UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias Biológicas y Ambientales

Riqueza taxonómica de esponjas marinas del Pacífico Este Tropical

Paula Valentina Leoro Berrazueta Biología

Trabajo de fin de carrera presentado como requisito para la obtención del título de Bióloga

Quito, 22 de mayo de 2023

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias Biológicas y Ambientales

HOJA DE CALIFICACIÓN DE TRABAJO DE FIN DE CARRERA

Riqueza taxonómica de esponjas marinas del Pacífico Este Tropical

Paula Valentina Leoro Berrazueta

Nombre del profesor, Título académico

Margarita Brandt, PhD

Quito, 22 de mayo de 2023

3

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales

de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad

Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad

intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este

trabajo en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación

Superior del Ecuador.

Nombres y apellidos:

Paula Valentina Leoro Berrazueta

Código:

00206338

Cédula de identidad:

1722297213

Lugar y fecha:

Quito, 22 de mayo de 2023

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado como una publicación, incluso a pesar de estar disponible sin restricciones a través de un repositorio institucional. Esta declaración se alinea con las prácticas y recomendaciones presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017) Discussion document on best practice for issues around theses publishing, disponible en http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following capstone project is available through Universidad San Francisco de Quito USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be considered a publication. This statement follows the recommendations presented by the Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion document on best practice for issues around theses publishing available on http://bit.ly/COPETheses.

AGRADECIMIENTOS

Agradezco a Dios por brindarme la sabiduría necesaria durante este proceso de Desarrollo académico.

A mis padres por ser un pilar fundamental durante toda mi vida, a mi hermano por su apoyo incondicional a pesar de la distancia. Les agradezco profundamente por su amor, confianza y motivación a lo largo de toda mi vida.

A mis amigos, quienes han sido un apoyo incondicional a lo largo de esta etapa tan bonita.

Agradezco a la Universidad San Francisco de Quito por darme las herramientas necesarias para mi desarrollo académico.

A mis profesores que han sido una guía fundamental para ayudarme a formarme como profesional.

A mi tutora Margarita Brandt por su orientación y conocimiento a lo largo de este proceso.

A Priscilla Martínez y al Instituto de Investigaciones Marinas Nazca por compartir los datos para la elaboración exitosa de este Proyecto.

RESUMEN

El Pacífico Este Tropical (PET) es una región dentro el Océano Pacífico, la cual se extiende desde la costa oeste de América Central hasta el oeste de las Islas Galápagos. Dentro de los organismos presentes en la zona se encuentran las esponjas marinas, las cuales cumplen una función importante en el reciclado de nutrientes y en la protección de los arrecifes de corales. Para entender mejor la composición de especies de esponjas de la zona, se realizó una recopilación de observaciones de iNaturalist y también un muestreo por cuadrantes en tres provincias de Ecuador Continental. En total se encontraron 63 especies dentro del PET y en Ecuador Continental 12-14 especies. Para los registros del PET se encontró que los valores de disimilitud están relacionados con las distancias de las zonas geográficas, sin embargo, este no fue el caso para las observaciones en Ecuador Continental ya que las provincias que más cerca están tienen un valor mayor de disimilitud, debido a que la mayoría de las especies de Manabí no pudieron ser identificadas, lo cual influyó en los patrones de diversidad beta. El uso de la ciencia ciudadana podría resultar muy útil, para expandir los registros de la biodiversidad marina poco estudiada. Por ejemplo, en Ecuador Continental la literatura había reportado únicamente tres especies, pero en iNaturalist se observaron 12 y con el método de cuadrantes 14. A pesar de que hay varios estudios de esponjas marinas dentro de la zona, es necesario seguir realizando monitoreos e identificaciones morfológicas para conocer realmente la riqueza taxonómica y la similitud que existen ente diferentes países del PET.

Palabras clave: Demospongiae, Diversidad Beta, PET, iNaturalist, Esponjas Marinas, Ecuador Continental.

ABSTRACT

The Eastern Tropical Pacific (ETP) is a region within the Pacific Ocean, which extends from the west coast of Central America to the west of the Galápagos Islands. Among the organisms present in the area are marine sponges, which play an important role in recycling nutrients and protecting coral reefs. To better understand the species composition of sponges in the area, a compilation of observations from iNaturalist and quadrant sampling in three provinces of mainland Ecuador was conducted. A total of 63 species were found within the ETP, and 12-14 species in mainland Ecuador. For the ETP records, dissimilarity values were found to be related to the distances between geographic zones. However, this was not the case for observations in mainland Ecuador, as the provinces closest to each other had higher dissimilarity values. This was due to the fact that most of the species in Manabí could not be identified, which influenced the patterns of beta diversity. The use of citizen science could be very useful in expanding the records of poorly studied marine biodiversity. For example, in mainland Ecuador, the literature had reported only three species, but 12 were observed on iNaturalist and 14 through quadrant sampling. Despite several studies on marine sponges in the area, it is necessary to continue monitoring and conducting morphological identifications to truly understand the taxonomic richness and similarity among different countries in the ETP.

Key words: Demospongiae, Beta Diversity, ETP, iNaturalist, Dissimilarity, Marine sponges, Ecuador Mainland.

TABLA DE CONTENIDO

AGRADECIMIENTOS	5
INTRODUCCIÓN	11
METODOLOGÍA	14
ÁREA DE ESTUDIOCOLECTA DE DATOSANÁLISIS DE DATOSANÁLISIS DE DATOS	14
COLECTA DE DATOS	15
Análisis de datos	17
RESULTADOS	19
DISCUSIÓN	24
CONCLUSIONES	31
REFERENCIAS BIBLIOGRÁFICAS	32
ANEXO A: BASE DE DATOS DE INATURALIST	38
ANEXO B: BASE DE DATOS DEL MUESTREO DE ECUADOR CONTINENTAL	46

ÍNDICE DE TABLAS

Tabla 1. Puntos de muestreo en Ecuador Continental. 16
Tabla 2. Especies en común entre Costa Rica, Panamá y Ecuador. 21

ÍNDICE DE FIGURAS

Figura 1. Mapa del Paisaje Marino del Pacífico Este Tropical (Marine Conservation	
Institute, 2023)	.14
Figura 2. Número total de registros en iNaturalist por país.	.19
Figura 3. Número de especies de esponjas marinas identificadas en cada uno de los países	en
el Pacífico Este Tropical.	.20
Figura 4. Número de especies correspondientes a cada clase de esponjas marinas en el	
Pacífico Este Tropical	.20
Figura 5. Diversidad Beta de esponjas marinas entre los países del Pacífico Este Tropical.	
Figura 6. Ocurrencia de especies de esponjas marinas identificadas en Ecuador Continenta	1.
	.22
Figura 7. Número de especies correspondiente a cada familia de esponjas marinas en	
Ecuador Continental.	.22
Figura 8. Diversidad Beta de esponjas marinas entre las diferentes provincias de Ecuador	
Continental.	.23

INTRODUCCIÓN

El Pacífico Este Tropical (PET) es una región que se encuentra en el Océano Pacífico; se extiende desde la parte de la costa oeste de América Central hasta el oeste de las Islas Galápagos. Los países que conforman el PET son Costa Rica, Panamá, Colombia y Ecuador, los cuales se encuentran ubicados en la zona climática Ecuatorial (Durán & Puentes, 2012). Esta zona es hogar de extraordinaria biodiversidad, endemismo y una alta concentración de especies, incluyendo especies migratorias importantes como tiburones, mantas gigantes y tortugas marinas (UNESCO, 2023).

El PET alberga ecosistemas importantes como las praderas de algas, los estuarios, los arrecifes de coral y los manglares; estos ecosistemas proveen varios servicios ecosistémicos como el turismo, la pesca y la protección de las zonas costeras (Cortés, 2012). Esta región presenta condiciones climáticas extremas, debido a la presencia de fenómenos climáticos como El Niño y La Niña, los cuales producen cambios en la temperatura del agua, la precipitación y en general el clima de esta zona (Gómez-Aguilar, 2020). Es una región importante debido a que es una de las zonas más cálidas y con gran productividad en el océano. El PET alberga una gran cantidad de organismos marinos como corales, gran variedad de peces, tortugas marinas, mamíferos marinos, crustáceos, moluscos y equinodermos (Mora & Robertson, 2005).

Dentro de los organismos que albergan en la zona se encuentran las esponjas marinas, que son animales acuáticos fascinantes que, por sus características únicas y su importancia dentro de los ecosistemas marinos, han llamado la atención de los biólogos marinos durante varias décadas. Estos organismos pertenecen al filo Porífera, el cual es uno de los grupos más antiguos de animales multicelulares existentes en el planeta (Xavier et al., 2015). Las esponjas marinas cumplen una función importante en el reciclado de nutrientes dentro de los

ecosistemas marinos. Con la ayuda de sus poros, el agua puede fluir a través de ellas, permitiendo así la filtración de nutrientes y la eliminación de compuestos orgánicos del agua, lo que llega a afectar de manera positiva la calidad del agua dentro de un ecosistema (Maldonado et al., 2012).

Además, estos animales cumplen un papel importante como hábitat y refugio de una gran variedad de organismos marinos. Por ejemplo, de algunos crustáceos, peces y gusanos, mientras que otros invertebrados marinos usan las esponjas de mar como sitios de anidación, alimentación y/o protección contra los depredadores (Pawlik et al., 2018). Se ha podido observar además en ciertos casos que las esponjas de mar cumplen un papel importante en la protección de los arrecifes de coral, ya que forman simbiosis con los corales (Sheppard et al., 2017), colocándose sobre los pólipos de los corales y protegiéndolos así de los depredadores y de las condiciones ambientales adversas. Estos animales tienen la capacidad de liberar compuestos químicos, que tienen propiedades antibióticas y antifúngicas, que protegen al coral de futuras infecciones y enfermedades. El coral le proporciona a la esponja de mar, un sustrato sólido al cual poder adherirse para así desarrollarse de mejor manera y también resistir a los fuertes oleajes (Bell, 2008).

A pesar de su importancia, las esponjas marinas son poco conocidas, por lo que es importante realizar más estudios para entender mejor la biodiversidad marina de la región y también para ver las posibles aplicaciones dentro de la medicina y biotecnología (Carballo et al., 2014). En Costa Rica, se han registrado 38 especies (Cortés, 2015). Se debe tener en cuenta que las especies presentes en el Océano Pacífico no son las mismas que se encuentran en el Océano Atlántico, aunque no se sabe el número exacto de especies en la costa del Pacífico (Cortés et al., 2009). En el caso de Panamá se han registrado alrededor de 51 especies; se cree que este número podría ser mayor, pero debido a la falta de muestreos no se tienen valores certeros (Gochfeld et al., 2007). En Colombia, en la costa del Pacífico se han

registrado 24 especies (Lizarazo et al., 2020). En el caso de Ecuador, la mayoría de ocurrencias se restringen a las Islas Galápagos, con 39 especies (*Galapagos Species Checklist*, 2023), mientras que para Ecuador Continental se han registrados tres especies únicamente (Jaramillo et al., 2021). Actualmente es complicado analizar patrones globales de diversidad y distribución de esponjas marinas, ya que los estudios que se han realizado alrededor del mundo son pocos y variables, por lo que la distribución de las especies llegan a ser muy variables (Cortés et al., 2009).

La ciencia ciudadana es una herramienta a través de la cual el público en general participa de manera activa en el ámbito científico. Incluye la recopilación de datos y en la identificación de patrones que ayudan a la interpretación de resultados y a la difusión de nuevos hallazgos científicos. El uso de ciencia ciudadana amplía el alcance de la investigación, ya que así los científicos acceden a los datos de áreas poco accesibles o remotas y que muchas veces no se pueden recopilar por limitaciones en recursos, tiempo o ayuda de personal (Bonney et al., 2009). Específicamente, el estudio de las esponjas marinas a través de la ciencia ciudadana podría aportar con información importante para la diversidad biológica dentro de los ecosistemas marinos para así mejorar la conservación dentro de estos, por un lado, y por otro para conocer las aplicaciones dentro de otros campos como por ejemplo la farmacéutica o biotecnológica.

El objetivo de este estudio fue determinar la riqueza taxonómica de las esponjas marinas en el PET, con ayuda de los registros existentes en iNaturalist y así evaluar las similitudes en la composición de especies de los diferentes países del PET. Además, con datos adicionales tomados por el Instituto de Investigaciones Marinas Nazca: se buscó identificar los patrones generales de diversidad taxonómica de esponjas en el Ecuador Continental.

METODOLOGÍA

Área de Estudio

La investigación se llevó a cabo en el Paisaje Marino del PET (Figura 1), cuya extensión de 2 000 000 km², se prolonga desde Costa Rica hasta Ecuador (Roberts et al., 2002). Uno de los ecosistemas más importantes dentro de esta zona son los arrecifes de coral, dado que estos albergan una gran cantidad de organismos, en los que están incluidas las esponjas de mar. Otro de los hábitats importantes a considerar son las montañas submarinas, puesto que en estas zonas se ha observado altos niveles de endemismo (Pauly & Zeller, 2016).

Figura 1. Mapa del Paisaje Marino del Pacífico Este Tropical (Marine Conservation Institute, 2023).

Dentro de esta zona se destacan algunas corrientes marinas. Por ejemplo, la corriente de Humboldt y la Corriente de Panamá (Smith et al., 2019). La corriente de Humboldt, o

también conocida como corriente peruana, fluye a lo largo de la costa de América del Sur, desde Chile hasta Ecuador. Esta corriente tiene temperaturas frías y es rica en nutrientes debido a la surgencia costera, la misma que atrae agua fría y también a los nutrientes del fondo hacia la superficie (Chávez et al., 2008). La corriente de Panamá se produce cuando las aguas cálidas del PET se mueven hacia las costas de América del Sur, lo que provoca un aumento en la temperatura del agua y también cambios en la circulación atmosférica y en la precipitación (Wang et al., 2017).

Colecta de datos

Lo primero que se hizo para recopilar datos con la herramienta de ciencia ciudadana, fue crear una carpeta en iNaturalist llamada "Esponjas Pacífico Este Tropical", para posterior a esto agregar los registros de interés en la carpeta. Como criterios se seleccionaron únicamente observaciones de esponjas marinas dentro del área de estudio; los registros debían pertenecer a las categorías de calidad de identificación mínima es decir a nivel de filo Porífera. Se seleccionaron las observaciones registradas hasta el 06 de abril de 2023 para su análisis. Posteriormente, se ingresaron los datos a una base creada en Excel, en donde se colocó: código, fecha de la observación, identificación hasta el menor grado posible, lugar en donde se encontró, coordenadas, el URL y algún comentario en caso de que hubiese sido necesario. Para la identificación de las fotos se utilizaron los siguientes documentos: La Guía de Esponjas del Caribe (Zea et al., 2014), La Guía de Identificación de Corales y Esponjas para uso de los observadores marítimos en el Área de la Convención SEAFO (Ramos et al., 2009) y la Guía de Campo de Esponjas Marinas de Galápagos (Hickman et al., 2021). Para el caso de fotografías de organismos que no fueron posibles identificar, se las nombró como

"morfoespecies". A pesar de no haber sido identificados estos organismos, igualmente fueron incluidos en los análisis.

Por otro lado, durante un monitoreo de biodiversidad marina de organismos sésiles en las costas de Ecuador Continental entre el 2012 y 2021 por el Instituto de Investigaciones Marinas Nazca, se identificaron en abril del 2023 las esponjas de mar para este estudio. En este estudio se tomaron en cuenta 24 puntos de muestreo en las provincias de Esmeraldas, Santa Elena y Manabí. En cada uno de los puntos se efectuaron dos transectos lineales de 50 m cada uno, y por cada transecto se hicieron 10 cuadrantes. Cada uno de los cuadrantes midió 0.5 x 0.5 m y se los ubicó a diferentes profundidades que oscilaron entre 7 y 15 m. Cada uno de los cuadrantes fue fotografiado, las fotografías fueron colocadas en una carpeta con el nombre del lugar correspondiente del muestreo. Para la identificación, se creó una base de datos en Excel, en la misma se colocó el lugar de muestreo, el código de la imagen, las coordenadas y la identificación hasta el nivel taxonómico más bajo posible. De todo el muestreo de organismos sésiles, se escogieron 107 imágenes en donde se encontraron esponjas marinas para poder realizar análisis de diversidad. De igual manera, en los casos en que no se pudo identificar a uno de los organismos se colocó la etiqueta de "morfoespecie" e igualmente fueron incluidos en los análisis. Para la identificación se utilizó las guías anteriormente mencionadas. Los puntos de muestreo se encuentran detallados en la Tabla 1.

Tabla 1. Puntos de muestreo en Ecuador Continental.

Provincia	Sitio	Coordenadas	
Esmeraldas	Horno de Pesca	N 0° 59' 28.223"	O 79° 39' 31.892"
	La Tortuga	N 0° 59' 30.492"	O 79° 39' 32.15"
Manabí	Cabo Pasado 1	S 0° 22' 4.601"	O 80° 29' 5.845"
	Vaca Brava 2	N 0° 4' 8.729"	O 80° 3' 33.532"
	Venado	S 0° 10' 34.962"	O 80° 22' 29.417"
	Pacoche - Roca Ahogada 2	S 0° 58' 38.22"	O 80° 50' 27.056"
	I. de la Plata - PNM Palo Santo	S 1° 16' 34.485"	O 81° 3' 23.932"
	I. Sombrerito- PNM	S 1° 16′ 36.906′′	O 81° 3' 19.627"

	I. Salango (Parcela Corales)	S 1° 35' 48.618"	O 80° 51' 56.956"
	Ayampe (intermareal)	S 1° 40' 42.737"	O 80° 48' 49.48"
	Frente a Islote Sucre (intermareal)	S 1° 28' 30.954"	O 80° 47' 1.874"
	Los Frailes - PNM (intermareal)	S 1° 29' 49.642"	O 80° 47' 47.132"
	I. Los Ahorcados	S 1° 41' 36.468"	O 80° 52' 27.379"
Santa Elena	Bajo Copé – Agujas	S 1° 43' 10.598"	O 81° 4' 48.775"
	Bajo Copé - Seco Manta	S 1° 56′ 2.689″	O 80° 47' 20.598"
	Bajo Copé - Fer 2	S 1° 56′ 3.966″	O 80° 47' 20.239"
	I. El Pelado - Bajo 40	S 1° 56' 7.364"	O 80° 47' 20.548"
	Guarro	S 2° 12' 19.179"	O 80° 52' 31.493"
	Bajo Ballena	S 2° 12' 18.535'	O 80° 52' 40.587"
	Gigima (Gigi María)	S 2° 13' 6.333"	O 80° 55' 25.737"
	Rocas frente a Caseta de la FAE	S 2° 11' 52.105"	O 81° 0' 7.887"
	Mar Bravo	S 2° 16' 7.783"	O 80° 55' 37.42"
	Bajo Puerto Aguaje	S 2° 12' 28.329"	O 80° 56' 58.172"
	Casa Lobo	S 2° 12' 38.526"	O 80° 53' 19.162"

Análisis de datos

Para realizar el conteo de especies por cada uno de los países se utilizó la base de datos en Excel y se creó una tabla dinámica en la misma, se seleccionaron los criterios de país individualmente, y así definir el número de especies presentes en cada uno de los países o provincias (Ecuador Continental). Luego de ello se seleccionó especie por especie para ver en qué países estaban presentes. Dentro del análisis se excluyeron los datos de Colombia, ya que únicamente se obtuvo un registro para ese país.

Para el análisis de datos se utilizó la diversidad beta, la cual se refiere a la diversidad en la composición de las especies entre dos comunicades, en este caso entre los países del PET o de las provincias en Ecuador Continental. Esta se calcula con el índice de similitud de Sorensen (Magurran, 2021). Para obtener el índice de similitud de Sorensen (CC) se utilizó la siguiente fórmula:

$$CC = \frac{2c}{(s1+s2)}$$

En donde:

c: número de especies en común de las dos comunidades

s1, s2: número de especies en comunidad 1 y 2, respectivamente

Después para calcular el valor de la diversidad beta se debe realizar lo siguiente:

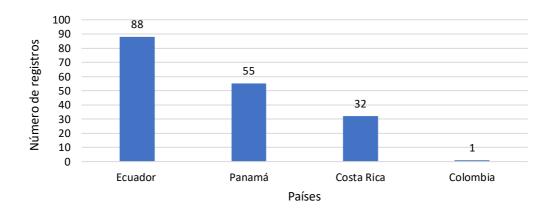
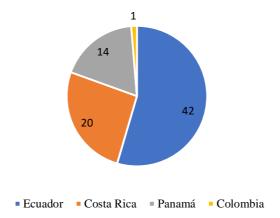
= 1 - Coeficiente Comunitario de Sorensen (CC)

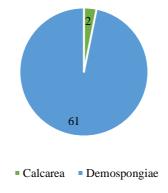
Los valores de referencia fueron los siguientes:

- Si se acerca más al 0, nos indica que la composición de especies entre las comunidades (países o provincias) es similar.
- Si se acerca más al 1, nos indica que la composición de especies es diferente entre las comunidades (países o provincias) evaluadas.

RESULTADOS

En total se obtuvieron 176 registros de iNaturalist que cumplían con los criterios planteados en la metodología (Figura 2, Anexo A). El país con mayor número de registros fue Ecuador con 88 y el país con menos registros fue Colombia con 1 registro. De este total de registros se identificaron 63 especies y 12 registros fueron dejados con la etiqueta de "morfoespecie" ya que no fueron posibles de identificar. No se logró identificar todos los registros hasta nivel de especie, se los identificó hasta nivel de familia o género (Anexo A).


Figura 2. Número total de registros en iNaturalist por país.

Del total de especies (n=63) y morfoespecies (n=12) identificadas, el país con mayor número fue Ecuador, con 42 de especies y cinco morfoespecies, de las cuales 37 especies fueron identificadas para las islas Galápagos y 12 para Ecuador Continental (y tres y dos morfoespecies, respectivamente). En Costa Rica se registraron 20 especies y dos morfoespecies, en Panamá 14 y seis morfoespecies y en Colombia 1 especie (Figura 3).

Figura 3. Número de especies de esponjas marinas identificadas en cada uno de los países en el Pacífico Este Tropical.

Sesenta y un de las especies identificadas pertenecen a la clase Demospongia, siendo esta la clase dominante; dos especies son de la clase Calcárea (Figura 4).

Figura 4. Número de especies correspondientes a cada clase de esponjas marinas en el Pacífico Este Tropical.

Las comunidades de esponjas más similares fueron Costa Rica y Panamá, mientras que Costa Rica y Ecuador fueron las más distintas (Figura 5).

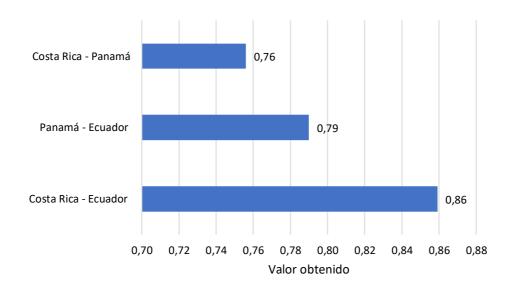


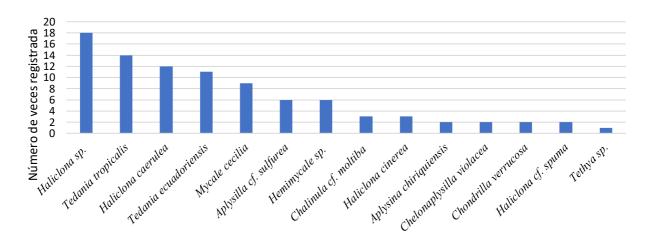
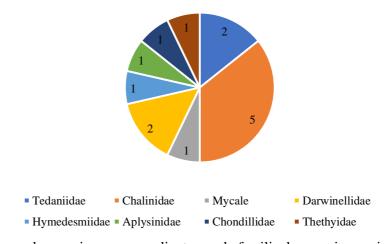
Figura 5. Diversidad Beta de esponjas marinas entre los países del Pacífico Este Tropical.

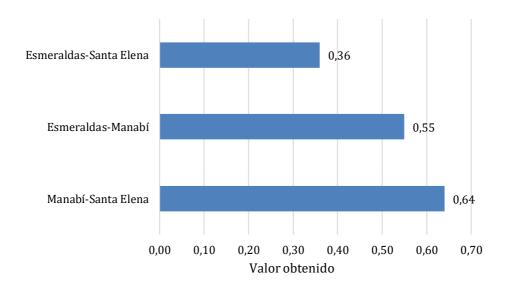
Se encontraron 11 especies en común entre los tres países. Por ejemplo, *Aplysina* gerardogreeni, *Haliclona caerulea* y *Haliclona sp.* se encuentran en Costa Rica, Panamá y Ecuador (Tabla 2).

Tabla 2. Especies en común entre Costa Rica, Panamá y Ecuador.

Especie	Costa Rica	Panamá	Ecuador
Aplysina chiriquiensis			
Aplysina gerardogreeni			
Chelonaplysilla violacea			
Haliclona caerulea			
Haliclona cinerea			
Haliclona sp.			
Mycale cecilia			
Mycale sp.			
Scopalina sp.			
Tedania tropicalis			
Morfoespecie 8			

En las 107 imágenes tomadas durante el monitoreo del Ecuador Continental se logró identificar 14 especies y 10 morfoespecies (Anexo B). En las especies identificadas la que tuvo mayor ocurrencia fue *Haliclona sp.* seguida de *Tedania tropicalis*. La mayoría de las especies identificadas tuvieron poca ocurrencia, con menos de seis registros en las 107 imágenes (Figura 6).


Figura 6. Ocurrencia de especies de esponjas marinas identificadas en Ecuador Continental.

Las 14 especies de esponjas marinas que fueron identificadas en Ecuador Continental corresponden a ocho familias diferentes (Figura 7). Además, todas las especies identificadas pertenecen a la clase Demospongiae.

Figura 7. Número de especies correspondiente a cada familia de esponjas marinas en Ecuador Continental.

Se obtuvo que la composición de esponjas marinas entre Esmeraldas y Santa Elena fue la más similar, mientras que aquella entre Manabí y Santa Elena la más distinta (Figura 8).

Figura 8. Diversidad Beta de esponjas marinas entre las diferentes provincias de Ecuador Continental.

DISCUSIÓN

En este estudio se logró determinar la riqueza taxonómica de esponjas marinas en el PET con la ayuda de registros en iNaturalist. Se encontró que los registros de esponjas marinas son más similares entre Costa Rica y Panamá y más distintos entre Costa Rica y Ecuador. Por otro lado, los registros en Ecuador Continental arrojaron mayor similitud de especies de esponjas marinas entre las provincias de Esmeraldas y Santa Elena.

En el caso de Colombia únicamente se obtuvo una observación. Esto pudo haber sido por varios factores. Como se mencionó en la Introducción, la información en iNaturalist depende totalmente de la participación del público y esta puede estar limitada a áreas geográficas específicas y a periodos de tiempo determinados, lo cual puede resultar en lagunas de información y dificultades para obtener una visión completa y a largo plazo de los patrones de diversidad biológica (Shirk et al., 2012). El registro de los datos también se puede ver relacionado con el turismo en las diferentes zonas. Por ejemplo, en el caso de las costas del Pacífico colombiano se tienen datos de dos años antes de la pandemia, en los que se recibieron 9,133 turistas. La mayoría de estas personas estuvieron interesadas principalmente en observar las paradas de la ruta migratoria de ballenas jorobadas (Mahtani, 2021). Mientras que para las costas del Atlántico de ese país se recibieron aproximadamente 80,000 visitantes, los cuales realizaron diversas actividades recreativas que ofrece la zona (Aguilera-Díaz et al., 2006). Estos datos permiten concluir que la zona del Atlántico en Colombia recibe un número mayor de visitantes interesados en observar una mayor variedad de organismos.

Tanto para Ecuador Continental como para el PET, la clase de esponjas marinas más abundante fue Demospongiae, lo que coincide con la literatura: que esta incluye al 85% de especies de esponjas marinas, las cuales se pueden encontrar en una gran variedad de hábitats

marinos y hasta en grandes profundidades (Hooper & Van Soest, 2002). Esta clase se caracteriza por tener un esqueleto interno bastante flexible, el mismo que se compone de fibras de proteína y de una variedad de formas de espículas silíceas. Debido a la adaptación de tener un esqueleto flexible, a comparación de las esponjas calcáreas y hexactinélidas, las demoesponjas se adaptan mejor a las condiciones ambientales del hábitat en donde se encuentran y soportan mejor los oleajes y las corrientes marinas que se dan en ambientes marinos bastante agitados. También tienen una variedad en su forma y tamaño, lo cual les permite colonizar diferentes hábitats y aprovechar sus diferentes recursos (Bell, 2008). Al tener estas mismas adaptaciones las especies pertenecientes a esta clase, se podría concluir que estas pueden desarrollarse de manera exitosa y así ser las más abundantes.

Limitaciones del estudio

La identificación de los organismos se realizó únicamente por registros fotográficos, lo cual fue una de las principales limitaciones para su identificación, debido a que una de las características cruciales para la taxonomía de las esponjas son las espículas. Las espículas pueden variar en su forma, tamaño, disposición y composición, lo que proporciona una característica distintiva para poder diferenciar y categorizar efectivamente a una esponja. Las espículas varían dependiendo de los géneros y las especies, pero para observarlas se debe tener una muestra del organismo y realizar un análisis con ayuda de un microscopio, en el que se ven los detalles morfológicos como la forma de las puntas, los contornos y la ornamentación (Ferriol Fernández, 2020).

Se registraron 12 "morfoespecies" en el PET y 10 en Ecuador Continental. Las morfoespecies son un conjunto de individuos que son agrupados dependiendo si estos tienen características morfológicas similares, como la forma, el color o el tamaño, en lugar de basarse en una identificación taxonómica especifica. Este término se utiliza en casos en los que la identificación de especies exactas es difícil sobre todo cuando se trabaja con

organismos que son poco estudiados o conocidos (Magurran & Henderson, 2003). Fue importante tomarlas en cuenta en nuestro análisis para capturar información adicional sobre la variación en la composición de las especies dentro de las diferentes zonas geográficas (Helmus et al., 2007); sin embargo, es importante reconocer que el no haber podido identificarlas taxonómicamente tiene sus limitaciones. La identificación de morfoespecies depende en gran medida del conocimiento y experiencia del taxónomo. Esto puede originar subjetividad y variabilidad en los resultados, lo que dificulta la comparación entre estudios, la precisión y replicabilidad de los análisis (Dayrat, 2005).

Diversidad Beta

Para ver la disimilitud entre las diferentes comunidades de esponjas marinas, tanto dentro del PET como en Ecuador Continental, en este estudio se utilizó la diversidad beta. Se pudo ver que los patrones de disimilitud se ven afectados por la distancia que hay entre las zonas geográficas. Específicamente las comunidades de esponjas marinas de los países más cercanos fueron más similares (Costa Rica y Panamá), mientras que aquellas de los países más distantes resultaron más distintas (Figura 5). Esto se debe a que hay un efecto de la distancia, lo que nos sugiere que la similitud biológica disminuye cuando la distancia geográfica es mayor entre las zonas (Anderson et al., 2011). Esto se debe a que ciertas especies tienen la posibilidad de colonizar y dispersarse en áreas cercanas (Vellend, 2010). También para algunas especies puede ser difícil colonizar distintas áreas por barreras físicas, cambios con relación al hábitat o por limitaciones en su capacidad de dispersión (Soininen et al., 2007).

Esto no ocurrió con los registros en cuadrantes del monitoreo de Ecuador Continental: los patrones de disimilitud fueron mayores cuando hubo una menor distancia entre las provincias (es decir entre Esmeraldas y Santa Elena, Figura 8). Los gradientes ambientales,

como variaciones en temperatura, salinidad, disponibilidad de hábitats o nutrientes, pueden influir en la adaptación que tiene las especies y en la capacidad de colonizar diferentes zonas geográficas (Johansson et al., 2008). Estos factores ambientales pueden cambiar significativamente en distancias cortas, por lo que se pueden dar diferencias adaptativas y ecológicas entre las comunidades (Blowes et al., 2019). Otra razón para este hallazgo en Ecuador Continental puede estar relacionado a que la mayoría de las especies de Manabí fueron catalogadas como morfoespecies, por lo que las comparaciones de la diversidad beta entre las diferentes provincias pudo haber sido artificial. Solo con una correcta identificación taxonómica de los especímenes se podría tener un mejor entendimiento de los patrones de diversidad en esta zona. A pesar de esto, el uso de morfoespecies puede ser una herramienta útil para justificar más estudios en la zona, porque precisamente no se sabe con certeza la identidad de esas especies.

Influencia de factores ambientales en la distribución de esponjas marinas en el Ecuador Continental

La temperatura del mar, particularmente, es un factor muy importante en el desarrollo de las especies marinas, ya que estas tienen límites de tolerancia y los cambios extremos o rápidos pueden provocar estrés térmico e incluso la muerte (Poloczanska et al., 2016). La temperatura del agua puede variar dependiendo de la provincia en Ecuador Continental debido a factores como la ubicación geográfica y la interacción con otros factores climáticos (Borbor-Cordova et al., 2019). La temperatura promedio entre los años 2012 y 2021 del agua en Esmeraldas fue de 27°C, en Manabí de 26°C, mientras que en Santa Elena fue de 24°C (INOCAR, 2023). A pesar de que son pocos grados de diferencia en la temperatura del agua esto podría tener un impacto significativo en la composición de las especies de esponjas marinas registradas en este estudio (Doney et al., 2012).

La disponibilidad de nutrientes es esencial para el crecimiento y desarrollo exitoso de las esponjas. Los nutrientes como nitrógeno, fósforo y silicio son necesarios para que se dé la síntesis de proteínas, ácidos nucleicos y estructuras esqueléticas (Maldonado et al., 2012). Además, la disponibilidad de estos puede influir directamente en la producción de las células reproductivas y en la capacidad para resistir el estrés ambiental. Por otro lado, cuando hay una mayor cantidad de nutrientes, es posible que se dé un aumento en la productividad primaria, razón por la cual, hay más recursos alimenticios para las esponjas, que favorece a que haya una mayor diversidad de especies (Bell & Smith, 2004).

La zona de Manabí es la más productiva dado que se encuentra fuertemente influenciada por la corriente de Humboldt, que transporta aguas frías y ricas en nutrientes (Valle & Fuentes, 2014). Algunos nutrientes que se encuentran presentes son nitrógeno; fósforo, silicio y carbono (Ramos Bayas, 2017). Además, al mar de la provincia desembocan los ríos Manabí y Chone, que aportan nutrientes adicionales (Valle & Fuentes, 2014). Cabe señalar que en Manabí se presentan bajos niveles de contaminación (Palacios, 2013). En la zona de Esmeraldas, la productividad se ve afectada debido a la contaminación por la actividad humana. La desembocadura del río Teaone se ve afectada por la actividad petroquímica y la del río Esmeraldas por la capta desechos domésticos e industriales (Escobar Llanos, 2002). En Santa Elena también se ve afectada la productividad debido a vertimientos de aguas residuales por la falta de alcantarillado en la provincia (Balón Ramos et al., 2021). La contaminación del agua por productos químicos industriales y aguas residuales, pueden ser tóxicos para los organismos marinos, esto afecta la disponibilidad de nutrientes que son esenciales para su desarrollo, reproducción y supervivencia (Halpern et al., 2008). Estos impactos antropogénicos podrían tener una influencia en la diversidad de especies encontradas.

El género dominante en Ecuador Continental fue *Haliclona*. Se caracteriza principalmente por su alta tolerancia a condiciones ambientales variables, como fluctuaciones de temperatura y salinidad. Esto le permite adaptarse y colonizar una amplia gama de hábitats marinos (Bell & Barnes, 2000). Este género tiene una alta tasa de crecimiento y reproducción que le facilita colonizar rápidamente los sustratos, ya que tiene la capacidad de reproducirse asexualmente mediante fragmentación, lo que le brinda una ventaja competitiva (Wulff, 2006). Pero la razón principal por la que este género es tan abundante es debido a la capacidad que tiene de producir metabolitos secundarios (alcaloides) con propiedades defensivas (Al-yousef, 2018).

Dentro de las especies identificadas en Ecuador Continental, se observa que la especie *Tedania tropicalis*, fue la dominante. Está caracterizada principalmente por su rápido crecimiento y por su capacidad para colonizar sustratos duros y poco preferidos por las esponjas (Vasconcellos et al., 2019). Puede tolerar así también, diferentes condiciones ambientales, como cambios en la salinidad, la temperatura y la luz. Pero la principal razón por la que esta especie es tan abundante es a que tiene la capacidad de reproducirse de manera asexual, produciendo clones de sí misma a partir de una sola esponja madre y esto le ayuda a colonizar áreas rápidamente. Además, tiene espículas afiladas lo que hace que los depredadores no se alimenten de ella (Carballo et al., 2014).

Diferencias entre las metodologías usadas

Con la ciencia ciudadana se recopiló datos de Ecuador Continental de los años 2003, 2008, 2014, 2017, 2019, 2020, 2021, 2022 y 2023, mientras que en el muestreo por cuadrantes se realizó desde el año 2012 hasta el 2021. En el caso de la ciencia ciudadana, el tiempo de las observaciones no fue continuo debido a que estas dependieron de la participación del público general (Shirk et al., 2012). En iNaturalist se obtuvieron 30 observaciones para Ecuador Continental en las cuales se identificaron 12 especies, mientras

que con el muestreo por cuadrantes se analizaron 107 imágenes y se identificaron 14 especies. Es posible tener un mayor número de especies registradas en una menor cantidad de registros con iNaturalist, debido a que los usuarios pueden subir observaciones de diferentes lugares y en diferentes momentos, mientras que en un muestreo por cuadrantes se seleccionan áreas específicas y se limita el número de especies encontradas únicamente a las que se encuentran dentro de los cuadrantes (Dickinson et al., 2010). Sin embargo, en el caso de los muestreos por cuadrantes, la calidad de los datos tiende a ser mejor, ya que estos son realizados por investigadores capacitados, lo que permite tener un mayor control sobre la calidad y precisión de los datos recopilados (Conrad & Hilchey, 2011). Por otro lado, con la metodología de ciencia ciudadana, se puede ampliar el alcance geográfico (Dickinson et al., 2010). En este estudio, por ejemplo, se evidencia que las observaciones no solamente se hicieron en Esmeraldas, Manabí y Santa Elena como es el caso del muestreo por cuadrantes, sino que se recopilaron datos de Guayas. Tanto la ciencia ciudadana como el muestreo por cuadrantes tienen sus ventajas y desventajas, la combinación de ambas metodologías puede ser beneficiosa, se puede aprovechar la participación ciudadana para la recopilación de datos a gran escala y el muestreo por cuadrantes para conseguir datos más precisos y detallados de las áreas de estudio definidas.

CONCLUSIONES

En conclusión, se puede decir que la clase dominante, tanto en Ecuador Continental como en el Pacífico Este Tropical, es Dermospongia. Además, los patrones de disimilitud dentro del PET se pueden ver afectados por la distancia entre las zonas geográficas. Para los registros en Ecuador Continental, diferentes factores ambientales presentes en cada una de las provincias podrían estar influenciado la ocurrencia de las especies de esponjas marinas; sin embargo, más estudios son necesarios para sacar conclusiones. Finalmente, el uso de la ciencia ciudadana es muy útil, ya que los registros con esta herramienta amplían el rango geográfico de muchas especies, como es en el caso de Ecuador Continental. Sin embargo, estos resultados deben tomarse con cautela, hasta que las especies aquí reportadas puedan ser verificadas con estudios morfológicos y /o genéticos de especímenes vivos o de referencia.

REFERENCIAS BIBLIOGRÁFICAS

- Aguilera-Díaz, M. M., Bernal-Mattos, C., & Quintero-Puentes, P. (2006). *Turismo y desarrollo en el Caribe colombiano*. Banco de la República. https://doi.org/10.32468/dtseru.79
- Al-yousef, M. A., Hanan M. (2018). Marine Sponge Alkaloids: A Source of Novel Anticancer Agents. En *Phytochemistry*. Apple Academic Press.
- Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L.,
 Sanders, N. J., Cornell, H. V., Comita, L. S., Davies, K. F., Harrison, S. P., Kraft, N. J. B., Stegen, J. C., & Swenson, N. G. (2011). Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist. *Ecology Letters*, 14(1), 19-28.
 https://doi.org/10.1111/j.1461-0248.2010.01552.x
- Balón Ramos, I. D. R., Rodríguez Moreira, D. S., Solano Verá, Y. M., & Ortiz Chimbo, K. S. (2021). Vulneranilidad de la población costera frente a la contaminación orgánica y microbiológica en Santa Elena-Ecuador, 2020. *Boletín de Malariología y Salud Ambiental*, 61(2), 337-344. https://doi.org/10.52808/bmsa.7e5.612.024
- Bell, J. J., & Barnes, D. K. A. (2000). The distribution and prevalence of sponges in relation to environmental gradients within a temperate sea lough: Inclined cliff surfaces.

 Diversity and Distributions, 6(6), 305-323. https://doi.org/10.1046/j.1472-4642.2000.00092.x
- Bell, J. J., & Smith, D. (2004). Ecology of sponge assemblages (Porifera) in the Wakatobi region, south-east Sulawesi, Indonesia: Richness and abundance. *Journal of the Marine Biological Association of the United Kingdom*, 84(3), 581-591. https://doi.org/10.1017/S0025315404009580h

- Blowes, S. A., Supp, S. R., Antão, L. H., Bates, A., Bruelheide, H., Chase, J. M., Moyes, F.,
 Magurran, A., McGill, B., Myers-Smith, I. H., Winter, M., Bjorkman, A. D., Bowler,
 D. E., Byrnes, J. E. K., Gonzalez, A., Hines, J., Isbell, F., Jones, H. P., Navarro, L.
 M., ... Dornelas, M. (2019). The geography of biodiversity change in marine and
 terrestrial assemblages. *Science*, 366(6463), 339-345.
 https://doi.org/10.1126/science.aaw1620
- Bonney, R., Cooper, C. B., Dickinson, J., Kelling, S., Phillips, T., Rosenberg, K. V., & Shirk, J. (2009). Citizen Science: A Developing Tool for Expanding Science Knowledge and Scientific Literacy. *BioScience*, *59*(11), 977-984. https://doi.org/10.1525/bio.2009.59.11.9
- Borbor-Cordova, M. J., Torres, G., Mantilla-Saltos, G., Casierra-Tomala, A., Bermúdez, J.
 R., Renteria, W., & Bayot, B. (2019). Oceanography of Harmful Algal Blooms on the
 Ecuadorian Coast (1997–2017): Integrating Remote Sensing and Biological Data.
 Frontiers in Marine Science, 6.
 https://www.frontiersin.org/articles/10.3389/fmars.2019.00013
- Carballo, J. L., Gómez, P., & Cruz-Barraza, J. A. (2014). Biodiversidad de Porifera en México. *Revista Mexicana de Biodiversidad*, 85, 143-153. https://doi.org/10.7550/rmb.32074
- Conrad, C. C., & Hilchey, K. G. (2011). A review of citizen science and community-based environmental monitoring: Issues and opportunities. *Environmental Monitoring and Assessment*, 176(1), 273-291. https://doi.org/10.1007/s10661-010-1582-5
- Cortés, J. (2015). Biodiversidad marina de Costa Rica: Filo Porifera. *Revista de Biología Tropical*, 44(2B), Article 2B.

- Cortés, J., Hal, N. V. D., & Soest, R. W. M. V. (2009). Sponges. En I. S. Wehrtmann & J. Cortés (Eds.), *Marine Biodiversity of Costa Rica, Central America* (pp. 137-142). Springer Netherlands. https://doi.org/10.1007/978-1-4020-8278-8_9
- Dayrat, B. (2005). Towards integrative taxonomy. *Biological Journal of the Linnean Society*, 85(3), 407-417. https://doi.org/10.1111/j.1095-8312.2005.00503.x
- Dickinson, J. L., Zuckerberg, B., & Bonter, D. N. (2010). Citizen Science as an Ecological Research Tool: Challenges and Benefits. *Annual Review of Ecology, Evolution, and Systematics*, 41(1), 149-172. https://doi.org/10.1146/annurev-ecolsys-102209-144636
- Doney, S. C., Ruckelshaus, M., Emmett Duffy, J., Barry, J. P., Chan, F., English, C. A.,
 Galindo, H. M., Grebmeier, J. M., Hollowed, A. B., Knowlton, N., Polovina, J.,
 Rabalais, N. N., Sydeman, W. J., & Talley, L. D. (2012). Climate Change Impacts on
 Marine Ecosystems. *Annual Review of Marine Science*, 4(1), 11-37.
 https://doi.org/10.1146/annurev-marine-041911-111611
- Escóbar Llanos, J. (2002). La contaminación de los ríos y sus efectos en las áreas costeras y el mar. CEPAL, División de Recursos Naturales e Infraestructura.
- Galapagos Species Checklist. (2023). Charles Darwin Foundation. https://www.darwinfoundation.org/en/datazone/checklist
- Gochfeld, D. J., Schloder, C., & Thacker, R. W. (2007). Sponge community structure and disease prevalence on coral reefs in Bocas del Toro, Panama.
- Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D'Agrosa, C.,
 Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., Fujita, R., Heinemann, D., Lenihan,
 H. S., Madin, E. M. P., Perry, M. T., Selig, E. R., Spalding, M., Steneck, R., &
 Watson, R. (2008). A Global Map of Human Impact on Marine Ecosystems. *Science*,
 319(5865), 948-952. https://doi.org/10.1126/science.1149345

Helmus, M. R., Bland, T. J., Williams, C. K., & Ives, A. R. (2007). Phylogenetic Measures of Biodiversity. *The American Naturalist*, *169*(3), E68-E83. https://doi.org/10.1086/511334

INOCAR. (2023). Temperatura Superficial del Mar.

https://doi.org/10.3897/zookeys.1011.54485

- https://www.inocar.mil.ec/web/index.php/productos/temperatura-superficial-del-mar Jaramillo, K. B., Cóndor-Luján, B., Longakit, B., Rodriguez, J., Thomas, O. P., McCormack, G., & Hajdu, E. (2021). New records of Demospongiae (Porifera) from Reserva Marina El Pelado (Santa Elena, Ecuador), with description of Tedania (Tedania) ecuadoriensis sp. Nov. *ZooKeys*, *1011*, 101-120.
- Johansson, M. L., Banks, M. A., Glunt, K. D., Hassel-Finnegan, H. M., & Buonaccorsi, V. P. (2008). Influence of habitat discontinuity, geographical distance, and oceanography on fine-scale population genetic structure of copper rockfish (Sebastes caurinus).

 *Molecular Ecology, 17(13), 3051-3061. https://doi.org/10.1111/j.1365-294X.2008.03814.x
- Lizarazo, N., Zea, S., Chasqui, L., & Rincón Díaz, N. (2020). Biodiversidad de esponjas en arrecifes rocosos del Chocó norte, Pacífico colombiano.

 https://aquadocs.org/handle/1834/41565
- Magurran, A. E. (2021). Measuring biological diversity. *Current Biology*, 31(19), R1174-R1177. https://doi.org/10.1016/j.cub.2021.07.049
- Magurran, A. E., & Henderson, P. A. (2003). Explaining the excess of rare species in natural species abundance distributions. *Nature*, *422*(6933), Article 6933. https://doi.org/10.1038/nature01547

- Mahtani, N. (2021, agosto 15). El Pacífico colombiano hace su agosto (más comunitario y sostenible). El País. https://elpais.com/planeta-futuro/2021-08-15/el-pacifico-colombiano-hace-su-agosto-mas-comunitario-y-sostenible.html
- Maldonado, M., Ribes, M., & van Duyl, F. C. (2012). Chapter three Nutrient Fluxes
 Through Sponges: Biology, Budgets, and Ecological Implications. En M. A. Becerro,
 M. J. Uriz, M. Maldonado, & X. Turon (Eds.), *Advances in Marine Biology* (Vol. 62, pp. 113-182). Academic Press. https://doi.org/10.1016/B978-0-12-394283-8.00003-5
- Marine Conservation Institute. (2023). *MPAtlas » Eastern Tropical Pacific Seascape*. https://old.mpatlas.org/campaign/eastern-tropical-pacific-seascape/
- Palacios, C. (2013). Distribución de coliformes fecales en el área marina de la costa ecuatoriana en las Provincias de Esmeraldas y Manabí, 2008-2013. https://aquadocs.org/handle/1834/5751
- Poloczanska, E. S., Burrows, M. T., Brown, C. J., García Molinos, J., Halpern, B. S., Hoegh-Guldberg, O., Kappel, C. V., Moore, P. J., Richardson, A. J., Schoeman, D. S., & Sydeman, W. J. (2016). Responses of Marine Organisms to Climate Change across Oceans. *Frontiers in Marine Science*, *3*. https://www.frontiersin.org/articles/10.3389/fmars.2016.00062
- Ramos Bayas, R. L. (2017). Influencia de la Corriente de Humboldt en la distribución espacial y abundancia de clorofila a en el Pacífico Ecuatorial Este [BachelorThesis, ESPOL. FIMCM: Oceanografía].

 http://www.dspace.espol.edu.ec/handle/123456789/41472
- Sheppard, C., Davy, S., Pilling, G., & Graham, N. (2017). *The Biology of Coral Reefs*.

 Oxford University Press.
- Shirk, J. L., Ballard, H. L., Wilderman, C. C., Phillips, T., Wiggins, A., Jordan, R., McCallie, E., Minarchek, M., Lewenstein, B. V., Krasny, M. E., & Bonney, R. (2012). Public

- Participation in Scientific Research: A Framework for Deliberate Design. *Ecology* and *Society*, 17(2). https://www.jstor.org/stable/26269051
- UNESCO. (2023). Reserva de Biosfera Marina Transfronteriza del Corredor Marino del Pacífico Oriental Tropical Colombia, Costa Rica, Ecuador y Panamá.

 https://www.unesco.org/es/articles/reserva-de-biosfera-marina-transfronteriza-del-corredor-marino-del-pacífico-oriental-tropical
- Valle, M., & Fuentes, M. (2014). Estudios de Caracterización del Mar Territorial

 Continental del Ecuador, Bases para lograr la zonificación marina. Estudio 4:

 Distribución y Variación de los valores de productividad primaria (fitoplacton) y

 secundaria (zooplacton), a dos profundidades, en el mar territorial y aguas interiores

 de la Plataforma Continental del Ecuador [Report]. Secretaria Técnica del Mar.

 https://aquadocs.org/handle/1834/5462
- Vasconcellos, V., Willenz, P., Ereskovsky, A., & Lanna, E. (2019). Comparative ultrastructure of the spermatogenesis of three species of Poecilosclerida (Porifera, Demospongiae). *Zoomorphology*, *138*(1), 1-12. https://doi.org/10.1007/s00435-018-0429-4
- Vellend, M. (2010). Conceptual Synthesis in Community Ecology. *The Quarterly Review of Biology*, 85(2), 183-206. https://doi.org/10.1086/652373
- Wulff, J. L. (2006). Ecological interactions of marine sponges. *Canadian Journal of Zoology*, 84(2), 146-166. https://doi.org/10.1139/z06-019
- Xavier, J. R., Cárdenas, P., Cristobo, J., Van Soest, R., & Rapp, H. T. (2015). Systematics and biodiversity of deep-sea sponges of the Atlanto-Mediterranean region. *Marine Biological Association of the United Kingdom. Journal of the Marine Biological Association of the United Kingdom*, 95(7), 1285-1286.
 https://doi.org/10.1017/S0025315415001514

ANEXO A: Base de datos de iNaturalist

No.	URL	Lugar	País	Identificación
1	https://www.inaturalist.org/observations/154413112	Carrillo, CR-GU, CR	Costa Rica	Family Phloeodictyidae
2	https://www.inaturalist.org/observations/154206854	Provincia de Guanacaste, Costa Rica	Costa Rica	Family Chalinidae
3	https://www.inaturalist.org/observations/153003659	Torres, Lara, Venezuela	Costa Rica	Morfoespecie 1
4	https://www.inaturalist.org/observations/152498321	Osa, CR-PU, CR	Costa Rica	Genus Scopalina
5	https://www.inaturalist.org/observations/145467805	Bahía Sámara, Nicoya, Guanacaste, CR	Costa Rica	Genus Spongia
6	https://www.inaturalist.org/observations/144052120	Guanacaste Province, Costa Rica	Costa Rica	Family Petrosiidae
7	https://www.inaturalist.org/observations/144037496	Golfo Dulce, Costa Rica	Costa Rica	Axinella nayaritensis
8	https://www.inaturalist.org/observations/143533603	Playa Gemelas, Aguirre, Puntarenas, CR	Costa Rica	Family Desmacellidae
9	https://www.inaturalist.org/observations/135955283	Puntarenas, CR-PU, CR	Costa Rica	Genus Dysidea
10	https://www.inaturalist.org/observations/131820694	Océano Pacífico, Puntarenas, CR	Costa Rica	Genus Mycale
11	https://www.inaturalist.org/observations/125255266	Liberia, CR-GU, CR	Costa Rica	Genus Dysidea
12	https://www.inaturalist.org/observations/125255260	Liberia, CR-GU, CR	Costa Rica	Genus Dysidea
13	https://www.inaturalist.org/observations/125170829	Carrillo, CR-GU, CR	Costa Rica	Morfoespecie 2
14	https://www.inaturalist.org/observations/125114585	Carrillo, CR-GU, CR	Costa Rica	Morfoespecie 2
15	https://www.inaturalist.org/observations/125114557	Carrillo, CR-GU, CR	Costa Rica	Class Demospongiae
16	https://www.inaturalist.org/observations/110579000	Islas Santa Catalina, Costa Rica	Costa Rica	Aplysina gerardogreeni
17	https://www.inaturalist.org/observations/109578545	Golfito, CR-PU, CR	Costa Rica	Haliclona caerulea
18	https://www.inaturalist.org/observations/109513880	Bahía Tamarindo, Tamarindo, Guanacaste, CR	Costa Rica	Haliclona cinerea
19	https://www.inaturalist.org/observations/107558789	Rincón San Josecito, Osa, Puntarenas, CR	Costa Rica	Pleraplysilla sp.
20	https://www.inaturalist.org/observations/107445669	Puntarenas Province, Costa Rica	Costa Rica	Haliclona caerulea
21	https://www.inaturalist.org/observations/107443562	Golfo Dulce, Costa Rica	Costa Rica	Aplysina chiriquiensis

22	https://www.inaturalist.org/observations/70944858	Playa Conchal, Guanacaste Province, Costa Rica	Costa Rica	Genus Mycale
23	https://www.inaturalist.org/observations/67777948	Golfito, CR-PU, CR	Costa Rica	Family Callyspongiidae
24	https://www.inaturalist.org/observations/67574675	Costa Rica	Costa Rica	Genus Lissodendoryx
25	https://www.inaturalist.org/observations/64670293	Provincia de Puntarenas, Costa Rica	Costa Rica	Family Petrosiidae
26	https://www.inaturalist.org/observations/64216913	Puntarenas Province, Costa Rica	Costa Rica	Agelas conifera
27	https://www.inaturalist.org/observations/63187559	San Juanillo	Costa Rica	Genus Haliclona
28	https://www.inaturalist.org/observations/58845962	Playa San Josecito, Provincia de Puntarenas, Golfito, Costa Rica	Costa Rica	Family Callyspongiidae
29	https://www.inaturalist.org/observations/58845824	Playa San Josecito, Provincia de Puntarenas, Golfito, Costa Rica	Costa Rica	Family Callyspongiidae
30	https://www.inaturalist.org/observations/42566248	Puntarenas Province, Costa Rica	Costa Rica	Haliclona caerulea
31	https://www.inaturalist.org/observations/9871257	Playa Grande, Guanacaste Province, Costa Rica	Costa Rica	Family Halichondrida
32	https://www.inaturalist.org/observations/9816222	Guanacaste Province, Costa Rica	Costa Rica	Genus Haliclona
33	https://www.inaturalist.org/observations/154125809	Coiba NP, Coibita Reef	Panamá	Aplysina chiriquiensis
34	https://www.inaturalist.org/observations/153815713	XF28+C97, Panamá	Panamá	Family Aplysinidae
35	https://www.inaturalist.org/observations/152773257	Montijo District, Panama	Panamá	Aplysina gerardogreeni
36	https://www.inaturalist.org/observations/150412166	Montijo District, Panama	Panamá	Mycale cecilia
37	https://www.inaturalist.org/observations/144994111	Montijo District, Panama	Panamá	Haliclona caerulea
38	https://www.inaturalist.org/observations/143230942	Coiba N.P. Isla Cocos Sur	Panamá	Haliclona caerulea
39	https://www.inaturalist.org/observations/143230898	Coiba N.P. Isla Cocos Sur	Panamá	Haliclona caerulea
40	https://www.inaturalist.org/observations/143210847	Golfo de Chiriquí, Panamá	Panamá	Subclass Heteroscleromorpha
41	https://www.inaturalist.org/observations/134754950	Bahía de Panamá, Panama City, Panamá, PA	Panamá	Genus Haliclona
42	https://www.inaturalist.org/observations/134754928	Bahía de Panamá, Panama City, Panamá, PA	Panamá	Genus Tedania
43	https://www.inaturalist.org/observations/132058478	Pacific Ocean, Veraguas, PA	Panamá	Mycale cecilia
44	https://www.inaturalist.org/observations/131949279	Soná, PA-VR, PA	Panamá	Genus Halisarca
45	https://www.inaturalist.org/observations/131886436	Veraguas, PA	Panamá	Morfoespecie 3
46	https://www.inaturalist.org/observations/131818836	Pacific Ocean, Veraguas, PA	Panamá	Mycale cecilia
47	https://www.inaturalist.org/observations/131818394	Pacific Ocean, Veraguas, PA	Panamá	Chelonaplysilla violacea

48	https://www.inaturalist.org/observations/131748485	Coiba N.P., Isla machete	Panamá	Morfoespecie 4
49	https://www.inaturalist.org/observations/130529552	Bahía de Panamá, Panamá, PA	Panamá	Genus Haliclona
50	https://www.inaturalist.org/observations/128486832	Montijo District, Panama	Panamá	Aplysina gerardogreeni
51	https://www.inaturalist.org/observations/128486825	Montijo District, Panama	Panamá	Scopalina cribrosa
52	https://www.inaturalist.org/observations/128486824	Montijo District, Panama	Panamá	Aplysina chiriquiensis
53	https://www.inaturalist.org/observations/128486820	Montijo District, Panama	Panamá	Aplysina gerardogreeni
54	https://www.inaturalist.org/observations/128486818	Montijo District, Panama	Panamá	Aplysina chiriquiensis
55	https://www.inaturalist.org/observations/128486817	Montijo District, Panama	Panamá	Aplysina chiriquiensis
56	https://www.inaturalist.org/observations/128486808	Montijo District, Panama	Panamá	Morfoespecie 5
57	https://www.inaturalist.org/observations/128486805	Montijo District, Panama	Panamá	Genus Scopalina
58	https://www.inaturalist.org/observations/128486760	Montijo District, Panama	Panamá	Aplysina chiriquiensis
59	https://www.inaturalist.org/observations/128224496	Soná District, Panama	Panamá	Aplysina gerardogreeni
60	https://www.inaturalist.org/observations/128224455	Soná District, Panama	Panamá	Mycale magnirhaphidifera
61	https://www.inaturalist.org/observations/128224409	Soná District, Panama	Panamá	Aplysina gerardogreeni
62	https://www.inaturalist.org/observations/128224405	Soná District, Panama	Panamá	Aplysina chiriquiensis
63	https://www.inaturalist.org/observations/128224399	Soná District, Panama	Panamá	Aplysina chiriquiensis
64	https://www.inaturalist.org/observations/128224393	Soná District, Panama	Panamá	Aplysina gerardogreeni
65	https://www.inaturalist.org/observations/128224386	Soná District, Panama	Panamá	Genus Scopalina
66	https://www.inaturalist.org/observations/128224383	Soná District, Panama	Panamá	Genus Scopalina
67	https://www.inaturalist.org/observations/127792095	Montijo District, Panama	Panamá	Haliclona caerulea
68	https://www.inaturalist.org/observations/127792091	Montijo District, Panama	Panamá	Morfoespecie 6
69	https://www.inaturalist.org/observations/127792086	Montijo District, Panama	Panamá	Morfoespecie 4
70	https://www.inaturalist.org/observations/127792061	Montijo District, Panama	Panamá	Haliclona caerulea
71	https://www.inaturalist.org/observations/104034907	Bahía de Panamá, Panama City, Provincia de Panamá, PA	Panamá	Morfoespecie 7
72	https://www.inaturalist.org/observations/104034866	Bahía de Panamá, Panama City, Provincia de Panamá, PA	Panamá	Genus Haliclona
73	https://www.inaturalist.org/observations/66258535	Paraiso, Panamá	Panamá	Haliclona caerulea

74	https://www.inaturalist.org/observations/66163858	Las Tablas, Los Santos, Panama	Panamá	Genus Haliclona
75	https://www.inaturalist.org/observations/65828351	San Jose Island, Panama	Panamá	Morfoespecie 8
76	https://www.inaturalist.org/observations/65665614	Rio Hato, Panama	Panamá	Genus Scopalina
77	https://www.inaturalist.org/observations/65665583	Rio Hato, Panama	Panamá	Haliclona caerulea
78	https://www.inaturalist.org/observations/65665581	Rio Hato, Panama	Panamá	Haliclona caerulea
79	https://www.inaturalist.org/observations/65665518	Rio Hato, Panama	Panamá	Tedania tropicalis
80	https://www.inaturalist.org/observations/57442240	Coiba, Montijo, Veraguas, Panama	Panamá	Aplysina gerardogreeni
81	https://www.inaturalist.org/observations/57437796	Montijo District, Panama	Panamá	Aplysina chiriquiensis
82	https://www.inaturalist.org/observations/57437788	Montijo District, Panama	Panamá	Aplysina chiriquiensis
83	https://www.inaturalist.org/observations/57433995	Coiba, Montijo, Veraguas, Panama	Panamá	Aplysina chiriquiensis
84	https://www.inaturalist.org/observations/42433313	Coiba, Montijo, Veraguas, Panama	Panamá	Aplysina chiriquiensis
85	https://www.inaturalist.org/observations/42433296	Coiba, Montijo, Veraguas, Panama	Panamá	Aplysina chiriquiensis
86	https://www.inaturalist.org/observations/38593201	Isla Tintorera (Caleta) Montijo District, Panama	Panamá	Aplysina chiriquiensis
87	https://www.inaturalist.org/observations/23720686	Isla Tintorera (Caleta) Montijo District, Panama	Panamá	Aplysina chiriquiensis
88	https://www.inaturalist.org/observations/12834952	Bahía Solano, Chocó, Colômbia	Colombia	Genus Clathria
89	https://www.inaturalist.org/observations/154625167	Santiago Island, Ecuador	Ecuador	Genus Haliclona
90	https://www.inaturalist.org/observations/149682776	Baltra Island, Ecuador	Ecuador	Mycale parishii
91	https://www.inaturalist.org/observations/149681451	Floreana Island, Ecuador	Ecuador	Genus Higginsia
92	https://www.inaturalist.org/observations/148696715	Sombrero Chino, Ecuador	Ecuador	Tedania tropicalis
93	https://www.inaturalist.org/observations/148405874	North Seymour Island, Ecuador	Ecuador	Genus Haliclona
94	https://www.inaturalist.org/observations/148405865	Daphne Minor, Ecuador	Ecuador	Clathrina andreusi
95	https://www.inaturalist.org/observations/147654647	Puerto Lopez, Ecuador	Ecuador	Genus Chalinula
96	https://www.inaturalist.org/observations/145802971	Yacht Club, Salinas, Ecuador	Ecuador	Genus Haliclona
97	https://www.inaturalist.org/observations/145418994	Puerto Ayora, Ecuador	Ecuador	Haliclona roslynae
98	https://www.inaturalist.org/observations/144863054	Isla Floreana, QHFF+VWP, Puerto Flores, Ecuador	Ecuador	Tedania tropicalis
99	https://www.inaturalist.org/observations/143914658	Wolf Island, Ecuador	Ecuador	Genus Tethya
100	https://www.inaturalist.org/observations/140923070	South Pacific Ocean, Ecuador	Ecuador	Cliona chilensis
		<u> </u>		

101	https://www.inaturalist.org/observations/139638421	Galápagos Islands, Ecuador	Ecuador	Genus Hemimycale
102	https://www.inaturalist.org/observations/132411386	San Cristobal, Ecuador	Ecuador	Prosuberites vansoesti
103	https://www.inaturalist.org/observations/132343028	Academy Bay, Ecuador	Ecuador	Morfoespecie 8
104	https://www.inaturalist.org/observations/132056312	Darwin Island, Ecuador	Ecuador	Tedania tropicalis
105	https://www.inaturalist.org/observations/131257392	Cabo Douglas, Ecuador	Ecuador	Dragmacidon hendersoni
106	https://www.inaturalist.org/observations/131257390	Cabo Douglas, Ecuador	Ecuador	Tethya sorbetus
107	https://www.inaturalist.org/observations/131229973	Darwin Island, Ecuador	Ecuador	Aplysina revillagigedi
108	https://www.inaturalist.org/observations/131229970	Darwin Island, Ecuador	Ecuador	Aplysilla sulfurea
109	https://www.inaturalist.org/observations/131229966	Darwin Island, Ecuador	Ecuador	Genus Clathrina
110	https://www.inaturalist.org/observations/131229965	Darwin Island, Ecuador	Ecuador	Suberea esmeralda
111	https://www.inaturalist.org/observations/131214719	Santiago Island, Ecuador	Ecuador	Genus Haliclona
112	https://www.inaturalist.org/observations/131142096	Seymour, Ecuador	Ecuador	Haliclona dianae
113	https://www.inaturalist.org/observations/129772118	El Progreso, Ecuador	Ecuador	Cliona celata
114	https://www.inaturalist.org/observations/129766688	Parque Nacional Galápagos, Isabela, Galapagos, EC	Ecuador	Tedania tropicalis
115	https://www.inaturalist.org/observations/117171624	Las Tintoreras Islet, Ecuador	Ecuador	Genus Amphimedon
116	https://www.inaturalist.org/observations/108754217	Guayaquil, Ecuador	Ecuador	Genus Clathria
117	https://www.inaturalist.org/observations/108396431	Isabela, Ecuador	Ecuador	Cliona chilensis
118	https://www.inaturalist.org/observations/103163528	Guayaquil, EC-GU, EC	Ecuador	Genus Halichondria
119	https://www.inaturalist.org/observations/102771138	Puerto López, Ecuador	Ecuador	Genus Haliclona
120	https://www.inaturalist.org/observations/102697557	Ensenada de Salango, Jipijapa, Manabí, EC	Ecuador	Genus Haliclona
121	https://www.inaturalist.org/observations/102408916	Ensenada de Salango, Jipijapa, Manabí, EC	Ecuador	Genus Haliclona
122	https://www.inaturalist.org/observations/100918120	Wolf Island, Ecuador	Ecuador	Aplysina gerardogreeni
123	https://www.inaturalist.org/observations/99332012	San Cristóbal, Galápagos, Ecuador	Ecuador	Cinachyrella solis
124	https://www.inaturalist.org/observations/98928000	Isla Salango, Ecuador	Ecuador	Aplysina gerardogreeni
125	https://www.inaturalist.org/observations/95323758	Isabela, Parque Nacional Galápagos, Galápagos, Ecuador	Ecuador	Tedania tropicalis
126	https://www.inaturalist.org/observations/91070469	Bahía Academia, Santa Cruz, Galapagos, EC	Ecuador	Haliclona caerulea

127	https://www.inaturalist.org/observations/89245752	Salango, Ecuador	Ecuador	Genus Chalinula
128	https://www.inaturalist.org/observations/70809574	Isabela, Ecuador	Ecuador	Haliclona caerulea
129	https://www.inaturalist.org/observations/70707855	Santa Cruz, EC-GA, EC	Ecuador	Genus Prosuberites
130	https://www.inaturalist.org/observations/70545429	San Cristobal, Ecuador	Ecuador	Mycale cecilia
131	https://www.inaturalist.org/observations/70545428	San Cristobal, Ecuador	Ecuador	Mycale cecilia
132	https://www.inaturalist.org/observations/70545427	San Cristobal, Ecuador	Ecuador	Tedania tropicalis
133	https://www.inaturalist.org/observations/70545426	San Cristobal, Ecuador	Ecuador	Prosuberites vansoesti
134	https://www.inaturalist.org/observations/66140076	San Lorenzo, Manta, Manabí, Ecuador	Ecuador	Aplysina gerardogreeni
135	https://www.inaturalist.org/observations/65176207	El Pelado, Reserva Marina, Santa Elena, Ecuador	Ecuador	Aplysina gerardogreeni
136	https://www.inaturalist.org/observations/64679150	Puerto Lopez, Ecuador	Ecuador	Morfoespecie 9
137	https://www.inaturalist.org/observations/62955072	Playa 3 cruces, Unnamed Road, Salinas, Ecuador	Ecuador	Genus Haliclona
138	https://www.inaturalist.org/observations/61241163	Guayaquil, EC-GU, EC	Ecuador	Morfoespecie 10
139	https://www.inaturalist.org/observations/50600665	Daphne Major, Ecuador	Ecuador	Hemimycale harlequinus
140	https://www.inaturalist.org/observations/50201159	Bartolomé Island, Ecuador	Ecuador	Tedania tropicalis
141	https://www.inaturalist.org/observations/46974944	Ecuador	Ecuador	Haliclona tubifera
142	https://www.inaturalist.org/observations/40435624	South Pacific Ocean	Ecuador	Higgnisia johannae
143	https://www.inaturalist.org/observations/37890400	South Pacific Ocean, Jipijapa, Manabí, EC	Ecuador	Haliclona cinerea
144	https://www.inaturalist.org/observations/37786453	Puerto López, Parque Nacional Machalilla, EC-MN, EC	Ecuador	Haliclona cinerea
145	https://www.inaturalist.org/observations/37786448	Puerto López, Parque Nacional Machalilla, EC-MN, EC	Ecuador	Genus Mycale
146	https://www.inaturalist.org/observations/37785511	Puerto Lopez, Ecuador	Ecuador	Haliclona cinerea
147	https://www.inaturalist.org/observations/36310699	Fernandina, Isabela, Galápagos, Ecuador	Ecuador	Hymeniacidon perlevis
148	https://www.inaturalist.org/observations/34876798	Anconcito, Santa Elena, Ecuador	Ecuador	Genus Haliclona
149	https://www.inaturalist.org/observations/34874519	Puerto Villamil, Galápagos, Ecuador	Ecuador	Haliclona caerulea
150	https://www.inaturalist.org/observations/34672357	León Dormido, San Cristóbal, Galápagos, Ecuador	Ecuador	Aplysilla sulfurea
151	https://www.inaturalist.org/observations/34543112	Caimito, Muisne, Ecuador	Ecuador	Chondrilla verrucosa

152	https://www.inaturalist.org/observations/34402288	San Cristóbal, Parque Nacional Galápagos, EC-GA, EC	Ecuador	Genus Prosuberites
153	https://www.inaturalist.org/observations/32788968	Ecuador	Ecuador	Chelonaplysilla violacea
154	https://www.inaturalist.org/observations/32197844	Machalilla, Ecuador	Ecuador	Haliclona cinerea
155	https://www.inaturalist.org/observations/20947088	Avenida Guayaquil #6, Machalilla, Ecuador	Ecuador	Genus Haliclona
156	https://www.inaturalist.org/observations/20243567	Isabela, Parque Nacional Galápagos, Galápagos, Ecuador	Ecuador	Genus Hymeniacidon
157	https://www.inaturalist.org/observations/20088574	Santa Cruz, Galápagos, Ecuador	Ecuador	Aplysilla rosea
158	https://www.inaturalist.org/observations/20088568	Puerto Ayora, Ecuador	Ecuador	Chondrosia chucalla
159	https://www.inaturalist.org/observations/20088561	Santa Cruz, Galápagos, Ecuador	Ecuador	Clathria stellata
160	https://www.inaturalist.org/observations/20088554	Santa Cruz, Galápagos, Ecuador	Ecuador	Penares angeli
161	https://www.inaturalist.org/observations/20088551	Santa Cruz, Galápagos, Ecuador	Ecuador	Haliclona roslynae
162	https://www.inaturalist.org/observations/20086107	Santa Cruz, Galápagos, Ecuador	Ecuador	Higginsia johannae
163	https://www.inaturalist.org/observations/19968907	la Rinconada Ecuador	Ecuador	Haliclona cinerea
164	https://www.inaturalist.org/observations/19956189	Parque Nacional Machalilla, Puerto López, Manabi, Ecuador	Ecuador	Genus Dragmacidon
165	https://www.inaturalist.org/observations/19956177	Parque Nacional Machalilla, Puerto López, Manabi, Ecuador	Ecuador	Haliclona cinerea
166	https://www.inaturalist.org/observations/19956165	Parque Nacional Machalilla, Puerto López, Manabi, Ecuador	Ecuador	Genus Haliclona
167	https://www.inaturalist.org/observations/19937157	Santa Cruz, Galápagos, Ecuador	Ecuador	Aplysilla rosea
168	https://www.inaturalist.org/observations/19936767	Santa Cruz, Galápagos, Ecuador	Ecuador	Tethya annona
169	https://www.inaturalist.org/observations/19936249	Santa Cruz, EC-GA, EC	Ecuador	Morfoespecie 11
170	https://www.inaturalist.org/observations/19932227	Santa Cruz, Parque Nacional Galápagos, Galápagos, Ecuador	Ecuador	Haliclona caerulea
171	https://www.inaturalist.org/observations/17880665	Corona del Diablo, Floreana, Galapagos Islands, Ecuador	Ecuador	Morfoespecie 12
172	https://www.inaturalist.org/observations/16905524	Isabela, Parque Nacional Galápagos, Galápagos, Ecuador	Ecuador	Genus Haliclona
173	https://www.inaturalist.org/observations/16905523	Isabela, Parque Nacional Galápagos, Galápagos, Ecuador	Ecuador	Genus Haliclona
174	https://www.inaturalist.org/observations/11135490	La Rinconada, Ecuador	Ecuador	Haliclona cinerea

175	https://www.inaturalist.org/observations/10086328	Puerto Lopez, Ecuador	Ecuador	Genus Haliclona
176	https://www.inaturalist.org/observations/8039947	Playa Escondida, Esmeraldas Province, Ecuador.	Ecuador	Genus Higginsia

ANEXO B: Base de Datos del muestreo de Ecuador Continental

No.	Provincia	Sitio	Código Foto	Identificación
1	Esmeraldas	Horno de Pan	IMG_1963	Aplysilla cf. sulfurea
2	Esmeraldas	Horno de Pan	IMG_1952	Mycale (Carmia) cecilia
3	Esmeraldas	Horno de Pan	IMG_1951	Tedania (Tedania) tropicalis
4	Esmeraldas	Horno de Pan	IMG_1945	Mycale (carmia) cecilia
5	Esmeraldas	Horno de Pan	IMG_1945	Tedania (Tedania) tropicalis
6	Esmeraldas	Horno de Pan	IMG_1935	Haliclona caerulea
7	Esmeraldas	Horno de Pan	IMG_1935	Haliclona sp.
8	Esmeraldas	Horno de Pan	IMG_1934	Chalinula cf. molitba
9	Esmeraldas	Horno de Pan	IMG_1923	Mycale (Carmia) cecilia
10	Esmeraldas	Horno de Pan	IMG_1923	Aplysilla cf. sulfurea
11	Esmeraldas	Horno de Pan	IMG_1918	Mycale (Carmia) cecilia
12	Esmeraldas	Horno de Pan	IMG_1916	Mycale (Carmia) cecilia
13	Esmeraldas	Horno de Pan	IMG_1916	Tedania (Tedania) tropicalis
14	Esmeraldas	Horno de Pan	IMG_1915	Aplysilla cf. sulfurea
15	Esmeraldas	Horno de Pan	IMG_1914	Haliclona caerulea
16	Esmeraldas	Horno de Pan	IMG_1907	Mycale (carmia) cecilia
17	Esmeraldas	Horno de Pan	IMG_1907	Tedania (Tedania) tropicalis
18	Esmeraldas	Tortuga	IMG_1968b	Haliclona caerulea
19	Esmeraldas	Tortuga	IMG_1950b	Tedania (Tedania) ecuadoriensis
20	Esmeraldas	Tortuga	IMG_1939b	Morfoespecie 1
21	Manabí	Salango	DSCN2836	Tedania (Tedania) tropicalis
22	Manabí	Salango	DSCN2835	Tedania (Tedania) tropicalis
23	Manabí	Salango	DSCN2831	Morfoespecie 2
24	Manabí	Salango	DSCN2812	Haliclona sp.
25	Manabí	Salango	DSCN2758	Tedania (Tedania) tropicalis
26	Manabí	Salango	DSCN2749	Morfoespecie 3
27	Manabí	Salango	DSCN2747	Hemimycale sp.
28	Manabí	Salango	DSCN2745	Hemimycale sp.
29	Manabí	Salango	DSCN2741	Morfoespecie 4
30	Manabí	Palo Santo	DSCN2573	Chelonaplysilla violacea
31	Manabí	Palo Santo	DSCN2566	Morfoespecie 5
32	Manabí	Palo Santo	DSCN2560	Morfoespecie 5
33	Manabí	Palo Santo	DSCN2557b	Chelonaplysilla violacea
34	Manabí	Palo Santo	DSCN2555	Morfoespecie 6
35	Manabí	Palo Santo	DSCN2554b	Morfoespecie 6
36	Manabí	Palo Santo	DSCN2530	Morfoespecie 6

37	Manabí	Palo Santo	DSCN2346b	Tedania (Tedania) tropicalis
38	Manabí	Pacoche	C4	Haliclona sp.
39	Manabí	Pacoche	C2	Morfoespecie 7
40	Manabí	Los Frailes	IMG_2812	Morfoespecie 7
41	Manabí	Los Frailes	IMG_2810	Morfoespecie 7
42	Manabí	Los Frailes	DSCN4252	Chalinula cf. molitba
43	Manabí	Intermareal Sucre	DSCN4381	Tedania (Tedania) tropicalis
44	Manabí	Salango parcela	DSCN9934	Haliclona sp.
45	Manabí	Salango parcela	DSCN9910	Haliclona sp.
46	Manabí	Salango parcela	DSCN9902	Haliclona sp.
47	Manabí	Salango parcela	DSCN9900	Haliclona sp.
48	Manabí	Salango parcela	DSCN9887	Haliclona sp.
49	Manabí	Salango parcela	DSCN9885	Haliclona caerulea
50	Manabí	Salango parcela	DSCN9882	Hemimycale sp.
51	Manabí	Salango parcela	DSCN9875	Morfoespecie 8
52	Manabí	Salango parcela	DSCN9870	Haliclona sp.
53	Manabí	Salango parcela	DSCN9869	Haliclona sp.
54	Manabí	Salango parcela	DSCN9859	Haliclona sp.
55	Manabí	Salango parcela	DSCN9857	Haliclona sp.
56	Manabí	El matal punta venado	c40a	Haliclona caerulea
57	Manabí	El matal punta venado	c20d	Hemimycale sp.
58	Manabí	El matal punta venado	c20d	Haliclona caerulea
59	Manabí	El matal punta venado	c20c	Haliclona caerulea
60	Manabí	El matal punta venado	c15c	Haliclona caerulea
61	Manabí	El matal punta venado	c15	Haliclona caerulea
62	Manabí	El matal canoa	C20d	Haliclona caerulea
63	Manabí	Cabo pasado	DSCN0416	Tedania (Tedania) ecuadoriensis
64	Manabí	Cabo pasado	DSCN0410	Tedania (Tedania) ecuadoriensis
65	Manabí	Cabo pasado	DSCN0408	Tedania (Tedania) ecuadoriensis
66	Manabí	Ayampe	DSC00179	Chalinula cf. molitba
67	Santa Elena	Mar Bravo	DSCN3316	Tethya sp.
68	Santa Elena	Mar Bravo	DSCN3312	Haliclona sp.
69	Santa Elena	Mar Bravo	DSCN3311b	Haliclona sp.
70	Santa Elena	Mar Bravo	DSCN3244	Haliclona cf. spuma
71	Santa Elena	Mar Bravo	DSCN3244 (2b)	Haliclona cf. spuma
72	Santa Elena	Mar Bravo	DSCN3207	Aplysilla cf. sulfurea
73	Santa Elena	Rocas frente a caseta	DSCN9785	Haliclona cinerea
74	Santa Elena	Rocas frente a caseta	DSCN9785 (2)	Haliclona cinerea
75	Santa Elena	Rocas frente a caseta	DSCN9784	Morfoespecie 9
76	Santa Elena	Rocas frente a caseta	DSCN9770	Tedania (Tedania) tropicalis
77	Santa Elena	Rocas frente a caseta	DSCN9769	Tedania (Tedania) tropicalis

70	C 4 - E1	Daniel Carrie	DCCN07(0 (0)	T 1 . (T 1 .)
78	Santa Elena	Rocas frente a caseta	DSCN9769 (2)	Tedania (Tedania) tropicalis
79	Santa Elena	Rocas frente a caseta	DSCN9768	Tedania (Tedania) tropicalis
80	Santa Elena	Rocas frente a caseta	DSCN9768 (2)	Tedania (Tedania) tropicalis
81	Santa Elena	Rocas frente a caseta	DSCN9713	Haliclona sp.
82	Santa Elena	Rocas frente a caseta	DSCN9711	Haliclona sp.
83	Santa Elena	Rocas frente a caseta	DSCN9709	Haliclona sp.
84	Santa Elena	Gigima	DSCN9818	Aplysilla cf. sulfurea
85	Santa Elena	Gigima	DSCN9804	Tedania (Tedania) ecuadoriensis
86	Santa Elena	Gigima	DSCN9803	Tedania (Tedania) ecuadoriensis
87	Santa Elena	Gigima	DSCN9802	Tedania (Tedania) ecuadoriensis
88	Santa Elena	Gigima	DSCN9801	Tedania (Tedania) ecuadoriensis
89	Santa Elena	Gigima	DSCN9786	Tedania (Tedania) ecuadoriensis
90	Santa Elena	Bajo ballena	C2 50	Haliclona sp.
91	Santa Elena	Guarro	IMG_0752	Morfoespecie 10
92	Santa Elena	El Pelado	IMG_0253	Aplysina chiriquiensis
93	Santa Elena	El Pelado	IMG_0253	Aplysina chiriquiensis
94	Santa Elena	El Pelado	IMG_0249	Mycale (Carmia) cecilia
95	Santa Elena	El Pelado	IMG_0246	Morfoespecie 9
96	Santa Elena	El Pelado	IMG_0220	Chondrilla verrucosa
97	Santa Elena	El Pelado	IMG_0216	Tedania (Tedania) ecuadoriensis
98	Santa Elena	El Pelado	IMG_0210	Haliclona caerulea
99	Santa Elena	El Pelado	IMG_0200	Haliclona caerulea
100	Santa Elena	El Pelado	IMG_0197	Hemimycale sp.
101	Santa Elena	El Pelado	IMG_0196	Hemimycale sp.
102	Santa Elena	Bajo Aguas El cope	IMG_3737	Haliclona cinerea
103	Santa Elena	Bajo Aguas El cope	DSCN1392b	Mycale (Carmia) cecilia
104	Santa Elena	Bajo Aguas El cope	DSCN1369b	Mycale (Carmia) cecilia
105	Santa Elena	Bajo Aguas El cope	DSCN1205	Aplysilla cf. sulfurea
106	Santa Elena	Bajo Copé	Copé Manta	Chondrilla verrucosa
107	Santa Elena	Bajo Copé	Orange sponge fer 2	Tedania (Tedania) ecuadoriensis