincero agradecimiento a mi tutor Vincent

CHALENDARD por ofrecerme esta oportunidad de pasantía y guiarme a trabajar en un

proyecto emocionante y desafiante. Su guía caracterizada por su paciencia, entusiasmo e

inmenso conocimiento me motivó durante el desarrollo de este trabajo. Finalmente, agradezco

sinceramente la confianza que depositó en mí al permitirme participar en reuniones de gran

relevancia con proveedores externos y ser parte de decisiones importantes para proyectos

futuros.

Extiendo mi gratitud y aprecio al equipo de NXP DFT, especialmente a Frederic HIEBEL y

Herve VINCENT por su ayuda, apoyo y consejos durante mi pasantía. Este estudio no hubiera

sido posible sin su valioso y continuo trabajo.

Un gran agradecimiento a Pascal CUSSONEAU y Paul BRADY por su confianza y convicción

en mi trabajo, y especialmente por su cálida bienvenida y motivación durante mi tiempo en

NXP que me permitió sentirme como un miembro valioso del equipo desde el primer día de mi

internado. Finalmente, me gustaría agradecer a todos mis colegas de NXP que hicieron posible

este trabajo.

Un profundo agradecimiento y aprecio a mis profesores que fueron parte fundamental de mi

desarrollo académico, especialmente a mis directores de maestría, Luis Miguel Prócel en

Ecuador (Universidad San Francisco de Quito) y Adam QUOTB en Francia (Institut National

Polytechnique de Toulouse).

6

ACKNOWLEDGEMENTS

The time I spent at NXP Semiconductors as an intern from March to August 2022 has

been truly valuable for me since it enriched my experience both personally and professionally.

It allowed me to explode my potential in a highly competitive and engaged international team

helping me to develop and discover new invaluable skills that will forever shape my

professional life and personal growth.

Foremost, I would like to express my sincere gratitude to my tutor Vincent

CHALENDARD for offering me this internship opportunity and leading me working on an

exciting and challenging project. His guidance characterized by his patience, enthusiasm and

immense knowledge motivated me during the development of this work. Finally, I sincerely

appreciate the trust he placed in me by allowing me to participate in highly relevant meetings

with external providers and to be part of important decisions for future projects.

I extend my gratitude and appreciation to the NXP DFT team, specially to Frederic

HIEBEL and Herve VINCENT for their help, support and advice during my internship. This

study would not have been possible without their valuable and continuous work.

A very great thankful to Pascal CUSSONEAU and Paul BRADY for their confidence

and conviction in my work, and especially for their warm welcome and motivation during my

time at NXP that allowed me to feel like a valued member of the team from the first day of my

internship. Finally, I would like to thank all my colleagues from NXP that made this work

possible.

A deep gratitude and appreciation to my professors who were a fundamental part of my

academic development, especially my master's directors, Luis Miguel Prócel in Ecuador

(Universidad San Francisco de Quito) and Adam QUOTB in France (Institut National

Polytechnique de Toulouse).

7

RESUMEN

En el presente trabajo se estudia la importancia de garantizar la capacidad de prueba de

un producto y como implementarla durante el proceso de diseño de un circuito integrado.

Durante este estudio se analizaron y aplicaron distintos estándares utilizados a nivel industrial

en el diseño de chips como el IEEE 1149.1 para garantizar la capacidad de prueba en los

dispositivos. Se desarrolló una comparación del uso de dos herramientas “TASS” y “IJTAG”

para el diseño de pruebas utilizadas por la compañía NXP Semiconductors. Se estudió,

modificó y automatizó el flujo completo de diseño de pruebas de la compañía utilizando un

producto ya desarrollado y probado como vehículo de prueba. Finalmente se analizaron los

resultados de la comparativa demostrando las ventajas y desventajas del uso de las dos

herramientas en función de los requerimientos de la compañía y el equipo de trabajo para

futuros proyectos.

Palabras clave: System on Chip, Design for Test, Circuito Integrado, Automatización,

TASS, IJTAG.

8

ABSTRACT

This work studies the importance of guaranteeing the testability of a product and how to

implement it during the design process of an integrated circuit. During this study, different

standards used at an industrial level in chip design such as IEEE 1149.1 were analyzed and

applied to guarantee the testability of the devices. A comparison of the use of two tools "TASS"

and "IJTAG" was developed for the design of tests used by the company NXP Semiconductors.

The company's entire test design flow was studied, modified, and automated using an already

developed and tested product as a test vehicle. Finally, the results of the comparison were

analyzed, demonstrating the advantages and disadvantages of the use of the two tools based on

the requirements of the company and the work team for future projects.

Key words: System on Chip, Design for Test, Integrated Circuit, Automation, TASS, IJTAG.

9

NXP SEMICONDUCTORS FRANCE

Final Internship Report

SoC Design For Test Automation

 Student: Internship Mentor:

 Andre BORJA Vincent CHALENDARD

USFQ - INP ENSEEIHT NXP Semiconductors

France

September 2022

10

CONTENT TABLE

1 Introduction .. 14

1.1 NXP Semiconductors France .. 14

1.2 Objectives .. 15

2 State of the Art .. 15

2.1 IEEE Standard 1149.1 ... 15

2.2 Test Access Port Architecture ... 17

2.3 JTAG Data formats & Pattern Description ... 18

3 My Project: Design For Test Automation .. 19

3.1 Context .. 19

3.1.1 TASS .. 19

3.1.2 IJTAG .. 20

3.2 EOS B2 (Handled with TASS) ... 21

3.3 TAM/DAM Mechanisms .. 22

3.4 JTAG Star Architecture ... 24

3.5 Modular Pattern Approach .. 25

3.6 EOS NXP DFT Flow (TASS-based) ... 27

3.6.1 DFT RTL Generation ... 28

3.6.2 DFT Verification .. 29

3.6.3 Non-ATPG DFT Pattern and Testbench Generation Flow 30

3.6.4 ATPG DFT Pattern and Testbench Generation Flow .. 31

3.7 General EOS DFT Design Requirements Summary ... 32

4 IJTAG Analysis Results ... 33

4.1 New EOS NXP DFT Flow (IJTAG-based) ... 33

4.2 ICL Generation .. 34

4.3 Non-ATPG IJTAG Pattern Generation Flow .. 36

4.3.1 Non-ATPG IJTAG Pattern Simulation Results ... 38

4.4 New Test Sequence Approaches ... 40

4.4.1 Approach 1: Instrument Level PDL pattern description 40

4.4.2 Approach 2: TOP Level PDL pattern description.. 41

4.4.3 Approach 3: Test Setup pattern description ... 42

4.5 New ATPG Flow ... 43

4.5.1 ATPG PDL-based Test Setup ... 44

4.5.2 ATPG Tests and Simulations ... 45

11

4.5.3 ATPG Testbenches .. 50

5 Improvements for Future Projects .. 54

5.1 Multiple TAP ICL representation ... 54

5.1.1 Merged Tap Controller IJTAG .. 54

5.1.2 Merged Tap Controller TASS .. 56

5.1.3 TDO-Gated Multi-Tap Representation IJTAG .. 56

5.2 Force JTAG Ports on PDL patterns .. 59

5.4 Detailed Annotations using iReadVar/iWriteVar ... 62

6 TASS & IJTAG Comparison Summary ... 64

7 Proof of Concept using MUTEST .. 67

8 Conclusions .. 69

References .. 71

Appendix .. 73

Additional Figures & Tables .. 73

Acronyms ... 76

12

TABLE INDEX

Table 1: EOS DFT Features. .. 32

Table 2: ATPG Test Classification .. 45

Table 3: TASS vs. IJTAG comparison. ... 64

Table 4: Acronyms Table. .. 76

13

FIGURE INDEX

Figure 1: JTAG TAP TCB-TPR Control Structure [5]. ... 16

Figure 2: TAP Finite State Machine. ... 17

Figure 3: TASS Flow Diagram [6]. ... 19

Figure 4: Tessent IJTAG Flow. ... 20

Figure 5: EOS Top SoC Block Diagram [10]. ... 22

Figure 6: EOS DFT Interface Specifications. .. 22

Figure 7: Shared Control Interface. ... 23

Figure 8: Shared data interface .. 24

Figure 9: EOS DFT Star Hierarchy design. ... 25

Figure 10: Modular Pattern Approach. .. 26

Figure 11: EOS NXP DFT Flow with TASS tool. .. 27

Figure 12: DFT RTL Generation with TimNet & DFTBuilder. .. 28

Figure 13: DFT Verification with DFT Shell. ... 29

Figure 14: DFT non-ATPG Pattern & Testbench generation. ... 30

Figure 15: DFT ATPG Pattern & Testbench generation ... 31

Figure 16: EOS NXP DFT Flow with new IJTAG tool. ... 33

Figure 17: DFT New Validation Flow for ICL generation. ... 34

Figure 18: ICL Schematic from DFTShell on Tessent Visualizer. .. 35

Figure 19: PDL Retargeting Flow for Pattern Generation. .. 37

Figure 20: Non-ATPG IJTAG Testbench with Manual Hierarchy Access. 38

Figure 21: Instrument Level PDL pattern description approach. .. 40

Figure 22: TOP Level PDL pattern description approach. .. 41

Figure 23: TOP Level PDL pattern description approach. .. 42

Figure 24: New ATPG Flow with IJTAG PDL Test Setup. .. 43

Figure 25: ATPG Test Setup modification using IJTAG PDL patterns. 44

Figure 26: Single Stuck-At Fault example... 46

Figure 27: Scan Flip-Flop (left) and Scan Chain (right) [16]. ... 47

Figure 28: Full ATPG Stuck-At test: shift-in, capture, shift-out. .. 48

Figure 29: Tessent TestKompress Decompressor and Compactor Structures [15]. 49

Figure 30: ATPG Test 1. .. 50

Figure 31: ATPG Test 2. .. 51

Figure 32: ATPG Test 3. .. 52

Figure 33: Multi-tap into merged single-tap architecture. ... 55

Figure 34: DFT understood architecture by IJTAG (Tessent Visualizer). 56

Figure 35: TCK gated ICL design. .. 57

Figure 36: TDO gated ICL design. .. 58

Figure 37: Hierarchical ICL network description understood by IJTAG. 58

Figure 38: Hierarchical PDL example using iState. .. 59

Figure 39: iSuspendPdlRetargeting flow to force JTAG ports. ... 60

Figure 40: Force JTAG ports flow through pseudo-TCK and iResume. 61

Figure 41: Test Setup for ATPG using STIL to PDL transformation...................................... 62

Figure 42: iNote iTopProc PDL procedures generation using symbolic variables. 63

Figure 43: Pattern sequence test example using MuTool IDE. ... 67

Figure 44: SHMOO Plot generated with MuTool IDE. ... 68

14

SOC DESIGN FOR TEST AUTOMATION

1 Introduction

1.1 NXP Semiconductors France

NXP Semiconductors is a worldwide known semiconductor design and manufacture

company with headquarters in Eindhoven, Netherlands. Stablished in 2006, it is currently

present in 33 countries around the word. NXP is internationally recognized and considered as

one of the most important providers for the automotive, communications and mobile industries.

It has been the first supplier of microcontrollers with 19% of market share for very prestigious

consumers [1].

NXP in France includes 4 sites located in Toulouse, Caen, Paris and Mougins. The

R&D (Research and Development) site on Cote d’Azur in Mougins is well known thanks to

the development of secure connectivity solutions [2]. Thus, the NXP business line inspired in

these solutions is C&S (Connectivity and Security), responsible to design mixed signal devices

for secured transactions (NFC and/or Secure Element Controllers) specially for the mobile

devices market.

1.2 Context

During the process of Digital SoC Design it is fundamental to guarantee the testability

of the product. Ensuring the quality and correct operation of electronics is fundamental to keep

and improve the market position of a brand or company, it reduces the design and production

testing times, resulting in economic benefits. Detecting failures in the earliest stages of a

product development is fundamental to save costs and time. Due to this reason, it is necessary

to add certain features to the design to make easier the testability of the product and to ensure

that all possible failures generated during the manufacture process are covered and able to be

detected before reaching the costumer.

 DFT (Design for Test) is a design process that describes how testing must be done.

This process includes several stages such as the development of the DFT design specifications,

the translation of this specifications into DFT structures and the corresponding RTL description.

The flow continues with the Verification of this DFT structures and their interconnections and

ends with the Software (test patterns) creation with its corresponding testbench.

This internship study aims to analyze and compare two DFT tools used in the Software

(test patterns) creation and verification. This comparison will be useful in the migration process

from the current NXP DFT tool “TASS” to the desired third part tool “IJTAG” (Siemens former

Mentor Graphics proprietary). The result of this work is the automation of the DFT design

process through scripting (using Shell, TCL, Perl and/or Python).

15

The motivation for this work is to determine if the new tool accomplishes with the

requirements of the NXP DFT team for pattern generation. Finally, it is necessary to provide

enough proofs through a deep analysis and simulation results in order to demonstrate that the

desired tool for the migration is or is not adequate and provides significative benefits during

the NXP DFT flow in terms of design time, complexity, costs, among others.

1.2 Objectives

Identify the differences between TASS and IJTAG, their benefits and drawbacks for pattern

description and generation.

Adapt and/or create a new NXP DFT flow for the new tool and report the main changes for the

new flow.

Handle the corresponding test pattern creation.

Simulate the test patterns and debug them on RTL and Gate-Level Netlist using Cadence

Xcelium tool.

Develop the DFT design process automation through scripting methods in order to generate

automatically the files/directories for the new flow.

Make a proof of concept through on-silicon trials using an ATE with test patterns generated by

the new IJTAG tool.

Demonstrate if the migration is feasible and represents a real benefit for the new DFT flow and

if not, give enough proofs and arguments to justify this decision.

2 State of the Art

In order to guarantee the testability of an IC (Integrated Circuit) it is necessary to have

physical access to its internal components, be able to configure desired features and have the

capability to measure the response of the circuit based on the applied stimulus. Because of

those requirements, a four-port serial interface called JTAG (Joint Test Action Group) was

developed in the late 1980s [3]. This is the basis of the IEEE Standard 1149.1, the IEEE

Standard TAP (Test Access Port) and the Boundary-Scan Architecture which together support

the mentioned testability requirements [4].

2.1 IEEE Standard 1149.1

The IEEE Standard 1149.1 also known as JTAG, or boundary-scan stablishes a four-

port serial JTAG interface to access the embedded logic of an IC. This debug port interface is

connected to a TAP embedded on-chip which acts as a JTAG main controller during the test.

The TAP interface includes four main signals: TCK (Test clock), TMS (Test Mode Select),

16

TDI (Test Data Input) and TDO (Test Data Output); and an optional reset signal TRST (Test

logic reset).

The JTAG standard for the architecture stablishes one Instruction Register (IR) with

several Data Registers (DR). Through these structures it is possible to load or configure specific

features for the IC as well as read or measure its response. The IR is responsible for providing

the necessary address and control signals to access a specific DR. This control is done by the

TAP by loading a specific OPCODE (Operation Code or Instruction) in the IR. The DR is

responsible of controlling specific test configurations for the IC when it is written. Besides,

the DR is in charge of capturing some internal signals data to be read or shifted out for test

purposes.

The size of the IR and the number of supported instructions depends on the design and

requirements (e.g., an 8-bit IR supports up to 256 instructions). Each DR is linked to an

Instruction but not all instructions require a DR. The JTAG standard stablishes three mandatory

instructions (BYPASS, EXTEXT, SAMPLE/PRELOAD). The other DR and instructions

depend on the IC design.

The NXP DFT Reference Architecture propose two main types of Data Registers which

are TCB (Test Control Block) and TPR (Test Point Register). TCBs can control some IC

features depending on the “mode” that is written on them, but they are not physically designed

to capture internal data to be read or shifted it out. Moreover, TPRs can control some IC

features when writing on them but also, they can capture internal signals data to be shifted out.

Through Figure 1 it is observed a basic JTAG TAP control structure example with TCBs and

TPRs chains.

Figure 1: JTAG TAP TCB-TPR Control Structure [5].

17

It is seen that the JTAG TAP interface corresponds to the JTAG standard port interface

including the four main signals and the reset optional signal. It is interesting to mention that in

the design TDI is broadcast directly to the TCBs and TPRs while the clock signal TCK is gated

through the JTAG TAP structure to the DR blocks through the JTAG TCB and TPR control

buses. The data out signals from each DR is gated through the JTAG TAP to the TOP level

TDO. Furthermore, through Appendix Figure 1 it can be observed each of the control signals

delivered both to the DRs and the IR.

2.2 Test Access Port Architecture

The IEEE Standard 1149.1 stablishes a default structure for the TAP controller FSM

(Finite State Machine) which can be found through Figure 2. The TAP is controlled thanks to

the test clock TCK, and the test mode select TMS inputs. Consequently, these inputs are in

charge of handling the access to the DRs and IRs in order to write and/or read them. According

to the JTAG standard the test bus uses both clock edges of TCK. TMS and TDI signals are

sampled on the rising edge of TCK while TDO output changes after the falling edge of TCK.

Figure 2: TAP Finite State Machine.

18

 The adjacent value shown close to each state transition indicates the required TMS

signal on the rising edge of TCK to generate the state change. The JTAG Standard stablishes 5

steady states when TMS is 0: Run Test/Idle, Shift-DR, Pause-DR, Shift-IR, Pause-IR; but only

1 steady state when TMS value is 1: Test Logic Reset. This particular feature of the TAP FSM

allows to reset the test logic (i.e., soft reset) by setting TMS input high during at least 5 TCK

cycles independently of the current state.

2.3 JTAG Data formats & Pattern Description

As mentioned above, the main goal of DFT is to ensure the testability of an IC. To achieve this,

it is necessary to develop software that allows signals to be input to the IC and executed to test

the device. This software is known as test patterns which are nothing more than a group of

stimulus or signals applied to the chip in order to measure or test specific features and ensure

the device is working properly. Those patterns generate a signal response that are analyzed by

comparing them with a testbench simulation. In order to describe this software, it is necessary

to have a link with the hardware defined previously. This link is generated through a hardware

representation using a data format that supports IEEE Std 1149.1. Currently there are several

data formats capable to understand the DFT hardware structures such the ones mentioned in

the JTAG standard. One of this data formats is the industry standard language originated from

VHDL: Boundary-Scan Description Language (BSDL) (along this document it will be studied

other data formats for similar capabilities and purposes). The main objective of BSDL and

other languages is to describe how the IEEE Std 11.49.1 is implemented in the IC and specially

how to access and control it.

 Once there is a representation of the DFT hardware, it is possible to write or describe

the test patterns representing the stimulus and expected response. There are many ways to

describe test patterns, one of them is by using a pattern generation tool (such as TASS or

IJTAG). These tools receive as an input the pattern description in a human-readable format.

Then, they are going to verify that the DFT hardware description is compliant with the standard

and automatically create a pattern description in a supported language for a test equipment or

ATE (Automatic Test Equipment) which validates physically the IC with the patterns.

Additionally, these tools are used to generate simulation testbenches to verify the expected

behavior and debug the pattern description if necessary.

19

3 My Project: Design For Test Automation

3.1 Context

3.1.1 TASS

One of the pattern generation tools widely used on NXP during DFT flow is TASS or

Test Pattern Assembler [6]. TASS is an internal tool part of the NXP DFT package designed

to assemble test patterns in order to generate test vectors for ATE test systems and simulation

testbenches. The used version on this study is TASS 8.0.6. Through Figure 3 it is observed the

basic flow to use TASS tool.

TASS inputs consist of one or more of the following files:

1. Test Data Files (.td)

2. Application Test Files (.atf)

3. Waveform Generation Language Files (.wgl)

4. Test Protocol Files (.tpf)

5. STIL Files (.stil)

6. Waveset Definition Files (.wdf)

7. Command files (.cmd)

Figure 3: TASS Flow Diagram [6].

 For the study purposes the most important inputs are TD (Test Data files), TDL (Test

Description Language, i.e. .tpf files), ATF (Application Test Files) and STIL (Standard Test

Interface Language).

20

 The first step of the flow is to read the TD files. These are one type of data format files

which contain all the necessary information regarding the JTAG network such as the chip pin

definition, DFT structures, etc. Next step is to start the vector processor by calling the

corresponding interpreter depending on the input pattern format. The pattern description could

be done through one or several TDL, ATF or STIL, or a combination of them. TDLs are usually

manually described patterns created by DFT engineers, so it is based on a human-readable

format, TDL language is NXP property. On the other hand, ATF and STIL are formats typically

created by design tools (e.g., NXP or Siemens/Mentor-Graphics design tools).

 Each interpreter will deliver its results which are the test vectors and waveforms. With

this information the vector processor develops the timing calculations to generate the wavesets

(timing related definitions specifying the events on each tester cycle). Finally, TASS

postprocessor is going to transform the generated data by the interpreters into an ATE pattern

sequence format (such as STIL) and a corresponding testbench output file (such as a Verilog

testbench). Other possible outputs such as debug purpose files (e.g., ATF) could also be

generated by TASS.

3.1.2 IJTAG

 Tessent IJTAG or simply IJTAG is a third-party pattern generation tool property of

Siemens (former Mentor Graphics). IJTAG is one sub-product or component of the main

Tessent Siemens product. Tessent is a tool and IP package offering many solutions for several

DFT phases such as pattern generation, debug, design as well as manufacturing test solutions

[7]. For this study it was used the version Tessent 2022.1. Through Figure 4 it is shown the

IJTAG flow.

The main IJTAG inputs are:

1. Instrument Connectivity Language files (.icl)

2. Procedural Description Language pattern files (.pdl)

3. Optional user defined TCL files (.tcl)

Figure 4: Tessent IJTAG Flow.

21

As well as TASS, IJTAG needs a file which defines the JTAG network and their

components. The ICL network description is formed by one or more .icl files which describes

all the DFT “instruments” (i.e., all the DFT blocks/components such as DRs, IRs, TAPs, etc.)

and their interconnections [8]. The main objective of ICL for IJTAG as TD for TASS is to

describe the test access view of the instruments so that the tool can understand the DFT

architecture and target the high-level pattern commands to the desired instruments in order to

transform them into a test sequence.

The second main input for IJTAG are the PDL patterns. The PDL files describe the

instrument usage on a targeted level [8]. In other words, PDL can describe patterns through a

high-level description language if there is an ICL description of the targeted instrument, its

interconnections and a clear description of the hierarchy that guarantees the access to it. PDL

takes the advantage of TCL language as .pdl files are considered as tcl DOfiles [8]. Because of

the high level and human-readable format of PDL language, it is as easy to read/write as TDL

language for TASS.

 As observed in Figure 4, IJTAG flow starts with an Internal Database containing all the

required ICL and PDL files. Then, the tool builds the ICL hierarchy by reading the ICL

instruments definition and instantiations. During this step IJTAG is understanding the way to

move or access different hierarchy levels and consequently each of the DFT components.

Thanks to that, IJTAG is capable to execute and understand what to do with specific PDL

commands. Third step is to check the design rules (DRC) on the ICL hierarchy and instrument

levels. The fourth step (Retarget PDL) objective is to read the PDL files, create the

corresponding pattern sets and finally write the PDL patterns in STIL format and with a

testbench (Verilog format). IJTAG supports other industry standard output files such as SVF

(Serial Vector Format) which is a standard ASCII format representing test patterns [9]. PDL

Retargeting step is the main step in Tessent IJTAG flow, and it has its own flow which is going

to be analyzed in section 4.3 (Non-ATPG IJTAG Pattern Generation Flow).

3.2 EOS B2 (Handled with TASS)

For this migration study it was necessary to use an already developed project as a test

vehicle. The selected project for this purpose was EOS B2 which is already on silicon, so it

passed successfully all the DFT flow with the internal tool TASS. EOS is a TSMC-28nm

Secured NFC Controller (NFC + Secure Element). A top level SoC diagram of EOS is observed

through Figure 5 (Secure Element Domain is represented as a black box because it is NXP

confidential). Regarding DFT for EOS, it is important to consider some constraints,

requirements and design specifications.

EOS DFT JTAG architecture is based on a star hierarchical approach. Another

consideration is the control and data interfaces handling, EOS DFT was designed with a TAM

(Test Access Mechanism) and a DAM (Data Access Mechanism) for this purpose. Final

consideration is the pattern approach, EOS uses a Modular Pattern Approach in which each

modular is part of the complete pattern sequence which represents a specific feature or

configuration. All these design characteristics provide benefits but also contain some

constraints that must be handled during the DFT Flow.

22

Figure 5: EOS Top SoC Block Diagram [10].

3.3 TAM/DAM Mechanisms

In order to handle the data between the IC and the tester machine ATE during the

execution of DFT pattern tests, it is needed a DFT interface. This interface is formed by a

mandatory control interface and an optional, but widely used in NXP, data interface. The main

objective of these access components is to handle the JTAG port signals and all other port

signals used for control and data during pattern tests. In case of EOS, it has a Test Access

Mechanism (TAM) in charge of the control interface and a Data Access Mechanism (DAM)

handling the data interface. As observed through Figure 6 in both cases for control and data,

the interfaces are shared thanks to TAM and DAM. This means that the top pads are always

the same and TAM/DAM are in charge of handling the signals between the pads and the

different Sub-IPs.

Figure 6: EOS DFT Interface Specifications.

NFC Domain SE Domain

NXP – Company Confidential

23

The TAM block is in charge of handling the signals TDO and TCK between the sub-

IPs and the top level as shown in Figure 7. In case of TDI, TMS and TMER (Test Mode Entry

Request, DFT test reset signal), they are broadcast directly to the sub-IPs. TAM structure is

formed by 3 main blocks which are TAM Gating, the TAP controller and the Top TAM TCB.

TAM Gating is the block which handles the signals between the sub-IPs and the TOP, it is

controlled through some selector signals coming from the TCB. The TAP contains the IR. This

last one could be configured with instructions defined by the IEEE Std 1149.1, some NXP

common instructions and an instruction to access to the top TAM TCB. Finally, the top TAM

TCB or UP TCB is a data register that can be configured with different modes in order to access

the sub-level TAPs and therefore, it controls the signals between the sub-IPs and the top level

through the TAM and DAM.

Figure 7: Shared Control Interface.

Figure 8 shows the Data Access Mechanism structure. This block receives selectors

signals from the TAM TCB which are used to control the data signals between the sub-IPs and

the TOP level IOs. As the IOs are bidirectional, the top cell bidirectional buffers receive 3

signals A, ZI and OEN. From the cell perspective, A is an input from the core logic (from the

IC to the exterior), ZI is an output to the core logic (from the exterior to the IC) and EN is the

active low enable output driver (when 0 the pad works as output, when 1 as input). A functional

diagram of the MFIO1V8SF bidirectional cell is found in the Appendix Figure 2 [11].

24

Figure 8: Shared data interface

Between the TOP IOs and the DAM there are other structures such as functional muxes

which are necessary to use the IOs in different functional modes. Boundary Scan Chains (BSC)

are also inserted at top level to test and control the IOs. Finally for each sub-IP level, there are

TMUX blocks or test mux to control the IOs direction during the tests.

3.4 JTAG Star Architecture

The EOS DFT JTAG Star Architecture is a hierarchical design in which there is a

clearly defined structure based on a multi-level approach. Different from Daisy Chain

Architecture in which there is a single level with multiple TAP serially connected, in Star

Architecture, there is a TOP TAM Mechanism and multiple sub-level either TAP or TAM

structures. If a N-level structure has sub-levels, this sub-hierarchy must be handled by a TAM

block like the TOP TAM, as observed in level 2d in Figure 9 . Thanks to TAM architecture

previously analyzed, it is possible to gate TCK and TDO, so that there is the possibility to talk

to a single sub-level TAP without affecting the others. On EOS design, a TAP reset spy logic

was implemented to avoid resetting the TOP TAM and the TCB UP, therefore, the TAP

controller of the TOP level is always “listening” what happens with the sub-level TAPs [12].

The basic flow to access a specific hierarchy level is the following. First, start the chip

in test mode (Execute a Test Mode Entry Request, TMER) by a bootstrap initialization (force

the JTAG ports to specific constant values to initialize the test mode). Then, it is necessary to

program the TOP level TAM in order to root the desired sub-level. To do this, the TOP TAP

controller IR must be set with the corresponding instruction to select the UP TCB data register.

Once the UP TCB is selected, this one can be configured to access the desired sub-level. Finally,

after having reached to the sub-level TAP, it is possible to access the corresponding Data

Registers and DFT structures of this level.

25

Figure 9: EOS DFT Star Hierarchy design.

3.5 Modular Pattern Approach

EOS Modular Pattern Approach is based on partial pattern descriptions representing a

specific feature or configuration in which each modular is part of the complete test sequence.

These features could be power, clock, hierarchical access, core patterns (e.g., BIST for SRAM

tests) and the chip startup.

26

Thanks to this modularity there are several benefits:

- Multiple input pattern formats: Modular patterns could be TDL, STIL or ATF. Useful

when the patterns are delivered by IPs from other NXP teams or external providers

(TSMC).

- Regularity and file optimization: As many test sequences could be considerably similar,

through modular approach it is not necessary to rewrite the complete sequence but only

to modify the desired modular.

- Tester and simulation time reduction: Thanks to SDM modular (System DFT Mode) it

is possible to change from one DFT test mode to another concatenating the right

modulars without rebooting the device (TMER modular).

Figure 10: Modular Pattern Approach.

27

3.6 EOS NXP DFT Flow (TASS-based)

Through Figure 11 it is shown the complete EOS NXP DFT Flow with the current

pattern generation tool TASS. The main 3 stages are DFT Generation, Verification and Pattern

Generation. This flow describes each of the stages starting from the DFT blocks specifications

until the generation of pattern sequences and testbenches. The main objective of stage 1, DFT

Generation, is the RTL generation of the different DFT blocks such as TCBs, TPRs, TAPs and

TMUXs; to then integrate them to the design and develop the synthesis of the Gate Level Netlist.

During DFT Verification, the objective is to validate the DFT blocks generated on the

previous flow, verify their interconnections with the JTAG network, that means ensure that

there is a hierarchical definition to access and configure them. Finally, during Verification it is

created the DFT Database with the required files for the pattern generation tool (Test data files

for TASS). Last step on the flow is the Pattern and Testbench generation in which starting from

the DFT database and a high-level pattern description (e.g., TDL) it is generated the pattern

sequences and the corresponding testbenches.

Figure 11: EOS NXP DFT Flow with TASS tool.

28

3.6.1 DFT RTL Generation

DFT RTL Generation Flow starts from the DFT specifications. This corresponds to the

description of each DFT block, their signals and functionality. This information is specified in

multiple excel spreadsheets. Through some excel macros it is possible to translate these

specifications into specific file formats (.nif and .csv) understandable by the DFT tools TimNet

and DFTBuilder. These tools are NXP DFT internal tools and each of them is in charge of

generating specific DFT structures. In case of TimNet, it generates the RTL corresponding to

the Data Registers: TCB and TPR. On the other hand, DFTBuilder generates the RTL for the

TAP controllers and the TMUXs.

Other outputs of this flow are the DFT views through the TD files. They contain the

information of each TCB and TPR, the register signals and the configurable modes. There is

also generated a BSDL representation containing the JTAG port definition and the information

regarding the interconnection between the DFT blocks.

Figure 12: DFT RTL Generation with TimNet & DFTBuilder.

29

3.6.2 DFT Verification

DFT Verification Flow inputs are the generated outputs from DFTBuilder and TimNet. The

internal NXP DFT tool used during this flow is DFTShell. This tool starts with the DFT views

of the TD files and executes a verification process of the TCB and TPR chains. During this

process it checks that the design information regarding instances and ports are defined correctly,

as well as the test protocols of the Data Registers [13]. Then it develops a JTAG network

validation in which it is check that there is the possibility to access to each of the hierarchy

levels through a preamble setup (i.e., through the TAM/DAM Mechanisms).

 After verification is done, DFTShell generates a database with the deliverable files for

Pattern Generation. These files are the TD chains which are a simplified and concatenated

version of the TD views of the previews flow. It is also generated some configuration TCL

files.

Figure 13: DFT Verification with DFT Shell.

30

3.6.3 Non-ATPG DFT Pattern and Testbench Generation Flow

The main objective of Non-ATPG patterns is to generate test sequences using the

pattern generation tool TASS, starting from a high-level description of the patterns. As

explained in Section 3.1.1 TASS, TASS targets the input pattern description to the

corresponding DFT structure in the JTAG network. Patterns are mainly described in TDL NXP

DFT language. But there are also some particular cases for third party IPs or blocks designed

by other teams. In these situations, it could be a specific DFT network design for those

structures and therefore, unique patterns to test them which could be represented as a modular

according to EOS modular approach. For this reason, TASS is capable to support other input

patterns formats such as STIL or ATF corresponding to external source patterns. This could be

the case of Secure Element team patterns (ATF) or third party TSMC IPs patterns (STIL).

The final objective is to obtain a test equipment pattern description (STIL) of each

modular pattern (part of the whole test sequence) and an equivalent testbench for the complete

sequence.

Figure 14: DFT non-ATPG Pattern & Testbench generation.

31

3.6.4 ATPG DFT Pattern and Testbench Generation Flow

Automatic Test Pattern Generation (ATPG) is a DFT automation methodology widely

use on SoC design. The main advantage of ATPG is that it generates a plenty amount of pattern

sequences to detect or cover possible manufacturing defects of the IC. Due to the complexity

of ICs, it is a difficult task to have a complete fault coverage with manual written patterns, then

ATPG becomes fundamental.

NXP ATPG DFT Flow uses two tools: TASS and the third-party tool Tessent Shell.

TASS objective is to provide Tessent a Test Setup. A Test Setup is a test procedure that contains

force, expect and pulse event statements in order to set ports to specific values, read and

compare values from them and initialize clocks [14]. Generally, this procedure is used at the

beginning of the test sequence. In this flow, the Test Setup is in charge of all the startup

sequence, hierarchy access and necessary configurations for ATPG tests. In EOS case with

TASS, it generates an ATF sequence corresponding to the Test Setup patterns. Using some

internal scripts, this file is transformed into Tessent Shell test procedure format (.testproc).

Thanks to a DOfile (TCL based file) it is possible to evoke Tessent Shell and

sequentially run all the required commands to call the Test Procedure and launch the ATPG

test generation. As expected, the result is a STIL pattern description with a testbench.

Figure 15: DFT ATPG Pattern & Testbench generation

32

3.7 General EOS DFT Design Requirements Summary

Through Table 1 it is shown a summarized version of the features that are expected with the

new IJTAG flow considering the current TASS situation.

Table 1: EOS DFT Features.

Topic Feature TASS

JTAG Network

Description

The pattern generation tool must be able

to understand the multiple tap network

and generate the pattern sequence to

handle the hierarchy access before

accessing the DFT target element (e.g.,

TCB or TPR).

Limited hierarchical understanding

but possibility to manually write a

TDL cycle-based function to handle

the hierarchy access.

Modular approach
Test sequence generation based on a

supported modular approach.

Modular approach completely

supported through independent

modular TDL pattern files.

Multiple input pattern

sources

Modular patterns could be TDL

(manually written) or delivered by

external teams (ATF or STIL).

TASS support multiple sources:

TDL, ATF and STIL on the same

test sequence generation.

Non-ATPG patterns
Complete control to force JTAG ports

and multiple timing definition.

TASS has absolute control over

JTAG ports, being able to force,

expect and pulse signals manually

as well as generating multiple

timing definition in the same TDL

file.

ATPG patterns
Accurate simulation, multiple timing

definition.

TASS Test Setup does not include

neither the bootstrap initialization

nor multiple timing definition

(Feasible but not implemented).

Annotation on pattern

files

Detailed annotations on STIL pattern

output files

TASS generates per cycle and

highly detailed annotations on STIL

outputs.

33

4 IJTAG Analysis Results

4.1 New EOS NXP DFT Flow (IJTAG-based)

 One difference between TASS and IJTAG tools is the JTAG network description. As

explained previously, TASS uses TPR and TCB TD chain files representation while IJTAG

needs an instrument based ICL description. Due to this new input, the NXP DFT Verification

flow must be modified, specifically the DFT database generation. However, the most important

modifications are developed in the Pattern and Testbench Generation Flow. The TDL-based

modular patterns database was changed by PDL. It was necessary to develop several TCL and

Shell scripts in order to automate non-ATPG pattern generation flow. On ATPG case, the NXP

base scripts were adapted for the new flow.

Figure 16: EOS NXP DFT Flow with new IJTAG tool.

34

4.2 ICL Generation

 The ICL generation was an additional step implemented in the EOS DFT Verification

Flow. The original TASS flow finishes with the TCB and TPR chains generation. On IJTAG

case, it is necessary to create the TOP ICL Network representation through the chains using

DFTShell NXP internal tool. The chains will provide the complete information regarding the

register signals and the modes. Additionally, it is necessary to provide DFTShell other TD files

such as the pin and jtag description, they have information regarding the device input/output

pins and the IR OPCODES (Instructions). With all this information, DFTShell writes the JTAG

network representation in ICL format to an output file. All these processes were developed

through Shell/TCL scripts to evoke DFTShell tool and generate the files automatically.

Figure 17: DFT New Validation Flow for ICL generation.

It is possible to analyze the ICL network through Tessent Visualizer which is the

Tessent visualization and debug graphic environment. Through Figure 18, it is shown the ICL

schematic from the network generated by DFTShell. As observed, the result differs from the

original DFT design for EOS since the multiple-tap architecture is not represented. DFTShell

35

only generates a single tap ICL which in this case corresponds to the NFC sub-IP tap. Since

there is not the TOP TAM tap, TCK (GPIO1) is not gated before NFC tap so it is broadcast

directly from the TOP to the NFC sub-IP same as the other JTAG signals (TDO or GPIO0, TDI

or GPIO2 and TMS or GPIO5).

Since there is not a hierarchical representation, when generating patterns with this ICL,

IJTAG will identify NFC sub-IP as the unique level. Therefore, generated patterns targeting

one TCB/TPR will contain the sequence only for NFC tap. For this reason, if it is used the ICL

from DFTShell without any post-process, it is necessary to describe manually the patterns for

the hierarchy access, in this case from TOP TAM tap to NFC tap. In IJTAG case this is done

through cycle based sub-procedures. These are one kind of Tessent procedures which used on

basic patterns allow three things: force primary inputs, measure primary outputs and pulse the

capture clock [14]. Which means it is possible to manipulate the JTAG ports to write a cycle

based (per cycle defined) sequence to describe the access from one level to another. Sub-

procedures can only be called within another procedure, therefore, cannot be used in PDL. It

is necessary to use Test Setup procedure to call them.

Figure 18: ICL Schematic from DFTShell on Tessent Visualizer.

36

4.3 Non-ATPG IJTAG Pattern Generation Flow

Through Figure 19 it is observed the new Pattern Generation Flow using IJTAG for

non-ATPG patterns. The main IJTAG input is the ICL description, with which IJTAG will

know the instrument (DFT blocks) description, how to access and target the PDL commands

in order to create patterns. The ICL description has information only about DFT structures and

JTAG ports, if the patterns include information regarding on-JTAG ports it is necessary to read

the TOP Verilog interface which contains information about the whole device ports. Analog

ports must be removed from the Verilog interface as are unsupported by the tool.

 The most common pattern description input format for IJTAG is PDL, but it is also

possible to use SVF and test procedure patterns (e.g., Test Setup). The Siemens recommended

flow suggests using a Test Setup procedure at the beginning of the test sequence before PDL

patterns (left yellow flow from Figure 19) [8]. The objective of this Test Setup is to initialize

the test and describe the bootstrap start. The main benefit of this procedure is that it could force

and pulse all the ports (included JTAG ports) which is not possible to be done with IJTAG

PDL patterns (JTAG port manipulation is not allowed). Nevertheless, Test Setup can only be

used at the beginning of the sequence, therefore, with this flow it is not possible to manipulate

the JTAG ports during the test sequence. This flow is developed completely in patterns -ijtag

context. The context specifies certain features and the current usage of Tessent Shell. Patterns

-ijtag context provide functionality related to IJTAG Pattern generation, ICL extraction and -

ijtag switch enables PDL commands on pattern sets. Once Test Setup is read, it is possible to

open multiple pattern sets, within patterns sets it is possible to read and populate the PDL

pattern files and define timing features through timeplates (analog to wavesets for TASS TDL

files).

 Another possible flow is through only Test Setup based patterns (right blue flow from

Figure 19). As mentioned, through Test Setup it is possible to force JTAG ports which is the

main advantage of this flow. However, in order to be able to use PDL commands inside the

Test Setup Procedure, it is necessary to change the context to patterns -scan. The scan switch

on pattern context is usually used on ATPG patters as it enables Tessent TestKompress

(Siemens DFT product to implement compression or EDT logic) [15]. On non-ATPG flow it

is useful to enable PDL usage and JTAG ports manipulation both inside Test Setup. As seen in

Figure 19, before reading the test setup, it is necessary to source the procedural files. It contains

all the sub-procedures which manipulates directly the JTAG ports with force or pulse

commands, these sub-procedures are called inside the Test Setup.

 Both flows finish with the Write Patterns step, which is generating a STIL equivalent

pattern file either for each pattern set or for each Test Setup. It is also generated a complete

sequence Testbench in Verilog format. During both flows it is usually necessary to change the

system mode. This feature enables the usage of different commands by the tool during the flow.

Setup mode is specially used for initial settings such as read the input files (ICL, Verilog, PDL,

37

Test Setup) while Analysis mode is used for PDL retargeting during pattern set creation,

Procedural Files analysis and Pattern/Testbench generation.

Figure 19: PDL Retargeting Flow for Pattern Generation.

38

4.3.1 Non-ATPG IJTAG Pattern Simulation Results

Hierarchy Access, IR and DRs management.

Figure 20: Non-ATPG IJTAG Testbench with Manual Hierarchy Access.

 Due to multiple-tap hierarchical DFT design of EOS, in order to access and write/read

a data register (TCB/TPR) it is required a particular pattern sequence which is described in

Figure 20. The mentioned example shows the sequence to access the NFC level, control the

NFC tap and access a TPR to read it. It is shown in blue the JTAG signals TDO, TCK, TDI

TMS (GPIO0, GPIO1, GPIO2_AO, GPIO5 respectively) and the TM (Test Mode) signal. In

green it is shown the TOP DAM tap signals from the IR and the FSM state. In orange it is

represented the UP TCB signals and in purple the NFC tap signals corresponding to the IR and

the FSM state.

 The first part of the sequence is to access the IR of the TOP DAM tap and write the

OPCODE 0x02 which corresponds to the address of the UP TCB. Since the ICL generated by

DFTShell only represents the NFC tap structure, the access must be done manually through

cycle based sub-procedures as IJTAG has not enough information to do it automatically. As

observed, the sequence starts with the TOP TAM tap in state “1101” that according to the FSM

diagram of Figure 2 corresponds to Run Test/Idle state to modify the IR it is necessary to access

it and shift the data inside. It is done through TMS signal which when it is a logic 1 during two

rising edges of TCK it is possible to reach Select IR Scan state. Once IR it selected next state

is Capture IR, through the waveforms it is observed in green the ir_capture signal which

indicates when the FSM is in this state. Finally, it is selected UP TCB by shifting inside the IR

its OPCODE, during Shift IR state the signal ir_shift is set to 1. In order to check if the

OPCODE is correct and the UP TCB is selected it could be analyzed the ir_reg value which as

observed is 0x02.

 Next part of the hierarchy access is to configure the UP TCB. This is a DR controlled

by the TOP TAM tap which can be programed with 5 modes. Each of the modes allows to

select a specific sub-tap such as NFC, SE, NV (non-volatile or flash), CMB (Control Master

TCK: GPIO1

TDI: GPIO2

TDO: GPIO0

TMS: GPIO5

Select UP TCB

from TAM TAP

OPCODE 0x02

Configure

UP TCB with

NFC Mode

Select a

TPR from

NFC TAP

39

Block) or to return the control to the TOP TAM tap. Through the right TMS sequence it is

reached the Shift DR state to shift-in data to UP TCB, during the shift process the tcb_hold

orange signal changes to 0. It is interesting to observe that TCK and TDI signals for the TCB

are driven directly from the top as observed in the ICL schematic. Once shift is over, tcb_hold

returns to 1 and tcb_update signal is asserted during one TCK cycle indicating that the TCB

output is valid and visible. At this time, it is possible to see that TCB signals related to NFC

are set to 1 (datain_sel_nfc, dataout_sel_nfc, tap_sel_nfc, tdo_sel_nfc).

 After UP TCB is configured with NFC mode, TCK (purple TCK signal) is transmitted

to NFC tap (as mentioned sub-IPs TCK is gated). Until this part of the pattern the sequence

was defined manually, but once NFC tap is selected, it is possible to use PDL commands to

write and read data from the DRs. Since this point the approach is very similar as with TOP

TAM tap, it means, set the IR OPCODE to 0x0A which corresponds to PCRM_STATUS TPR

and read expected values from it. The whole process is developed by IJTAG after using an

“iRead” command inside PDL. To use this command, it is necessary to provide the information

about the instrument path (hierarchy defined in the ICL network description) and the expected

values for one or more bits of the DR. When it is needed to write, it is used “iWrite”. Same as

previously, it is required to give the path and define the value to be written.

40

4.4 New Test Sequence Approaches

4.4.1 Approach 1: Instrument Level PDL pattern description

 One of the main targets in pattern description is to maintain the Modular Approach used

with TASS tool. IJTAG offers different ways to write test sequences. First of them and highly

recommended by Siemens IJTAG manual [8] is through an Instrument Level description. As

shown through Figure 21, this approach starts with a PDL description targeting each DFT Data

Register (TCB or TPR). Inside this PDL files it is used procedures (iProc) with PDL commands

to read, write and, in general, to manipulate the instrument. Second level is the pattern set level

which is the equivalent to Modular Approach. Each pattern set represents a unique modular

pattern and it is described in a different PDL file. Inside this PDL pattern set, the instrument

level PDL commands are called in order to generate the complete pattern description for the

modular feature. It could be called as many instrument PDL procedures as needed.

 Finally, the Test Setup and the modular pattern sets are concatenated to generate the

complete test sequence. The main drawback of this flow is the limitation to force JTAG port

only on Test Setup. Despite Modular Approach is kept, it is necessary an extra level (Instrument

Level) to describe patterns. Last point to consider is the limitation to only one timeplate per

pattern set. Therefore, if a modular requires more than one timeplate, Modular Approach is

affected since the modular must be separated into multiple pattern sets.

Figure 21: Instrument Level PDL pattern description approach.

41

4.4.2 Approach 2: TOP Level PDL pattern description

 A second PDL-based pattern description approach could be developed through a TOP

level targeting. In this approach instead of using procedures to target instruments (iProc), the

TOP level of the design is targeted through a particular procedure (iTopProc). The main

improvement of this approach is that it keeps modular approach as each iTopProc PDL

corresponds to one modular, without needing an extra instrument level description. As

observed through Figure 22, all the pattern description is done on the first TOP PDL level,

therefore, pattern sets are only simple wrappers, each of them calls one TOP procedure.

Consequently, it is not mandatory to use a PDL for pattern set representation, a pattern set

could be opened by calling directly the TOP procedure (iCall command).

 Test sequences generation is the same as previews approach. It is the possibility to

concatenate a Test Setup at the beginning of the sequence. Nevertheless, there is still the

limitation to force JTAG ports and have multiple timeplates in the same PDL. The main

advantage of this new method compared with the last one is that this is closer to modular

approach design as it targets the TOP level (same as TDL patterns).

Figure 22: TOP Level PDL pattern description approach.

42

4.4.3 Approach 3: Test Setup pattern description

 Last approach is Test Setup based as observed in Figure 23. Different from the two

previous options in which Test Setup procedure was used at the beginning of the sequence only

for the chip startup, some initial patterns and the hierarchy access, in this approach Test Setup

contains the complete sequence. Mainly, only cycle based sub-procedures are used in Test

Setup; in order to use PDL, it is necessary to follow a different IJTAG flow described through

Figure 19 in section 4.3 Non-ATPG IJTAG Pattern Generation Flow. The main

advantage of this new approach is the possibility to force JTAG pins at any part of the sequence

through cycle based sub-procedures.

 However, there are some limitations regarding Modular Approach and multiple

timeplates patterns. First, it is necessary to consider that there are some patterns in which it is

necessary to force JTAG ports for specific modulars. In that case, previous flow supported this

feature through TDL (TASS flow), now it is necessary to use sub-procedures since PDL does

not support this feature. That means, it is necessary to split those patterns into multiple PDL

plus sub-procedures as observed in third modular of Figure 23. As a result, Modular Approach

is affected.

 Second issue is multiple timeplates usage inside the same PDL or sub-procedure. On

PDL case, it was determined that for each timeplate it is necessary a different PDL, splitting a

modular in as many PDLs as timeplates used. In case the same PDL is recalled within Test

Setup but with a different timeplate definition it can be done thanks to -timeplate switch on

iCall command available only on Test Setup environment and patterns -scan context.

Nevertheless, with sub-procedures this option is not available, so even if it is needed to reuse

the same sub-procedure with a different timeplate, a new sub-procedure is required to be

written. Same as PDL, in sub-procedures it is not possible to define more than one timeplate.

 Last consideration concerns to the ICL network state. Since from IJTAG solver

perspective it is not possible to understand what happened to the network during a sub-

procedure when required it is necessary to use iState command. iState is used to manipulate

the internal IJTAG network state, so that it is possible to manually describe what was done

during a sub-procedure only if the network was modified.

Figure 23: TOP Level PDL pattern description approach.

43

4.5 New ATPG Flow

 The first main objective of the new ATPG flow using IJTAG PDLs patterns is to

simplify the flow steps and therefore to reduce the bug’s risk during pattern generation. The

second main objective is to guarantee ATPG testbench simulation is accurate and matches real

output patterns used for ATE.

 Analyzing previous TASS flow from Figure 15 it was determined that in order to

generate Test Setup procedure for Tessent Shell it is required an intermediate step to transform

ATF output from TASS into a .testproc file understandable by Tessent Shell. To do so it was

used some internal scripts. This extra step could be the source of some bugs, so it is always

better to avoid it. In the new ATPG flow with IJTAG from Figure 24 it is used directly Test

Setup in .testproc format as a Tessent input.

 ATPG Test Setup is written following Approach 3 (Test Setup based sequence), so that

it is possible to use both PDL and sub-procedures. In the new flow, Test Setup procedure is

copied into the main atpg.testproc file which contains other necessary procedures for ATPG.

In order to use PDLs in Test Setup, it is necessary to read the TOP level ICL network.

Figure 24: New ATPG Flow with IJTAG PDL Test Setup.

44

4.5.1 ATPG PDL-based Test Setup

 Through Figure 25 it is observed the differences between Test Setup for ATPG patterns

from TASS and IJTAG. First advantage from new IJTAG Test Setup is the possibility to

include the bootstrap startup at the beginning of the sequence which corresponds to Modular 1

or TMER modular. This means that the startup will also be included in the testbench, generating

more accurate results between simulation and ATE patterns. In TASS case it was not done (but

it is possible), so it was only used a sub-procedure and some adaptations in the DOfile script

in order to force the entry without the bootstrap sequence in the testbench.

 Second IJTAG Test Setup advantage is the possibility to simulate multiple timeplates.

Initial TASS Test Setup was limited to only one timeplate for the complete sequence

(represented as Timeplate 0 in Figure 25) and TCK pulsed each two cycles to match the timing.

However, this does not match the ATE patterns reality in which each modular could have one

or more different timeplate. With IJTAG Test Setup it is possible to use as many timeplates as

desired with the already discussed limitation of only one timeplate per sub-procedure or PDL.

Since some modulars have different timeplates or they are forcing JTAG ports, they must be

separated in several files (ATPG modular case).

Figure 25: ATPG Test Setup modification using IJTAG PDL patterns.

 Since some ATPG modulars are only in charge of the hierarchy access, they are pure

sub-procedures on IJTAG Test Setup (represented in blue as Level Access, Figure 25). Due to

the DFTShell generated ICL does not match the hierarchy design, IJTAG is not capable to

understand the multi TAP architecture (same as TASS) and that is the reason why hierarchy

access can only be developed through a manually described cycle-based sequence both on

45

TASS and IJTAG. In case multi Tap architecture is defined, hierarchy access could also be

developed through an iTopProc using PDL-based commands inside a PDL file.

 It has been mentioned that it is required to use external modular patterns from other

NXP teams such as the case of Secure Element patterns (SE). In that case, patterns format is

neither TDL nor PDL necessarily but could be ATF or STIL. As ATF is an internal NXP format,

the only option for IJTAG is to receive STIL patterns as it is a standard format. Unfortunately,

STIL is not supported in the current IJTAG version (2022.1) both on pattern -ijtag and pattern

-scan contexts.

4.5.2 ATPG Tests and Simulations

 EOS ATPG tests are designed based on three main islands which are: GP – ADC

(General Purpose Analog-to-Digital Converter) represented as G, the boost island or B, and the

Secure Element or S. Both the G and B islands are digital islands inside the analog module.

Depending on if the scan chains are enabled or not, the islands are represented as 1 (enabled)

or 0 (disabled). Therefore, as an example, the first test is G0B0S0 meaning that the scan chains

from all the islands are disabled, and the test target is only the TOP level scan chains. The

second test is G1B1S0, in which the scan chains from both digital islands inside the analog

module are enabled. The last case is G1B1S1, in which all the islands scan chains are enabled.

 ATPG pattern tests could be classified depending on the test model, the test type, the

compression configuration, and the testbench type, this last one applies only for simulation.

Table 2 shows the ATPG test classification.

Table 2: ATPG Test Classification

Fault Model Test Type Compression Testbench

Transition Chain test (shift only) ON (EDT ON) Serial (First N patterns)

Stuck-At
Full ATPG test (shift +

capture)
OFF (EDT Bypass)

Parallel (Full patters, no

shift)

A. Test Model

The fault model is the way to describe and simulate manufacturing defects within the

IC. The most traditional test is call Stuck-At, which targets the gate level of the design (logic

gates, basic logic structures, etc.) and test their interconnections. This test is efficient to test

several production defects of the IC and quantify the fault coverage. The Stuck-At test models

the IC logic stuck-at 1 and 0 based on the logic operation of the gates. As an example, from

Figure 26, a stuck-at 0 fault could be analyzed through an OR gate easily, the target is to

46

demonstrate that the gate is not stuck-at 0 so controlling only one of it inputs with a logic 1 is

enough to observe the fault. Summarizing, this fault model tests if a logic structure, due to

manufacturing defects, is stuck-at 1 or 0 irrespective of any value changes on the inputs.

However, Stuck-At model does not include timing considerations such as a possible

gate delay larger than the expected. Due to manufacturing defects, timing characteristics

changes from one IC to another and in some cases, this could be severe enough to generate

faults in the desired behavior. This gate delay issues causes a node value to change but not in

the time it should, that is why this type of faults occurs during transition giving the name to the

Transition Model.

A Transition Model could be understood as a Stuck-At test within a time window. This

means that a Transition Model test can cover some Stuck-At faults. The process to obtain the

equivalent Stuck-At faults covered by Transition is called Fault Grading. This process rates the

testability with the percentage of possible Stuck-At faults to detect thanks to Transition Model

compared with the total fabrication defects. At the end of all the ATPG tests, the objective is

to have the maximum test coverage (100%), however this is only an ideal case. In real cases

test coverage is around 98%.

Figure 26: Single Stuck-At Fault example.

B. Test Type

For each of the two Fault Models used on EOS ATPG, it is possible to execute two

types of tests: Chain test and the ATPG Full test. During the design flow (between Synthesis

and Backend) it is developed the Scan Chain Insertion or DFT Insertion process (Appendix

Figure 3). During this step the standard Flip-Flops of the design are converted into Scan Flip-

Flops (SFF). The main feature of SFF is that they are capable to work on two operation modes:

normal and test mode.

In order to test a node and detect a stuck-at fault, the node must be controllable and

observable. In other words, it is necessary to have full access to the input and output of the

node which is related to combinational logic. To solve this issue, SFFs are connected serially

generating Scan Chains during the Synthesis Scan Chain Insertion process, a simple

47

implementation example is found in Figure 27. Using scan chains, it is possible to connect the

Scan flip-flop input either to the combinational logic output (Normal Mode and Test Mode) or

to the Scan-in pin (only Test Mode) [16]. During normal mode, the scan enable signal is 0 and

the SFF can only perform a “Capture” operation which means take the input data and apply it

on the next clock cycle. Normal mode is equivalent to the original behavior of the Flip-Flop

before the Scan Chain Insertion. During test mode, the scan enable signal starts at 1, this allows

the SFF to perform “Shift” operation, which means, the SFF shift-in the data (test pattern

control stimuli). Then, SFF load the response (Capture) of the combinational logic by the SFF

functional input during one cycle (for stuck-at faults). Finally, the SFF shift-out the observed

response through scan-out.

Figure 27: Scan Flip-Flop (left) and Scan Chain (right) [16].

The first test to verify is the Chain or Scan Chain test, its main objective is to evaluate

that there are issues that prevent the use of scan chains, therefore, to control and observe the

SFFs. During Scan Chain test, the Scan Chains work on scan mode but they do not execute the

“Capture” step, only the “Shift” steps. Therefore, Scan Chain test is a shift-only test as

mentioned in Table 2. The basis of Chain test is to introduce a pattern into the different chains

and compare it with the chain output. As the SFFs are never capturing the combinational

48

response, the output must be the same as the input pattern since the chain is only working as a

shift register. However, if it is needed to evaluate a stuck-at fault which is related to

combinational logic, it is necessary to execute the full test mode flow, this is called Full ATPG

test which is formed by the two “Shift” steps, plus “Capture” in between.

Finally, it is important to remark that during a shift-out process it could also be executed

a shift-in as observed through the waveforms of Figure 28.

Figure 28: Full ATPG Stuck-At test: shift-in, capture, shift-out.

Through Figure 28 it is observed a complete ATPG sequence since it has the 3 stages

(shift-in, capture, shift-out) and it corresponds to a Stuck-at fault test as there is only one

Capture cycle. In case of Transition fault tests, it is required two cycles during Capture.

C. Compression

As mentioned, scan chains are formed by SFFs serially connected through their scan-

in and scan-out signals. However, in very complex designs there could be a large amount of

scan chains depending on the amount of SFFs. In EOS case, it has 416 scan chains. However,

EOS has only 4 channel-in and 4 channel-out. The channels are the physical external ports that

could be used as scan-in or scan-out ports. Therefore, in order to keep a good pattern generation

throughput in terms of test time and quality, it is necessary to implement some techniques to

compress and decompress the test patterns.

49

Siemens offers through Tessent a sub-tool called TestKompress which helps to

implements compression techniques to create test patterns with considerably less test data

volume and therefore reduced test times on ATE. The compression architecture is described

through Figure 29, it is formed by two blocks the Decompressor and the Compactor. The

Decompressor objective is to handle the compressed input patterns and through some

techniques extract the patterns, decompress them and input the scan chains. At the scan chains

inputs, it is necessary to recompress the patterns which is the task of the Compactor.

When the compression process is applied it is called EDT (Embedded Deterministic

Test) ON. However, for debug purposes compression could be disabled. In that case it is said

that the compression is bypassed (EDT Bypass). Evidently when bypassing the compression,

the test time is severally affected since the 416 scan chains are connected in a way, they form

only 4 chains (for the available channels). Since test time is very important, using compression

is very necessary.

Figure 29: Tessent TestKompress Decompressor and Compactor Structures [15].

D. Testbench Type

Last ATPG tests feature is the testbench type. The standard testbench is known as Serial

testbench which represents exactly the behavior of the patterns used for ATE. However, due to

the large number of scan chains (416) and SFFs, this testbench takes a considerable amount of

time to be simulated. The steps which affect the most the simulation time are the shift-in and

shift-out processes. While as mentioned, Capture is only one or two cycles. In some cases,

including EOS, Serial testbench generation is configured to include only the first N patterns (N

complete shift-in, capture, shift-out processes) where N is between 10 and 100. This way

simulation time is reduced.

50

 For simulation purposes it could not be very necessary to simulate the shifts processes

since their main objective is to load the SFFs with the desired input pattern sequence before

capturing the combinational logic response. But the most important objective is to analyze that

the response of the logic is the correct. To simulate this behavior directly without having to

load and unload the chains each time, it is designed a Parallel testbench. It is called Parallel

testbench because all the chains are forced to the desired final values (after shift-in). Same way,

in order to avoid shift-out process, Parallel testbench reads directly the values from the registers

saving all the simulation time required for shift-out. This technique is valid only on simulation

since physically there is no way to read the SFFs or program them without the shift processes.

4.5.3 ATPG Testbenches

G0B0S0: Transition, Chain test, Compression ON, Serial Testbench.

Figure 30: ATPG Test 1.

 Figure 30 shows a G0B0S0 test which means that the scan chains from all the islands

are disabled, and the test target is only the TOP level scan chains. Fault model is Transition

however this is not relevant since it is a Chain test, therefore, the objective is to test the integrity

of the SFFs chains and not to perform Capture. Compression is ON (EDT ON), that means that

decompressor and compactor are enabled. Finally, it is a Serial testbench since the objective in

this case is to simulate the complete shift-in and shift-out processes.

 This simulation ensures that the device can be correctly configured into scan mode and

that they are able to shift data in and out through the scan chains at a targeted frequency. A way

to test this is to analyze that the scan-in patterns are equivalent to scan outputs response. Since

it is G0B0S0 this affirmation is only valid for TOP level scan chains but not sure for the islands.

Due to Compression is ON and it is a Serial testbench it is also possible to confirm that the

EDT is working as expected. In case of an EDT configuration mismatch or timing violation,

the chain test will fail and the mismatches on the scan outputs will be displayed in Cadence

SimVision Console. A possible cause of a wrong behavior of the Decompressor or the

Compactor could be an incorrect setting during Test Setup. It is important to mention that

Test Setup
Test

Setup

Ends

Shift-in

NO

Capture

Shift-

out +

Shit in

TCK: Blue

Scan-in: Green (dark)

Scan-out: Green (light)

Scan EN: Pink

51

during Test Setup some TCBs and TPRs are programed in order to set the required

configurations for ATPG tests.

From Figure 30 it can be observed TCK, Scan INs, Scan OUTs and Scan Enable signals.

TCK which is the clock signal is represented in blue color and corresponds to GPIO1. It is

observed that TCK is not toggling when Scan Enable (GPIO2_AO) is 0. This is expected since

it is a Chain test, and it is not desired to execute Capture operation. As described previously,

EOS has 4 scan-in channels which correspond to (GPIO5, GPIO 4, TM and I3C_SCL) and 4

scan-out channels (GPIO0, GPIO3_AO, GPIO6, I3C_SDA). Due to some of these ports are

GPIOs, they are not only used as scan ports but also as JTAG ports which is the case of GPIO0,

GPIO2_AO and GPIO5 which correspond to TDO, TDI and TMS respectively. JTAG ports

are used during Test Setup configuration which corresponds to all patterns

before ”tcb_scanen_update” signal observed at Figure 30. This last signal shows the last TCB

(SCAN_CONFIG_tcb) that is configured during Test Setup procedure before starting ATPG

test to isolate the TAP from its control signal (TMS) to prevent a JTAG FSM state modification,

therefore an undesired change on the DR setup.

The final step to analyze the waveforms is to understand the shift-in and shift-out

processes. During shift-in, scan enable is 1 (GPIO2_AO pink signal), as it is a serial testbench,

each chain must be loaded serially. Same process must be done when unloading the chains

(shift-out). As mentioned, during a shift-in it is possible to execute a shift-out so data is read

and write on the chains. However, as observed it is only possible after the second patterns

because during first pattern there is no data to shift-out (red waves on scan-out ports).

G0B0S0: Stuck-At, Full ATPG test, Compression ON, Parallel Testbench.

Figure 31: ATPG Test 2.

This second case corresponds to Stuck-At fault test. Due to it is a Full ATPG test,

Capture is developed to obtain the response of the logic and capture it on the chains. However,

since it is a parallel testbench, shift-in and shift-out are not simulated. Instead, the chains are

preloaded directly with the right values (instead of shift-in) and directly read in parallel (instead

Test

Setup

Ends

Capture

1 cycle

(Stuck-

At)

SFF

forced /

read

7 cycles

52

of shift-out). Since it is a parallel testbench, it is not relevant if Compression is enabled or

disabled because on simulation the stimuli are forced at the SFFs level.

As observed through Figure 31 during scan enable signal equal to 1 (which means shift-

in, shift-out), there are only 7 pulses of TCK, during these pulses the chains are parallelly

loaded and read, this is equivalent to the shift processes. Those 7 pulses are also necessary to

load some parallel flip-flops which are not part of the chains, so cannot be preloaded as SFFs.

Then, it is observed a long TCK pulse which is the required clock pulse to test Stuck-At faults,

during this pulse the response of the logic is captured by the chains. Since for this simulation

the data is not loaded to the chains through the scan channels ports, they are not giving relevant

information. To analyze if the captured data is correct, it is necessary to check directly at the

SFF level after the Capture.

For EOS parallel testbenches, TCK period during the 7 shift cycles is adjusted.

Originally on Serial testbenches the shift period is 30ns, however on Parallel it must be changed

and the time between the falling edge and releasing the chain forces is needed to be 11ns. The

objective is to have a longer time to avoid timing issues due to clock propagation. It also needed

to have a delay time between the forces are released and the Primary Inputs (PI) are forced for

the two events not to happen at the same time to prevent simulation issues, that is why the

forces occurs 1ns after the beginning of the new cycle. Finally, as observed through Appendix

Figure 4, the period is increased to 41ns with the same ON time (15ns) but adding 11ns OFF

after. These modifications to avoid timing issues are developed by post processing the

testbench using scripts to automate the process.

G0B0S0: Transition, Full ATPG test, Compression OFF, Serial Testbench.

Figure 32: ATPG Test 3.

The third example from Figure 32 corresponds to a Full ATPG Transition test in which

the compression is bypassed, it was simulated a Serial testbench. Different from previous

simulations in this case the shift-in and shift-out are not developed using TestKompressor

algorithms since the decompressor and compactor are disabled. Since this feature is not used,

the simulation time is severally affected because the shift-in and shift-out processes requires

Shift-in Capture

2 Cycles

(Transition)

Shift-out +

Shit in

53

more cycles to be completed. Due to this reason, through the DOfile it is configured to generate

the testbench for a limited number of patterns (10 first patterns).

 Since it is a Transition fault test, it is required two cycles during Capture to perform it.

As observed through Figure 32 during Capture, the scan enable signal (GPIO2_AO, pink) is

set to 0 meaning normal mode, during this time, TCK (GPIO1, blue) pulses twice (thanks to an

internal clock generator). After Capture is done, the chains return to test mode in order to shift-

out the data and shift-in the next patterns. Due to it is a Serial testbench it is possible to

demonstrate through it if the chains are working properly but since compression is OFF, it is

not feasible to confirm if the decompressor and compactor operates in the right way.

54

5 Improvements for Future Projects

5.1 Multiple TAP ICL representation

 As described through Figure 7 EOS DFT architecture matches a multi-TAP Star design

in which there is a TOP tap controller and multiple sub-level Taps, therefore there is a multi-

level structure with a clearly defined hierarchy. Unfortunately, TASS is not capable to represent

this architecture since it can only support a single tap design. In IJTAG case the ICL network

generated by DFTShell contains a single tap architecture. Consequently, both TASS and

IJTAG work based on a single tap DFT design corresponding to NFC sub-IP tap.

 For EOS project purposes both representations are enough since the hierarchical access

is handled manually (cycle-based patterns) which is a desired feature, and because external

sub-IPs delivers their own patterns (SE and TSMC-flash). However, for future projects NFC

tap will be separated into two independent taps in such case it is mandatory to handle a

hierarchical design. In that case, the most critical issue is that multiple data registers from

different sub-IP taps (TCB/TPR) could have the same address (IR OPCODE). In that case

representing the design with a single tap is not feasible with the current approach.

5.1.1 Merged Tap Controller IJTAG

 First approach using IJTAG is based on representing a multiple-tap architecture through

a single merged main tap. During IJTAG flow there is no verification between the real RTL

design and the ICL representation since the RTL is only used to read the interface (TOP level

input/output ports) and not the instances (sub-IP RTLs). This means that it is not necessary the

ICL to match the real RTL design and this methodology takes advantage of this. However, it

is necessary to consider that through this approach since the design is not matching the real

design, there is a higher risk to have undesirable effects on the patterns.

 The objective is to merge all the data registers into a single tap instance. The main issue

is that IJTAG is not able to work in case of two or more data registers with the same address

within the same tap sub-IP. Therefore, it is needed to modify the ICL description manually in

order to make IJTAG understand that even if two data registers have the same address, they

are different. To do so, the proposal is to add an extra bit (LSB) in the instruction register in

case of two DR with the same address. This extra bit is used during the OPCODEs definition

to make a difference between two identical addresses. Through Figure 33 a hierarchical design

with two sub-taps is transformed into a single-tap representation. As observed, IR is 8-bit

length and there are two TCBs with the same address but in different taps. To merge them a

LSB is added to the IR, and it is assigned a unique value for this new bit for each TCB.

55

Figure 33: Multi-tap into merged single-tap architecture.

The flow using this approach could be:

- Generate the ICL description of each sub-IP tap through DFTShell in independent

sessions.

- Concatenate all the data registers (TCB/TPR) instruments from all the taps into a single

ICL file.

- Modify the single-tap IR by adding the extra LSB, if the address is repeated more than

once, it could be added extra bits at the end of the IR.

- Define the OPCODEs by assigning a unique value of the added bits to the DRs with

same addresses.

From IJTAG perspective the IR has 9 bits instead of 8 (from Figure 33 and Figure 34

example), therefore it is going to generate the sequences based on this. Figure 34 shows a test

case in which it was defined the same address intentionally for a TCB and a TPR and used an

extra bit to indicate IJTAG they are different instruments. The effect in patters is that there will

be an extra cycle due to the new bit, however this extra bit will be over shifted so the real

behavior is not going to be affected. The extra cycle is not significant compared with the

complete test sequence so it will not affect the simulation or tester time. Despite through this

approach it is possible to handle a hierarchical design it is still not a representation of it. This

means that the hierarchy access must be done manually as it has been done previously.

56

Figure 34: DFT understood architecture by IJTAG (Tessent Visualizer).

5.1.2 Merged Tap Controller TASS

There is the possibility to develop a similar solution for TASS in order to handle the

mentioned scenario of a multiple tap design with same DR addresses. In IJTAG case it was

necessary to add an extra IR bit since the tool executes an ICL network validation and declare

as an error if two DR have the same address. With TASS it is possible to do implement the

same solution. However, TASS does validate the TD input files (DR and tap interconnections)

so, it can use multiple data registers even if they have the same address. The only requirement

for them is to have different paths and names.

Therefore, for a multi-tap architecture it is possible to merge it into a single-tap

architecture by concatenating the TD chains and describing all the OPCODEs in the same tap

TD file. The drawback is that it is not matching the real design, so the hierarchical access must

be handled manually.

5.1.3 TDO-Gated Multi-Tap Representation IJTAG

The third solution is based on modifying the ICL network in order to generate a

hierarchical representation of the multi-tap Star architecture. First trials were developed to gate

TCK in order to match the original design as observed in Figure 35. The target is to implement

a ClockMux controlled by the UP TCB (TCB in charge of selecting the sub-IP taps) before the

TCK input each TAP level. Despite the clock gating is done within the TAM block level using

this ClockMux is the closer ICL description compared with the original design.

However, trials demonstrated that IJTAG is not able to work based on an ICL network

in which TCK is gated. During the ICL elaboration and check, IJTAG reports an ICL semantic

error. IJTAG does not allow to use a ClockMux output as an input of a sub-IP TCK port.

57

Unfortunately, this error cannot be downgraded into a warning, so it is necessary to change the

approach to handle a multi-tap architecture.

Figure 35: TCK gated ICL design.

 Since there is no possibility to gate TCK it was decided to gate TDO. The main

objective is to describe a hierarchical architecture that IJTAG understands and supports. This

way, during pattern generation it is expected the tool to generate the sequences for the different

tap accesses. It is proposed to gate TDO through a ScanMux controlled by UP TCB as observed

in Figure 36. During IJTAG flow it was observed an ICL error because the ScanMux is

deselecting the TAM TAP controller. It means that the main tap loses control and will never

be retargetable.

 In practice, this is not the case because the TAM TAP was designed in order to spy the

signals, meaning that the TAM TAP never lose control and it is retargetable. Also, it was

implemented some extra logic to prevent the top tap to reset accidentally when resetting the

sub-IP taps [12]. However even if these features work as expected at hardware level, it is not

possible to represent them into an ICL description. Therefore, for IJTAG since the UP TCB is

configured by the TAM TAP and this TCB is in charge of selecting the TDO, the tool must

generate the patterns to select the right TAP related with a TDO and the desired DR to be

58

read/written. Once this new TAP is selected there is no way for IJTAG to retake TAM TAP

control and rewrite UP TCB to select another TAP.

Figure 36: TDO gated ICL design.

Nevertheless, the ScanMux error can be downgraded into a warning. Consequently,

IJTAG understands the multiple tap architecture and the TDO gating mechanism. It is shown

through Figure 37 the IJTAG ICL schematic on Tessent Visualizer tool for EOS project TOP

TAM tap and FSM tap.

Figure 37: Hierarchical ICL network description understood by IJTAG.

59

As mentioned, for IJTAG it is not possible to retake TAM TAP control. Because of that,

it is necessary to use iState command in the PDL pattern description when it is required to

access a different sub-IP or to retake TAM TAP control. With iState it is possible to manually

define the state of the ICL network, but it does not generate any patterns. The flow is as follows:

Figure 38: Hierarchical PDL example using iState.

5.2 Force JTAG Ports on PDL patterns

As mentioned on previous chapters (4.4 New Test Sequence Approaches) the only

way to force JTAG ports with IJTAG is through sub-procedures used on Test Setup. However,

complex functions which require loops, arguments or different timeplates are hard to

implement through sub-procedures since their language is very limited as it is designed to

describe simple cycle-based functions. The second drawback is that this is available only with

Approach 3 in patterns -scan context losing all the advantages of patterns -ijtag context and

pattern sets.

Therefore, the target is to use PDL to force JTAG ports since PDL is a language with

more flexibility and as mentioned, it is compatible with TCL commands. Finally, PDL can be

used on patterns -ijtag context taking advantage of pattern sets. The way to force and compare

the IC ports is through iForcePort and iComparePort PDL commands however this is limited

for non-JTAG ports. Siemens propose a Tessent IJTAG command called

iSuspendPdlRetargeting in order to force JTAG ports. This command is going to stop the

IJTAG retargeting tool which is in charge of analyzing the state of the ICL network. In other

words, through it, there is the possibility to force JTAG ports within PDL patterns and IJTAG

will not complain about it or any modification of the ICL network state. However, after this

command is used it is mandatory to use an iReset command which purpose is to give control

again to IJTAG retargeting tool. Since the ICL network state could be modified during this

process it is necessary to use iState to specify the modifications (network end state, e.g., TCB

or TPR changes). A flow diagram for iSuspendPdlRetargeting is shown through Figure 39.

60

Figure 39: iSuspendPdlRetargeting flow to force JTAG ports.

 However, on current releases (up to Tessent 2022.2) the only way to give control again

to the retargeting tool is through iReset command. Unfortunately, this command also generates

a soft reset (TMS set to 1 during 5 TCK cycles). This is an undesired behavior that could affect

the TAP FSM state. The second issue is the limitation to force all JTAG ports. It is not possible

to use any command to force TCK port, so it is always pulsed as a clock during PDL patterns

and does not react to iForcePort. The way to solve these issues is through a workaround to

modify the iReset effect and force TCK port.

 In order to eliminate iReset effect it is proposed to develop a post-processing step of

the output files (STIL and Testbench) to remove the soft reset. The first step is to create a new

PDL procedure called “iResume” which will contain the iReset command but also some

comments (through iNote PDL command) before and after it. These commands are useful to

automate the post-processing. In case of STIL patterns, the file is post-processed using a script

that searches the comments and forces TMS signal to 0 during iReset, this way it prevents the

soft reset. For the Verilog Testbench, there is the possibility to add special Tessent comments

(tessent_pragma) before and after iReset that which will force the TMS GPIO to 0 during the

iReset and releases it at the end before exiting iResume. This way it is not necessary to post-

process through scripts the Testbench.

 For TCK port (GPIO1) issue the proposal is to create a pseudo-port to replace TCK.

The original TCK from the ICL definition will be pulsed during all the PDL pattern sequence,

but the pseudo-port since it is not TCK, it can be manipulated freely. The first step is to declare

it as a clock in the DOfile. Then it is needed to pulse inside all the timeplates definition in

which it will be used as TCK (e.g., for a part of TMER modular since TCK is forced to a fixed

value during bootstrap, it must not be pulsed in the corresponding timeplate). Since this pseudo-

port, different from TCK, is not pulsed by default, it is necessary to pulse it at the beginning of

each PDL pattern when required. Finally, when writing the patterns (write_patterns command)

the original TCK is overwritten or replaced by the pseudo-TCK which matches the real

requirements (using the command set_write_pattern_options).

61

Figure 40: Force JTAG ports flow through pseudo-TCK and iResume.

5.3 Use of external IP Patterns

Due to some IPs deliver their own patterns it is necessary to integrate them into the test

sequence for simulation. This is the case for Secure Element patterns that must be integrated

in test setup for ATPG patterns, or the Flash patterns coming from TSMC. Since IJTAG

supports only PDL or SVF input pattern formats, it is not possible to directly use STIL input

patterns. First approach was to use a Tessent utility called STIL2MGC (STIL2TESSENT on

last Tessent version 2022.2) This is a tool that converts STIL files into a DOfile and a test

procedure file. The objective is to call this sub-procedure into test setup as other cycle-based

procedure. The main limitation with this solution is that it works only with test setup approach,

since sub-procedures cannot be called within PDL files. Therefore, for ATPG patterns, the

solution fits adequately, but for non-ATPG patterns it can only be used with pattern Approach

3 (Test Setup Pattern Description).

 It was developed some trials with several STIL pattern files, but the tool presented some

limitations. It is only possible to use STIL2MGC for STIL patterns with chain definition (scan

structures and scan chains). Due to this constraint, it is not possible to generate a procedure file

for all STIL files.

 Second solution is the development of internal NXP scripts to transform STIL into PDL.

This is the best option and the selected one for future projects because PDL format is allowed

in all pattern generation approaches. Additionally, the external STIL patterns (both from SE

and Flash) are cycle based described, meaning that there will be a one-by-one transformation

into cycle based (iForcePort and iComparePort) PDL commands. An example for SE patterns

used on Test Setup for ATPG is shown through Figure 41.

62

Figure 41: Test Setup for ATPG using STIL to PDL transformation.

5.4 Detailed Annotations using iReadVar/iWriteVar

One important requirement is based on the annotation level of the STIL output patterns.

Due to the generated patterns will be used by test engineers on ATE, the delivered STIL files

must be well commented for debugging purposes. The minimum requirement is to have per-

cycle annotations with the information of the JTAG bits. Detailed annotations regarding the

read and write processes are also required. However, IJTAG does not give detailed comments

on STIL such as the full DR information when using iWrite/iWrite commands for specific DR

bits. On the other hand, TASS supports all these features, that is the reason way annotation is

considered an IJTAG weakness.

 IJTAG annotations are created through iNote PDL command which prints the

comments in the output pattern files. iNote is a command that can be used before or after and

iRead/iWrite, so it is not possible to add a comment during the iRead/iWrite process.

Nevertheless, IJTAG supports the association of an iRead or iWrite command with a symbolic

variable such as iReadVar and iWriteVar [8]. There is the possibility to use a

“TESSENT_PRAGMA annotation” within an iNote. This particular annotation command

allows the tool to track the symbolic variables during the PDL retargeting process and replace

them with an associated ICL instance (e.g., TCB/TPR). Which means that it is possible to

associate the symbolic variables to each of the DRs of the ICL description and then, generate

the pattern output file such as STIL with a high annotation level.

 The process starts with the extraction of the ICL DRs and their “aliases”. An alias is a

name for a virtual vector signal that contains one or several signals from an ICL structure such

as a TCB or TPR [8]. Aliases help to understand better the function/origin of the TCB/TPR

register signals. Then, it is necessary to create one iNote using the new symbolic variable

approach for each alias of the TCB/TPR. This process must be repeated several times for each

TCB and TPR. Due to and iRead can only be associated with an iReadVar and an iWrite with

63

an iWriteVar respectively, it is required two iNote commands for each DR alias (except for

TCB which does not support iRead). Finally, since iNote is a PDL command it is possible to

develop an iTopProc for each TCB/TPR which can be saved in a PDL file to be added to the

PDL include database. This iTopProc can be used according to user needs before an

iRead/iWrite. A general overview of the flow is shown through Figure 42.

Figure 42: iNote iTopProc PDL procedures generation using symbolic variables.

64

6 TASS & IJTAG Comparison Summary

Table 3: TASS vs. IJTAG comparison.

Topic Feature IJTAG TASS

Basic Patterns √ √

 Timing √ ≈

 Modular Approach √ √

Force JTAG Ports ≈ √

 iSuspendPdlRetargeting X

 Test Setup Approach 3 ≈

 Test procedures from TCL ≈

 iResume ?

External STIL Patterns Reuse ? √

 SVF/PDL + ICL ≈

 STIL2MGC X

 STIL input support X √

 STIL to cycle based PDL ?

ATPG √ ↓

 Bootstrap on simulation √ ≈

 Accurate Timing on TS √ ≈

Annotation Level X (≈) √

 Current: Per Cycle Annotations √ √

 Expected: Detailed Annotations X √

 iWriteVar / iReadVar √

User Friendly √ ↓

Hierarchy Understanding √ X (≈)

65

This comparison study was based on 7 main topics as observed in Table 3. The features for

each topic were evaluated for both tools based on the risk and difficulty to implement. The

symbols definition is the following:

√ : No risk, implemented and tested, workarounds do not represent a risk.

↓ : Slight disadvantage compared with the other tool, but feasible without risks.

≈ : Moderate risk, feasible but required workaround or post-process.

X : Not feasible.

? : Moderate risk, workaround is not completely tested.

X(≈) : Limited workaround which does not accomplish all the requirements.

First one is Basic Patterns which corresponds to only PDL or TDL based patterns for

IJTAG and TASS respectively. It has been determined that IJTAG supports multiple timing

definitions through timeplates while TASS does the same through wavesets. In IJTAG case,

when multiple timeplates must be used within a modular it is required to open a new pattern

set. However, for TASS to use multiple wavesets in the same modular it is necessary a script-

based workaround, that is why TASS timing feature is marked as “≈”. Nevertheless, both tools

can support and represent successfully the Modular approach and all its requirements, reason

why Basic Pattern is “√” for both.

Second topic is how to force JTAG ports. This requirement is fundamental since it is

used for the bootstrap initialization, cycle-based functions such as the manual multi-tap access

and in some specific modular patterns. In case of TASS, TDL language supports this

characteristic without any risk or limitation. However, in case of IJTAG as observed in

previous chapters, it is not possible to force JTAG ports with PDL directly, therefore some

workarounds are required. Since there is the soft reset issue when using

iSuspendPdlRetargeting command with iReset, this solution is discarded. Second possibility is

to use Approach 3 which is based on sub-procedures, but as mentioned these are based on a

very limited language. A third possibility which is an extension of Approach 3 is to automate

the sub-procedures creation by using TCL scripts. However, both last two solutions are not

worth due to time and complexity.

Therefore, the only feasible solution to force JTAG ports with IJTAG is to use the

iResume approach (5.2 Force JTAG Ports on PDL patterns) which requires a

workaround, but it fulfill successfully the required feature.

The third requirement is related with external IP patterns in STIL format. Since IJTAG

only supports either PDL or SVF the initial solution is to ask one of this pattern formats.

However, this is not possible for third party patterns (TSMC case). As it was mentioned,

STIL2MGC tool is not suitable on this case. Finally, IJTAG does not support STIL format in

all its pattern contexts. Consequently, the only feasible solution is the STIL to PDL

transformation through scripts (5.3 Use of external IP Patterns). Since this solution has not

been completely tested it is marked as “?”.

66

Fourth topic is ATPG patterns in this case, IJTAG has no limitations compared with

TASS. Additionally, as shown previously (4.5.1 ATPG PDL-based Test Setup)

IJTAG simulates the bootstrap and is more accurate in timing since it supports multiple

timeplates in Test Setup procedure. Currently, these two features are not supported with TASS,

but they are feasible with additional workarounds. In conclusion ATPG patterns are both well

supported by IJTAG and TASS with some benefits from IJTAG.

The next requirement is based on the annotation level of the STIL output patterns. It

has been mentioned that this characteristic is fundamental because it is a requirement used not

only by DFT engineers but also test engineers. Since IJTAG does not accomplish the detailed

annotation requirement, it was developed a workaround to solve it. Different from other

proposed solutions, this one requires only PDL manipulation. However, it requires certain

automation through scripting in order to generates the PDL procedures. Which is a

disadvantage compared with TASS that fulfills this requirement without additional work.

Next topic aims to compare TDL and PDL languages from the user perspective. After

the different test developed on this study it was determined that PDL has certain advantages.

Since PDL is based on TCL, it is user friendly and easy to learn while TDL has its own structure

for variable creation, loops, others. PDL files also have a clear modularity and hierarchy. It is

possible to target the instrument level and then create pattern sets to reach the Modular

approach or it is possible to target the top level avoiding independent PDL for each instrument,

therefore PDL is flexible. But, in terms of functionality all what is possible to do with PDL is

also possible with TDL.

Final requirement is based on how accurate it is possible to represent the EOS DFT

design (hierarchical multi-tap architecture). Initially, the ICL or TD delivered by DFTShell

does not match the real design since the tool generates a single tap representation, therefore, in

both cases it is necessary a post-processing stage. In case of TASS, the tool does not understand

a hierarchical architecture. TASS workaround is useful to avoid a blocking point and handle a

multi-tap scenario, but the real design is not represented by the TD, so the hierarchical access

must be described manually. In case of IJTAG is has been observed that it is possible to post-

process the ICL in order to represent the hierarchical architecture, but it gates TDO and not

TCK so even if the tool understand there is a multi-tap structure, the representation does not

match the real design. In conclusion, IJTAG is better than TASS in terms of hierarchy

management since there is a possibility to represent a multi-tap design but with some

limitations.

67

7 Proof of Concept using MUTEST

The final objective of this study is to develop a proof of concept of IJTAG pattern

sequences through on-silicon trials using an ATE. MUTEST is a FPGA-based ATE system

used by NXP DFT engineers to debug patterns before their final deliver to test engineers. This

step permits to reduce drastically the pattern debug time, so the DFT engineer is able to make

his own on-silicon trials.

In order to test pattern sequences both for ATPG and non-ATPG it is necessary to post-

process the STIL files. During this step it is used a script which is going to analyze the STIL

and develop some modifications required by MUTEST. For example, this ATE does not allow

STIL patterns to start or end with loops, so the post-process step prevent this. Additionally,

MUTEST does not support STIL timing variables, so it was developed a solution through an

IJTAG flow modification plus scripting to remove the variables and equations from STIL and

replace them with numerical values.

 MUTEST works with MuTool IDE which is capable to import and generate tests for

each STIL file and allows to assign different power and timing features to each of them [17].

This ATE can also concatenate the tests into complete flows, therefore MUTEST and MuTool

are compatible with Modular Approach. Multiple ATPG and non-ATPG pattern sequences

were tested giving positive results. It is observed through Figure 43. A passing trial in MuTool

environment.

Figure 43: Pattern sequence test example using MuTool IDE.

68

Through MUTEST, it is possible to perform SHMOO plots to test the device under

different conditions of voltage and frequency. SHMOO plots have a great importance in the

debugging process. Through them, it is possible to detect pattern failures related with pattern

stability issues [18]. In order to develop exhaustive tests, test engineers have to develop several

trials of the patterns provided by DFT engineers under different process conditions and with

several combinations of voltages and frequencies. To represent all these tests, this information

is print into a SHMOO plot. Basic SHMOO plots are formed by two axis X-Y, where X-axis

usually represents frequency (or period) while voltage is represented through Y-axis. But there

is also the possibility to vary a third variable through a third-dimensional SHMOO plot [18].

Through Figure 44 it is observed a SHMOO plot generated with MuTool IDE. It

corresponds to a MBIST (Memory Build-In Self-Test) ROM test in which the two parameters

are VDDC which is the logic/RAM/ROM VDD voltage and TCK period. The default TCK

period is 30ns which corresponds to 33 MHz while VDDC default value is 0.9V. These

conditions guarantee the pattern stability. On this test, TCK was swept from 50% to 120% its

default value, similarly, it was done with VDDC but between the 60% and 100% of its default

value. It is shown in green all the tests in which the patterns succeeded and in red the failing

cases. It is observed that when increasing VDDC voltage, patterns succeed at higher

frequencies until reaching a threshold close to TCK ≈ 18.5ns after this point, patterns fail for

faster frequencies despite VDDC increment. On the other hand, for VDDC voltages lower than

∼575mV, patterns always fail regardless of VDDC.

Figure 44: SHMOO Plot generated with MuTool IDE.

69

8 Conclusions

This study shows the importance to guaranty product testability and how to implement

it during the design process of an IC. This encourages the development and application of

different standards such as the IEEE 1149.1 which ensures device testability. The usage of

standards is fundamental in the industry because guarantees that the design and its architecture

is compatible with market tools used during the DFT flow such as the ones used for pattern

generation. The main objective of this work was to compare and analyze two of these DFT

tools (TASS and IJTAG) for a possible migration for future projects. The key point to analyze

was if the new tool accomplishes with the requirements of NXP for DFT pattern generation by

giving enough proofs and arguments to take a decision.

Thanks to this work it was possible to study each of the steps of the DFT flow such as

the DFT RTL Generation, DFT Verification and DFT Pattern and Testbench Generation. Due

to the importance of DFT, it is involved during many steps of the IC design development.

Therefore, this study demonstrates that choosing a tool instead of another is a complex task in

which many parameters must be considered. To analyze them and describe the different test

cases and possible challenging scenarios during the DFT flow, it was used on an already tested

test vehicle (EOS).

First constraint is related with feasibility which means how easy or convenient is to

implement certain feature. As a general conclusion it was demonstrated that there are no

blocking points for none of the two tools, but some characteristics does not accomplish all the

requirements. This is the case of the expected annotation level with the new IJTAG tool that

even if does not block the pattern generation flow, it represents a considerable risk for

debugging purposes during testing.

Closely related with feasibility it is complexity. Some blocking points were solved

through different workaround processes. Nevertheless, some of them are hard to develop and

increases the difficulty of the flow which means risk to commit errors. As an example, it is

found the iResume workaround to force JTAG ports with IJTAG, which is feasible and fulfill

the requirements of the project but requires additional steps that even if they are tested, they

always represent a disadvantage compared with a tool such TASS that can cover this feature

without any additional step.

Furthermore, complexity means more time for development and test. In case of external

patterns, there is no possibility to use STIL with IJTAG tool, therefore it is necessary to develop

a workaround to solve it. Which means additional time to test the workaround and close the

new flow. Consequently, all these parameters indicate how feasible is the migration.

However, all these challenges allowed to develop a deep analysis of the current DFT

flow which means understand the purpose of each step, their inputs, outputs and how to

improve the automation process. Nowadays, automation is fundamental since it reduces cost

and time by taking advantage of design regularity. That is why there are tools such as Timnet

and DFTBuilder to automate the RTL generation of the DFT structures. Besides, it is always

the task of the engineer to design and set the specifications according to the requirements of

the project. However, automation is conditioned by the flexibility and characteristics of the

tools.

70

Through this study, it is explained that even if TASS and IJTAG tools could do the

same tasks, automation is restricted by some tool’s limitations which in the worst case the task

cannot be fully automated and require manual manipulation. This is the case of multiple-tap

access. In which to access a sub-level tap such as NFC from the TOP TAM tap, the patterns

must be described manually cycle by cycle (TASS and initial IJTAG case). This requires a high

understanding of the tap controller state as well as the IR and DRs configuration.

During the last stage of this work, it was simulated and debugged several ATPG

patterns. It was determined the importance of ATPG and the different available tests in order

to detect faults related with manufacture processes. The main target of these patterns is to have

the highest possible coverage in order to eliminate the risk to deliver a faulty chip to a costumer.

Those simulations were compared with on-silicon trials on ATE which is the final step to

ensure that patterns developed with the new IJTAG tool are working as expected.

Finally, through this internship it was possible to have a real experience on the

semiconductor design industry with a leading company such as NXP. From a technical

perspective, this work allowed to work with unique design and simulation tools, often available

only for the industry, which allowed the development of strong skills and the application of

concepts learned during academic life to the design of real products that will reach a costumer.

Additionally, and importantly, being able to work in an international environment with

passionate engineers committed to their work was essential for the development of fundamental

interpersonal skills for communication both with the internal team and with external technical

support providers.

71

References

[1] NXP Semiconductors, "NXP History," July 2022. [Online]. Available:

https://www.nxp.com/company/about-nxp/history:NXP-HISTORY. [Accessed 2022].

[2] NXP Semiconductors, "NXP in France," July 2022. [Online]. Available:

https://www.nxp.com/company/about-nxp/worldwide-locations/france:FRANCE.

[Accessed 2022].

[3] JTAG Technologies, "IEEE 1149.1," 2022a. [Online]. Available:

https://www.jtag.com/ieee-1149-1/. [Accessed 2022].

[4] JTAG Technologies, "What is Boundary-Scan?," 2022b. [Online]. Available:

https://www.jtag.com/boundary-scan/. [Accessed 2022].

[5] NXP Semiconductors, "DfT Reference Architecture for DfX," 2008. [Online].

Available: https://confluence.sw.nxp.com/spaces/viewspace.action?key=DfTfXRA.

[Accessed 2022].

[6] NXP Semiconductors, Tass Reference Manual 8.0, 2009.

[7] SIEMENS, "Tessent Solutions," 2022. [Online]. Available:

https://blogs.sw.siemens.com/tessent/. [Accessed 2022].

[8] SIEMENS, Tessent IJTAG User's Manual v2022.1, 2022.

[9] Texas Instruments, IEEE Std 1149.1 (JTAG) Testability, TI Semiconductor Group,

1997.

[10] N. Lainé, EOS - TSMC First C028 Secured NFC Controller, NXP Semiconductors,

2021.

[11] NXP Semiconductors, TS_CLN28ESF3_5X1Y2ZALRDL_NXP_IO Family —

MFIOSF. Preliminary Datasheet, 2020.

[12] V. Chalendard, DFT EOS TAM Specification, NXP Semiconductors, 2019.

[13] NXP Semiconductors, DFT Reference Flow 9.13 User Manual: DFT Validation Steps,

2016.

[14] SIEMENS, Tessent Shell User's Manual v2022.1: The procedures, 2022.

[15] SIEMENS, Tessent TestKompress User's Manual v2022.1, 2022.

[16] A. Ghosh, "Internal Scan Chain-Structured Techniques in DFT," 2022. [Online].

Available: https://technobyte.org/internal-scan-chain-structured-dft-techniques/.

[Accessed 2022].

72

[17] Mu-TEST, MuTool Training: The ATE Game Changer, 2019.

[18] E. Pal, "Understanding Shmoo Plots and Various Terminology of Testers," Design &

Reuse, 2022. [Online]. Available: https://www.design-

reuse.com/articles/47330/understanding-shmoo-plots-and-various-terminology-of-

testers.html. [Accessed 2022].

[19] NXP Semiconductors, DFT Reference Flow 9.13 User Manual: General Flow, 2016.

[20] SIEMENS, "Tessent TestKompress," 2022. [Online]. Available:

https://eda.sw.siemens.com/en-US/ic/tessent/test/testkompress/. [Accessed 2022].

73

Appendix

Additional Figures & Tables

Appendix Figure 1: TAP Control Output Interconnect Diagram [9].

74

Appendix Figure 2: Functional Diagram of MFIO1V8SF bidirectional cell [11].

Appendix Figure 3: Chip Design Flow vs. DFT Flow Tasks [19].

75

Appendix Figure 4: Timing adjustment on shift period for parallel patterns.

TCK period = 41 ns

 1 13.5 13.501 15 30 41

Force PI
Expect

Force SFFs

Release Forces

76

Acronyms

Table 4: Acronyms Table.

Acronym Description

ATE Automatic Test Equipment

ATF Application Test File

ATPG Automatic Test Pattern Generation

BIST Built In Self-Test

BSC Boundary Scan Chain

CCB Clock Control Block

DAM Data Access Mechanism

DFT Design for Test

DR Data Register

DR Data Register

DRC Design Rule Check

EDA Electronic Design Automation

EDT Embedded Deterministic Test (Mentor Graphics test compression logic)

FSM Finite State Machine

GPIO General-Purpose Input/Output

HFO High Frequency Oscillator

IC Integrated Circuit

ICL Instrument Connectivity Language

IP Intellectual Property

IR Instruction Register

LDO Low-Dropout Regulator (DC-DC Regulator)

LFO Low Frequency Oscillator

NFC Near Field Connection

OVP Overvoltage Protection Circuit

PCRM Power Control and Reset Module

PDL Procedural Description Language

PI Primary Input

77

PMUANA Power Management Unit (Analog)

PO Primary Output

RTL Register Transfer Level

SDM System DFT Mode

SFF Scan Flip-Flop

SI Secondary Input

SO Secondary Output

SPMI System Power Management Interface

STIL Standard Test Interface Language

TAM Test Access Mechanism

TAP Test Access Port

TASS Test Pattern Assembler (NXP pattern generation tool)

TCB Test Control Block

TCK Test Clock

TD Test Data File

TDI Test Data Input

TDL Test Description Language

TDO Test Data Output

TDR Test Data Register

TMER Test mode Entry Request

TMS Test Mode Select

TMUX Test Multiplexer

TPF Test Protocol File

TPR Test Point Register

TRST Test Reset

WGL Waveform Generation Language

