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RESUMEN

Las aproximaciones convencionales al análisis de inferencia causal como el método de
Diferencia-en-Diferencias (DiD) son susceptibles a sufrir de sesgo debido a variabilidad no
observada en los datos, por ejemplo error de medida. Por lo tanto la estimación DiD puede
sugerir una inferencia sesgada del efecto generado por un shock exógeno o una intervención en
una variable de interés. En el presente artı́culo, datos de consumo son simulados para seguir una
situación en la que a un subconjunto aleatorio de una población recibe un shock exógeno a su
demanda por un determinado bien en su canasta de consumo, en cierto momento en el tiempo.
Además, los datos son simulados para sufrir de error de medida. La metodologı́a aplicada en
este artı́culo, recuperada de Aguiar & Kashaev (2020), provee de un marco de evaluación para
probar el efecto causal de una situación de este tipo en la composición de la canasta de los
hogares. Dada la naturaleza estructural de la metodologı́a, la evaluación del cambio en las
preferencias de los hogares identifica un conjunto que contiene el Efecto Promedio sobre los
Tratados (ATT). Esta estimación es robusta a la existencia de error de medida, cuya correción
es mostrada en contraste con el sesgo implicado por una estimación DiD convencional de forma
reducida.

Palabras clave: Microeconomı́a, Preferencias Reveladas, Estimación Estructural, Infer-
encia Causal, Identificación de conjunto, Diferencia en Diferencias, Metodologı́a Econométrica.
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ABSTRACT

Conventional approaches to causal inference analysis, such as the Difference-in-Differences
method (DiD), are susceptible to suffer from bias due to unobserved measurement error in the
data, thus biasing the inference of the effect from a given shock or intervention over a variable
of interest. In this paper, consumption data is simulated to follow a situation in which a subset
of a population is randomly assigned an exogenous shock to their demand for a given good in
their consumption bundle at some moment of time, while suffering from measurement error.
The methodology applied, recovered from Aguiar & Kashaev (2020) provides a framework for
testing the causal effect of any such situation in the households’ bundle of consumption, lead-
ing, given the structural nature of this methodology, to testing the change in the structure of the
households’ preferences and identifying an Average Treatment Effect on the Treated (ATT) set.
In contrast to the bias attained by a conventional DiD reduced-form estimation, the proposed
structural estimation of this effect accounts for existing unobserved measurement error in the
data.

Keywords: Microeconomics, Revealed Preferences, Structural Estimation, Causal Inference,
Set-Identification, Difference-in-Differences, Econometric Methodology.
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1 Introduction

What is the causal effect of an exogenous shock hitting a population’s demand for a given

good on their consumption bundle composition? While some works in the development eco-

nomics literature have tackled the effect of such kind of situations, existent approaches have

been mainly based on exploding reduced-form specifications based on conventional causal in-

ference methods (Angelucci & De Giorgi, 2009; Cunha, De Giorgi, & Jayachandran, 2019;

O. Attanasio et al., 2010; Oosterbeek, Ponce, & Schady, 2008).

One standard approach consists in calculating the change in the demand share of a given

good in the consumption bundle of a population with respect to full bundle expenditure, via a

reduced form specification. These conventional approaches to causal testing in consumption

data are vulnerable to suffering from unobserved measurement error, thus biasing the estimated

effect and potentially distorting the inferred magnitude of any such effect. This paper presents a

framework for estimating causal Average Treatment effects on the Treated (ATT) on a popula-

tion for the specific case of the change in the consumption bundle of a population facing exoge-

nous shocks. This work introduces the structural revealed preference framework, in the fashion

of Aguiar & Kashaev (2020), to a parametric Cobb-Douglas utility function. Importantly, this

approach, dislike a reduced form estimations allows to account for unobserved randomness in

the data (e.g., measurement error) while making results interpretable under the basis of a change

in the structure of preferences of a population.

A data generating process (DGP) is simulated to portray a population in the following sit-

uation: Decision-Makers (DM) maximize their individual utility subject to a budget constraint

at each period of time for T periods. At a given moment, a positive random exogenous shock

hits the demand of a random subset of this population. This effect on the observed consump-

tion shares for each good of the DM’s bundle can be causally estimated by a reduced-form

Difference-in-Differences (DiD) approach. However, the DGP is induced to contain unob-
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served randomness, thus portraying a phenomenon observed in real data (Bound, Brown, &

Mathiowetz, 2001). This issue is solved by structurally estimating this causal effect via a sys-

tem of moment conditions on the structural model that accounts for unobserved randomness in

the data. In this case, this takes the form of measurement error, for which a single, centering as-

sumption is considered. It is later shown that, while the reduced-form DiD estimation is biased,

the structural model allows for the inference of an identified set that asymptotically matches the

effect yielded by the reduced-form ATT in the “unobserved” real data without measurement er-

ror. In other words, by properly modeling the centered measurement error’s moment condition

in our model, we can infer an asymptotically unbiased causal estimator despite data suffering

from measurement error.

This strategy explodes recent methodological developments in the Revealed Preferences

(RP) literature. It aims, not only to causally test the change of the observed consumption bun-

dle of a population in the face of an exogenous shock but to statistically test the preference

structure evolution of the treatment group over multiple time periods and for a given menu of

consumption goods. Our approach is parametric and provides a structural formulation to esti-

mate the interest parameter, using the moment conditions approach and the robustness of the

method provided by Aguiar & Kashaev (2020). This testing scheme is made operational via

an algorithm designed to deal with multivariate conditional distributions over latent vectors.

The latter is implemented by the Entropic Latent Variable Integration via Simulation (ELVIS)

method developed by Schennach (2014) over the space of moment conditions.

This paper’s structure is the following. Section 2 presents the model environment. Section

3 presents the causal inference procedure provided by a conventional Difference-in-Differences

method and discusses the introduction of measurement error in the data. Section 4 builds on

the elements presented in Section 2 to provide an alternative causal estimation that accounts for

measurement error using a structural framework. Section 5 provides simulation results. Finally,

section 6 discusses the final remarks.
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1.1 Relation to the literature

By combining causal intervention evaluation and stochastic revealed preferences in the pre-

science of measurement error this study contributes to the economics literature by providing

a method to disentangle causal effects that will otherwise be biased. With regards to causal

intervention evaluation, this paper relates to the evaluation of either policy interventions or ex-

ogenous shocks on the consumption bundle composition of households in a given population.

Some contributions in this direction include Angelucci & De Giorgi (2009), Cunha et al. (2019),

O. Attanasio et al. (2010), and Oosterbeek et al. (2008) who apply mostly reduced-form causal

inference techniques.

The second area for which this paper is relevant is the set of potential applications pro-

vided by stochastic revealed preference (RP) analysis. Recent theoretical developments have

embarked into disentangling forms of measuring the fitness of a given set of individual con-

sumption decisions into the traditional Utility Maximization Theory (UMT) and its deviations.

These approaches have used structural, non-parametric estimation methods to test rationaliz-

ability in the data. Consistency with the classical Exponential Discounting (ED) model for

intertemporal consumption has been tested as well.

Intending to test rationalizability non-parametrically in an RP context, Kitamura & Stoye

(2018) used a testing method built on a model based on a linear program over ’budget patches’.

Others, such as Aguiar & Kashaev (2020) applied such testing in the context of Afriat inequal-

ities, and Demuynck & Potoms (2022) applied a column-generation approach and tools from

convex analysis. Kashaev, Gauthier, & Aguiar (2023) provide a further innovation in which a

flexible, stochastic, and dynamic approach to RP can handle serial correlation and cross-section

heterogeneity in preferences.

While most of these approaches have been non-parametric, we innovate in providing a
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practical application of such framework in a parametric environment that builds upon the em-

pirical consumption bundle composition of households. This applied approach sums to relevant

contributions due to O. P. Attanasio, Meghir, & Santiago (2012); Todd & Wolpin (2006). Other

works in the literature, such as Deb, Kitamura, Quah, & Stoye (2023), analyze welfare con-

sequences via preferences for prices. Adams (2020) alike develop a method to rationalize on

consumption predictions, pushing the revealed preference literature to address the prediction of

rational demands over a set of new budgets.

Our work builds upon the work of Aguiar & Kashaev (2020), particularly by formulating

the testing procedure that takes moment conditions relying on a model-driven “first order condi-

tions approach”. Despite the specific form of the moment conditions, our method outperforms

the Difference-in-Differences reduced form specification when attempting to find the causal

effect of a policy program in the presence of measurement error because we are able to pro-

vide a narrower set that asymptotically approximates the true effect. As long as the model can

be expressed in the form of moment conditions1, this study provides a procedure to correctly

evaluate policy in settings where the data suffers from measurement error and other forms of

unobserved randomness. Further work will most likely apply this method to Conditional Cash

Transfer data in Mexico and Ecuador, exploiting the work of O. Attanasio & Pastorino (2020);

Schady, Araujo, Peña, & López-Calva (2008); Oosterbeek et al. (2008).

2 Model environment

Consider a given number of households determined by J = {1, . . . ,J}. For a finite set of

goods L = {1, . . . ,L}, each household j ∈ J consumes over a space X ⊆ RL
++ for a number

of periods given by T = {1, . . . ,T}. Let the household’s preferences be defined by a utility

function u j,t(c j,t) where, for each j ∈J , ut(·) is continuous, concave, and locally non-satiated

1With a centering assumption
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for all t ∈ T , and ct ∈ X is the vector of consumption for each household j across all periods

t ∈ T . In fact, consider the case where the preferences of each household can be represented

by Cobb-Douglas (CD) preferences:

ut(ct) =
L

∏
l=1

c
αl,t
l,t (1)

with the property of ∑l αl,t = 1 at each t ∈ T , such that the elements of ct ∈ X are multiplica-

tively considered within ut(·) with each one contributing a share αl,t .

Since we are modeling this as a “repeated cross-section”, DM’s hold no savings and do not

discount future income flows. DM’s are assumed to have perfect foresight over their exogenous

income. By writing the DM’s utility maximization problem, we define our first relevant testable

condition of interest at the individual level:

Definition 1 (CD-rationalizability). A deterministic array (pt ,ct)t∈T is CD-rationalizable if,

for Cobb-Douglas preferences as in equation 1, (ct)t∈T solves:

max
ct∈X

L

∏
l=1

c
αl,t
l,t (2)

s.t.

p′tct = yt (3)

As implied by the parametric assumption on preferences, u(·) is in fact concave, and since

equation (3) is convex, there must exist a unique solution to the utility maximization problem

in definition 1. With that in mind, the following serves as a preamble to showing the testing

conditions of our model.

Theorem 1. For a Cobb-Douglas model of preferences, the following are equivalent:
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1. The deterministic array (pt ,ct)t∈T is CD-rationalizable.

2. There exists a matrix (αl,t)l∈L ,t∈T such that ∑l αl,t = 1, and

cl,t =
αl,tyt

pl,t

for all t ∈ T .

For now the model setup does not consider any perturbation in the data, the next subsec-

tion introduces measurement error to the model.

2.1 Introducing Measurement Error.

Assume income yt is normalized to one for each DM at each period and denote a random

variable as x. Additionally, denote x∗ as a random variable, data set or array that does not suffer

from any perturbation i.e., measurement error.

As argued by Aguiar & Kashaev (2020), conventional RP testing methodologies, even

in fully non-parametric environments, tend to overreject rationalizability when unobserved ran-

domness (e.g., measurement error in the data) is not accounted for. A similar argument could be

made for the case of conventional, reduced-form causal estimations. Before defining measure-

ment error, CD-rationalizability must be defined in a fully stochastic context. For that matter,

the following definition is neccesary:

Definition 2 (s/CD-rationalizability). A random array (p∗
t ,c∗t )t∈T is said to be statistically

CD-rationalizable for a given structure of Cobb-Douglas preferences, if there exists a random

matrix (al,t)l∈L ,t∈T
2 such that:

2In definition 2 (al,t)l∈L ,t∈T stands for the stochastic counterpart of the deterministic matrix (αl,t)l∈L ,t∈T

stated in theorem 1
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1. Each entry of (al,t)l∈L ,t∈T is a random variable supported on or inside a known set

A ⊆ [0,1]L×T and ∑
L
l al,t = 1 for every l ∈ L and every t ∈ T ;

2. c∗l,t =
al,t
p∗

l,t
a.s. for all l ∈ L and for all t ∈ T ;

3. For every l ∈ L , and t ∈ T , it must be the case that

P

(
c∗l,t > 0, c∗l,t =

al,t

p∗
l,t

)
= 1

In fact, for a given collection of random sequences (p∗
t ,c∗t )t∈T to be s/CD-rationalizable

is equivalent, given some random positive matrix (al,t)l∈L ,t∈T supported on or inside some

A ⊆ [0,1]L×T , to be such that c∗l,t =
al,t
p∗

l,t
, a.s. for all t ∈ T . This is proven in a general, non-

parametric manner, by Aguiar & Kashaev (2020) who also show that this condition does not

guarantee, for any implementable test, that there would be a conclusive telling, for a data set

being either “almost” s/ED-Rationalizable or “exact” s/ED-Rationalizable. This makes the fol-

lowing necessary:

Definition 3 (Approximate s/CD-rationalizability). We say that (p∗
t ,c∗t )t∈T is approximately

consistent with s/CD-rationalizability if there exists a positive matrix (at,l,r)t∈T ,l∈L supported

on or inside A ⊆ [0.1]L×T , such that

P

(
I
(

c∗l,t =
at,l,r

p∗
l,t

)
= 1

)
−→r→+∞ 1 (4)

for all t ∈ T

Consider any non-systematic measurement error on observed data that arises from mis-

recording issues, e.g., trembling hand errors. As in the case of Aguiar & Kashaev (2020), we

define this error, for which the framework used is consistent with any measurement error type

with these characteristics. As in the fashion of Demuynck & Potoms (2022), we may as well

conceive this as “unobserved randomness”.
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Let the measurement error be an array w = (wt)t∈T ∈W given as the difference between

recorded and true data for consumption and prices:

wt =

wc
t

wp
t

 (5)

with wc
t = ct − c∗t and wc

t = pt −p∗
t .

A random array (pt ,ct)t∈T is s/CD-rationalizable if and only if there exist and array

(al,t ,wt)t∈T ,l∈L such that

cl,t −wc
l,t =

al,t

(pl,t −wp
l,t)

; a.s.,∀t ∈ T (6)

In what follows, we assume measurement error hits consumption only, and not prices3.

Let e = (a′,w′) ∈ E|X be the vector of unobserved, random latent variables of the model, sup-

ported on or inside the conditional support E|X , where x = (pt ,ct) ∈ X is the observed data.

Define gM : X ×E|X −→ RdM as a measurement error moment. The only imposed assumption

in our model is the following:

Assumption 1 (Centered measurement error). (i) The random vector of latent variables e is

supported on or inside E|X, and (ii) There exists a known mapping gM : X ×E|X −→RdM such

that

E[gM(x,e)] = 0 (7)

3This is consistent with Appendix B
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3 The Difference-in-Differences approach

Difference-in-Differences (DiD) is a statistical method to identify causal effects in quasi-experimental

frameworks. In its simplest form, the method exploits the random assignment of individuals

into treated and non-treated groups to compare mean outcomes among groups. The simple

DiD method needs two assumptions to identify causal effects, the parallel trend and the no-

anticipation assumptions. The former implies that in the absence of the treatment, the average

outcomes of the treated and control groups would follow a similar trend over time. The second

assumption states that the treatment has no causal effect prior to its implementation, i.e., no

previous behavior by individuals (Roth, Sant’Anna, Bilinski, & Poe, 2023).

In the context of an intervention, the econometrician observes an outcome variable Yjt for

each and the group assignation D j ∈ (0,1) for each household in a data panel structure. Note

that contrary to ct representation in equation (1) Y jt refers to the household j. Assuming that

both parallel trends and no-anticipation assumption hold let the Average Treatment effect on the

Treated (ATT) be:

AT T = E[Yj,t∗ −Y j,t∗−1|D j = 1]−E[Yj,t∗ −Yj,t∗−1|D j = 0] (8)

where D j = 1 denotes that household j belongs to the treatment group and D j = 0 to the control

group. Additionally, t∗ represents a post-treatment period, and t∗−1 a pre-treatment period.

Given the Cobb Douglas structure described in section 2, the econometrician is able to

ask whether an intervention changes the share of consumption for a given good l in period t

for the group of intervened households. First, the econometrician transforms the consumption

data into shares (see equation (9)). The effect of interest is described by equation (10) where

j ∈ τ ≡ D j = 1 and j ∈ C ≡ D j = 0 describe treatment and control assignation4.

4In this notation, and x̄ stands for the mean of a variable xi
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a j,l,t =
c∗j,l,t

∑
L
k=1 c∗j,k,tpk,t

(9)

AT T = β =
[
ā j∈τ, t∗ − ā j∈τ, t∗−1

]
−
[
ā j∈C , t∗ − ā j∈C , t∗−1

]
(10)

The classic method to estimate ATT in econometrics uses a two-way fixed effect reduced

form model in which the parameter of interest captures the time and group interaction. The

following definition introduces the method tailored to our model of consumption data:

Definition 4 (Difference-in-Differences estimation). Assume that a subset of the population

τ ⊂ J receives an exogenous shock effective on their demand for the good l ∈ L . The

Difference-in-Differences (DiD) effect is given by estimating parameter β in the following re-

gression equation:

a j,l,t = φ0 +φ1Time j,t +φ2Group j,t +β (Time j,t ×Group j,t)+ ε j,t (11)

where Time j,t is a dummy variable indicating the post-treatment period t∗, and Group j,t is a

dummy indicating that j belongs to the treatment group, and εt,l,l the residual term.

In presence of measurement error in a j,l,t
5 given by ã j,l,t =

c∗j,l,t+wc
j,l,t

∑
L
k=1(c

∗
j,k,t+wc

j,k,t)pk,t
with ob-

served consumption c j,l,t = c∗j,l,t +wc
j,l,t the econometrician will measure a different specifica-

tion

ã j,l,t =
c j,l,t

∑
L
k=1 c j,k,tpk,t

= φ̃0 + φ̃1Time j,t + φ̃2Group j,t + β̃ (Time j,t ×Group j,t)+ ε j,t (12)

Although the E[wc
j,l,t ] = 0, if σwc > 0 is high enough, estimates retrieved by standard DiD

methodology could appear to be non significant. To the best of our knowledge, there are no

5Please recall that in this case l remains fixed
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statistical reasons to assume that classical measurement error in elicited consumption data is

delimited by some arbitrary bounds. In empirical applications, such as surveys, this can cause

the inability to reject the null hypothesis, therefore erroneously inferring that a an exogenous

controlled intervention or a shock did not affect an outcome of interest when it actually did.

Table 1 in section 5 reports the estimated coefficients for equations (11) and (12) , as well

as their corresponding confidence intervals. These results are reported as the mean value on

a 1000 repetitions simulation. A significance non-rejection rate is also presented in Table 1,

indicating the share of repetitions for which the statistical significance at the 95% level of these

estimators is non-rejected. Similarly, a “mis-inference rate” is reported, indicating the share of

repetitions for which ˆ̃
β is not included in the 95% confidence interval of β̂ , thus providing an

argument for preferring the structural estimation presented in the next section.

4 A framework for structural causal inference via the method-

ology of Aguiar and Kashaev (2020)

Given the model and the first order conditions stated previously, we apply the testing frame-

works provided by Aguiar and Kashaev (2020). For the established structure of preferences, the

corresponding moment conditions, for each l ∈ L and all t ∈ T , are given by:

gA, j,l,t(x,e) = I

[
c j,l,t −wc

j,l,t =
a j,l,t

p j,l,t

]
−1 (13)

gD, j,l=1(e;θ) =
[[

a j∈τ, t∗ −a j∈τ, t∗−1
]
−
[
a j∈C , t∗ −a j∈C , t∗−1

]]
−θ (14)

gM, j,l,t(x,e) = w j,l,t (15)

Equations (13)-(15) constitute the moment conditions that are to be tested. In particular, equa-

tion (13) corresponds to the CD-rationalizability First Order Conditions and equation (15) is to
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be used as part of the centered measurement error assumption. On the other hand, equation (14)

is part of a user-defined moment allowing for recovering effects from the model of interest, as

shown by Aguiar & Kashaev (2020). In this case, the model corresponds to the conditions set

by the DiD framework over the structural parameters a j,l,t as set in previous section.

Note that since we have not simulated the DGP with measurement error in prices, but only

in consumption, observed prices are actual prices and the measurement error vector. contains

exclusively consumption errors. There are some important clarifications to make. In equation

(14), since al,t ∈ [0,1], then, θ ∈ [−2,2]. For that matter, the baseline slack variable’s value for

θ is taken to be the unbiased DiD estimator. For a sufficiently big testing interval, a set of values

for θ can be found such that the model is not rejected. The moment conditions corresponding

to equations 13-15 are the following:

E[gA, j,l,t(x,e)] = 0 (16)

E[gD, j,l=1(e;θ)] = 0 (17)

E[gM, j,l,t(x,e)] = 0 (18)

Before introducing the econometric framework for this structural estimation, consider the

following synthesis of equations (16) and (17):

gI, j,l,t(x,e;θ) = (gA, j,l,t(x,e)′,gD, j,l=1(e,θ)′) (19)

Equation (20) synthesize the (13)-(15) system.

g j,l,t(x,e;θ) = (gA, j,l,t(x,e)′,gD, j,l=1(e;θ)′, ,gM, j,l,t(x,e)′) (20)

Therefore, the conditions required, associated with moments equations (16)-(18) are the follow-
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ing:

E[g j,l,t(x,e;θ)] = 0 (21)

Where x = (c j,l,t ,p j,l,t) and e = (w j,l,t , ,a j,l,t). For each household, there are k moment func-

tions corresponding to equation (16) and an additional unique function taken from equation

(17). Additionally, there are q moment functions corresponding to the centered measurement

error condition in (18). Testing (21) will in fact, allow for consistent inference of the estimated

parameter β̂ while accounting for unobserved measurement error in the data.

Note that the left-hand side of equation (21) can be written in the following form:

Eµ×π [g j,l,t(x,e;θ)] =
∫

X

∫
E|X

g(x,e;θ)dµdπ (22)

where µ ∈ PE|X and π ∈ PX . With this in mind, we can formulate the condition required by

the model’s moment. Aguiar & Kashaev (2020) prove that for a random array (pt ,ct)t∈T to be

approximately s/CD-rationalizable such that Assumption 1 holds is equivalent to

inf
µ∈PE|X

∥Eµ×π [g(x,e;θ)]∥= 0 (23)

where π0 ∈PX is the observed distribution of x and the subscripts of g j,l,t(·) have been omitted

to save on notation. This is a preliminary approach to our testing conditions, which sum up to

testing, at a given significance level, if whether there exists an unknown distribution of latent

variables conditional on observables such that the moment conditions are fulfilled.

In order to deal with a test of an unknown distribution of latent vectors, we apply the

Entropic Latent Variable Integration via Simulation (ELVIS) approach by Schennach (2014)

and used in Aguiar & Kashaev (2020). This approach will let us write our testing conditions in

terms of the observables’ distributions only.

Following the notation by Aguiar & Kashaev (2020), the maximum-entropy (ME) mo-
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ment of g(x,e;θ) can be written as:

h(x;γ,θ) =
∫

e∈E|X
g(x,e;θ)dη

∗(e|x;γ,θ) (24)

where

{
dη

∗(·|x;γ,θ) =
exp(γ ′g(x, ·))dη(·|x)∫

e∈E|X exp(γ ′g(x,e;θ))dη(e|x)
,γ ∈ Rk+q

}
(25)

is a family of exponential conditional probability measures. By this way, we express the ME

moment of g(x,e;θ) as:

h(x;γ,θ) =

∫
e∈E|X g(x,e;θ)exp(γ ′g(x,e;θ))dη(e|x)∫

e∈E|X exp(γ ′g(x,e;θ))dη(e|x)
(26)

where, in this case, γ ∈ Rk+q is a nuissance parameter and η ∈ PE|X is an arbitrary

user-inputed distribution supported on E|X such that

Eπ0 [logEη [exp(γ ′g(x,e;θ))|x]] (27)

exists and is twice continuously differentiable in γ .

This implies that h is the marginal moment of g where the latent vector has been “inte-

grated out” using some probability measure (e.g., some distribution) in the family (25).

An important implication of this approach emanates from what was already proved by

Aguiar & Kashaev (2020). For a random array (pt ,ct)t∈T to be approximately s/CD-rationalizable
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such that Assumption 1 holds is equivalent to

inf
γ∈Rk+q

∥Eπ0[h(x;γ,θ)]∥= 0 (28)

where π0 ∈ PX is the observed distribution of x. Importantly, the choice of η does not affect

(27), only the nuissance parameter γ .

This is both a necessary and sufficient condition for arguing the following: the existence of

any set of distributions part of the family of probability measures on (25) such that the property

for the ME moment in (26) holds (for this we rely on distributions on the observed data only),

implies the existence of some set of distributions, conditional on unobserved latent variables,

such that the condition for the original moment as in (23) is fulfilled. More importantly, this in

turn implies that the data set x while being rationalized by the stated structure of preferences,

fulfills Assumption 1 on (15) and our model of interest, portrayed by equation (14), holds for

some nonempty subset of parameters θ ∈Θ. We can now test this without relying on identifying

distributions conditional on unobserved latent variables e.

4.1 Implementation

Emanating from (28), the following condition applies: for a random array (pt ,ct)t∈T to be

approximately consistent with s/CD-rationalizability such that Assumption 1 holds, is equal to

the following:

min
γM∈Rq

∥Eπ0[
˜hM(x;γ,θ)]∥= 0 (29)

with:

h̃M(x;γ,θ) =

∫
e∈E|X gM(x,e)exp(γ ′gM(x,e))I(gI(x,e;θ) = 0)dη(e|x)∫

e∈E|X exp(γ ′g(x,e;θ))I(gI(x,e;θ) = 0)dη(e|x)
(30)

This is proved by Aguiar & Kashaev (2020), who also show, by terms of any divergent se-

quence {γI,l}+∞

l=1, that for a random array (pt ,ct)t∈T to be approximately consistent with s/CD-
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rationalizability equals to the sequence {γM,l} of minimizers of

lim
l→+∞

min
γM∈Rq

∥E0[h(x;(γ ′I,l,γ
′
M),θ)]∥= 0 (31)

being convergent to some finite γ0 not depending on {γI,l}+∞

l=1. In other words, our optimization

procedure will no longer depend on γ ∈Rk+q and only on γM ∈Rq. Given the calibration of our

DGP, we have that q = (T ×K×τc)+1 = 13 (where τc is the number of interest groups: treat-

ment and control groups). In practice, to compute (30), Markov Chain Monte Carlo methods

are used. More specifically, a Metropolis-Hastings algorithm sampling from η is implemented.

Now, the testing procedure is introduced. For a given observed data set {xi}n
i=1 = {(pt,i,ci,t)t∈T }n

i=1

with sample size n ∈N, the finite-sample analogue of the ME moment condition in (30), and its

corresponding variance are given by:

ˆ̃hM(γ,θ) =
1
n

n

∑
i=1

h̃M(xi;γ,θ); (32)

ˆ̃
Ω(γ,θ) =

1
n

n

∑
i=1

h̃M(xi,γ,θ)h̃M(xi,γ,θ)
′− h̃M(γ,θ)h̃M(γ,θ)′ (33)

Therefore, as derived from Schennach (2014), the test statistic proposed by Aguiar & Kashaev

(2020) is

T Sn = n inf
γ∈Rq

h̃M(γ,θ)′ ˆ̃
Ω(γ,θ)−1h̃M(γ,θ) (34)

where ˆ̃
Ω(γ,θ)−1 is the inverse of the matrix in (33). This implies, as proved by Aguiar &

Kashaev (2020), that under the null hypothesis that the data is approximately consistent with

s/CD-rationalizability, it occurs that:

lim
n→∞

P
(

T Sn > χ
2
q,1−α

)
≤ α (35)

for any α ∈ (0,1). Moreover, the confidence set for θ0 can be obtained by inverting T Sn(θ0).
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Therefore, in our model’s case, the confidence set for θ0 is:

{
θ0 ∈ Θ : T Sn ≤ χ

2
13,1−α

}
(36)

There is no need for rationalizability to be tested independently in (36) prior to our model’s

parameter’s identified set. The rejection of rationalizability would imply an asymptotically

empty θ0 ∈ Θ. In our case, the confidence set of our structural DiD model in (36) is tested

simultaneously to measurement error robustness (and Cobb-Douglas rationalizability, which is

controlled by our DGP) .

5 Results

Observed Data Real Data Observed Data Real Data
Estimated effect 0.1089 0.1242 0.1068 0.1247
Standard error 0.0344 0.0122 0.0349 0.0128
Confidence interval (0.0424, 0.1753) (0.1001, 0.1483) (0.0407, 0.1729) (0.1007, 0.1488)
Significance rejection rate 0.112 0.00 0.13 0.00
Significance level 95% 95%
No. of repetitions 1,000 100
Misinference rate 0.495 0.460

Table 1: Difference-in-Differences (DiD)

Reduced-form DiD estimation for both observed data suffering from measurement error, and real data,
according to our simulated DGP. Results are the average of a 1,000 and 100 simulation repetitions. The
Misinference rate denotes the share of repetitions on which the observed data’s estimated effect was not
included in the real data’s estimator’s confidence interval.

Table 1 summarizes the reduced-form DiD estimation model performance for two differ-

ent settings in the simulated number of repetitions. In both cases the estimation with observed

data yields a significance rejection rate above 11% as compared with a 0% when estimated with

real data. Additionally, the misinference rate, the frequency of the estimated parameter falling

outside the real data’s estimated confidence interval is, in both cases, above 45%. Interestingly,

in both cases, the estimated effect with real data yields a value below the estimated effect with

real data. This difference is a bias due to measurement error and to the reduced-form DiD es-
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timation not being able to account for it on observed data. Figures 1 and 2 illustrate some DiD

estimator issues when exposed to measurement error, particularly regarding the direction and

magnitude of the bias at the confidence interval level.

(a) DiD with measurement error (b) DiD without measurement error

Figure 1: Difference-in-Differences estimates with 100 simulations

(a) DiD with measurement error (b) DiD without measurement error

Figure 2: Difference-in-Differences estimates with 1000 simulations

Now, the results from the structural estimation. Table 2 reports two simulations on the

structural estimation model described in section 4. In both cases, a size grid of 10 was taken over

the ATT slack parameter θ . Simulation 1 was estimated taking the reduced-form confidence

interval with the real data as bounds. While around a 87.0% - 88.8% of the times the reduced-

form estimation with observed data will not be rejected (as shown in Table 1), the structural

model, accounting for measurement error, yields a more precise non-rejection region on the

estimator. The second simulation of the structural estimation model ran over a subset of the

original grid where the test statistic achieved parabolic convergence to a deeper non-rejection

region.
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Simulation 1: Extended Grid Simulation 2: Reduced Grid
θ Rejection rate θ Rejection rate

0.0424 1.00 0.1162 0.30
0.0572 1.00 0.1195 0.18
0.0719 1.00 0.1228 0.13
0.0867 0.96 0.1261 0.12
0.1015 0.73 0.1294 0.10
0.1162 0.30 0.1326 0.10
0.1310 0.10 0.1359 0.09
0.1458 0.27 0.1392 0.12
0.1605 0.73 0.1425 0.18
0.1753 0.95 0.1458 0.27

Table 2: Structural DiD

Structural DiD set-identified estimation of the slack parameter for the ATT with observed data, for two
simulation tranches with 100 repetitions. Simulation 1 has as upper and lower bounds the bounds of the
confidence interval thrown by the reduced form DiD estimation with observed data. The second simula-
tion builds on a reduced grid taken from a subset of the grid used in Simulation 1 where convergence to
high non-rejection was achieved. In both simulations, the average real effect was ATT = 0.1237.

Recall that the model in Section 4 is by design built with a structural significance parame-

ter of α = 0.05. We provide Montecarlo evidence of this parameter being identified over a sharp

set in (0.1294,0.1359) at the 0.1 level. Since we are interested in set identification rather than

point identification, the fact that the later set resides slightly upward the causal effect point at

the 0.1 level should not be of worry as it is explained due to the simulation running over a small

sample. A potential gain is to be attained if we simulate 1000 times per each θ in the grid rather

than 100 times in order to yield stronger asymptotic consistency. This was not implemented due

to the time costs.

6 Discussion

It has been shown, under a controlled environment with simulated data, that observed data sets

suffering from measurement error yield biased causal DiD estimations. For the DGP calibration

proposed, this bias can be calculated in sign and magnitude as shown in Table 1. An alterna-

tive causal estimation method is proposed, making use of a structural solution provided by the
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stochastic revealed preferences’ approach by Aguiar & Kashaev (2020) to account for measure-

ment error. This methodology applies a Maximum-Entropy Moment Conditions’ structure de-

rived from the Entropic Latent Variable Integration via Simulation (ELVIS) methodology due to

Schennach (2014). Montecarlo evidence is provided that this method provides set-identification

that is robust to classical forms of measurement error on observed data when estimating the

causal effect of an exogenous shock on the consumption bundles of a population. The identi-

fied set of the interest parameter on the structural model suggests that, when relying on obser-

vational data with unobserved measurement error, conventional reduced form DiD estimation

techniques may yield biased estimators and broad confidence intervals for which a very reduced

subset contains an identification region that actually accounts for unobserved randomness such

as measurement error.

Some further important extensions are to be incorporated in further extensions to this

testing approach. First and foremost, while the nature of this problem’s formulation made it im-

possible to incur in parallel computing solutions, stronger computational capacity is definitely

to be required, and the implementation mechanism optimized so that the Montecarlo estimation

of the structural model yields asymptotic consistency at the 0.05 level for each θ in a grid. Addi-

tionally, the optimization methods applied in the algorithm could be further improved. Second,

the identified set for which the structural estimated effect reaches non-rejection is potentially

consistent to a given subset of distributions fulfilling parallel-trends conditions. However, this

assumption should be explicitly modeled as an additional moment condition in equations (13) -

(15) for such identified set to be sufficiently narrowed down to a space of pure causal effects.

Third, while CD preferences may be fairly inclusive of a vast range of stochastically

diverse consumer behavior types, a robustness extension would consist of expanding the model

to other flexible structure of preferences given, for example, by CES functions, making its

parameters empirically interpretable in an RP context, specially considering that parametric

rationalizability is implicitly tested in our moment conditions. Finally, while the use of classical

forms of measurement error on this paper has been justified, it would be optimal to consider
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alternative types of unobserved measurement error. Other forms of non-classical systematic

measurement error lead to more severe biases for which the applied methodology would still be

robust. These are just some of the potential extensions that could be explored for this paper in

the near future.
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8 Appendices

A Proof of Theorem 1

Proof. First, it will be shown that for a deterministic array (pt ,ct)t∈T to be CD-rationalizable is

equal to the existence of some matrix (αl,t)l∈L ,t∈T with ∑l α j,l,t = 1 such that cl,t = αl,tyt/pl,t

for all l ∈ L at each t ∈ T .

Consider the convexity-preserving monotone transform of equation (1) given by lnu =

∑l αl lncl . It will be shown that there exists some (αl,t)l∈L ,t∈T such that

cl = argmax
cl

{
∑

l
αl lncls.t.p′c = y

}
(37)

For this, solve for the first order conditions of the associated Lagrangian:

L = ∑
l

αl lncl +λ [y− p′c] (38)

with yields the marginal condition

αl = λ plcl (39)

Since lnu is concave and the budget set p′c = y is convex, this marginal condition is a perfectly

identified system and there exists a unique interior solution for cl . To see it, sum both sides of

(39) over goods k ∈ L , ∑k αk = λ ∑k pkck which implies that λ = ∑k αk/∑k pkck. Replacing

this into (39) the following is obtained:

cl =
αl

pl ∑k αk
∑
k

pkck (40)

By noting that ∑l plcl ≡ p′c and realizing this is consistent for the case ∑l α j,l,t = 1, the demand
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for good l ∈ L yields:

cl =
αly
pl

(41)

for each t ∈ T and any household j ∈ J . Therefore, given (ct)t∈T solves (37) and so

(pt ,ct)t∈T is CD-rationalizable, some (αl,t)l∈L ,t∈T in fact exists such that cl,t = αl,tyl,t/pl,t .

Now, it will be shown that existing a (αl,t)l∈L ,t∈T for some cl,t = αl,tyl,t/pl,t , the array

(pt ,ct)t∈T is CD-rationalizable, that is, (ct)t∈T solves (37).

Since it has already been shown that 41 is in fact the maximum possible value of the CD

utility function (1) given the budget constraint, this amounts to showing that the solution 41 is

unique. Assume there is another level of demand, c̃ such that c̃ ∼ c and both u(c̃) and u(c) are

maxima given p′c = y. This would imply that u(·) is not concave, which it is as per equation

(1). Therefore, there is no other demand level yielding the same utility as 41 does.

Next, assume there is another level of consumption c̃≻ c that solves (37), such that u(c̃)>

u(c) for u(·) concave, such that c̃ > c . Then,

argmax
c

{
u(c̃)s.t.p′c̃ > y

}
≻ argmax

c

{
u(c)s.t.p′c = y

}
(42)

however, the left-hand side of (42) is impossible to hold as it is out of the bounds set by the

convex constraint. Therefore, c as in 41 must be unique.

This implies that for a demand cl,t = αl,tyt/pl,t to exist with its matrix (αl,t)l∈L ,t∈T is

equivalent to stating that (ct)t∈T solves (37) and therefore (pt ,ct)t∈⊔ is CD-rationalizable by

CD preferences.
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B Data Generating Process via simulation

The data is generated by the following algorithm. The output is the observed data set of con-

sumption and prices:

Step 0:

set T = 1,2 and L = 1,2,3 for J = 1, . . . ,200 households.

set control and treatment groups in the population, C ,τ ⊂ J by randomly drawing an equal

number of households such that |C |= |τ|= 100, with τ ∩C = /0, τ ̸= /0, C ̸= /0 and τ ∪C ≡

J .

set (a j,l,t) j∈J ,l∈L ,t∈T ∼ N (µa = 1/K,σ2
a = 0.05) truncated at [0.1,0.9] and randomly

drawn accordingly for the simulated population.

set a j,1,t ∈ (0,1) and a j,1,t +a j,2,t +a j,3,t = 1 for all t ∈ T and j ∈ J .

set a j,l=1,t as receiving a positive exogenous scaled shock derived from ψ j∈τ ∼ Unif(0,1) to

simulate a random treatment effect assignment in the DGP.

set observed prices (pl,t)l∈L ,t∈T ∼ Exp(λ = 1)

set income stream (y j,t) j∈J ,t∈T = 1 for all t ∈ T and j ∈ J .

set demand (c j,l,t) j∈J ,l∈L ,t∈T as given by c j,l,t = a j,1,ty j,t/pl,t

set measurement error ε j,l,t = (b− a)× ζ j,l,t + a with ζ j,l,t ∼ Unif(0,1). Also, set b = 1.9

and a = 0.1

set observed demand (c∗j,l,t) j∈J ,l∈L ,t∈T as given by c∗j,l,t = c j,l,t × ε j,l,t .

return observed data set x = {(c∗j,l,t ,pl,t)} j∈J ,l∈L ,t∈T

C Algorithm for section 4

Step 0:

set a realization of {(c∗j,l,t ,pl,t)} j∈J ,l∈L ,t∈T
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fix a user-defined grid Θ = {θk}Θs
k=1

fix gI = (g′A,g
′
D) and gM

fix η ∈ PE|X

fix x = (xi)i=1...n where xi = {(c∗t,i,pt,i)}t∈T is the i-th obseration of sample of size n.

end Step 0

Step 1 (Integration):

set i = 1

fix cl - MCMC length;

fix η ,γ,xi, and the first element of the chain e−nburn that satisfies the constraints.

set r =−nburn+1 and ĥM(xi,γ) = 0

while r ≤ nsims do

draw e jump = {(α j,l,t) j∈J ,l∈L ,t∈T ,wc} proportional to η̃(·|xi,θ)=η(·|xi)I(gI(xi,θ , ·)=

0)

draw α from Unif(0,1)

set er equal to e jump if [gM(xi,e jump)−gM(xi,er−1))]
′γ > log(α)

if r > 0 then

compute h̃M(xi,γ,θ) = hM(xi,γ,θ)+gM(xi,er)/cl

end if

set r = r+1

end while

set i = 1

while i ≤ n do

define the measure η̃(·|xi,θ) = η(·|xi)I(gI(xi,θ , ·) = 0)

integrate latent variables by η̃(·|xi,θ) to obtain h̃M(xi,γ,θ)

set i = i+1

end while
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compute
ˆ̃hM(γ,θ) =

1
n

n

∑
i=1

h̃M(xi,γ,θ); (43)

and

ˆ̃
Ω(γ,θ) =

1
n

n

∑
i=1

h̃M(xi,γ,θ)h̃M(xi,γ,θ)
′− ˆ̃hM(γ,θ) ˆ̃hM(γ,θ)′ (44)

compute the objective function

ObjFun(γ,θ) = n× ˆ̃hM(γ,θ)′ ˆ̃
Ω(γ.θ)− ˆ̃hM(γ,θ) (45)

end Step 1

Step 2: (Optimization)

compute

T Sn = min
γ

ObjFun(γ,θ) (46)

end Step 2
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