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Resumen

El trabajo aqúı presentado busca proporcionar un modelo integral del compor-

tamiento de nanopart́ıculas metálicas (mgNPs) de cualquier tamaño sumergidas

en medios de ganancia. Mediante el uso de la teoŕıa de Mie, ecuaciones ópticas

de Bloch y ecuaciones de Maxwell para condiciones de borde, se logró una car-

acterización de las polarizabilidades dinámicas y, posteriormente, de los campos

electromagnéticos del metal y del medio.

Los resultados obtenidos se validan comparando la polarizabilidad cuasiestática y

de Mie. Surgen fenómenos interesantes con los primeros dos coeficientes de Mie de

una mgNP de 10 nm con diferentes niveles de ganancia y ĺınea central de emisión

dada; en particular, modelado del campo y emisión de modos superiores impulsada

por ganancia. Además, se genera una representación gráfica del campo disperso,

proporcionando información sobre las caracteŕısticas espaciales del sistema.

Palabras clave: teoria de Mie, polarizabilidad dinamica, modelado de campo,

emission de modos superiores
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Abstract

The work presented here aims provide a comprehensive model of the behaviour

of metal nanoparticles (mgNP) of any size submerged in gain media. Through the

use of Mie theory, Optical Bloch equations, and Maxwell’s equations for boundary

conditions, a full characterization of the dynamic polarizabilities and subsequently

the electromagnetic fields for both the metal and host were found.

The obtained results are validated by comparison between the quasi-static and

Mie Polarizabilities. Interesting phenomena are observed when depicting the first

two Mie coefficients in a 10nm mgNP with different levels of gain and a designated

emission center-line; namely, field sculpting and higher mode gain-driven emission.

Moreover, a graphical representation is generated for the sculpted scattered field,

offering insight into the spatial characteristics of the system.

Keywords: Mie theory, dynamic polarizability, field sculpting, higher-mode

emission
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Chapter 1

Introduction

1.0.1 An overview of Plasmonics

The physical foundation of the LASER 1 and, as we will later discover, the

SPASER 2, lies in the ability to undergo stimulated emission of electromagnetic

radiation and to support a large number of vibrational modes. To achieve this,

the material used must possess the capability to oscillate collectively.

Plasmons are among the most collective and coherent material oscillations ob-

served in nature [1]. They arise in bulk materials when a plasma (a gas of charged

particles) responds collectively to electromagnetic fields. Therefore, delving into

the definition of the SPASER requires us to venture into the realm of Plasmonics.

1Light Amplification by Stimulated Emission of Radiation
2Surface Plasmon Amplification by Stimulated Emission of Radiation
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Plasmonics is an interdisciplinary field that explores the interaction between

light and conduction electrons in metal nanostructures. It combines principles

from Optics, Quantum Mechanics, Solid-state Physics, and Nanotechnology [2].

In recent years, Plasmonics has gained significant attention due to its applications

in various fields such as medicine [3], energy harvesting, and novel optical media.

Although there are still challenges to be addressed, plasmon related phenomena

are already on the fast track to becoming cornerstones of future technologies: this

is, to a large extent, due to the versatility of plasmonic circuits which show a

limited heat dispersion compared with their electronic counterpart while sharing

with the photonic integrated ones the capability to directly process light signals

[1]. Plasmonic circuits are thus able to integrate the data capacity, speed and

thermal efficiency of Photonics with the size optimization of Electronics.

As mentioned above, in fact, Surface Plasmons (SP) are collective plasma os-

cillations that occur at the interface between two materials, normally a metal and

a dielectric, when the incident electromagnetic wave couples with the metal’s free

electrons creating a coherent oscillation which produces a strong and strictly con-

fined electromagnetic field enhancement [4]. This way a SP allows to compress the

frequency and phase information of the impinging field to a region of space much

smaller than the exciting wavelength, functionally overcoming the size restriction

the diffraction limit imposes on photonic devices.

The Surface Plasmons we will discuss in this work are Localized Surface Plas-

mons (LSP) [5–7]. LSP’s are non propagating SP’s confined to a nanoscale metallic

structure or nanoparticle (NP). Nanoparticles with different geometries can exhibit
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different LSP modes, however the mechanism supporting the characteristic LSP’s

high field enhancement [8]at a specific frequency range, is always related to the in-

teraction between the frequency-dependent index of refraction of the chosen metal

and the one of the dielectric around it. Typically, the used NP is smaller than the

wavelength of the incident field so that its scattered field results in a very localized

and more intense copy of the impinging one.

1.0.2 Description of the problem

In the study we present here we have chosen a metal sphere as the LSP supporting

nanoparticle. Spherical particles have been the unsung heroes of the theoretical

understanding of LSP since its very beginning [9–14] and they are still helping

to unravel novel phenomena [15–21], given that their symmetry simplifies mod-

elling while withholding most of the relevant details. Moreover they are thermally

stable [22–28] and obtainable in large numbers via nanochemical synthesis [28–34].

Gain media such as laser dyes, semiconductor quantum dots [35], and rare-

earth are often used in laser systems, optical amplifiers, and other photonic devices

[36] because of their ability to amplify an input signal (usually an optical signal)

by transferring energy from an external source (such as an optical pump) into the

medium itself. This amplification is achieved through a process called stimulated

emission, in which an excited atom or molecule in the gain medium emits a photon

that is in phase with the incoming signal, resulting in an amplification of the

original signal [37–40].
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In the context of plasmonic nanoparticles, gain media can be used to amplify

the plasmonic response of the nanoparticle [41–50], and beyond a certain gain

threshold to allow the doped NP to support a LSP even without an external ex-

citing field. The resulting “emitted” plasmonic field arising from the interplay

between the emission center line of the used gain material and the resonant fre-

quency of the plasmonic NP can (under certain circumstances) be very narrow.

This phenomenon mimics, on numerous levels, a LASER and, for this reason was

dubbed SPASER in the article where its theoretical possibility was first men-

tioned [51]. Since then, this flamboyant new idea moved from a controversial

hyposthesis [35,52] to an experimental reality [3,53,54] and is now finding its way

to real life applications [55–57].

A widely used and accepted model for gain assisted metal nanoparticles consists

of describing the steady state polarizability of the nanoparticle using a Lorentzian

model for the gain permittivity and a Drude model for the permittivity of metal [48,

49, 58–62] The limits of this approach have already been evidenced in a previous

work [63], where it has been demonstrated how this steady state approach correctly

describes the system only when a quantity of gain below a threshold is involved.

When higher gain levels are introduced in the system, the structure begins to emit

and the steady state approach fails. In the same work, a more complex time-

dynamical approach able to handle the emissive regime was introduced for the

first time. However, that preliminary analysis was limited to the quasi-static limit

(where the size of the nanoparticle is much smaller than the exciting wavelength).

In this thesis, we present a theoretical description of the same system, this
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time transcending any particle size limit by means of a time-dynamic Mie theory

able to capture the most fascinating aspects of the problem. This new and original

approach allows us, in principle, to follow the evolution in time of any of the infinite

multipolar resonances in the scattered electromagnetic field of a mgNP. Moreover,

by including a technique derived from the Optical Bloch equations, this model

also allows us to describe the interplay between the chosen gain element and the

time evolution of each multipolar resonance. In what follows, we will validate the

results of this model by comparing them with the ones obtained with the quasi-

static approach presented in [63]. We will then provide a novel characterization

that was out of reach without the extension presented here and use it to identify

a relation between the steady state behavior of a mode with the possibility to

turn it into an electromagnetic emitter. Finally, as a working example of the wide

range of novel characterizations this method can allow, we will demonstrate how

it is possible (by choosing the right gain emission center-line) to inject energy in

a weak/higher mode, effectively “sculpting” the shape of the resulting scattered

field.



17

Chapter 2

Mathematical Modelling

2.1 The free electron model

By Coulomb’s and Newton’s second law, the interaction of the electrons inside the

metal with the electric field can be modelled as:

d2r

dt2
+ 2γ

dr

dt
=

e

me

Em (2.1)

r: displacement of the electron cloud with respect to equilibrium;

γ: collisions friction coefficient; e: charge of electron; me: mass of the electron.

The polarization of the metal attributed to the displacement of charges with num-

ber density ne is Πm = neer, so 2.1 becomes

(
d2

dt2
+ 2γ

d

dt

)
Πm =

nee
2

me

Em (2.2)
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Now we introduce optical fields to make use of the rotating wave approximation.

From this point onward, complex field envelopes will be represented by purple

notation. Πm = 1
2

[
Πme

−iωt +Πm
∗eiωt

]
, Em = 1

2

[
Eme

−iωt +Em
∗eiωt

]
. We notice

that because of linear independency between eiωt and e−iωt, linear derivatives lead

to the following relation for the complex envelope.

dΠm

dt
− ω2 + 2iγω

2(γ − iω)
Πm =

ε0ω
2
pl

2(γ − iω)
Em (2.3)

ω: frequency of the field;

ω2
pl =

nee
2

meε0
: plasma frequency;

ε0: vacuum permittivity.

2.2 The Gain assisted Medium

For a realistic model, we start with the non-linear formula for the polarization of

the material, assuming that every dipole moment µ can have a different orientation.

The real polarization.

Πh =
n

4π

∫
4π

[ρ12 + ρ∗12] µ dΩ (2.4)

n: volumetric density of atoms; µ: dipole moment;

ρ: defined as the density matrix of the two level system; ρ21 = ρ∗12.

ρ =

ρ11 ρ12

ρ21 ρ22

 (2.5)
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In this framework, the complex envelope of the polarization of the material is

defined as:

1

2
Πh =

n

4π

∫
4π

ρ∗12 µ dΩ (2.6)

where the real polarization can be obtained by

Πh =
1

2

[
Πh +Πh

∗
]

(2.7)

The optical electric field of the host can also be depicted as:

Eh =
1

2

[
Eh + Eh

∗
]

(2.8)

The two level system in a gain enriched material submerged in a thermal bath is

modeled using Optical Bloch equations 6:

d

dt
ρ∗12 +

(
iω21 +

1

τ2

)
ρ∗12 = −iN

ℏ
µ · Eh (2.9)

dN

dt
+
N − Ñ

τ1
=

2i

ℏ
(ρ12 − ρ∗12) µ · Eh (2.10)

ω21 =
E2 − E1

ℏ
: transition frequency between levels 1 and 2;

τ2 =
τ1

1 + τ1γc
: typical relaxation rate for the phase, also related to the emission

width ∆ throught τ2 =
2

∆
;

γc: related to the inner collisions coefficient;

τ1: the typical relaxation rate for the energy;

N: population inversion N = ρ22 − ρ11;

Ñ : value of N at equilibrium with the reservoir.



20

By integrating equation 2.9 over the solid angle, multiplying by n
4π
, and ap-

plying a dot product with µ.

d

dt

n

4π

∫
4π

ρ∗12 ·µ dΩ +
(
iω12+

1

τ2

) n
4π

∫
4π

ρ∗12 ·µ dΩ = −iN
ℏ

n

4π

∫
4π

(µ ·Eh) ·µ dΩ

(2.11)

Using dyadic algebra we can calculate

∫
4π

µ · (µ · Eh) dΩ =>

∫
4π

µi · (µj · νj) dΩ (2.12)

µ = µ (cosϕ sin θ, sinϕ sin θ, cos θ), whence the matrix µiµj is obtained

µiµj =


cos2 ϕ sin2 θ sin2 θ sinϕ cos θ sin θ cos θ sinϕ

sin θ sinϕ cosϕ sin2 θ sin2 ϕ sin θ sinϕ cosϕ

sin θ cosϕ sinϕ sin θ cos θ sinϕ cos2 θ

 (2.13)

terms outside of the diagonal become 0 when integrated over the solid angle. Then

∫
4π

µi · (µj · νj) dΩ =
4

3
πµ2δijνj → 4

3
πµ2v (2.14)

In this case for v = Eh.

∫
4π

µ · (µ · Eh) dΩ =
4

3
πµ2Eh (2.15)

Using this result in 2.11 the definition in 2.6 is recovered .

d

dt
Πh +

(
iω12 +

1

τ2

) n
4π

Πh = −2inN

3ℏ
µ2Eh (2.16)
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Furthermore, following the same steps, the left side of equation 2.10 becomes

n

4π

[ ∫
4π

dN

dt
dΩ +

∫
4π

N − Ñ

τ1
dΩ
]
= n

[dN
dt

+
N − Ñ

τ1

]
(2.17)

the right side

2i

ℏ

[ n
4π

∫
4π

ρ12 µ dΩ− n

4π

∫
4π

ρ∗12 µ dΩ
]
· Eh (2.18)

2i

ℏ
(Π∗ −Π)

2
· Eh =

i

ℏ
(Πh

∗ −Πh) · Eh (2.19)

and we obtain the system of equations for the time evolution of Πh

d

dt
Πh +

(
iω12 +

1

τ2

)
Πh = −2inN

3ℏ
µ2Eh (2.20)

dN

dt
+
N − Ñ

τ1
= − i

nℏ
(Πh −Πh

∗) · Eh (2.21)

To solve it, we use solutions of the form.

Πh =
1

2

[
Πhe

−iωt +Πh
∗eiωt

]
(2.22)

Eh =
1

2

[
Ehe

−iωt + Eh
∗eiωt

]
(2.23)

(abusing notation, the previous Πh becomes Πhe
−iωt).

After derivation 2.20 turns into

d

dt
Πh − i(ω − ω12)Πh +

1

τ2
Πh = −2inN

3ℏ
µ2Eh (2.24)
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Onto the second OB equation 2.21,

− i

nℏ
(Πhe

−iωt +Πh
∗eiωt) · 1

2
Ehe

−iωt + Eh
∗eiωt) = (2.25)

− i

nℏ
[ΠhEhe

−2iωt +ΠhE
∗
h −Π∗

hEh +ΠhEhe
−2iωt] (2.26)

by averaging over time, terms of the form e−2iωt become negligible. Equation 2.21

is then

dN

dt
+
N − Ñ

τ1
= − i

2nℏ
(ΠhE

∗
h −Π∗

hEh) (2.27)

2.2.1 Normalization

It is easier to deal with a normalized system of equation found with the following

normalized variables:

t̂ = ωpl t , ω̂ =
ω

ωpl

(2.28)

r̂ =
r

a
, n̂ = a3n (2.29)

Ê =

√
ε0

nℏωpl

E (2.30)

P̂ =
P√

ε0nℏωpl

(2.31)

n: Gain elements molecular density; ℏ: reduced Planck constant

Consequently

µ̂2 =
2µ2

3ε0nℏωpla6
(2.32)
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Introducing all of these variables in equations 2.24, 2.27, 2.3 leads to

d

dt
Πh −

[
i(ω − ω12)−

1

τ2

]
Πh = −in2µ2Eh (2.33)

dN

dt
+
N − Ñ

τ1
= − i

2
(ΠhE

∗
h −Π∗

hEh) (2.34)

2.3 Steady state permittivity

During linear amplification the left side of 2.34 is negligible and N converges

rapidly (N → Ñ).

The condition for finding the steady state is
dN

dt
= 0, and using the relation 1

τ2
= ∆

2

in 2.33 gives

Πh =
2n2µ2Ñ

2(ω − ω12) + i∆
Eh (2.35)

The polarization and the electric field are linked through:

Πh = χ(ω)Eh (2.36)

where χ(ω) is the complex normalized susceptibility.

χ(ω) =
2n2µ2Ñ

2(ω − ω12) + i∆
(2.37)

susceptibility in the transition frequency χ(ω21) is calculated

χ(ω21) = −i2n
2µ2Ñ

∆
(2.38)
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And the positive parameter accounting for the quantity of gain in the system G is

found as χ(ω21) = −iG.

G = n2µ2Ñτ2 (2.39)

susceptibility becomes

χ(ω) =
G∆

2(ω − ω12) + i∆
(2.40)

Moving on, the total polarization in the metal has to take into account the

polarization of the ionic lattice.

Pm = χbEm +Πm (2.41)

and the polarization of the host is obtained by averaging the dipole moments of

the gain elements assuming that they are oriented randomly with respect to Eh,

as was derived in A.2

Ph = ε0χbEh +
n

4π

∫
4π

(ρ12 + ρ21)µ dΩ (2.42)

using definition 2.6 in 2.42 gives

Ph = ε0χbEh + ℜ[Πh] (2.43)

Subsequently, the rotating wave approximation can be used to find the time evo-

lution of the complex envelopes.

Ph = ε0χbEh +Πh (2.44)
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Ultimately, the full system of equations that describe the time evolution of

both the polarizability and the electromagnetic fields is:

d

dt
Πh −

[
i(ω − ω12)−

1

τ2

]
Πh = −iG

τ2

N

Ñ
Eh (2.45)

dN

dt
+
N − Ñ

τ1
= − i

2
(ΠhEh

∗ −Πh
∗Eh) (2.46)

dΠm

dt
− ω2 + 2iγω

2(γ − iω)
Πm =

1

2(γ − iω)
Em (2.47)

Ph = ε0χbEh +Πh(t) (2.48)

Pm = χbEm +Πm(t) (2.49)

ε0: vacuum permittivity;

χ∞: susceptibility due to the metal ions;

χb: susceptibility of the dielectric in which the gain elements are dissolved;

Eh, Em: gain medium and metal electric fields correspondingly.

Polarization can then be divided in a constant term and a dynamic polarization

that will be fully modelled in the next section.



26

Chapter 3

Mie Theory

The model we developed aims to predict the behaviour of particles of any size, not

only in the quasi-static limit. For this end, we use vector spherical harmonics to

project the electric fields as it is done in Mie theory [64].

The vector spherical harmonics are complex valued functions expressed in spherical

coordinates, and can be found as an extension of scalar spherical harmonics, as

follows.

Menm = ∇× [Rψemn] (3.1)

Monm = ∇× [Rψomn] (3.2)

Nenm =
∇×Memn

k
(3.3)

Nonm =
∇×Momn

k
(3.4)
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ψ(R) is a generating function that obeys the scalar Helmholz equation.

∇2ψ(R)− k2ψ(R) = 0 (3.5)

Two linearly independent solutions, odd and even, can be found in this manner

for 3.5. Namely

ψemn(R) = cos(mΦ)Pn
m(cos θ)zn(kR) (3.6)

ψomn(R) = sin(mΦ)Pn
m(cos θ)zn(kR) (3.7)

zn: Bessel functions corresponding to the radial coordinate kR;

Pn
m(cos θ): associated Legendre polynomials.

Since ψemn and ψomn produce a complete base, any solution to the Helmholz equa-

tion can be written as a linear combination of them.

After lengthy algebra the spherical harmonics can be written as:

Menm = − sinϕπn(θ)zn(ρ) θ̂(θ, ϕ)− cosϕτn(θ)zn(ρ) ϕ̂(ϕ) (3.8)

Monm = cosϕπn(θ)zn(ρ) θ̂(θ, ϕ)− sinϕτn(θ)zn(ρ) ϕ̂(ϕ) (3.9)

Nonm = n(n+ 1) sinϕsinθπn(θ)
zn(ρ)

ρ
R̂(θ, ϕ)

+ sinϕτn(θ)
[ρzn(ρ)]

′

ρ
θ̂(θ, ϕ) + cosϕπn(θ)

[ρzn(ρ)]
′

ρ
ϕ̂(ϕ) (3.10)



28

Nenm = n(n+ 1) cosϕ sin θπn(θ)
zn(ρ)

ρ
R̂(θ, ϕ)

+ cosϕτn(θ)
[ρzn(ρ)]

′

ρ
θ̂(θ, ϕ) − sinϕπn(θ)

[ρzn(ρ)]
′

ρ
ϕ̂(ϕ) (3.11)

πn, τn: angular dependency functions:

πn(θ) =
Pn

1(cos θ)

sin θ
,

τn(θ) =
dPn

1(cos θ)

dθ
;

ρ = kR: radial variable; k: related to the relative refraction index between the

media; R: modulus of distance from the origin.

Ultimately, we can express any field that obeys the Helmholtz equation with

its vector spherical harmonics representation.

Eα =
∞∑
n,m

[
BemnMemn +BomnMomn +AemnNemn +AomnNomn

]
(3.12)

where each of the coefficients Aµ,ν,λ and Bµ,ν,λ are calculated by projecting the

given field over the spherical harmonics and using the orthogonality of the associ-

ated Legendre polynomials.

With these mathematical tools and after extensive algebra, the spherical har-

monics representation of a plane wave travelling in the ẑ direction Ei = E0e
ikz î is

found to be [64]

Einc(r, t) =
∞∑
n=1

En

[
M

(1)
o1n(r)− iN

(1)
e1n(r)

]
(3.13)
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Each mode n characterizes a different mode in the multipole expansion. Taking

into account that divergences at the origin must be avoided, the incident Ein and

scattered fields Esca.

Ein(r, t) =
∞∑
n=1

En

[
cnM

(1)
o1n(r)− idnN

(1)
e1n(r)

]
(3.14)

Esca(r, t) =
∞∑
n=1

En

[
ianN

(3)
e1n(r)− bnM

(3)
o1n(r)

]
(3.15)

En = in
2n+ 1

n(n+ 1)
E0

E0: amplitude of the incident field;

superindex (1): zn(ρ) = jn(ρ) to avoid a singularity at the origin;

superindex (3): zn(ρ) = h
(1)
n (ρ).

By the superposition principle the electric field of the gain medium is the sum

of Einc and Esca, and the electric field inside the metal is simply Ein. We also

define ãn = E0an, b̃n = E0bn, c̃n = E0cn, and d̃n = E0dn.

Em =
∞∑
n=1

in
2n+ 1

n(n+ 1)

[
c̃nM

(1)
o1n(r)− id̃nN

(1)
e1n(r)

]
(3.16)

Eh =
∞∑
n=1

in
2n+ 1

n(n+ 1)

{
E0

[
M

(1)
o1n(r)− iN

(1)
e1n(r)

]
+ iãnN

(3)
e1n(r)− b̃nM

(3)
o1n(r)

}
(3.17)

We assume a similar shape for the dynamical part of the polarizations

Πm =
∞∑
n=1

in
2n+ 1

n(n+ 1)

[
κnM

(1)
o1n(r)− iδnN

(1)
e1n(r)

]
(3.18)



30

Πh =
∞∑
n=1

in
2n+ 1

n(n+ 1)

[
ζnM

(1)
o1n(r)−iηnN

(1)
e1n(r)+iαnN

(3)
e1n(r)−βnM

(3)
o1n(r)

]
(3.19)

By using Maxwell’s third equation for oscillating fields ∇ × Eα = iωµEα the

magnetic fields of the metal and host can be written as:

Hm = − k1
ωµ1

∞∑
n=1

in
2n+ 1

n(n+ 1)

[
d̃nM

(1)
e1n(r) + ic̃nN

(1)
o1n(r)

]
(3.20)

Hh = − k

ωµ

∞∑
n=1

in
2n+ 1

n(n+ 1)

{
E0

[
M

(1)
e1n(r)+ iN

(1)
o1n(r)

]
− ib̃nN

(3)
o1n(r)− ãnM

(3)
e1n(r)

}
(3.21)

At last, plugging in the Mie expansion of the fields into the system of equations

2.3 - 2.33, one obtains a new system of equations for the time evolution of the

coefficients.

For easier handling of the equations we define constants.

G̃ = −iGN
τ2Ñ

; ΩH =
[
i(ω − ω12)−

1

τ2

]
; (3.22)

Ωp =
ω2 + 2iγω

2(γ − iω)
; Γp =

1

2(γ − iω)
(3.23)

d

dt
αn − Ωhαn = G̃ãn (3.24)

d

dt
βn − Ωhβn = G̃b̃n (3.25)
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d

dt
κn − Ωpκn = Γpcn (3.26)

d

dt
δn − Ωpδn = Γpdn (3.27)

d

dt
ηn − Ωhηn = G̃E0 (3.28)

d

dt
ζn − Ωhζn = G̃E0 (3.29)

Time evolution of the coefficients determines the evolution of the electric fields.

3.1 Boundary conditions

In order to preserve tangential continuity on the surface of the nanosphere when

r = a, these conditions must hold. ΠT is the total polarization.

(Eh − Em)× R̂(θ, ϕ) = 0 (3.30)

(Hm −Hh) · ϕ̂(ϕ) =
dΠT

dt
(θ̂(θ, ϕ)× R̂(θ, ϕ)) (3.31)

(Hm −Hh) · θ̂(θ, ϕ) =
dΠT

dt
(ϕ̂(ϕ)× R̂(θ, ϕ)) (3.32)
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3.1.1 Tangential continuity Electric Field

We note that the parameter ρ = kR on the surface of the metal becomes ρ =

k1a = mx and in the gain medium ρ = ka = x.

Condition 3.30 becomes:

Eθ
m(aR̂(θ, ϕ))

∣∣∣
ρ=mx

= Eθ
h(aR̂(θ, ϕ))

∣∣∣
ρ=x

(3.33)

Eϕ
m(aR̂(θ, ϕ))

∣∣∣
ρ=mx

= Eϕ
h(aR̂(θ, ϕ))

∣∣∣
ρ=x

(3.34)

From 3.33, plugging in 3.16, 3.17.

[
c̃nM

(1)
o1n − id̃nN

(1)
e1n

]∣∣∣θ
ρ=mx

=
[
E0M

(1)
o1n − iE0N

(1)
e1n + iãnN

(3)
e1n − id̃nM

(3)
o1n

]∣∣∣θ
ρ=x

(3.35)

expanding theta components of VSH defined in 3.8 - 3.11 we get.

E0 cosϕπn(θ)jn(x)−iE0 cosϕτn(θ)
[xjn(x)]

′

x
+iãn cosϕτn(θ)

[xh
(1)
n (x)]′

x
−b̃n cosϕπn(θ)h(1)n (x)

= c̃n cosϕπn(θ)jn(mx)− id̃n cosϕτn(θ)
[mxjn(mx)]

′

mx
(3.36)

which can be reorganized as:

πn(θ)
[
c̃njn(mx)− E0jn(x) + b̃nh

(1)
n (x)

]
=

iτn(θ)

{
d̃n

[mxjn(mx)]
′

mx
− E0

[xjn(x)]
′

x
+ ãn

[xh
(1)
n (x)]′

x

}
(3.37)
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Repeating the same process on condition 3.34 yields:

− c̃n sinϕτn(θ)jn(mx) + id̃n sinϕπn(θ)
[mxjn(mx)]

′

mx
=

− E0 sinϕτn(θ)jn(x) + iE0 sinϕπn(θ)
[xjn(x)]

′

x

− iãn sinϕπ(θ)
[xh

(1)
n (x)]′

x
+ b̃n sinϕτn(θ)h

(1)
n (x) (3.38)

which can be reorganized as:

τn(θ)
[
c̃njn(mx)− E0jn(x) + b̃nh

(1)
n (x)

]
=

iπn(θ)

{
d̃n

[mxjn(mx)]
′

mx
− E0

[xjn(x)]
′

x
+ ãn

[xh
(1)
n (x)]′

x

}
(3.39)

for a more straightforward handling of the equations, we define

⊡ =
[
c̃njn(mx)− E0jn(x) + b̃nh

(1)
n (x)

]
(3.40)

⊠ =

{
d̃n

[mxjn(mx)]
′

mx
− E0

[xjn(x)]
′

x
+ ãn

[xh
(1)
n (x)]′

x

}
(3.41)

summing 3.37 with 3.39 we get

(
πn(θ) + τn(θ)

)
⊡ = i

(
πn(θ) + τn(θ)

)
⊠ (3.42)

subtracting 3.37 from 3.39 we get

(
πn(θ)− τn(θ)

)
⊡ = −i

(
πn(θ)− τn(θ)

)
⊠ (3.43)
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Then necessarily ⊠ and ⊡ must independently be zero. Besides, since πn+ τn and

πn− τn are orthogonal, this is verified independently for every n. We arrive at two

more conditions.

jn(mx)c̃n + h(1)n (x)b̃n = jn(x)E0 (3.44)

[mxjn(mx)]
′d̃n +m[xh(1)n (x)]′ãn = m[xjn(x)]

′E0 (3.45)

3.1.2 Tangential continuity Magnetic Field

Conditions 3.31 , 3.32 lead to:

Hθ
m(aR̂(θ, ϕ))

∣∣∣
ρ=mx

−Hθ
h(aR̂(θ, ϕ))

∣∣∣
ρ=x

= − d

dt
Hϕ

m(aR̂(θ, ϕ))
∣∣∣
ρ=mx

− d

dt
Hϕ

h(aR̂(θ, ϕ))
∣∣∣
ρ=x

(3.46)

Hϕ
m(aR̂(θ, ϕ))

∣∣∣
ρ=mx

−Hϕ
h(aR̂(θ, ϕ))

∣∣∣
ρ=x

=
d

dt
Hθ

m(aR̂(θ, ϕ))
∣∣∣
ρ=mx

+
d

dt
Hθ

h(aR̂(θ, ϕ))
∣∣∣
ρ=x

(3.47)

employing 3.46.

− k1
ωµ1

[
d̃nM

(1)
e1n+ic̃nN

(1)
o1n

]∣∣∣θ
ρ=mx

+
k

ωµ

{
E0[M

(1)
e1n+iN

(1)
o1n]+ib̃nM

(3)
e1n+ãnN

(3)
o1n

}∣∣∣θ
ρ=x

= − d

dt

[
κnM

(1)
o1n − iδnN

(1)
e1n

]∣∣∣ϕ
ρ=mx

− d

dt

[
ζnM

(1)
o1n − iηnN

(1)
e1n + iαnN

(3)
e1n − βnM

(3)
o1n

]∣∣∣ϕ
ρ=x

(3.48)

In a similar manner to last section.
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πn(θ)

[
− jn(x)E0 +mjn(mx)d̃n + h(1)n (x)ãn

+
iω

k

[mxjn(mx)]
′

mx

dδn
dt

+
iω

k

[xh
(1)
n (x)]′

x

dαn

dt
− iω

k

[xjn(x)]
′

x

dηn
dt

]
=

iτn(θ)

{
[xjn(x)]

′

x
E0 −m

[mxjn(mx)]
′

mx
c̃n −

[xh
(1)
n (x)]′

x
b̃n

+
iω

k
jn(x)

dζn
dt

+
iω

k
jn(mx)

dκn
dt

− iω

k
hn(x)

dβn
dt

}
(3.49)

likewise, using 3.47

− k1
ωµ1

[
d̃nM

(1)
e1n+ic̃nN

(1)
o1n

]∣∣∣ϕ
ρ=mx

+
k

ωµ

{
E0[M

(1)
e1n+iN

(1)
o1n]+ib̃nM

(3)
e1n+ãnN

(3)
o1n

}∣∣∣ϕ
ρ=x

=
d

dt

[
κnM

(1)
o1n − iδnN

(1)
e1n

]∣∣∣θ
ρ=mx

+
d

dt

[
ζnM

(1)
o1n − iηnN

(1)
e1n + iαnN

(3)
e1n − βnM

(3)
o1n

]∣∣∣θ
ρ=x

(3.50)

expanding the expression in VSH:

iπn(θ)

[
− jn(x)E0 +mjn(mx)d̃n + h(1)n (x)ãn

+
iω

k

[mxjn(mx)]
′

mx

dδn
dt

+
iω

k

[xh
(1)
n (x)]′

x

dαn

dt
− iω

k

[xjn(x)]
′

x

dηn
dt

]
=

τn(θ)

{
[xjn(x)]

′

x
E0 −m

[mxjn(mx)]
′

mx
c̃n −

[xh
(1)
n (x)]′

x
b̃n

+
iω

k
jn(x)

dζn
dt

+
iω

k
jn(mx)

dκn
dt

− iω

k
hn(x)

dβn
dt

}
(3.51)
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which leads to the final two conditions.

iω

k

[mxjn(mx)]
′

mx

dδn
dt

+
iω

k

[xh
(1)
n (x)]′

x

dαn

dt
− iω

k

[xjn(x)]
′

x

dηn
dt

=

jn(x)E0 −mjn(mx)d̃n − h(1)n (x)ãn (3.52)

m
[mxjn(mx)]

′

mx
c̃n +

[xh
(1)
n (x)]′

x
b̃n −

[xjn(x)]
′

x
E0

=
iω

k
jn(x)

dζn
dt

+
iω

k
jn(mx)

dκn
dt

− iω

k
hn(x)

dβn
dt

(3.53)

3.2 Time evolution of coefficients

The four conditions that relate the coefficients of the fields are.

jn(mx)c̃n + h(1)n (x)b̃n = jn(x)E0 (3.54)

[mxjn(mx)]
′d̃n +m[xh(1)n (x)]′ãn = m[xjn(x)]

′E0 (3.55)

iω

k

[mxjn(mx)]
′

mx

dδn
dt

+
iω

k

[xh
(1)
n (x)]′

x

dαn

dt
− iω

k

[xjn(x)]
′

x

dηn
dt

=

jn(x)E0 −mjn(mx)d̃n − h(1)n (x)ãn (3.56)

m
[mxjn(mx)]

′

mx
c̃n +

[xh
(1)
n (x)]′

x
b̃n −

[xjn(x)]
′

x
E0

=
iω

k
jn(x)

dζn
dt

+
iω

k
jn(mx)

dκn
dt

− iω

k
hn(x)

dβn
dt

(3.57)
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We identify the time derivatives of the coefficients in conditions 3.56 and 3.57.

Together with 3.24 - 3.27 it is a coupled system of equations for the time evolution

of the coefficients that can be most effectively represented by matrices. We define

the coefficients vector

q =
{
αn, βn, κn, δn, ηn, ζn,E0

}
(3.58)

The system is solved by considering that by choosing the right coefficients pij, ãn

can be found as a function of d̃n, b̃n as a function of c̃n, and vice-versa.

ãn = p00q0 + p01q1 + p02q2 + p03q3 + p04q4 + p05q5 + p06q6 (3.59)

b̃n = p10q0 + p11q1 + p12q2 + p13q3 + p14q4 + p15q5 + p16q6 (3.60)

c̃n = p20q0 + p21q1 + p22q2 + p23q3 + p24q4 + p25q5 + p26q6 (3.61)

d̃n = p30q0 + p31q1 + p32q2 + p33q3 + p34q4 + p35q5 + p36q6 (3.62)

Finally, plugging the relations onto system of equations 3.24 - 3.27 gives.

d

dt
q0 = (Ωh+G̃p00)q0+G̃p01q1+G̃p02q2+G̃p03q3+G̃p04q4+G̃p05q5+G̃p06q6 (3.63)

d

dt
q1 = G̃p10q0+(Ωh+G̃p11)q1+G̃p12q2+G̃p13q3+G̃p14q4+G̃p15q5+G̃p16q6 (3.64)

d

dt
q2 = Γpp20q0 +Γpp21q1 + (Ωp +Γpp22)q2 +Γpp23q3 +Γpp24q4 +Γpp25q5 +Γpp26q6

(3.65)

d

dt
q3 = Γpp30q0 +Γpp31q1 +Γpp32q2 + (Ωp +Γpp33)q3 +Γpp34q4 +Γpp35q5 +Γpp36q6

(3.66)
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d

dt
q4 = Ωhq4 + G̃q6 (3.67)

d

dt
q5 = Ωhq5 + G̃q6 (3.68)

Which becomes.

p =



(Ωh + G̃p00) G̃p01 G̃p02 G̃p03 G̃p04 G̃p05

G̃p10 (Ωh + G̃p11) G̃p12 G̃p13 G̃p14 G̃p15

Γpp20 Γpp21 (Ωp + Γpp22) Γpp23 Γpp24 Γpp25

Γpp30 Γpp31 Γpp32 (Ωp + Γpp33) Γpp34 Γpp35

0 0 0 0 Ωh 0

0 0 0 0 0 Ωh


(3.69)

and the vector for the inhomogenous solution, taking into account that q6 = E0.

B = E0

{
G̃p06, G̃p16, Γpp26, Γpp36, G̃, G̃

}
(3.70)

It is noticeable that following our definition of ãn, b̃n, c̃n, d̃n, dependence on the

incident field E0 is explicit only in the inhomogenous solution of the system.

At long last, the solution to the time evolution of the coefficients can numerically

be found in the form:

d

dt
q = p · q+B (3.71)
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Chapter 4

Results

4.1 Polarizability

In this section the results of the model are displayed and compared with the ones

obtained in the quasi-static regime featured in [63].

Quasi-static-polarizability is modelled as follows.

αQS(ω) = 4πa3ε2
ε1(ω)− ε2
ε1(ω) + 2ε2

(4.1)

a: radius of the mgNP; ε1: permittivity of the metal; ε2: Drude permittivity of

the gain medium, obtained by Lorentzian model [?].

Mie polarizability is obtained with.

αMie(ω) = 6πi
ã1
k3

(4.2)
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ã1: first scattering Mie coefficient obtained with the model, corresponding to dipo-

lar mode; k =
2πn2

λ
, n2: refractive index of the host, λ: wavelength corresponding

to the exciting field frequency.

The following figure shows the evolution of these polarizabilities in a silver

nanoparticle with radius 1 nm by adding different levels of gain to the system: no

gain, some gain, and enough gain to drive the system into emission (G > Gth).

The gain medium’s central frequency was chosen to match ωpl. The left column

depicts time dependency for one chosen frequency, while the right column shows

the corresponding steady state spectrum.

With no gain added, 4.1 (a-b) shows the perfect correspondence between quasi-

static and Mie polarizability. Both polarizabilities converge to the steady state

value showed in 4.1 (b).

In 4.1 (c-d) the pump was turned on by adding some gain below the emission

threshold G = 0.5Gth to the system. It exhibits the same correspondence in the

time domain, and also when it reaches the steady state.

In 4.1 (e-f) gain was added to drive the system into emission, G = 1.1Gth. Cor-

respondence with 4.1 (f) can not be found, since the system will no longer reach

a steady state. However, 4.1 (e) still exhibits time evolution correspondence be-

tween both polarizabilities calculated frequency by frequency. As was first noted

by [63], [65], a negative imaginary part of the steady state polarizability aligns

with an emissive regime, which manifests in 4.1 (e)
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Figure 4.1: Real and imaginary part of the Polarizability of a silver nanoparticle of radius 1 nm in water enriched
with a gain medium with emission central frequency ℏω21 = 3.23 eV and emission width ∆ = 0.15 eV. (a,b): No
gain is added to the system. (c,d): Some gain is included, but the system remains sub-emissive (G = 0.5 ·Gth).
(e,f): Enough gain is included to drive the system to the emissive regime (G = 1.1·Gth). (a,c,e): Time dependence
of the polarizability for a single frequency; (b,d,f): corresponding steady state spectrum.
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In 4.2 polarizabilities are modelled for a particle of 10 nm radius..

It can clearly be observed how the quasi-static model can no longer accurately

match the Mie polarizability in either the time evolution frequency by frequency,

or the corresponding steady state spectrum. It can be seen though, that the Mie

polarizability does converge to the same value in the steady state 4.2 (b,d) with

no gain, and with some gain added to the system.

Figure 4.2: Real and imaginary part of the Polarizability of a silver nanoparticle of radius 10 nm in water enriched
with a gain medium with emission central frequency ℏω21 = 3.23 eV and emission width ∆ = 0.15 eV. (a,b): No
gain is added to the system. (c,d): Some gain is included, but the system remains sub-emissive (G = 0.5 ·Gth).
(a,c): Time dependence of the polarizability for a single frequency; (b,d): corresponding steady state spectrum.
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4.2 Mie coefficients

As discussed previously in -3, each coefficient of the Mie expansion an corresponds

to a resonance mode. Considering the new model reaches beyond the quasi-static

limit, modes higher than the dipolar one can be detected.

In 4.3 the time evolution of the dipolar and quadrupolar coefficients a1, a2 of the

scattered field, and corresponding steady state are calculated for a mgNP of 10

nm radius when no gain is added to the system.

One can see that though the quasi-static approach no longer accurately describes

the system, the dipolar mode is still dominant, as the amplitude of resonance of

the quadrupolar mode is almost two hundred times smaller. Both reach a steady

state.

Figure 4.3: Real and imaginary parts of the first two coefficients of the Mie expansion of the scattered field for
a silver nanoparticle of radius 10 nm in water, when no gain is included in the system. (a,b): coefficient a1
dipolar mode; (c,d): coefficient a2 quadrupolar mode; (a,c): time dependencies for a single frequency; (b,d):
corresponding steady state spectrum.
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4.3 Higher mode enhancing

Up next, some gain below the emission threshold was added to the system. The

central emission frequency ω21 was chosen to match the resonance frequency of

each mode. In 4.4 (a-d) the emission center line matches that of the dipolar

mode, while in 4.4 (e-h) it matches the quadrupolar mode.

It can be observed comparing 4.3 (b) with 4.4(b), and 4.3 (d) with 4.4 (d)

that by matching the emission central frequency to the dipolar resonance, there

is a threefold enhance in the dipolar mode, while the quadrupolar mode remains

virtually unchanged.

By contrast, when the emission center line matches the quadrupolar mode, com-

paring 4.3 (b) with 4.4 (f), and 4.3 (d) with 4.4 (h), almost a tenfold increase can

be observed for the quadrupolar mode a2, while the dipolar one is enhanced by very

little. This result illustrates how by choosing the right center-line, higher-order

modes can be significantly amplified until they become non-negligible. Another

notable observation is the heightened sensitivity of the quadrupolar mode com-

pared to the dipolar one when increasing gain.

On another note, the concept of gain-driven mode-cascade discussed in [63] per-

tains to the occurrence of a physical phenomenon known as spatial hole burning

SHB when gain levels beyond Gth are injected into the system. When gain is fully

consumed in the vicinity of the nanosphere, a cascade of modes ensues (higher-

order resonances are activated). This phenomenon can occur even for very small

particles and can no longer be accurately modelled by the quasi-static approxima-

tion. While we also discuss mode enhancement in this section, these are certainly

two different phenomena that merit individual analysis.
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Figure 4.4: Real and imaginary part of the first two coefficients of the Mie expansion of the scattered field for a
silver nanoparticle of radius 10 nm in water enriched with a gain medium below the emission threshold G = 0.03
with emission bandwidth ∆ = 0.15 eV. (a–d): the emission central frequency ℏω21 = 3.19 eV was chosen to
correspond to the resonance frequency of the dipolar mode. (e–h): the emission central frequency ℏω21 = 3.4 eV
was chosen to correspond to the resonance frequency of the quadrupolar mode. (a,b,e,f): coefficient a1 dipolar
mode; (c,d,g,h): coefficient a2 quadrupolar mode; (a,c,e,g): time dependencies for a single frequency; (b,d,f,h):
corresponding steady state spectrum.
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4.4 Higher mode gain-driven emission

Lastly, as was mentioned before in 4.1, an emissive regime emerges when enough

gain is be added to the system to make the imaginary part of the polarizability

negative. In the same manner, the emissive regime can be found for any of the

coefficients and in turn for any of the resonance modes by adding a quantity of

gain G > Gth to the medium.

In 4.5 the quantity of gain chosen is G = 0.4, while for the quadrupolar mode the

emission threshold was estimated to be Gth = 0.03495. It is clearly observed in

4.5 (a) that the coefficient a2 oscillates widely and can no longer reach a steady

state, proving it has entered the emissive regime.

Figure 4.5: Real and imaginary part quadrupolar coefficient of the Mie expansion of the scattered field for a
silver nanoparticle of radius 10 nm in water enriched with a gain medium above the emission threshold G = 0.04
with emission bandwidth ∆ = 0.15 eV. Here, the emission central frequency ℏω21 = 3.4 eV was chosen to
correspond to the resonance frequency of the quadrupolar mode. (a): Time dependencies for a single frequency;
(b): corresponding steady state spectrum.
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4.5 Gain driven field sculpting

As a result of the full description of the time evolution of the fields reached in 3,

a visual representation of the scattered field through a mgNP can be produced.

Each Mie coefficient is combined with the vector spherical harmonics to produce

the images presented in this section. In 4.7 we have a spherical NP of radius 10

nm with no gain added to the system. A dipolar mode can clearly be observed

even though the emission center-line corresponds to the quadrupole.

Figure 4.6: (a) spectra for the real and imaginary part of the first two coefficients of the Mie expansion of the
scattered field for a silver nanoparticle of radius 10 nm in water when no gain is added to the system, the inset
in the upper left corner is a zoom around the resonance frequency of the second coefficient; (b) streamlines of the
scattered field calculated for the quadrupolar central frequency ℏω = 3.4 eV, the colorbar range here is the same
as fig. 4.8(b).

In the next figure it is made more evident how by choosing the quadrupole

emission center-line, incrementing the level of gain quantity in the system G leads

to enhancement of the quadrupolar coefficient. Gs = 0.03334 is calculated by the

bisection method.

In the following figure, the enhanced effect of incrementing the gain level becomes

more evident when choosing the quadrupole emission center-line.
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Figure 4.7: Behavior of the square modulus of the first two coefficients of the Mie expansion for the scattered field
at the quadrupolar mode frequency; calculated for a silver nanoparticle of radius 10 nm in water as a function of
the gain quantity G present in the system. Here the emission central frequency was chosen to correspond to the
resonance frequency of the quadrupolar mode.

Consequently, after enhancing the quadrupolar mode with a sub-emissive quan-

tity of gain around its resonance frequency coefficient a2 is greater than a1. There-

fore, the scattered field has a dominantly quadrupolar shape.

Figure 4.8: (a) spectra for the real and imaginary part of the first two coefficients of the Mie expansion of the
scattered field for a silver nanoparticle of radius 10 nm in water enriched with a gain medium below the emission
threshold G = 0.03 with emission bandwidth ∆ = 0.15 eV. Here the emission central frequency ℏω21 = 3.4 eV was
chosen to correspond to the resonance frequency of the quadrupolar mode, the inset in the upper left corner is a
zoom around the resonance frequency of the second coefficient; (b): streamlines of the scattered field calculated
for the quadrupole central frequency, the colorbar range here is the same as fig. 4.6(b).



49

Chapter 5

Discussion

We initiate the discussion by clarifying that the reason the present model can not

yet characterize the emissive regime concerns the time and space dependency of

population inversion N that appears after SHB kicks in. Nevertheless, reporting

on the evolution of the coefficients in the emissive regime when G > Gth was not

necessary to validate the model so it was not presented in the previous chapter.

As was shown in 4.1, results obtained with the Mie model were validated by

selecting a sufficiently small particle that should satisfy both the quasi-static and

Mie approaches, and perfect correspondence in both frequency-by-frequency time

evolution and steady state spectra were found.

Through the implementation of the model presented in this research, we are able

to describe nanoparticles of realistic sizes. Studying bigger particles unveils more

interesting phenomena whose characterization was beyond reach with quasi-static

approach.
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We also discuss how an emission regime Gth can be identified for any of the

modes by the same principle used with the polarizability 4.4. Sufficient gain must

be added to the system until the imaginary part of the chosen coefficient turns

negative. Emission regimes for any mode can now be predicted.

Previously, higher modes could only be activated by the gain-driven mode-

cascade, and while this phenomena could happen in very small particles, there

was no control over which modes activate. Now, as was revealed in 4.3 by elect-

ing an appropriate center-line for the gain media frequency corresponding to the

mode’s resonance Gth, we can essentially enhance any mode, effectively sculpting

the scattered field with sub-emissive levels of gain.

Lastly, given that the time evolution of the coefficients for the expansion of

the scattered field is determined, visual representations of the resulting scattered

fields can be produced 4.5.

Research is still needed to fully characterize metallic LSP’s, specially concern-

ing emissive regimes where population inversion does not remain constant in space

and time. Moreover, as disclosed in 4.3, a full explanation regarding the sen-

sitivity that higher modes exhibit to gain levels of the system is also necessary,

as currently we can only hypothesize why the dipolar mode presents a threefold

enhancement while the quadrupolar one a tenfold. Future work ought to eluci-

date this phenomena, and go in the direction of fully describing the mode cascade,

potentially encompassing particles of any size.
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Chapter 6

Conclusions

In this study, we have introduced a newfound model that enables the character-

ization of nanoparticles of any size, overcoming the constraints inherent to the

quasi-static regime, and providing a more realistic approach. As discussed in ear-

lier sections, there is still ample opportunity for improvement of the method, as

well as for further exploration of the gain-driven-mode-cascade.

Nonetheless, our present research reinforces the necessity of integrating Mie theory

to advance in the direction of a full description of metal LSP’s. A valuable new

insight is that by choosing the proper emission center-line, any mode can be en-

hanced by the gain medium, even in particles exclusively believed to sustain dipolar

modes. This newfound phenomenon opens up the opportunity to customize and

sculpt the electromagnetic field scattered by a particle without requiring emissive

levels of gain. In addition, the tools developed in this study have enabled us to

present a dynamic and visual representation of the evolution of the field.
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Appendix A

Optical Bloch equations

Our model for the time dynamic evolution of the polarization in the gain medium

makes use of the Optical Bloch equations describing the interaction between an

atom modeled as a two level system with a classical electric field. For the sake of

completeness, we will present in the following a derivation of these equations.

The Hamiltonian of a two level system where the quantum leap between the

two levels is ∆E = ℏω21 can be modeled as:

ĤA = −ℏ
2
ω21σ̂z (A.1)

where σ̂z is the third Pauli matrix. This is simply because in the Pauli matrices
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notation the only two possible statuses |1⟩ and |1⟩ are represented by the vectors:

|1⟩ = (1, 0), (A.2)

|2⟩ = (0, 1); (A.3)

so, using the definition presented in A.1 we get:

E1 = ĤA|1⟩ = −ℏ
2
ω21

1 0

0 −1

 (1, 0) = −ℏ
2
ω21(1, 0) = −ℏ

2
ω21|1⟩, (A.4)

E2 = ĤA|2⟩ = −ℏ
2
ω21

1 0

0 −1

 (0, 1) =
ℏ
2
ω21(0, 1) =

ℏ
2
ω21|2⟩; (A.5)

providing the exact ∆E required by our model.

To obtain the Hamiltonian of interaction between the atom and the electric

field we now have to consider the classical coupling term between a dipole and an

electric field:

ĤI = − ˆ̄D · E (A.6)

where the atom dipole moment is expressed as the dipole operator D̂. Finding a

suitable model for D̂ (possibly in terms of Pauli matrices) corresponds to having

a good model of this interaction term.



65

A.1 The operator dipole moment

If we consider the parity operator P̂ we note that it has the property:

P̂R̂P̂† = −R̂, (A.7)

where R̂ is the position operator. Using this property we can show that:

P̂R̂ = P̂R̂Î = P̂R̂P̂†P̂ = −R̂P̂ ⇒ P̂R̂ = −R̂P̂ , (A.8)

meaning that, when applied to the position operator, the parity operator produces

an inversion of space. In order to build a realistic dipole moment operator, it is

mandatory that the parity operator have the same effect on it, meaning that:

P̂D̂ = −D̂P̂ . (A.9)

This is the same as the property:

{D̂, P̂} = 0. (A.10)

where {D̂, P̂} is the anti-commutator of D̂ and P̂ . If we now project this anti-

commutator in the base {|1⟩, |2⟩} we have:

⟨i|{D̂, P̂}|j⟩ = 0 ⇒ ⟨i|P̂D̂|j⟩+ ⟨i|D̂P̂|j⟩ = 0. (A.11)
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The Hamiltonian A.1 is even and thus commutes with P̂ , therefore |1⟩ and |1⟩ are

also eigenvectors of P̂ which means that P̂|i⟩ = πi|i⟩ and P̂|j⟩ = πj|j⟩. Conse-

quently equation A.11 reduces to:

(πi + πj)⟨i|D̂|j⟩ = 0, (A.12)

for this to be true, we must have:

⟨i|D̂|j⟩ = 0 when πi + πj ̸= 0; (A.13)

⟨i|D̂|j⟩ ≠ 0 when πi + πj = 0. (A.14)

However being πi and πj eigenvalues of P̂ , they can only be ±1 meaning that if

i = j we have that πi + πj = ±2 ̸= 0, this implies that ⟨1|D̂|1⟩ = 0 and that

⟨2|D̂|2⟩ = 0. On the other hand if i ̸= j we have that πi + πj = 0 which implies

that ⟨1|D̂|2⟩ ≠ 0 and that ⟨2|D̂|1⟩ ≠ 0.

We can now use the completeness of the base {|1⟩, |2⟩}

Î = |1⟩⟨1|+ |2⟩⟨2|, (A.15)

to calculate

D̂ = ÎD̂Î = (|1⟩⟨1|+ |2⟩⟨2|)D̂(|1⟩⟨1|+ |2⟩⟨2|) =

= |1⟩⟨1|D̂|2⟩⟨2|+ |2⟩⟨2|D̂|1⟩⟨1|
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meaning that:

D̂ = ⟨1|D̂|2⟩|1⟩⟨2|+ ⟨2|D̂|1⟩|2⟩⟨1|. (A.16)

We will now ask for this operator to be Hermitian (i. e. ⟨1|D̂|2⟩ = ⟨1|D̂|2⟩∗) and

we chose its phase so that ⟨1|D̂|2⟩ is real. This way equation A.16 turns into:

D̂ = ⟨1|D̂|2⟩ [|1⟩⟨2|+ |2⟩⟨1|] . (A.17)

Here we notice that the operator |1⟩⟨2| + |2⟩⟨1| is the Pauli matrix σ̂x while the

vector factor ⟨1|D̂|2⟩ can be identified as the classical dipole moment µ, this means

that finally the dipole moment operator can be written as

D̂ = µ σx. (A.18)

Consequently the interaction Hamiltonian will be:

ĤI = −µ · E σ̂x (A.19)

while the Hamiltonian defining our problem is the sum of ĤA and ĤI , meaning:

Ĥ = −1

2
ℏω21σ̂z − µ · Eσ̂x (A.20)
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A.2 Polarization of the material

We can now describe our material as a population of two level systems with tran-

sition dipole moment µ with different orientations and the same modulus. If we

write the dipole moment of one of these atoms specifying its orientation in polar

coordinates, we have:

µ = µ(sin θ cosϕ, sin θ sinϕ, cos θ) (A.21)

To calculate the corresponding polarization P, we have to recall that:

P =
dµ

dV
⇒ PdV = dµ ⇒

∫
V

PdV =

∫
µ

dµ, (A.22)

if the particle density n over the volume V is sufficiently uniform, the last one can

be written as:

PV =

∫
µ

dµ =
Nµ

4π

∫
4π

(sin θ cosϕ, sin θ sinϕ, cos θ)dΩ, (A.23)

where N is the number of atoms in the volume V . This can be written as:

P =

∫
µ

dµ =
nµ

4π

∫
4π

(sin θ cosϕ, sin θ sinϕ, cos θ)dΩ. (A.24)

It is evident that this integral gives (0, 0, 0) which is consistent with the polar-

ization provided by a population of uniformly distributed classical dipoles. This

evidences that the very existence of this polarization depends on the quantum-

mechanics-driven probability that these dipoles appear as a consequence of a tran-
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sition between the two levels.

The quantum mechanics equivalent of a single dipole µ is the expected value

⟨D̂⟩ over the ket |Ψ⟩ representing the state of the system. Taking this into account,

equation A.24 turns into:

P =
n

4π

∫
4π

⟨Ψ| D̂ |Ψ⟩ dΩ (A.25)

As the ˆ̄D operator gives the value of the dipole moment of a given state Ψ. For

the two level atom with states |1⟩ and |2⟩, the general state can be written as:

|Ψ⟩ = C1 |1⟩+ C2 |2⟩ (A.26)

if we now recall that the dipole moment operator can also be expressed as:

D̂ = µ
[
|1⟩ ⟨2|+ |2⟩ ⟨1|

]
(A.27)

and use the orthogonality ⟨1|2⟩ = ⟨2|1⟩ = 0, we have:

⟨Ψ| D̂ |Ψ⟩ =
[
C∗

1 ⟨1|+ C∗
2 ⟨2|

]
D̂
[
C1 |1⟩+ C2 |2⟩

]
= µ

[
C∗

1 ⟨1|+ C∗
2 ⟨2|

] [
|1⟩ ⟨2|+ |2⟩ ⟨1|

] [
C1 |1⟩+ C2 |2⟩

]
= µ [C∗

1 ⟨2|+ C∗
1 ⟨1|2⟩ ⟨1|C∗

2 ⟨2|1⟩ ⟨2|+ C∗
2 ⟨1|

] [
C1 |1⟩+ C2 |2⟩

]
= µ [C∗

1 ⟨2|+ C∗
2 ⟨1|

]
[C1 |1⟩+ C2 |2⟩

]
= µ [C∗

1 ⟨2|+ C∗
2 ⟨1|]

[
C1 |1⟩+ C2 |2⟩]

(A.28)
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where the only surviving terms are:

⟨Ψ|D̂|Ψ⟩ = µ
[
C∗

1C2 + C1C
∗
2

]
(A.29)

we now define C∗
1C2 : ρ21 and C1C

∗
2 : ρ12 as the diagonal elements of the density

matrix, then

⟨Ψ|D̂|Ψ⟩ = µ [ρ21 + ρ12] (A.30)

Going back to equation A.25 and since ρ21 = ρ∗12

P =
n

4π

∫
4π

µ [ρ12 + ρ∗12] dΩ (A.31)

A.2.1 Time evolution of the density matrix

As one can see in equation A.31, the time evolution of polarization in a medium

that can be modeled as a population of two-levels system atoms, is determined by

the time evolution of the elements of the density matrix defined as ρij = ⟨i|ρ̂|j⟩

where ρ̂ = |Ψ⟩⟨Ψ| is the density operator associated to the state |Ψ⟩.

The time evolution of ρ̂ is defined as:

∂ρ̂

∂t
=

1

iℏ
[Ĥ, p̂], (A.32)
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using the Hamiltonian obtained in A.1, we can calculate

⟨1|[Ĥ, p̂]|2⟩ = ⟨1| [Ĥp̂] |2⟩ − ⟨1| [p̂Ĥ] |2⟩

= −ℏω21ρ12 − µ · Ê[ρ22 − ρ11]

(A.33)

then we obtain

∂ρ12
∂t

=
1

iℏ
{−ℏω21ρ12 − µ · Ê[ρ22 − ρ11]} (A.34)

similarly,

∂ρ21
∂t

=
1

iℏ
{−ℏω21ρ21 − µ · Ê[ρ11 − ρ22]} (A.35)

∂ρ11
∂t

=
1

iℏ
{−µ · Ê[ρ21 − ρ12]} (A.36)

∂ρ22
∂t

=
1

iℏ
{−µ · Ê[ρ12 − ρ21]} (A.37)

If we now define population inversion as

N = ρ22 − ρ11 (A.38)

We note that since the rate of variation must remain constant between the two

levels, ˙̂ρ11 + ρ̇22 = 0.

We can obtain the first optical Bloch equation by subtracting A.36 from A.37

dN

dt
=

2i

ℏ
[
ρ12 − ρ21

]
µ · Ê (A.39)
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The second optical Bloch equation is obtained by reorganizing A.34

dρ12
dt

− iω21ρ12 =
iN

ℏ
µ · Ê. (A.40)

Taking into account the energy relaxation time τ1 due to the interaction with

an external thermal reservoir placed at an energy corresponding to a population

inversion Ñ and the phase relaxation time, due to the interaction with other atoms

in the system and with an external thermal reservoir, equations A.39 and A.40

become:

dρ12
dt

−
(
iω21 −

1

τ2

)
ρ12 =

iN

ℏ
µ · Ê. (A.41)

dN

dt
+
N − Ñ

τ1
=

2i

ℏ
[
ρ12 − ρ21

]
µ · Ê (A.42)

A.3 Code for the temporal evolution of the fields

After compililation, the code can be run with the command ./ult coeffs ω, where

ω must be specified in eV. This code calculates the Mie coefficients an.

1 #include <iostream>

2 #include <iomanip>

3 #include <fstream>

4 #include <sstream>

5 #include <stdlib.h>

6 #include <boost/math/special_functions/spherical_harmonic.hpp>

7 #include <armadillo>

8 #include "cup_eV.H"
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9 #include "mathNN.H"

10 #include <sys/types.h>

11 #include <algorithm>

12 #include <complex_bessel.h>

13 #include <ctime>

14 #include <string>

15 #include <stdlib.h>

16 #include <pwd.h>

17

18

19 #define eV2j 1.60217733000103e-19

20 /** Compila con:

21 g++ ultimo_coeffs.cxx -o ult_coeffs -lgsl -lgslcblas -lm -

lcomplex_bessel -larmadillo

22 **/

23 using namespace std;

24 using namespace sp_bessel;

25 complex<double> img=complex<double> (0,1.);

26

27 // Bessel Functions.

28 std::complex<double> j (double order, std::complex<double> x){

29 return sph_besselJ(order,x);

30 }

31 std::complex<double> h1 (double order, std::complex<double> x){

32 return sph_hankelH1(order, x);

33 }

34

35 // Riccati-Bessel Functions.

36 std::complex<double> RBj (double order, std::complex<double> x){

37 return x*sph_besselJ(order,x);
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38 }

39 std::complex<double> RBj_prime (double order, std::complex<double> x){

40 return (x*sph_besselJ(order-1,x)-order*sph_besselJ(order,x));

41 }

42 std::complex<double> RBh (double order, std::complex<double> x){

43 return x*sph_hankelH1(order, x);

44 }

45 std::complex<double> RBh_prime (double order, std::complex<double> x){

46 return (x*sph_hankelH1(order-1,x)-order*sph_hankelH1(order,x));

47 }

48

49 //E_n

50 std::complex<double> E(int n, std::complex <double> E0){

51 return pow(img,n)*(2.*n+1.)*E0/(n*(n+1.));

52 }

53 std::complex<double> Gwiggly(double order, double G, std::complex <double> E0,

double T2){

54 std::complex<double> GG;

55 GG = -img*G*E(order, E0)/T2;

56 if (norm(GG)<=1.e-60) GG = std::complex<double> (1.e-60, 1.e-60);

57 return GG;

58 }

59 std::complex<double>** gimme_p(int order, double ome, std::complex <double> k,

std::complex <double> x, std::complex <double> m){

60 std::complex<double>** p;

61 p = new std::complex<double>*[6];

62 for (int j = 0; j < 6; j++) p[j] = new std::complex<double>[6];

63

64 p[0][0] = -(RBj_prime(order, m*x)*pow(ome, 2)*RBh_prime(order, x))/(j(order

, m*x)*k*pow(m,2)*x*RBh_prime(order, x)-h1(order, x)*k*RBj_prime(order, m*x
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)*x);

65 p[0][1] = 0;

66 p[0][2] = 0;

67 p[0][3] = (pow(RBj_prime(order, m*x),2)*pow(ome, 2))/(j(order, m*x)*k*pow(m

,3)*x*RBh_prime(order, x)-h1(order, x)*k*m*RBj_prime(order, m*x)*x);

68 p[0][4] = (RBj_prime(order, m*x)*pow(ome, 2)*RBj_prime(order, x))/(j(order,

m*x)*k*pow(m,2)*x*RBh_prime(order, x)-h1(order, x)*k*RBj_prime(order, m*x)

*x);

69 p[0][5] = (j(order, m*x)*pow(m,2)*RBj_prime(order, x)-j(order, x)*RBj_prime

(order, m*x))/(j(order, m*x)*pow(m,2)*RBh_prime(order, x)-h1(order, x)*

RBj_prime(order, m*x));

70

71 p[1][0] = (pow(h1(order, x),2)*pow(ome,2)*x)/(j(order, m*x)*k*RBh_prime(

order, x)-h1(order, x)*k*RBj_prime(order, m*x));

72 p[1][1] = 0;

73 p[1][2] = 0;

74 p[1][3] = -(h1(order, x)*j(order, m*x)*pow(ome,2)*x)/(j(order, m*x)*k*

RBh_prime(order, x)-h1(order, x)*k*RBj_prime(order, m*x));

75 p[1][4] = -(h1(order, x)*j(order,x)*pow(ome,2)*x)/(j(order, m*x)*k*

RBh_prime(order, x)-h1(order, x)*k*RBj_prime(order, m*x));

76 p[1][5] = -(h1(order, x)*RBj_prime(order, x)-j(order,x)*RBh_prime(order, x)

)/(j(order, m*x)*RBh_prime(order, x)-h1(order, x)*RBj_prime(order, m*x));

77

78 p[2][0] = -(h1(order, x)*j(order, m*x)*pow(ome,2)*x)/(j(order, m*x)*k*

RBh_prime(order, x)-h1(order, x)*k*RBj_prime(order, m*x));

79 p[2][1] = (pow(j(order, m*x),2)*pow(ome,2)*x)/(j(order, m*x)*k*RBh_prime(

order, x)-h1(order, x)*k*RBj_prime(order, m*x));

80 p[2][2] = (j(order, m*x)*j(order,x)*pow(ome,2)*x)/(j(order, m*x)*k*

RBh_prime(order, x)-h1(order, x)*k*RBj_prime(order, m*x));

81 p[2][3] = 0;
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82 p[2][4] = 0;

83 p[2][5] = (j(order, m*x)*RBj_prime(order, x)-j(order,x)*RBj_prime(order, m*

x))/(j(order, m*x)*RBh_prime(order, x)-h1(order, x)*RBj_prime(order, m*x));

84

85 p[3][0] = (m*pow(ome, 2)*pow(RBh_prime(order, x),2))/(j(order, m*x)*k*pow(m

,2)*x*RBh_prime(order, x)-h1(order, x)*k*RBj_prime(order, m*x)*x);

86 p[3][1] = -(RBj_prime(order, m*x)*pow(ome, 2)*RBh_prime(order, x))/(j(order

, m*x)*k*pow(m,2)*x*RBh_prime(order, x)-h1(order, x)*k*RBj_prime(order, m*x

)*x);

87 p[3][2] = -(m*pow(ome, 2)*RBh_prime(order, x)*RBj_prime(order, x))/(j(order

, m*x)*k*pow(m,2)*x*RBh_prime(order, x)-h1(order, x)*k*RBj_prime(order, m*x

)*x);

88 p[3][3] = 0;

89 p[3][4] = 0;

90 p[3][3] = -(h1(order, x)*m*RBj_prime(order, x)-j(order, x)*m*RBh_prime(

order, x))/(j(order, m*x)*pow(m,2)*RBh_prime(order, x)-h1(order, x)*

RBj_prime(order, m*x));

91

92 return p;

93 }

94

95 std::complex<double>** coeffsMatriz(int order, double ome, std::complex <double

> k, std::complex <double> x, std::complex <double> m, std::complex <

double> GG, std::complex <double> E0, std::complex<double> OmeH, std::

complex<double> OmeP, std::complex<double> GamP){

96

97 std::complex<double>** M = 0;

98 M = new std::complex<double>*[6];

99 for (int j = 0; j < 6; j++) M[j] = new std::complex<double>[6];

100
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101 std::complex<double>** p;

102 p = new std::complex<double>*[6];

103 for (int j = 0; j < 6; j++) p[j] = new std::complex<double>[6];

104

105 p=gimme_p(order,ome,k, x, m);

106 M[0][0] = OmeH+GG*p[0][0];

107 M[0][1] = GG*p[0][1];

108 M[0][2] = GG*p[0][2];

109 M[0][3] = GG*p[0][3];

110 M[0][4] = GG*p[0][4];

111 M[0][5] = GG*p[0][5];

112

113 M[1][0] = GG*p[1][0];

114 M[1][1] = OmeH+GG*p[1][1];

115 M[1][2] = GG*p[1][2];

116 M[1][3] = GG*p[1][3];

117 M[1][4] = GG*p[1][4];

118 M[1][5] = GG*p[1][5];

119

120 M[2][0] = GamP*p[2][0];

121 M[2][1] = GamP*p[2][1];

122 M[2][2] = OmeP+GamP*p[2][2];

123 M[2][3] = GamP*p[2][3];

124 M[2][4] = GamP*p[2][4];

125 M[2][5] = GamP*p[2][5];

126

127 M[3][0] = GamP*p[3][0];

128 M[3][1] = GamP*p[3][1];

129 M[3][2] = GamP*p[3][2];

130 M[3][3] = OmeP+GamP*p[3][3];
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131 M[3][4] = GamP*p[3][4];

132 M[3][5] = GamP*p[3][5];

133

134 M[4][0] = 0;

135 M[4][1] = 0;

136 M[4][2] = 0;

137 M[4][3] = 0;

138 M[4][4] = OmeH;

139 M[4][5] = 0;

140

141 M[5][0] = 0;

142 M[5][1] = 0;

143 M[5][2] = 0;

144 M[5][3] = 0;

145 M[5][4] = 0;

146 M[5][5] = OmeH;

147

148 return M;

149 }

150

151 std::complex<double> gimme_a(int order, double ome, std::complex <double> k,

std::complex<double> x, std::complex<double> m, std::complex<double> *q,

std::complex <double> E0){

152 std::complex<double> a;

153

154 std::complex<double>** p;

155 p = new std::complex<double>*[6];

156 for (int j = 0; j < 6; j++) p[j] = new std::complex<double>[6];

157 p=gimme_p(order,ome,k, x, m);

158
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159 a=p[0][0]*q[0]+p[0][1]*q[1]+p[0][2]*q[2]+p[0][3]*q[3]+p[0][4]*q[4]+p[0][5]*

q[5];

160 return a;

161 }

162

163 std::complex<double>* inhomogeneousB( int order, double ome, std::complex <

double> k, std::complex <double> x, std::complex <double> m, std::complex

<double> GG, std::complex <double> E0, std::complex<double> GamP){

164 std::complex<double>* B = 0;

165 B = new std::complex<double>[6];

166

167 std::complex<double>** p;

168 p = new std::complex<double>*[6];

169 for (int j = 0; j < 6; j++) p[j] = new std::complex<double>[6];

170

171 p=gimme_p(order,ome,k, x, m);

172

173 B[0] = GG*p[0][6]*E0;

174 B[1] = GG*p[1][6]*E0;

175 B[2] = GamP*p[2][6]*E0;

176 B[3] = GamP*p[3][6]*E0;

177 B[4] = GG*E0;

178 B[5] = GG*E0;

179

180 return B;

181 }

182

183

184 int main (int argc, char** argv){

185 if (argv[1]==0){
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186 cout<<endl<<" Usage: "<<argv[0]<<" <omega in eV>"<<endl<<endl;

187 exit(0);

188 }

189 //constants

190 double ome, ome_21, omemi, omema, T2, gamd, lam, eps_b, eps_inf, G=0,

ome_eV=3.2;

191 complex<double> eps1, eps2, m, x, n1, n2, k,k1, Nf=1, N=-1, E0=1;

192 complex <double> OmeH, OmeP, GamP, GG;

193 int order=1;

194 char mtl[16], mdl[16], sol[16], active[16];

195

196 ome_eV=atof(argv[1]);

197

198 nanosphere ns;

199 ns.init();

200

201 fstream nano;

202 nano.open("in/nanosphere_eV.dat",ios::in);

203 nano>>ns.r1>>ns.Dome>>ns.ome_0>>ns.G>>omemi>>omema>>mtl>>mdl>>active>>sol;

204

205

206 ns.r1=ns.r1*1.e-9;

207 ns.set_metal(mtl,mdl,1);

208 ns.set_active(active);

209

210 eps_b=ns.set_host(sol);

211 eps_inf=ns.eps_inf;

212 eps1 = ns.metal(ome_eV);

213 eps2 = ns.active(ome_eV, eps_b);

214
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215 ome=ome_eV/ns.Ome_p;

216 ome_21=ns.ome_0/ns.Ome_p;

217 gamd=.5*ns.Gam_d/ns.Ome_p;

218 T2=2.*ns.Ome_p/ns.Dome;

219

220 n1=sqrt(eps1);

221 n2=sqrt(eps2);

222 m=n1/n2;

223

224 lam =h*cc/(ns.r1*ome_eV*eV2j);

225 k = 2.*ns.pi*n2/lam;

226 k1=m*k;

227 x=k;

228

229 OmeH= img*(ome-ome_21)-1/T2;

230 OmeP= ome*(ome+2.*img*gamd)/(2.*(gamd-img*ome));

231 GamP= 1./(2.*(gamd-img*ome));

232

233

234 GG=Gwiggly(order, ns.G, E0, T2);

235 complex <double> **coefis=coeffsMatriz(order, ome, k, x, m, GG, E0, OmeH,

OmeP, GamP);

236 complex <double> *inhomog=inhomogeneousB(order, ome, k, x, m, GG, E0, GamP)

;

237

238 complex<double> *kap;

239 kap = new std::complex<double>[6];

240

241 fstream egva;

242 egva.open("out/eigenvalues.dat", std::ios::out);
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243

244 kap = eigenvalues(coefis,6);

245

246 egva<<" "<<setw(8)<<setiosflags (ios::left)<<ome_eV<< // 1

ome

247 "\t"<<setw(11)<<setiosflags (ios::left)<<ns.Ome_p*real(kap[0])<< // 2

Re(kap1)

248 "\t"<<setw(11)<<setiosflags (ios::left)<<ns.Ome_p*imag(kap[0])<< // 3

Im(kap1)

249 "\t"<<setw(11)<<setiosflags (ios::left)<<ns.Ome_p*real(kap[1])<< // 4

Re(kap2)

250 "\t"<<setw(11)<<setiosflags (ios::left)<<ns.Ome_p*imag(kap[1])<< // 5

Im(kap2)

251 "\t"<<setw(11)<<setiosflags (ios::left)<<ns.Ome_p*real(kap[2])<< // 6

Re(kap3)

252 "\t"<<setw(11)<<setiosflags (ios::left)<<ns.Ome_p*imag(kap[2])<< // 7

Im(kap3)

253 "\t"<<setw(11)<<setiosflags (ios::left)<<ns.Ome_p*real(kap[3])<< // 6

Re(kap4)

254 "\t"<<setw(11)<<setiosflags (ios::left)<<ns.Ome_p*imag(kap[3])<< // 7

Im(kap4)

255 "\t"<<setw(11)<<setiosflags (ios::left)<<ns.Ome_p*real(kap[4])<< // 6

Re(kap5)

256 "\t"<<setw(11)<<setiosflags (ios::left)<<ns.Ome_p*imag(kap[4])<< // 7

Im(kap5)

257 "\t"<<setw(11)<<setiosflags (ios::left)<<ns.Ome_p*real(kap[5])<< // 6

Re(kap6)

258 "\t"<<setw(11)<<setiosflags (ios::left)<<ns.Ome_p*imag(kap[5])<< // 7

Im(kap6)

259 endl;
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260

261 fstream fnct, miec;

262 fnct.open("out/anlfunc.dat", std::ios::out);

263 miec.open("out/anlmiec.dat", std::ios::out);

264

265 double omep = eV2j*ns.Ome_p/h; //converto in Hz

266 double t, T = 10., dt=1.; // tiempo total en picosegundos

267 complex<double> *qss, *q, **EVE, *C, a1, d1;

268 T=T*omep*1.e-12; // in ome_p

269 int i, Nt=T/dt;

270 qss = new std::complex<double>[6];

271 EVE = new std::complex<double>*[6];

272 for(int i = 0; i < 6; i++)

273 EVE[i] = new std::complex<double>[6];

274 C = new std::complex<double>[6];

275

276 q = new std::complex<double>[6];

277 for(int i = 0; i < 6; i++) q[i] = std::complex<double> (0., 0.);

278

279 kap = eigenvalues(coefis,6);

280 EVE = eigenvectors(coefis, 6);

281 qss = steady_state_solution(coefis, inhomog, 6);

282 C = constantes(coefis, inhomog, q, 6);

283 i=0;

284 while (i<=Nt){

285 t=i*dt;

286 i++;

287 for(int ii = 0; ii < 6; ii++)

288 q[ii] = qss[ii] + C[0]*EVE[ii][0]*exp(kap[0]*t)

289 + C[1]*EVE[ii][1]*exp(kap[1]*t)
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290 + C[2]*EVE[ii][2]*exp(kap[2]*t)

291 + C[3]*EVE[ii][3]*exp(kap[3]*t)

292 + C[4]*EVE[ii][4]*exp(kap[4]*t)

293 + C[5]*EVE[ii][5]*exp(kap[5]*t);

294

295 fnct<<" "<<setw(8)<<setiosflags (ios::left)<<t/omep*1.e+12<< // 1

time (ps)

296 "\t"<<setw(13)<<setiosflags (ios::left)<<real(q[0])<< // 2

Re(alph)

297 "\t"<<setw(13)<<setiosflags (ios::left)<<imag(q[0])<< // 3

Im(alph)

298 "\t"<<setw(13)<<setiosflags (ios::left)<<real(q[1])<< // 4

Re(beta)

299 "\t"<<setw(13)<<setiosflags (ios::left)<<imag(q[1])<< // 5

Im(beta)

300 "\t"<<setw(13)<<setiosflags (ios::left)<<real(q[2])<< // 6

Re(kappa)

301 "\t"<<setw(13)<<setiosflags (ios::left)<<imag(q[2])<< // 7

Im(kappa)

302 "\t"<<setw(13)<<setiosflags (ios::left)<<real(q[3])<< // 8

Re(delta)

303 "\t"<<setw(13)<<setiosflags (ios::left)<<imag(q[3])<< // 9

Im(delta)

304 "\t"<<setw(13)<<setiosflags (ios::left)<<real(q[4])<< // 10

Re(eta)

305 "\t"<<setw(13)<<setiosflags (ios::left)<<imag(q[4])<< // 11

Im(eta)

306 "\t"<<setw(13)<<setiosflags (ios::left)<<real(q[5])<< // 10

Re(zeta)

307 "\t"<<setw(13)<<setiosflags (ios::left)<<imag(q[5])<< // 11
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Im(zeta)

308 endl;

309

310 miec<<" "<<setw(8)<<setiosflags (ios::left)<<t/omep*1.e+12<< // 1

time (ps)

311 "\t"<<setw(13)<<setiosflags (ios::left)<<real(a1)<< // 2 Re

(a1)

312 "\t"<<setw(13)<<setiosflags (ios::left)<<imag(a1)<< // 3 Im

(a1)

313 endl;

314 }

315

316 a1 = gimme_a(order,ome, k, x, m, qss, E0)/E(order,E0);

317 cout<<"a["<<order<<"] = "<<a1<<endl;

318 return 0;

319 }
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