UNIVERSIDAD SAN FRANCISCO DE QUITO

Colegio de Ciencias e Ingenierías

DISEÑO ESTRUCTURAL DEL EDIFICIO "BUENA VISTA", MODELADO EN ETABS Y REVIT

Brandon Danilo Villacrés García

Ingeniería Civil

Trabajo de fin de carrera presentado como requisito

para la obtención del título de

Ingeniero Civil

Quito, 22 de diciembre de 2023

UNIVERSIDAD SAN FRANCISCO DE QUITO

Colegio de Ciencias e Ingenierías HOJA DE CALIFICACIÓN DE TRABAJO DE CARRERA

DISEÑO ESTRUCTURAL DEL EDIFICIO "BUENA VISTA", MODELADO EN ETABS Y REVIT

Brandon Danilo Villacrés García

Nombre del profesor, Título académico

Miguel Andrés Guerra, PhD

Nombre del profesor, Título académico

Estefanía Cervantes, MDI

2

Quito, 22 de diciembre de 2023

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este trabajo en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación Superior del Ecuador.

Nombres y apellidos:	Brandon Danilo Villacrés García
Código:	00207203
Cédula de identidad:	1803789211
Lugar y fecha:	Quito, 22 de diciembre de 2023

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado como una publicación, incluso a pesar de estar disponible sin restricciones a través de un repositorio institucional. Esta declaración se alinea con las prácticas y recomendaciones presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017) Discussion document on best practice for issues around theses publishing, disponible en http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following capstone project is available through Universidad San Francisco de Quito USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be considered a publication. This statement follows the recommendations presented by the Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion document on best practice for issues around theses publishing available on http://bit.ly/COPETheses.

DEDICATORIA

Primero a Dios que me ha acompañado a lo largo de mi vida ayudándome a culminar una meta más que me había planteado, a mis padres que desde pequeño me motivaron a cumplir mis metas y me han levantado en mis peores días. A mi hermano que ha sido un confidente, dándome consejos a mis problemas y alegrándome los días. A mi perrito Marcus que lamentablemente falleció, pero este logro es por él y su amor incondicional. A mis abuelitos, a mis tíos, hermanos, primos que en diferentes situaciones me han brindado una mano solidaria.

AGRADECIMIENTO

Agradezco este logro cumplido a Dios por haberme dado fuerza para no rendirme en este camino y sabiduría al tomar decisiones, a mis padres porque han sido un soporte constante en mi vida, apoyándome en los días buenos, pero sobre todo en los malos. A mi hermano siendo una guía en mi vida, un hombro en el cual descansar, un amigo con el cual reír y sobre todo por enseñarme química. A mi familia que se preocupaban cuando me quedaba hasta la madrugada acabando los proyectos y estaban dispuestos a ayudarme en lo que podían. A los profesores que impartían sus clases con la mejor de las actitudes y siempre tenían un espacio disponible para resolver inquietudes. A mis amigos que juntos avanzamos en este largo camino, noches enteras estudiando para un examen final pero siempre con buena actitud. A mi computadora que a pesar de haberle instalado una buena cantidad de programas para las diferentes materias nunca me falló.

Quiero agradecer a la Universidad San Francisco de Quito por haberme dado la ayuda y oportunidad de estudiar en tan prestigiosa institución. A mis tutores de tesis Miguel Andrés y Estefanía, por ser una guía en estos 6 meses de trabajo, la ayuda brindada para resolver cada una de mis inquietudes y por el interés que demostraron por mi proyecto de titulación.

RESUMEN

El presente trabajo de titulación en la carrera de Ingeniería Civil aborda el análisis detallado de la estructura del edificio "Buena Vista" ubicado en el sector de "La Primavera" mediante el uso del software ETABS, así como el diseño de sus elementos estructurales de acuerdo con las normativas vigentes. Adicionalmente, se explora la integración del programa REVIT para obtener planos detallados y calcular las cantidades exactas de materiales necesarios para la construcción gracias al modelamiento que se puede realizar en este software.

La investigación inició con el análisis estructura del edificio utilizando ETABS, donde utilizando información previa del proyecto se realizó el predimensionamiento de los elementos. Estos datos se cargan al programa, donde empieza el diseño sismo resistente basado en fuerzas. Se realiza el análisis dinámico y estático de la estructura para posteriormente chequear si esta cumple con el cortante basal, la torsión en plata y las derivas. Posteriormente, se llevó a cabo el diseño de los elementos estructurales del edificio donde se ocuparon valores generados por el ETABS junto con las normativas y estándares pertinentes. La utilización de REVIT permitió modelar a la estructura ayudándonos a generar de forma eficiente los planos estructurales detallados, así como el cálculo exacto de las cantidades de materiales necesarios para la construcción.

Los resultados obtenidos demuestran la viabilidad y la eficacia de la integración de herramientas tecnológicas avanzadas en el campo de la ingeniería estructural. Este enfoque integrado sienta las bases para futuras investigaciones y aplicaciones que promuevan la seguridad, la eficiencia y la sostenibilidad en la industria de la construcción.

Palabras clave: Análisis estructural, diseño, cálculo, modelado, ETABS, REVIT, BIM.

ABSTRACT

This Civil Engineering degree thesis deals with the detailed analysis of the structure of the "Buena Vista" building located in the "La Primavera" sector by using ETABS software, as well as the design of its structural elements according to the current regulations. Additionally, the integration of the REVIT program is explored to obtain detailed plans and calculate the exact quantities of materials needed for the construction thanks to the modeling that can be done in this software.

The research started with the structural analysis of the building using ETABS, where the pre-dimensioning of the elements was performed using previous information of the project. These data are loaded into the program, where the seismic-resistant design based on forces begins. The dynamic and static analysis of the structure is performed to later check if it complies with the basal shear, the torsion in silver and the drifts. Subsequently, the design of the structural elements of the building was carried out using values generated by ETABS together with the relevant regulations and standards. The use of REVIT allowed us to model the structure helping us to efficiently generate the detailed structural drawings, as well as the exact calculation of the quantities of materials required for the construction.

The results obtained demonstrate the feasibility and effectiveness of integrating advanced technological tools in the field of structural engineering. This integrated approach lays the foundation for future research and applications that promote safety, efficiency and sustainability in the construction industry.

Keywords: Structural analysis, design, calculus, modeling, ETABS, REVIT, BIM.

TABLA DE CONTENIDO

RESUM	IEN	7
ABSTR	ACT	8
Introduc	cción	19
Anteced	lentes	20
1. Nor	rmativa técnica	21
2. Aná	álisis de Cargas	21
2.1.	Carga muerta	21
2.1.	1. Entrepiso Cubierto	21
2.1.	2. Entrepiso Exterior	22
2.1.	3. Cubierta y Balcón	23
2.2.	Cargas vivas	23
2.3.	Carga sísmica	24
2.4.	Combinaciones de carga	25
3. Estu	udio de suelos	25
3.1.	Capacidad portante	26
3.2.	Profundidad de desplante	26
3.3.	Nivel freático	27
4. Info	ormación del Proyecto	27
4.1.	Sistema Estructural	27
4.2.	Materiales	28
4.2.	1. Hormigón	28
4.2.	2. Acero	28
4.3.	Inercia de las secciones agrietadas	28
5. Pree	dimensionamiento de los Elementos	28
5.1.	Vigas	28
5.2.	Columnas	33
5.3.	Losas	37
6. Estr	ructura en ETABS	40
7. Dis	eño Sismo Resistente	45
7.1.	Propósito de la Norma NEC-SE-DS	45
7.2.	Diseño Basado en Fuerzas (DBF)	45
7.3.	Análisis Dinámico Espectral	46
7.3.	1. Factor de zona Z	46

	7.3.2.	Coeficientes de Sitio	47
	7.3.3.	Espectro elástico de diseño	49
7.4	4. Fac	tor de Reducción Sísmica (R)	52
7.5	5. Cas	os de Cargas Laterales	53
7.6	5. Aná	álisis Estático (Cortante Basal de Diseño)	54
	7.6.1.	Factor de Importancia	54
	7.6.2.	Valor del Espectro de diseño en aceleración (Sa)	55
	7.6.3.	Coeficientes de Configuración en Planta	56
	7.6.4.	Coeficientes de Configuración de Elevación	58
	7.6.5.	Cortante Basal de Diseño	59
7.7	7. Car	gas Laterales	59
7.8	8. Cor	nbinaciones de Carga	61
8.	Análisis	Espectral	64
8.1	1. Aju	ste del Corte Basal	64
8.2	2. Din	nensiones Finales	67
	8.2.1.	Columnas	67
	8.2.2.	Vigas	68
	8.2.3.	Asignación de Secciones	69
8.3	3. Tor	sión en Planta	71
8.4	4. Der	ivas	72
9.	Diseño o	le Elementos	74
9.1.	Diseñ	o de Vigas	74
	9.1.1.	Acero Longitudinal	76
	9.1.2.	Acero transversal	81
	9.1.3.	Configuraciones de Vigas	85
9.2	2. Dis	eño de Columnas	87
	9.2.1.	Diseño Columnas 50X50	89
	9.2.2.	Columnas 30X30	96
9.3	3. Dis	eño de Cimentaciones	102
	9.3.1.	Diseño Zapatas combinadas (C2-C3)	102
	9.3.2.	Diseño Zapatas aisladas	115
9.4	4. Dis	eño de muros:	123
	9.4.1.	Verificación espesor mínimo:	123
	9.4.2.	Pesos y momentos:	124
	9.4.3.	Refuerzo de muro:	125

(9.4.4.	Elementos de borde:	27
(9.4.5.	Verificación carga axial:	28
(9.4.6.	Diseño a corte:	28
(9.4.7.	Refuerzo transversal:	29
(9.4.8.	Diagrama de interacciones del muro:12	30
10.	REVI	Γ1	33
10.1.	Plan	os arquitectónicos en AutoCAD1	33
10.2.	Plan	os arquitectónicos en Revit13	35
10.3.	Moc	lelado de elementos estructurales13	37
10.4.	Moc	lelado de los refuerzos estructurales14	43
10.4.	1. R	efuerzo de vigas14	43
10.4.	2. R	efuerzo de cimentaciones14	44
10.4.	3. R	efuerzo de muros14	46
10.5	Planillas	de aceros14	48
11.	Result	ados14	49
12.	Conclu	usiones1	51
13.	Recon	nendaciones1	52
REF	ERENCI	AS BIBLIOGRÁFICAS1	54
ANE	XO A: F	PLANOS ARQUITECTÓNICOS	.1
ANE	XO B: F	PLANOS ESTRUCTURALES	.7

ÍNDICE DE FIGURAS

Figura 1 Corte arquitectónico del Edifico	20
Figura 2 Vista en planta nivel 3	20
Figura 3 Resultados del ensayo de Compresión Triaxial Rápido	26
Figura 4 Capacidad Portante Admisible	26
Figura 5 Tabla 6.5.2 del ACI 318-19	30
Figura 6 Momentos en una viga, dirección X	30
Figura 7 Momentos en una viga, dirección Y	31
Figura 8 Predimensionamiento Viga 25x45cm	33
Figura 9 Tabla configuraciones de acero	36
Figura 10 Predimensionamiento Columna 30x30 cm	36
Figura 11 Predimensionamiento Columna 45x45 cm	37
Figura 12 Tabla 8.3.1.2 del ACI 318-19	38
Figura 13 Vista transversal losa	39
Figura 14 Dimensiones Losa	40
Figura 15 ETABS: Grilla para la estructura	41
Figura 16 ETABS: Colocación de Columnas	41
Figura 17 ETABS: Colocación de Vigas	42
Figura 18 ETABS: Colocación de membranas	42
Figura 19 ETABS: Colocación de Muros	43
Figura 20 ETABS: Generar mallas en las membranas	43
Figura 21 ETABS: Colocación de Cargas	44
Figura 22 ETABS: Generar Diafragmas	44
Figura 23 Tabla 9 de la NEC de Peligro Sísmico	46
Figura 24 Figura 1 de la NEC de Peligro Sísmico	47
Figura 25 Tabla 1 de la NEC de Peligro Sísmico	47
Figura 26 Tabla 3 de la NEC de Peligro Sísmico	48
Figura 27 Tabla 4 de la NEC de Peligro Sísmico	48
Figura 28 Tabla 5 de la NEC de Peligro Sísmico	48
Figura 29 Espectro de respuesta elástico de aceleraciones	49
Figura 30 Espectro de respuesta elástico de aceleraciones de la estructura	51
Figura 31 ETABS: Espectro de respuesta elástico de aceleraciones	51
Figura 32 Comportamientos de una estructura	52
Figura 33 Tabla 15 "Coeficiente R para sistemas estructurales dúctiles" de la NEC de	
Peligro Sísmico	53
Figura 34 Caso de carga dinámico en sentido X	53
Figura 35 Caso de carga dinámico en sentido Y	53
Figura 36 Tabla 6 de la NEC de Peligro Sísmico	54
Figura 37 Tabla de la Sección 6.3.3 de la NEC de Peligro Sísmico	55
Figura 38 ETABS: Periodo de la Estructura	56
Figura 39 Tabla 13 "Coeficientes de Irregularidad en planta" de la NEC de Peligro Sí	smico
	56
Figura 40 ETABS: Tabla Diaphragm Max Over Avg Drifts	57

Figura 41 Tabla 14 "Coeficientes de Irregularidad en elevación" de la NEC de Peligro Sísmico _____

Sísmico	58
Figura 42 ETABS: Vista Corte 3-3	58
Figura 43 ETABS: Creación de Cargas Laterales	59
Figura 44 ETABS: Carga Lateral en dirección X	60
Figura 45 Valores del Coeficiente k	60
Figura 46 Carga Lateral en dirección Y	60
Figura 47 ETABS: Combinación de Carga 1	61
Figura 48 ETABS: Combinación de Carga 2	61
Figura 49 ETABS: Combinación de Carga 3	62
Figura 50 ETABS: Combinación de Carga 4	62
Figura 51 ETABS: Combinación de Carga 5	62
Figura 52 ETABS: Combinación de Carga 6	63
Figura 53 ETABS: Combinación Envolvente	63
Figura 54 ETABS: Load Pattern Definitions – Auto Seismic – User Coefficient	64
Figura 55 ETABS: Story Forces	65
Figura 56 ETABS: Ajuste SXdin	66
Figura 57 ETABS: Ajuste SYdin	66
Figura 58 ETABS: Story Forces Corregido	66
Figura 59 ETABS: Configuración Columna 30x30 cm	67
Figura 60 ETABS: Configuración Columna 50x50 cm	68
Figura 61 ETABS: Configuración Viga 25x30 cm	68
Figura 62 ETABS: Configuración Viga 25x40 cm	69
Figura 63 ETABS: Configuración Viga 30x50 cm	69
Figura 64 ETABS: Vista Corte B-B	70
Figura 65 ETABS: Vista Corte 5-5	70
Figura 66 ETABS: Vista 3D de la Estructura	71
Figura 67 ETABS: Modal Participating Mass Ratios	72
Figura 68 Tabla 7 de la NEC de Peligro Sísmico	72
Figura 69 ETABS: Deriva sentido X	73
Figura 70 ETABS: Deriva sentido Y	74
Figura 71 ETABS: Cargar combinaciones de carga	75
Figura 72 ETABS: Diseño de elementos en hormigón armado	75
Figura 73 ETABS: Vosta Corte C-C con diseño de elementos	76
Figura 74 ETABS: Acero longitudinal de la viga C 3-5 del "Story 1"	76
Figura 75 Ejemplo de diseño de vigas	77
Figura 76 Momentos Flector de la viga C 3-5 del "Story 1"	77
Figura 77 Acero requerido diseño Excel	79
Figura 78 Configuración del Acero para la viga	80
Figura 79 ETABS: Cortante máximo de la viga C 3-5 del "Story 1"	81
Figura 80 - Diagrama de carga axial de la estructura	88
Figura 81 - Diagrama de momentos de la estructura	88
Figura 82 Datos generales de geometría y materiales	89
Figura 83 Disposición de las varillas en la columna	89

Figura 84 Valores de carga axial y momento	90
Figura 85 Diagramas de interacción en sentido X y Y	90
Figura 86 Cálculo de cortante probable 1	91
Figura 87 Diagramas de interacción amplificados	91
Figura 88 Cálculo de cortante probable 2	91
Figura 89 Altura de columnas entre pisos, área de aceros, y dimensiones	92
Figura 90 Cálculo de la fuerza cortante para el diseño de los estribos	92
Figura 91 Cálculo del cortante permitido y verificación	93
Figura 92 Cálculo de separación de los estribos	93
Figura 93 Diseño por confinamiento de los estribos	94
Figura 94 Longitudes de confinamiento	94
Figura 95 Verificación Columna Fuerte, Viga Débil	95
Figura 96 Diseño final de la columna de 50x50 cm	95
Figura 97 Datos de geometría y materiales	96
Figura 98 Disposición de las varillas.	96
Figura 99 Valores de carga axial y momentos	97
Figura 100 Diagramas de interacción en sentido X y Y	97
Figura 101 Cálculo de momento y cortante probable 1	98
Figura 102 Cálculo de momento y cortante probable 2.	98
Figura 103 Dimensiones de la columna, acero de refuerzo, y distancia entre vigas.	99
Figura 104 Cálculos para el diseño de estribos.	99
Figura 105 Diseño por confinamiento de los estribos.	100
Figura 106 Longitudes de confinamiento.	101
Figura 107 Verificación columna fuerte, viga debil.	101
Figura 108 Diseño final de la columna de 30x30 cm.	102
Figura 109 Datos de cargas y momentos para la zapara combinada.	102
Figura 110 Valores de q admisible.	
Figura 111 Cargas y momentos actuantes de ETABS.	103
Figura 112 Información general de los materiales.	103
Figura 113 Área de zapata inicial.	103
Figura 114 Determinación de la resultante de cargas.	104
Figura 115 Análisis de cargas sobre la zapata.	104
Figura 116 Diagrama de corte de la zapata.	104
Figura 117 Diagrama de cortante y momento último.	105
Figura 118 Sección crítica para punzonamiento	105
Figura 119 Verificación de esfuerzo cortante máximo.	106
Figura 120 Cortante último columna 2.	106
Figura 121 Verificación de cortantes máximos.	107
Figura 122 Verificación VcR.	
Figura 123 Diseño a flexión para momentos negativos.	
Figura 124 Cálculo de separación de varillas.	109
Figura 125 Separación de varillas	
Figura 126 Diseño de zapata combinada para momentos positivos	110
Figura 127 Diseño por flexión del lado más corto para la columna 1.	111

Figura 128 Diseño a flexión para la columna 2	112
Figura 129 Diseño a flexión de la zona intermedia de la zapata	113
Figura 130 Verificación de peralte de la zapata	114
Figura 131 Diseño final de la zapata combinada	114
Figura 132 Corrección de predimensionamiento	115
Figura 133 Diseño estructural de la zapata	116
Figura 134 Sección crítica de la zapata	117
Figura 135 Medidas de la sección crítica	117
Figura 136 Segundo cortante.	117

Figura 137 Diseño por flexión, cálculo de presiones, cálculo de Mu, Mn, y espaciamiento.

	118
Figura 138 Diseño final de zapata aislada C4	118
Figura 139 Corrección del predimensionamiento	119
Figura 140 Diseño estructural de la zapata	120
Figura 141 Perímetro crítico de la zapata	120
Figura 142 Sección crítica de la zapata	121
Figura 143 Dimensiones de la sección crítica.	121
Figura 144 Verificación de segundo cortante.	121
Figura 145 Diseño por flexión y configuración del refuerzo.	122
Figura 146 Diseño final de zapata aislada F4	123
Figura 147 Información general del suelo para el diseño de muros.	123
Figura 148 Determinación de pesos, brazos, momentos, y fuerzas.	125
Figura 149 Resultante de fuerzas.	125
Figura 150 Factores de seguridad por volcamiento y desplazamiento	125
Figura 151 Prediseño de muro	126
Figura 152 Cálculo de Mn y As mínimo	126
Figura 153 Verificación de acero escogido	127
Figura 154 Refuerzo a flexión del muro	127

Figura 155 Espaciamiento verticala máximo del refuerzo transversal en el borde del muro.

	128
Figura 156 Verificación de carga axial	128
Figura 157 Diseño del muro a corte	129
Figura 158 Espaciamiento transversal del muro.	129
Figura 159 Cálculo de As min	130
Figura 160 Datos para el diagrama de interacción del muro	130
Figura 161 Cálculos realizados para el diagrama de interacción del muro	131
Figura 162 Compresión máxima	131
Figura 163 Puntos obtenidos para el diagrama de interacción.	132
Figura 164 - Diagrama de iteraciones del muro	133
Figura 165 – Piso 3	134
Figura 166 - Importación de planos a Revit	135
Figura 167 - Planos arquitectónicos exportados a AutoCAD	136
Figura 168 - Niveles para cada piso del edificio	136
Figura 169 - Creación de rejilla para los planos	137

Figura 170 - Configuración de secciones transversales.	138
Figura 171 - Colocación de columnas	138
Figura 172 - Colocación de vigas y columnas	139
Figura 173 – Viga	139
Figura 174 – Columna	140
Figura 175 - Zapata Ccombinada	140
Figura 176 - Muro estructural	141
Figura 177 – Losa	141
Figura 178 – Escaleras	142
Figura 179 - Estructura final del edificio	142
Figura 180 Detalle de conexión entre vita y columna	143
Figura 181 Detalle 3D de los estribos de la viga	144
Figura 182 Detalle del refuerzo de una viga, incluye varillas y estribos	144
Figura 183 - Detalle de zapata combinada	145
Figura 184 - Armado en 3D de zapata combinada	145
Figura 185 Detalle de refuerzo de zapata aislada	145
Figura 186 - Armado de muro estructural	146
Figura 187 Corte transversal muro principal	147
Figura 188 Zapata de muro	147
Figura 189 Corte longitudinal muro	147
Figura 190 - Detalle 3D del armado de muro(isometría)	148
Figura 191 Modelo Digital del edificio.	150
Figura 192 Subsuelo	1
Figura 193 Piso 1	2
Figura 194 Piso 2	3
Figura 195 Piso 3	4
Figura 196 Piso 4	5
Figura 197 Rooftop	6
Figura 198 Planos Zapatas	7
Figura 199 Detalles Zapatas	8
Figura 200 Planos Muro Principal	9
Figura 201 Planos Muro Secundario	10
Figura 202 Planos Columnas	11
Figura 203 Planos Vigas Piso 1	12
Figura 204 Planos Vigas Piso 2	13
Figura 205 Planos Vigas Piso 3	14
Figura 206 Planos Vigas Piso 4	15
Figura 207 Planos Vigas Rooftop	16

ÍNDICE DE TABLAS

Tabla 1 Carga Muerta de Entrepiso	22
Tabla 2 Carga Muerta de Entrepiso Exterior	22
Tabla 3 Carga Muerta de Cubierta	23
Tabla 4 Carga Viva del Edificio	24
Tabla 5 Carga Sísimica	24
Tabla 6 Combinaciones de Cargas	25
Tabla 7 Tabla momentos dirección X	30
Tabla 8 Tabla momentos dirección Y	31
Tabla 9 Datos de factores a utilizar	50
Tabla 10 Datos Cortante Basal	59
Tabla 11 Valores Cortante Basal V	64
Tabla 12 Valores Cortante Dinámico	65
Tabla 13 Ajuste Cortante Basal	65
Tabla 14 Comprobación Cortante Basal Dinámico	67
Tabla 15 Datos de la Viga	76
Tabla 16 ETABS: Momentos Flector	77
Tabla 17 Configuración de Acero Longitudinal	80
Tabla 18 Datos Extra para el acero transversal	81
Tabla 19 Acero en zona de confinamiento	84
Tabla 20 Acero fuera de la zona de confinamiento	85
Tabla 21 Configuración de acero longitudinal viga G-H	85
Tabla 22 Configuración de acero longitudinal viga A'-B	85
Tabla 23 Configuración de acero longitudinal viga 25x40: requerido 3 cm2	86
Tabla 24 Configuración de acero longitudinal viga 25x40: requerido 4.6 cm2	86
Tabla 25 Configuración de acero longitudinal viga 25x40: requerido 5.4 cm2	86
Tabla 26 Configuración de acero longitudinal viga 30x50: requerido 8cm2	87
Tabla 27 Configuración de acero longitudinal viga 30x50: requerido 11.5cm2	87
Tabla 28 Caracteristicas del suelo.	115
Tabla 29 Caracteristicas del suelo.	119
Tabla 30 Cargas últimas	119
Tabla 31 Espesor mínimo del muro	124
Tabla 32 Verificación espesor mínimo.	124
Tabla 33 Planilla de aceros	149

ESTE TrabajoFUE LLEVADO A CABO DE MANERA COLABORATIVA ENTRE Miguel Valarezo con código (00214574) y Brandon Villacrés con código (00207203). A FECHA DE ENTREGA DICIEMBRE – 2023.

Introducción

Esta idea nació como una propuesta por parte de nuestro profesor Miguel Andrés Guerra, el cual nos propuso realizar el análisis y diseño estructural de un edificio de hormigón armado localizado en La Primavera, Cumbayá. Este diseño se realizaría aplicando tanto normas nacionales, como la NEC, como normas internacionales, como el ACI. Se empezó realizando un análisis de cargas, teniendo en cuenta ciertas recomendaciones de colegas que trabajaron en la parte de sostenibilidad, además de investigar las cargas aplicadas en proyectos similares. Para el análisis sísmico se determinó el espectro sísmico para el cual se realizaría el análisis sismo resistente.

Para el diseño estructural, el conocer las cargas y su distribución, la malla estructural, y las condiciones sísmicas y de suelos son de suma importancia pues son de los primeros aspectos que se deben verificar para empezar con el pre diseño de los elementos estructurales. Es importante conocer cómo responderá el edificio a las cargas establecidas y los sismos, de modo que el diseño en caso de fallar garantice la seguridad humana.

Los programas tanto de ETABS como de Revit son herramientas sumamente importantes, pues gracias a estas y junto con el conocimiento aprendido durante la carrera se puede realizar un diseño completo de un proyecto como este. Al dominar temas de mecánica de suelos, cimentaciones, muros, sismo resistencia, hormigón armado y análisis estructural, junto con el manejo de los programas mencionados se garantiza un diseño acertado del proyecto, evidenciando el compromiso con la carrera de ingeniería civil.

Antecedentes

Se va a realizar el análisis, diseño y el modelamiento en REVIT de una edificación ubicada en el sector de "La Primavera" en la parroquia de Cumbayá la cual pertenece al distrito metropolitano de Quito. Tiene como enfoque el ser utilizado como vivienda, consta de 5 pisos con un subsuelo destinado a parqueaderos. A continuación, se van a presentar planos arquitectónicos del proyecto con vista en corte y en planta.

Figura 1 Corte arquitectónico del Edifico

Figura 2 Vista en planta nivel 3

Los diferentes planos arquitectónicos proporcionados se van a ocupar para el modelamiento en el programa ETABS y REVIT, conocer las dimensiones de la estructura como la altura del entrepiso de 2.88m. También la forma que va a tener el edificio y de qué manera desean que se distribuya los elementos estructurales. Esta información será la base de la tesis para realizar los diferentes procedimientos.

1. Normativa técnica

Para el análisis y diseño del edificio "Buena Vista" se ocuparon las siguientes normas ecuatoriana de la construcción:

- NEC-SE-CG: Cargas (no sísmicas)
- NEC-SE-DS: Peligro Sísmico
- NEC-SE-HM: Estructuras de Hormigón Armado
- Guía para estructuras de hormigón armado

2. Análisis de Cargas

2.1. Carga muerta

2.1.1. Entrepiso Cubierto

Los valores de carga utilizados para el entrepiso se los obtuvo de la NEC-SE-CG, estos datos se va a ocupar para realizar el análisis y posteriormente el diseño estructural. En el caso del valor de la losa más adelante se demuestra cómo se obtuvo de realizar el cálculo del peso de una losa alivianada de 1 metro cuadrado y 25 cm de espesor.

Entrepiso Interior			
Cielo Falso	15	kg/m2	
Instalaciones	10	kg/m2	
Acabados de Piso	80	kg/m2	
Mamposteria	200	kg/m2	
Losa	292.8	kg/m2	
Cmtotal	597.8	kg/m2	

Tabla 1 Carga Muerta de Entrepiso

2.1.2. Entrepiso Exterior

La diferencia con el anterior grupo de carga muerta es que es para el piso descubierto del primer nivel que no está bajo un techo, La mayor diferencia es que la mampostería vale cero y se agrega cargas de pérgola de madera y paneles solares.

Entrepiso Exterior			
Cielo Falso	15	kg/m2	
Instalaciones	10	kg/m2	
Acabados de Piso	80	kg/m2	
Mamposteria	0	kg/m2	
Losa	292.8	kg/m2	
Pergola de madera	25	kg/m2	
Paneles Solares	15	kg/m2	
Cmtotal	437.8	kg/m2	

Tabla 2 Carga Muerta de Entrepiso Exterior

2.1.3. Cubierta y Balcón

Se determinó el uso de los siguientes materiales para la cubierta. Para las instalaciones el valor utilizado será menor al utilizado en entrepisos, pero aumentando el peso de los paneles solares utilizados de 15 kg/m2. En el acabado de piso se determinó que se ocupará piedra andesita cuyo peso es de 54kg/m2 con un espesor de baldosa de 20 mm. Los valores del cielo y falso y la mampostería son cero. Para la losa se utilizará el mismo valor que en el entrepiso.

Cubierta y Balcón			
Cielo Falso	0	kg/m2	
Instalaciones	10	kg/m2	
Acabados de Piso	54	kg/m2	
Mamposteria	0	kg/m2	
Pergola de madera	25	kg/m2	
Paneles Solares	15	kg/m2	
Losa	292.8	kg/m2	
Cmtotal	396.8	kg/m2	

Tabla 3 Carga Muerta de Cubierta

2.2. Cargas vivas

Para este proyecto se trabajará con un edificio destinado para vivienda unifamiliar y bifamiliar. En la norma NEC-SE-CG se especifica el valor de carga viva a utilizar para contrapisos, cubierta y balcones:

CARGA VIVA		
ENTREPISO Y RECUBRI	MIENTO	
Residencia (Vivienda unifamiliar y bifamiliar)	200	Kg/m2
CIELO RASO Y CUBI	ERTAS	
Cubierta destinada a jardines o patios de reunión + carga de granizo	120	Kg/m2
BALCONES		
Cubierta detinada a patios de reunión	480	Kg/m2

Tabla 4 Carga Viva del Edificio

2.3. Carga sísmica

De acuerdo con la norma NEC-SE-CG, el valor de carga sísmica reactiva será

equivalente al valor de carga muerta utilizado anteriormente:

CARGA SÍSMICA REACTIVA				
ENTREPISO				
W 1077.8 Kg/m2				
CUBIERTA				
W	436.8	Kg/m2		

Tabla 5 Carga Sísimica

2.4. Combinaciones de carga

Para este caso de estudio se utilizarán las siguientes combinaciones de carga, de acuerdo a la norma NEC-SE-CG, exceptuando las combinaciones que contengan cargas de viento o de granizo, pues estas cargas no se tomarán en cuenta para este caso:

COMBINACIONES DE CARGA		
COMBINACIÓN 1	1.4 D	
COMBINACIÓN 2	1.2 D + 1.6 L	
COMBINACIÓN 3	1.2 D + 1.0 L + 1.0 Ex	
COMBINACIÓN 4	1.2 D + 1.0 L + 1.0 Ey	
COMBINACIÓN 5	0.9 D + 1.0 Ex	
COMBINACIÓN 6	0.9 D + 1.0 Ey	

Tabla 6 Combinaciones de Cargas

3. Estudio de suelos

Por fines educativos, el estudio de suelos se obtuvo de un proyecto del mismo sector "La Primavera", el cual estaba cerca al lugar en el cual se espera construir el proyecto. Además, dicho estudio contenía toda la información necesaria para realizar los cálculos pertinentes en este proyecto.

3.1. Capacidad portante

Dentro del estudio de suelos se encontró información importante para realizar los calculos de empuje de suelos como el ángulo de fricción, peso específico y cohesión del suelo. Estos datos serán de ayuda mas adelante para realizar el diseño de zapatas y muros.

BLOQUE	PROF.	ω Ν	γ	Ø	с
	(m)	(%)	(g/m³)	(°)	(kPa)
1	2.5 - 3.0	9.4	1.63	32	174.8

PROF.	q adm.		K
(m)	(t/m²)	(kPa)	(t/m².m)
2.0	20	196	2400
2.5	25	245	3000
3.0	28	274	3300
3.5	30	294	3600
4.0	30	294	3600

Figura 3 Resultados del ensayo de Compresión Triaxial Rápido.

Del informe obtenido se obtuvieron las características del suelo gracias a los diferentes ensayos que realizaron, entre los datos obtenidos se encuentra la capacidad portante del suelo (ESTRUKTEM, 2017), con toda esta información concluyó que el suelo es tipo D.

3.2. Profundidad de desplante

Como dato preliminar se asume un desplante mínimo de 2 metros de profundidad, debido a que se necesitan de algunos datos como las cargas actuantes y medidas de la zapata para realizar los cálculos correspondientes

Figura 4 Capacidad Portante Admisible

3.3. Nivel freático

No se encontró el nivel freático en las excavaciones realizadas dentro del rango de los 6 metros de profundidad. Debido a que el nivel freático se encuentra alejado de la zona de excavación, no se deberá analizar los efectos de este sobre la cimentación.

4. Información del Proyecto

4.1. Sistema Estructural

El sistema estructural hace referencia a como se va a comportar la estructura al soportar las diferentes cargas y como este va a reaccionar. En este el edificio "Buena Vista" se lo va a realizar utilizando el sistema estructural de pórticos resistentes a momentos, esto se refiere a que se van a ocupar columnas y vigas unidas gracias a nodos rígidos. Donde estos elementos soportan la flexión y cortante producto de las cargas laterales generadas por los sismos. Para dispersar la energía proveniente de este fenómeno natural se ocupa la ductilidad de la viga donde se diseña para que se formen nudos plásticos en este elemento y no en las columnas, las cuales soportan la estructura y si estas fallaran el edificio se desplomaría (Fuentes, González, Calderín, & Sánchez, 2018).

Este sistema estructural permite tener libertad en la distribución de los espacios lo cual es amigable con los arquitectos, además de que es flexible y permite disipar de forma correcta la energía proveniente de los sismos (Jiménez & Cuervo, 2014). Pero la principal razón de que se utilizó este tipo de estructura es porque es el que se ocupa habitualmente en Ecuador a la hora de construir o la primera opción para diseñar.

4.2. Materiales

4.2.1. Hormigón

Para el hormigón se va ocupar una resistencia a la compresión (fc) de 240 kg/cm² lo cual es mayor que el mínimo de 210 kg/cm² para hormigón normal. Para el módulo de elasticidad del hormigón se ocupa la siguiente fórmula la cual está

adaptada a los materiales existentes en Ecuador:

$$E_{c} = 13500\sqrt{f_{c}} [kg/cm^{2}]$$
$$E_{c} = 13500\sqrt{240} [kg/cm^{2}]$$
$$E_{c} = 209141.1 [kg/cm^{2}]$$

4.2.2. Acero

En el caso del acero el valor de la resistencia a la fluencia (fy) de 4200 kg/m2 y un módulo de elasticidad (Es) de 200000 MPa

4.3. Inercia de las secciones agrietadas

Para elementos de hormigón armado se debe tomar las siguientes consideraciones en la inercia para los cálculos de rigidez y de derivas máximas.

- 0.5 I_g para vigas.
- 0.8 I_a para columnas.
- 0.6 I_g para muros estructurales.

5. Predimensionamiento de los Elementos

5.1. Vigas

Comenzamos definiendo las dimensiones de una loza de la estructura:

Lado x = 5m

Lado y = 6.95m

Se escoge en lado menor S = 5m

El siguiente paso es definir las cargas, para ello ocupamos los valores de carga establecidos anteriormente y se aumenta el peso de las vigas para obtener una carga muerta total.

Continuamos con las combinaciones de carga donde se utilizó las siguientes ecuaciones.

- $C1 = 1.4 * CM = 1.004 T/m^2$
- $C2 = 1.2 * CM + 1.6 * CV = 1.181 T/m^2$

Se escoge el valor mayor $q = 1.18 T/m^2$.

Continuamos encontrando la carga rectangular equivalente:

$$W_S = q * \frac{s}{3}$$

Como se está realizando el predimensionamiento para una viga entre losas se debe multiplicar por 2.

$$W_S = 2 * q * \frac{s}{3}$$
$$W_S = 2 * 1.18 T/m^2 * \frac{5m}{3}$$
$$W_S = 3.94 T/m$$

Con este valor se puede hallar los valores de momentos aproximados en las vigas continuas no preesforzadas como indica el ACI 318-19 en la tabla 6.5.2.

Momento	Ubicación	Condición	M_{μ}
	Vanos extremos	Extremo discontinuo monolítico con el apoyo	$w_u \ell_n^2 / 12$
Positivo	valos extremos	El extremo discontinuo no está restringido	$w_u \ell_u^2 / 11$
	Vanos interiores	Todos	$w_u \ell_u^2 / 16$
Cara in los apo; exterior	Cara interior de los apoyos	Miembros construidos monolíticamente con viga dintel de apoyo	$w_u \ell_n^2/2^2$
	exteriores	Miembros construidos monolíticamente con columna de apoyo	$w_u \ell_n^2 / 16$
	Cara exterior	Dos vanos	$w_u \ell_n^2 / 9$
vcgativo ⁽¹⁾	apoyo interior	Más de dos vanos	$w_n \ell_n^2 / 10$
	Las demás caras de apoyos	Todas	$w_u \ell_n^2/11$
	Cara de todos los apoyos que cumplan (a) o (b)	(a) Losas con luces que no excedan de 3 m (b)Vigas en las cuales la relación entre la suma de las rigideces de las columnas y la rigidez de la viga exceda de 8 en cada extremo del vano	$w_u \ell_n^2 / 12$

los vanos adyacentes.

Figura 5 Tabla 6.5.2 del ACI 318-19

Se calcula para ambas direcciones, comenzamos con el eje X encontrando los

momentos como lo indica la siguiente imagen:

Figura 6 Momentos en una viga, dirección X

Se resuelve cada momento ocupando el valor de la carga distribuida W_S y los 5m que

corresponde a la longitud en X, y obtenemos la siguiente tabla de momentos positivos y

negativos.

Momentos Negativos		Momentos Positivos	
M1 (T*m)	6.150	M1-2 (T*m)	7.029
M2 (T*m)	9.840	M2-3 (T*m)	6.150
M3 (T*m)	8.946	M3-4 (T*m)	6.150
M4 (T*m)	9.840	M4-5 (T*m)	7.029
M5 (T*m)	6.150		

Tabla 7 Tabla momentos dirección X

Para el eje Y también calculamos los momentos como indica la siguiente imagen:

Figura 7 Momentos en una viga, dirección Y

Igual ocupamos el valor de W_S pero el valor de la longitud es diferente siendo de

6.95m, lo cual nos da los siguientes resultados:

Momentos Negativos		Momentos Positivos M1-2 (T*m) 13.580		
M1 (T*m)	11.883	M1-2 (T*m)	13.580	
M2 (T*m)	19.012	M2-3 (T*m)	11.883	
M3 (T*m)	19.012	M3-4 (T*m)	13.580	
M4 (T*m)	11.883			

Tabla 8	Tabla	momentos	dirección	Y
---------	-------	----------	-----------	---

Seleccionamos el momento máximo (Mmax) que es el de 19.01 T*m. Este dato también es el momento nominal y vamos a utilizarlo para encontrar el peralte efectivo con la siguiente fórmula.

$$M_n = R_u * b * d^2$$

El signo "b" representa el ancho de la viga que según la NEC-SE-HM de estructuras de hormigón armado no puede ser menor que 25cm por lo tanto se va a ocupar este valor. La expresión " R_u " es un factor de resistencia a la comprensión siendo esta su definición:

$$R_u = \rho * fy * \left(1 - 0.588 * \frac{\rho * fy}{f'c}\right)$$

Donde ρ es la cuantía de refuerzo y se calcula de la siguiente manera:

$$\rho = 0.5 * \rho_b$$

$$\rho_b = 0.85 * \beta_1 * \frac{f'c}{fy} * \frac{0.003}{0.003 + \varepsilon_y}$$

El signo β_1 es una característica del hormigón si este tiene una resistencia a la compresión menor a 280 kg/cm², β_1 tiene el valor de 0.85. ε_y es el esfuerzo de deformación en el cual el acero empieza a fluir y es igual a 0.002. Se reemplazan los datos y se obtiene el siguiente valor:

$$\rho_b = 0.85 * 0.85 * \frac{240 \, kgf/cm^2}{4200 \, kgf/cm^2} * \frac{0.003}{0.003 + 0.002}$$
$$\rho_b = 0.0248$$

Ocupamos este dato para hallar la cuantía de refuerzo.

$$\rho = 0.5 * 0.0248$$
 $\rho = 0.0124$

Con la cuantía de refuerzo se puede encontrar el factor de resistencia a la compresión.

$$R_{u} = 0.0124 * 4200 \, kgf/cm^{2} * \left(1 - 0.588 * \frac{0.0124 * 4200 \, kgf/cm^{2}}{240 \, kgf/cm^{2}}\right)$$
$$R_{u} = 45.39 \, kgf/cm^{2}$$

Al ya tener R_u procedemos a encontrar el peralte efectivo de viga ocupando la

fórmula del momento último con un factor de seguridad de 0.9.

$$M_{u} = \theta * R_{u} * b * d^{2}$$
$$d = \sqrt{\frac{M_{n}}{\theta * R_{u} * b}}$$

$$d = \sqrt{\frac{1901237.92 \, kgf * cm}{0.9 * 45.39 \, kgf/cm^2 * 25 \, cm}}$$
$$d = 43.15 \, cm$$

Para encontrar el peralte real se aumenta 4 cm de recubrimiento.

$$h = 47.15 \ cm$$

Redondeamos al múltiplo de 5 más cercano y tenemos las siguientes dimensiones de

la viga que vamos a ocupar como preámbulo para el análisis estructural.

$$h = 45 \ cm$$

 $b = 25 \ cm$

Cargamos esta información al ETABS:

Section Dimensions		
Depth 0.45	m	
Width 0.25	m	2
		3
		← +

Figura 8 Predimensionamiento Viga 25x45cm

Al momento de crear las secciones de una viga de hormigón armado se debe agrietar a 0.5 los valores de momento de inercia en ambas direcciones.

5.2. Columnas

Para las columnas se desarrolló dos configuraciones por la diferencia que había en la carga que soportan.

El primer análisis se realizó para la columna en la ubicación A-1, el cual soporta las siguientes cargas:

$$CM = 0.4378 \text{ ton}/m^2$$
$$CV = 0.2 \text{ ton}/m^2$$

La combinación más desfavorable que experimenta la columna es la siguiente:

$$Wu = 1.2 * CM + 1.6 * CV$$

$$Wu = 1.2 * 0.4378 ton/m^2 + 1.6 * 0.2 ton/m^2$$

 $Wu = 0.845 ton/m^2$

Las longitudes que conforman el área tributaria de que debe cargar la columna son las siguientes:

$$L1 = 1.535 m$$
$$L2 = 2.35 m$$
Area Tributaria = L1 * L2
Area Tributaria = 1.535 m * 2.35 m
Area Tributaria = 3.61 m²

Esta columna solo soporta el peso de un piso, con esta información ya se puede

encontrar la carga axial que siente la columna.

$$P_u = Wu * Area Tributaria * #pisos$$

 $P_u = 0.845 ton/m^2 * 3.61 m^2 * 1$
 $P_u = 3.05 ton$

Para hallar el área de la columna conociendo la carga que experimenta junto con las propiedades del material, se va a ocupar el siguiente criterio de ductilidad:

$$A_g = \frac{3 * P_u}{0.8 * (0.85 * fc + \rho * fy)}$$

Se puede simplificar la ecuación para los siguientes valores:

$$fc = 210 \ kgf/cm^2$$
$$fy = 4200 \ kgf/cm^2$$
$$\rho = 1.5\%$$
$$A_g = \frac{P_u}{65}$$

Y también con los siguientes datos:

$$fc = 280 \, kgf/cm^2$$

$$fy = 4200 \ kgf/cm^2$$

$$\rho = 1.5\%$$

$$A_g = \frac{P_u}{80}$$

Por observación se interpreta que para un hormigón con una resistencia a la compresión de 240 kgf/cm^2 se puede ocupar la siguiente expresión:

$$A_g = \frac{P_u}{72}$$

Se reemplazan el dato de la carga axial en kgf y obtenemos el área de la columna.

$$A_g = \frac{3.05 * 10^3 kgf}{72}$$
$$A_g = 42.35 \ cm^2$$

Sacamos la raíz para conocer las dimensiones de la columna.

$$b = \sqrt{A_g}$$
$$b = 6.5 \ cm$$

Según el predimensionamiento solo se necesita una columna de 7x7 cm, pero la norma nos indica que el área total mínima de una columna debe ser de 900 cm^2 por lo tanto se va a ocupar una columna de 30x30 cm.

El siguiente paso es encontrar la cuantía de acero de la columna la cual no tiene que ser mayor que el 3% del área total de la columna. Para este caso se va a ocupar una cuantía del 1% lo que quiere decir que el área de acero es de 9 cm^2 , si nos fijamos en la siguiente imagen:

	DIÁMETRO NOMINAL		MASA I	D DE SE	SECCIÓN NOMINAL SEGÚN CANTIDAD DE BARRAS								
F	mm	cm ²	Kg	m	1	2	3	4	5	6	7	8	
T	3.5	0.096	0.0	76	0.10								
I	6	0.283	0.1	22	0.28					0.00	250		
1	8	0.50	3 0	395	0.50	1.01	1.51	2.01	2.51	3.02	3.52	4.02	
	10	0.78	5 0	617	0.79	1.57	2.36	3,14	3.93	4.71	5.50	6.28	
	40	1.13	1 0	889	1.13	2.26	3,39	4.52	5.65	6.79	7.92	9.05	
	14	15	39 1	210	1.54	3.08	4.62	6.16	770	9.24	10.78	12.32	
	14	20	11	,580	2.01	4.02	6.03	8.04	10.05	12.06	14.07	16.08	
	10	25	45	2.000	2.54	5.09	7.63	10.18	12.72	15.27	17.81	20.36	
	20	3.	142	2.469	3 14	6.28	9.42	12.57	15.71	18.85	21.99	25.13	
	22	3	801	2.988	3.80	7.60	11.40	15.21	19.01	22.81	26.61	30.41	
	25	4	909	3.858	4.91	9.82	14.73	19.63	24.54	29.45	34.36	39.27	
	20	3 0	.158	4.840	6:10	12.32	18.47	24.63	30.79	36.95	43.10	49.25	
	3	2 8	8.042	6.321	6.04	10.08	24.13	32.17	40.21	48.25	56.30	64.34	

Figura 9 Tabla configuraciones de acero

Se decide que para una columna de 30x30cm se va a ocupar 8 varillas de 12 mm de diámetro. Se carga esta información en el Etabs.

Section Dimensions				
Depth	30	cm	• 2	
Width	30	cm	3	I
			-	+ •
				• •
Longitudinal Bars			-	
Clear Cover for Confinement Bars			4	cm
Number of Longitudinal Bars Along 3-dir Face			3	
Number of Longitudinal Bars Along 2-dir Face			3	
Longitudinal Bar Size and Area	12	~	 1.13	Cm ²
	1.1.7			0.2000

Figura 10 Predimensionamiento Columna 30x30 cm

Al momento de crear las secciones de una columna de hormigón armado se debe agrietar 0.8 los valores de momento de inercia en ambas direcciones. Se repite el mismo procedimiento para una columna en el centro del edificio que soporta 5 pisos y se obtiene como resultado que se necesita una columna de 45x45 cm con 8 varillas de 18cm de diámetro, se ocupa esta información para crear una nueva sección de columna en el programa.

Figura 11 Predimensionamiento Columna 45x45 cm

5.3. Losas

En este proyecto se va a ocupar losas alivianadas las cuales son las que se ocupa normalmente y se debe tomar en cuenta que se puede trabajar con losas en una dirección o en dos direcciones. La diferencia es que las losas de una dirección tienen el refuerzo en un sentido mientras que en dos direcciones tienen el refuerzo en los dos sentidos. Para decidir cual se debe ocupar sacamos las dimensiones de una losa en nuestro caso son las siguientes:

> Lado Largo = 7 mLado Corto = 5.35 m

Dividimos el mayor para el menor:

$$\frac{LL}{LC} = 1.3 \le 2$$

Como se puede observar la relación es menor a 2 esto quiere decir que se ocupa losa en dos direcciones, si el valor fuese mayora 2 se debería ocupar losas en una dirección. En el predimensionamiento queremos estimar una altura de la losa alivianada para ello vamos a ocupar la tabla 8.3.1.2 del ACI 318-19 la cual nos va ayudar a conocer el espesor mínimo de la losa.

α _{fin} ^[1]	Espes		
$\alpha_{fm} \leq 0.2$	S	(a)	
$0.2 < \alpha_{fin} \leq 2.0$	Mayor de:	$h = \frac{\ell_n \left(0.8 + \frac{f_y}{1400} \right)}{36 + 5\beta \left(\alpha_{fin} - 0.2 \right)}$	(b) ^{[1],[2]}
		125	(c)
α _{fm} > 2.0	Mayor de:	$h = \frac{\ell_n \left(0.8 + \frac{f_y}{1400}\right)}{36 + 9\beta}$	(d)
		90	(e)

Tabla 8.3.1.2 — Espesor mínimo de las losas de dos direcciones con vigas entre los apoyos en todos los lados

^[1] α_{fm} es el valor promedio de α_f para todas las vigas en el borde de un

panel. ^[2] ℓ_n corresponde a la luz libre en la dirección larga, medida cara a cara de las vigas (mm)

 $^{[3]}$ El término $\beta~$ es la relación de la luz libre en la dirección larga a la luz libre en la dirección corta de la losa.

Empezamos asumiendo que el valor de $\alpha_{fm} > 2$, por lo tanto debemos calcular h.

$$h = \frac{l_n \left(0.8 + \frac{f_y}{1400} \right)}{36 + 9\beta}$$

Reemplazamos los datos:

$$h = \frac{7m\left(0.8 + \frac{420\,MPa}{1400}\right)}{36 + 9 * 1.3}$$

$$h = 160mm > 90mm$$

Ocupamos el valor de h pero se aproxima al valor mayor múltiplo de 50mm esto quiere decir que el espesor es de 200mm.

El siguiente paso es encontrar la inercia de la losa con espesor de 0.2 m, con

espaciamiento de los cajetones de 0.4 m que se muestra a continuación.

Figura 13 Vista transversal losa

Realizando las respectivas operaciones obtenemos que el valor de la inercia (I_b) es 150000 cm⁴.

Con este valor ya podemos encontrar el valor de α_{fm} .

$$\alpha_{fm} = \frac{I_b}{\left(\frac{L1+L2}{2}\right) * \left(\frac{h_{losa}^3}{12}\right)}$$
$$\alpha_{fm} = \frac{150000 \ cm^4}{\left(\frac{700+540}{2}\right) * \left(\frac{20^3}{12}\right)}$$
$$\alpha_{fm} = 0.365 \le 2$$

Como es menor a 2 se ocupa la siguiente fórmula para el espesor de la losa.

$$h = \frac{l_n \left(0.8 + \frac{f_y}{1400} \right)}{36 + 5\beta (\alpha_{fm} - 0.2)}$$
$$h = \frac{7m \left(0.8 + \frac{420 MPa}{1400} \right)}{36 + 5 * 1.3 (0.365 - 0.2)}$$
$$h = 218.81 \approx 250mm$$

Se aproxima el espesor de la losa a 250mm por facilidades constructivas. Como ya conocemos el valor del espesor el siguiente paso es encontrar el peso por metro cuadrado de la losa, primero dibujamos la losa para guiarnos.

Figura 14 Dimensiones Losa

Después obtenemos el volumen de la losa alivianada:

$$V_{losa} = (1 * 1 * 0.25) - 4 * (0.4 * 0.4 * 0.2)$$

 $V_{losa} = 0.122m^3$

Se conoce que el peso específico del hormigón es 2400 kgf/m^3 .

$$Carga_{losa} = V_{losa} * \gamma_{horm}$$

 $Carga_{losa} = 0.122 * 2400$
 $Carga_{losa} = 292.8 \, kgf/1m^2$

Este valor se debe ingresar al ETABS para ello vamos a crear una membrana muy delgada la cual permita transmitir las cargas y le colocamos el peso de la losa como carga muerta por eso en la tabla de carga muerta se encuentra este valor de 292.8 $kgf/1m^2$.

6. Estructura en ETABS

Ahora que ya tenemos los materiales cargados junto con las secciones podemos comenzar a realizar el dibujo de la estructura para ello vamos a basarnos en los planos arquitectónicos proporcionados. Empezamos definiendo la grilla que nos permitirá empezar a graficar los elementos.

Figura 15 ETABS: Grilla para la estructura

Al ya tener la grilla seguimos colocando las diferentes secciones, primero colocamos

las columnas.

Figura 16 ETABS: Colocación de Columnas

El siguiente elemento que se dibujó son las vigas.

Figura 17 ETABS: Colocación de Vigas

Continuamos colocando la membrana que va a ayudarnos a transmitir las cargas

muertas y vivas.

Figura 18 ETABS: Colocación de membranas

En los planos arquitectónicos se observa que el edificio va a estar en una pendiente por lo que se debe tomar en cuenta la carga que este genera. Para soportar el esfuerzo del talud se van a utilizar muros los cuales también se van a graficar.

Figura 19 ETABS: Colocación de Muros

Una vez ya tenemos dibujada la estructura en el programa ETABS procedemos a discretizar en secciones más pequeñas de 1X1 para todas las membranas de la estructura con el fin de exista una buena distribución de las cargas aplicadas. Para ello ocupamos la función "Floor auto mesh options", quedando de la siguiente manera.

Figura 20 ETABS: Generar mallas en las membranas

Continuamos colocando los valores de carga muerta y viva definidas al inicio del informe sobre la membrana en las losas según corresponda. Como ejemplo se ocupó el piso 4 del edificio.

Figura 21 ETABS: Colocación de Cargas

De esta manera se fueron colocando las respectivas cargas de cada membrana ya sean cargas de piso, de cubierta o de balcón en los diferentes pisos de la estructura.

Continuamos definiendo un diafragma en cada uno de los pisos para ello ocupamos la opción diafragmas. Se ocuparon diafragmas semi rígidos debido a la irregularidad que existe en todo el edificio.

Figura 22 ETABS: Generar Diafragmas

7. Diseño Sismo Resistente

7.1. Propósito de la Norma NEC-SE-DS

El documento NEC-SE-DS nos brinda requisitos mínimos para el diseño de las edificaciones debido al riesgo sísmico existente del país de esta manera se prevé la vulnerabilidad de las estructuras.

En el caso sismos pequeños los cuales son más frecuentes la norma ayuda a que las estructuras no sufran daños o que estos sean mínimos. Si el sismo llega a ser moderado lo cual tiene una menor frecuencia de ocurrencia, las indicaciones de la norma permiten controlar los daños estructurales y que no sean graves. En el peor de los casos se dé un sismo fuerte de alta intensidad las estructuras no colapsarán de esta manera preservando la vida de los usuarios de la edificación. La norma se creó con el propósito de cuidar la salud de las personas ante este fenómeno natural.

Las premisas de construcción de la norma ayudan a que la estructura pueda disipar la energía que transmite el sismo, impidiendo grandes deformaciones inelásticas esto ocurre gracias a los métodos de diseño de elementos establecidos.

7.2. Diseño Basado en Fuerzas (DBF)

Este método como su nombre lo indica es un diseño basado en fuerzas lo que indica que a nuestra estructura le colocamos fuerzas laterales que terminan ocasionando desplazamientos laterales. Entonces se analiza que los desplazamientos generados sean menores a los permitidos por la norma. Es un método obligatorio para todas las estructuras en nuestro país, ya que al estar en una zona altamente sísmica deben tener la capacidad de soportar las fuerzas sísmicas producto de las combinaciones de fuerzas Para este método se debe realizar dos análisis, uno es el estático y el otro es el dinámico, en el análisis dinámico se puede realizar el análisis dinámico espectral o el análisis dinámico paso a paso en el tiempo. Se va a realizar el análisis dinámico espectral porque es el único que se puede realizar ya que para el otro análisis se necesita acelerogramas del sitio especifico en el que se va a construir y dicha información no se encuentra en Ecuador. Entonces se va a diseñar para un sismo raro el cual tienen una probabilidad de excedencia en 50 años del 10%, con un periodo de retorno (T) de 475 años y la tasa anual de excedencia de 0.00211.

Nivel de sismo	Sismo	Probabilidad de excedencia en 50 años	Período de retorno T _r (años)	Tasa anual de excedencia (1/T _r)
1	Frecuente (menor)	50%	72	0.01389
2	Ocasional (moderado)	20%	225	0.00444
3	Raro (severo)	10%	475	0.00211
4	Muy raro* (extremo)	2%	2 500	0.00040

Tabla 9: niveles de amenaza sísmica

Figura 23 Tabla 9 de la NEC de Peligro Sísmico

7.3. Análisis Dinámico Espectral

7.3.1. Factor de zona Z

Para obtener los valores de los componentes del espectro sísmico primero debemos conocer los valores del tipo de suelo del sector y el valor de la zonificación sísmica que es el factor de zona Z. Del estudio de suelos se obtuvo que el tipo de suelo de primavera es tipo D. Para obtener el factor de zona Z se ocupa la siguiente imagen que se obtuvo de la NEC_SE_DS:

Figura 1. Ecuador, zonas sísmicas para propósitos de diseño y valor del factor de zona Z

Figura 24 Figura 1 de la NEC de Peligro Sísmico

De la imagen obtenemos que el factor de zona Z es de 0.40 porque el proyecto se va a realizar en Quito cual indica que es una Zona Sísmica V y la característica del peligró sísmico es alta.

Zona sísmica	1	Ш	Ш	IV	V	VI
Valor factor Z	0.15	0.25	0.30	0.35	0.40	≥ 0.50
Caracterización del peligro sísmico	Intermedia	Alta	Alta	Alta	Alta	Muy alta

Tabla 1. Valores del factor Z en función de la zona sísmica adoptada

Figura 25 Tabla 1 de la NEC de Peligro Sísmico

7.3.2. Coeficientes de Sitio

Con estos datos ya podemos obtener los valores de los coeficientes de suelo Fa, Fd y

Fs.

El coeficiente de amplificación de suelo en la zona de periodo corto (Fa) se obtiene de la siguiente gráfica:

		Z	ona sísmi	ca y factor	Z	
Tipo de perfil del subsuelo	I	II	III	IV	V	VI
	0.15	0.25	0.30	0.35	0.40	≥0.5
A	0.9	0.9	0.9	0.9	0.9	0.9
В	1	1	1	1	1	1
С	1.4	1.3	1.25	1.23	1.2	1.18
D	1.6	1.4	1.3	1.25	1.2	1.12
E	1.8	1.4	1.25	1.1	1.0	0.85
F	Véase <u>Tabla 2</u> : Clasificación de los perfiles de suelo y la sección <u>10.5.4</u>					
	Tabla 3:	Tipo de sue	lo y Factore	s de sitio Fa		

Figura 26 Tabla 3 de la NEC de Peligro Sísmico

La amplificación de las ordenadas del espectro elástico de respuesta de

desplazamiento para diseño en roca (Fd) se obtiene de la siguiente gráfica:

		Z	ona sísmi	ca y factor	Z	
Tipo de perfil del subsuelo	1	II	III	IV	V	VI
	0.15	0.25	0.30	0.35	0.40	≥0.5
A	0.9	0.9	0.9	0.9	0.9	0.9
В	1	1	1	1	1	1
С	1.36	1.28	1.19	1.15	1.11	1.06
D	1.62	1.45	1.36	1.28	1.19	1.11
E	2.1	1.75	1.7	1.65	1.6	1.5
F	Véase <u>T</u>	abla 2 : Cla	asificación o	de los perfil	es de suelo	y 10.6.4
	Tabla 4 :	Tipo de sue	lo v Factore	s de sitio F.	1	

Figura 27 Tabla 4 de la NEC de Peligro Sísmico

El valor del comportamiento no lineal de los suelos (Fs) se obtiene de la siguiente

gráfica:

		Z	ona sísmi	ca y factor	Z	
Tipo de perfil del subsuelo	I	II	III	IV	V	VI
	0.15	0.25	0.30	0.35	0.40	≥0.5
A	0.75	0.75	0.75	0.75	0.75	0.75
В	0.75	0.75	0.75	0.75	0.75	0.75
С	0.85	0.94	1.02	1.06	1.11	1.23
D	1.02	1.06	1.11	1.19	1.28	1.40
E	1.5	1.6	1.7	1.8	1.9	2
F	Véase 1	abla 2 : Cla	asificación	de los perfil	es de suelo	y 10.6.4

Tabla 5 : Tipo de suelo y Factores del comportamiento inelástico del subsuelo F₅

Figura 28 Tabla 5 de la NEC de Peligro Sísmico

7.3.3. Espectro elástico de diseño

Con estos datos ya podemos generar el espectro sísmico para la edificación en base a las fórmulas obtenidas en la NEC SE DS:

Figura 29 Espectro de respuesta elástico de aceleraciones

Donde:

- η Razón entre la aceleración espectral S_a (T = 0.1 s) y el PGA para el período de retorno seleccionado.
- F_a Coeficiente de amplificación de suelo en la zona de período cortó. Amplifica las ordenadas del espectro elástico de respuesta de aceleraciones para diseño en roca, considerando los efectos de sitio
- F_d Coeficiente de amplificación de suelo. Amplifica las ordenadas del espectro elástico de respuesta de desplazamientos para diseño en roca, considerando los efectos de sitio
- Fs Coeficiente de amplificación de suelo. Considera el comportamiento no lineal de los suelos, la degradación del período del sitio que depende de la intensidad y contenido de frecuencia de la excitación sísmica y los desplazamientos relativos del suelo, para los espectros de aceleraciones y desplazamientos
- S_a Espectro de respuesta elástico de aceleraciones (expresado como fracción de la aceleración de la gravedad g). Depende del período o modo de vibración de la estructura
- T Período fundamental de vibración de la estructura
- T₀ Período límite de vibración en el espectro sísmico elástico de aceleraciones que representa el sismo de diseño
- T_C Período límite de vibración en el espectro sísmico elástico de aceleraciones que representa el sismo de diseño
- Z Aceleración máxima en roca esperada para el sismo de diseño, expresada como fracción de la aceleración de la gravedad g

Para realizar la gráfica del espectro elástico de diseño se van a ocupar las dos

siguientes ecuaciones dependiendo del periodo fundamental de la estructura y de los periodos

límites de vibración del sismo de diseño.

$$S_{a} = \eta * z * F_{a} \text{ cuando } 0 \le T \le T_{c}$$
$$S_{a} = \eta * z * F_{a} * \left(\frac{T_{c}}{T}\right)^{r} \text{ cuando } T_{c} \le T$$

Para calcular los límites de periodo de vibración de diseño se utilizan las siguientes ecuaciones:

$$T_o = 0.1 * F_s * \frac{F_d}{F_a}$$
$$T_c = 0.55 * F_s * \frac{F_d}{F_a}$$

El parámetro η es la relación de amplificación espectral depende de la ubicación del proyecto en este caso como la localización se encuentra en la sierra tiene un valor de 2.48.

- η= 1.80 : Provincias de la Costa (excepto Esmeraldas),
- η = 2.48 : Provincias de la Sierra, Esmeraldas y Galápagos
- η= 2.60 : Provincias del Oriente

El factor "r" depende del tipo de suelo al no ser un suelo tipo E el valor de "r" es 1.

Luego de realizar las respectivas operaciones e investigaciones se obtiene los siguientes datos que se van a ocupar:

Datos	
Tipo de Suelo	D
Factor de zona sismica Z	0.4
Parametro η	2.48
Fa	1.2
Fd	1.19
Fs	1.28
Тс	0.70
r	1.00

Tabla 9 Datos de factores a utilizar

Con los datos y las ecuaciones se genera el siguiente espectro elástico sísmico:

Figura 30 Espectro de respuesta elástico de aceleraciones de la estructura

El cual se va a ocupar para realizar el análisis dinámico espectral de la edificación. Para pasar esta información al ETABS primero debemos multiplicar por la gravedad los valores de aceleración para tenerlos en unidades m/s². Después estos datos exportamos a un block de notas para cargarlo en la opción "Define Response Spectrum Functions" y se genera el espectro.

Figura 31 ETABS: Espectro de respuesta elástico de aceleraciones

Se puede observar que los datos se encuentran en las unidades deseadas.

7.4. Factor de Reducción Sísmica (R)

La estructura no está diseñada para comportarse de forma elásticamente ya que no es factible que se deforme y regrese a su posición original sin ningún daño luego de experimentar un sismo. Se diseña para que primero se comporte de formar elástica y si sobrepasa un límite que empiece a comportarse de forma plástica, ocasionando daños y fisuras en la estructura.

Figura 32 Comportamientos de una estructura

Si se cumple ciertas condiciones al diseñar se puede evitar diseñar con la fuerza del sismo completa, sino que se puede reducir la fuerza al dividirla por el factor R. Debido a que la edificación va a cumplir con la ductilidad y amortiguamiento requeridos, se va a utilizar los factores de seguridad y que va a ser una estructura hiperestática. Esto indica que la edificación va a disipar energía a través de la deformación de los elementos, específicamente en las vigas ya que hay más y que fallen no significa que la estructura va a colapsar. El método de diseño de la estructura es pórticos resistentes a momentos la NEC de diseño sismo resistente nos indica que el valor de R es igual a 8.

Pórticos resistentes a momentos	
Pórticos especiales sismo resistentes, de hormigón armado con vigas descolgadas.	8

Figura 33 Tabla 15 "Coeficiente R para sistemas estructurales dúctiles" de la NEC de Peligro Sísmico

7.5. Casos de Cargas Laterales

Se procede a crear los casos de cargas dinámicos en sentido X y en Y, seleccionamos que es de carga tipo de respuesta espectral y seleccionamos la función que cargamos al programa.

eneral							
Load Case Name		SXdin	SXdin				
Load Case Type		Response Spectru	Notes.				
Mass Source		Previous (MsSrc1					
Analysis Model		Default					
oads Applied							
Load Type	Load Name	Function	Scale Factor	0			
Acceleration	U1	NECsinR	1/8	Add			
1 COCICICICICICICICICICICICICICICICICICIC							

Figura 34 Caso de carga dinámico en sentido X

En el factor de escala vamos a reducir la fuerza del sismo ocupando el valor de R por la tanto se coloca la cantidad de 0.125 que es igual a 1/8. Se realiza el mismo proceso para el eje Y solo que se cambia de dirección.

Load Case Name		SYdin		Design
Load Case Type		Response Spectru	m ~	Notes
Mass Source		Previous (MsSrc1))	
Analysis Model		Default		
oads Applied				-
Load Type	Load Name	Function	Scale Factor	0
		NECHAD	0.125	Add

Figura 35 Caso de carga dinámico en sentido Y

7.6. Análisis Estático (Cortante Basal de Diseño)

El análisis estático se trata de definir el cortante basal de diseño el cual es la sumatoria progresiva del esfuerzo cortante que experimenta en la estructura en todos los niveles y se genera en la base de la edificación. Para hallar el cortante se ocupa la siente fórmula:

 $\mathbf{V} = \frac{IS_a(T_a)}{R\phi_P\phi_E} \boldsymbol{W}$

Dónde

S _a (T _a)	Espectro de diseño en aceleración; véase en la sección [3.3.2]
$\emptyset_{\mathrm{P}} \mathrm{y} \emptyset_{\mathrm{E}}$	Coeficientes de configuración en planta y elevación; véase en la sección [5.3]
I	Coeficiente de importancia; se determina en la sección [4.1]
R	Factor de reducción de resistencia sísmica; véase en la sección [6.3.4]
V	Cortante basal total de diseño
W	Carga sísmica reactiva; véase en la sección [6.1.7]
Ta	Período de vibración; véase en la sección [6.3.3]

7.6.1. Factor de Importancia

La NEC nos indica que tiene un valor de 1 debido a que no es una edificación esencial

o una estructura de ocupación especial.

Categoría	Tipo de uso, destino e importancia	Coeficiente I
Edificaciones esenciales	Hospitales, clínicas, Centros de salud o de emergencia sanitaria. Instalaciones militares, de policía, bomberos, defensa civil. Garajes o estacionamientos para vehículos y aviones que atienden emergencias. Torres de control aéreo. Estructuras de centros de telecomunicaciones u otros centros de atención de emergencias. Estructuras que albergan equipos de generación y distribución eléctrica. Tanques u otras estructuras utilizadas para depósito de agua u otras substancias anti-incendio. Estructuras que albergan depósitos tóxicos, explosivos, químicos u otras substancias peligrosas.	1.5
Estructuras de ocupación especial	Museos, iglesias, escuelas y centros de educación o deportivos que albergan más de trescientas personas. Todas las estructuras que albergan más de cinco mil personas. Edificios públicos que requieren operar continuamente	1.3
Otras estructuras	Todas las estructuras de edificación y otras que no clasifican dentro de las categorías anteriores	1.0

Tabla 6: Tipo de uso, destino e importancia de la estructura

Figura 36 Tabla 6 de la NEC de Peligro Sísmico

7.6.2. Valor del Espectro de diseño en aceleración (S_a)

Para hallar el S_a de la estructura primerio debemos conocer el periodo de vibración (T_a) y ese valor se encuentra de dos manera la primera con una expresión y la segunda no proporciona el programa ETABS. Para el método 1 se ocupa la siguiente fórmula:

 $\mathbf{T}=C_t h_n^{\alpha}$

Dónde:

Ct Coeficiente que depende del tipo de edificio

h_n Altura máxima de la edificación de n pisos, medida desde la base de la estructura, en metros.

```
T Período de vibración
```

Para conocer los datos de C_t y α ocupamos la siguiente tabla.

Tipo de estructura	Ct	α
Estructuras de acero		
Sin arriostramientos	0.072	0.8
Con arriostramientos	0.073	0,75
Pórticos especiales de hormigón armado		
Sin muros estructurales ni diagonales rigidizadoras	0.055	0.9
Con muros estructurales o diagonales rigidizadoras y para otras estructuras basadas en muros estructurales y mampostería estructural	0.055	0.75

Figura 37 Tabla de la Sección 6.3.3 de la NEC de Peligro Sísmico

Nuestra estructura es de tipo pórticos especiales de hormigón armado sin muros estructurales ni diagonales rigidizadoras por la tanto C_t es igual 0.055 y α es igual a 0.9 Se reemplazan datos.

$$T = C_t * h_n^{\alpha}$$
$$T = 0.55 * (6 * 2.88)^{0.9}$$
$$T = 0.72$$

El método 2 es ocupando el ETABS que al ya tener el dibujo de la estructura nos da el siguiente valor de periodo:

3-D View Mode Shape (Modal) - Mode 1 - Period 0.322209761035778

Figura 38 ETABS: Periodo de la Estructura

Como el valor del método 2 es menor al del método 1 por 1.3, se define que el

periodo de la estructura es 0.32 seg.

Con este valor nos dirigimos a la gráfica y encontramos que S_a es igual a 1.19.

7.6.3. Coeficientes de Configuración en Planta

El coeficiente de configuración en planta (ϕ_P) se analiza que tan regular o irregular es la estructura en una vista en planta, la NEC de diseño sismo resistente nos brinda la tabla 13 para identificar qué valor se le designa.

Figura 39 Tabla 13 "Coeficientes de Irregularidad en planta" de la NEC de Peligro Sísmico

Observando la tabla y las diferentes plantas de la estructura que varían mucho una de otra, tienen retrocesos se puede decir que el coeficiente tiene un valor de 0.9 pero para chequear cómo se comporta la estructura vamos a ocupar el ETABS. Simulamos la estructura, nos dirigimos a las tablas de resultados y obtenemos la información del diafragma máximo sobre las derivas promedio. Filtramos el tipo de cargas para únicamente tener SXdin y SYdin las cuales generan desplazamientos laterales, nos vamos a la columna de Ratio el cual es la relación entre la deriva máxima y la deriva promedio de cada piso. Si los valores de ratio son mayores a 1 esto indica que ϕ_P es igual a 0.9.

Inits: 4	s Noted	Hidden Columns: N	In Sort N	nne			Dianhranm Max Ove	r Avo Drifts	
ilter: ([Output Case] = "	SXdin' OR [Output (Case] = 'SYdin')				Diaphragin nav ore		
	Story	Output Case	Case Type	Step Type	Step Number	Item	Max Drift	Avg Drift	Ratio
•	Story6	SXdin	LinRespSpec	Max		Diaph D1 X	0.000578	0.00052	1.111
	Story6	SXdin	LinRespSpec	Max		Diaph D1 Y	0.000157	0.000131	1.204
	Story6	SYdin	LinRespSpec	Max		Diaph D1 X	0.000453	0.000354	1.28
	Story6	SYdin	LinRespSpec	Max		Diaph D1 Y	0.00048	0.000451	1.066
	Story5	SXdin	LinRespSpec	Max		Diaph D1 X	0.001152	0.000839	1.374
	Story5	SXdin	LinRespSpec	Max		Diaph D1 Y	0.000231	0.000172	1.343
	Story5	SYdin	LinRespSpec	Max		Diaph D1 X	0.000519	0.000334	1.553
	Story5	SYdin	LinRespSpec	Max		Diaph D1 Y	0.000557	0.000508	1.098
	Story4	SXdin	LinRespSpec	Max		Diaph D1 X	0.001206	0.000746	1.617
	Story4	SXdin	LinRespSpec	Max		Diaph D1 Y	0.000564	0.000333	1.694
	Story4	SYdin	LinRespSpec	Max		Diaph D1 X	0.000292	0.000201	1.455
	Story4	SYdin	LinRespSpec	Max		Diaph D1 Y	0.000446	0.000397	1.123
	Story3	SXdin	LinRespSpec	Max		Diaph D1 X	0.00073	0.000365	1.997
	Story3	SXdin	LinRespSpec	Max		Diaph D1 Y	0.000431	0.000235	1.836
	Story3	SYdin	LinRespSpec	Max		Diaph D1 X	0.000145	7.5E-05	1.946
	Story3	SYdin	LinRespSpec	Max		Diaph D1 Y	0.000206	0.000142	1.453
	Story2	SXdin	LinRespSpec	Max		Diaph D1 X	0.000376	0.000189	1.99
	Story2	SXdin	LinRespSpec	Max		Diaph D1 Y	0.000199	0.00011	1.803
	Story2	SYdin	LinRespSpec	Max		Diaph D1 X	9.3E-05	4.7E-05	1.985
	Story2	SYdin	LinRespSpec	Max		Diaph D1 Y	0.000119	0.000109	1.087
	Story1	SXdin	LinRespSpec	Max		Diaph D1 X	0.000203	0.000102	1.991
	Story1	SXdin	LinRespSpec	Max		Diaph D1 Y	0.000117	7.1E-05	1.646
	Story1	SYdin	LinRespSpec	Max		Diaph D1 X	9.6E-05	4.8E-05	1.991
	Story1	SYdin	LinRespSpec	Max		Diaph D1 Y	0.000142	0.000114	1.244

Figura 40 ETABS: Tabla Diaphragm Max Over Avg Drifts

En la anterior imagen se comprueba que los valores son mayor a 1 por lo tanto ϕ_P es

0.9.

7.6.4. Coeficientes de Configuración de Elevación

El coeficiente de configuración de elevación (ϕ_E) se analiza que tan regular o

irregular es la estructura en una vista a corte, la NEC de diseño sismo resistente nos brinda la tabla 14 para identificar qué valor se le designa. En la tabla encontramos el siguiente caso:

Figura 41 Tabla 14 "Coeficientes de Irregularidad en elevación" de la NEC de Peligro Sísmico

El edificio tiene la siguiente configuración de elevación:

Figura 42 ETABS: Vista Corte 3-3

Esto demuestra que es el mismo caso y que ϕ_E tiene un valor de 0.9.

7.6.5. Cortante Basal de Diseño

De los anteriores análisis obtenemos los siguientes datos que vamos a reemplazar en la fórmula del cortante basal de diseño.

Cortant	e Basal - X
Та	0.32
Sa	1.19
Categoria	Otra estructura
I	1
R	8
фр	0.9
φE	0.9
V (W)	18.36%

Tabla	10	Datos	Cortante	Basal
-------	----	-------	----------	-------

La fórmula es la siguiente.

$$V = \frac{I * S_a(T_a)}{R * \phi_P * \phi_E} W$$
$$V = \frac{1 * 1.19}{8 * 0.9 * 0.9} W$$
$$V = \%18.36 W$$

7.7. Cargas Laterales

Al ya tener el valor porcentual del cortante basal de diseño ya podemos crear las

cargas laterales van a ser de tipo sísmico y la carga lateral con coeficiente.

Туре	Self Weight Multiplier	Auto Lateral Load
Seismic	~ 0	User Coefficient 🗸
Dead Live Seismic	1 0	Lleer Coefficient
Seismic	0	User Coefficient
	Type Seismic Dead Live Seismic Seismic	Type Self Weight Multiplier Seismic 0 Dead Live 1 Seismic 0 Seismic 0

Figura 43 ETABS: Creación de Cargas Laterales

Modificamos la carga lateral donde despliega la siguiente ventana.

rection and Eccentricity-		Factors	
🗹 X Dir	Y Dir	Base Shear Coefficient, C	0.1836
X Dir + Eccentricity	Y Dir + Eccentricity	Building Height Exp., K	1
X Dir - Eccentricity	Y Dir - Eccentricity		L
		Story Range	
Ecc. Ratio (All Diaph.)	0.05	Top Story	Story6 ~
Overwrite Eccentricities	Overwrite	Bottom Story	Story2 v
Overwrite Eccentricities	Overwrite	Bottom Story	Story2

Figura 44 ETABS: Carga Lateral en dirección X

Como es la carga lateral en X solamente seleccionamos las opciones en ese sentido, en el valor del coeficiente colocamos el valor porcentual que obtuvimos anteriormente y para el valor de K nos basamos en la siguiente tabla:

|--|

Determinación de k:

Valores de T (s)	k
≤ 0.5	1
0.5 < T ≤ 2.5	0.75 + 0.50 T
> 2.5	2

Figura 45 Valores del Coeficiente k

Como el valor del periodo es menor a 0.5 K es igual a 1.

Este mismo proceso realizamos para la carga lateral en el sentido Y.

irection and Eccentricity		Factors	
X Dir	Y Dir	Base Shear Coefficient, C	0.1836
X Dir + Eccentricity	Y Dir + Eccentricity	Building Height Exp., K	1
X Dir - Eccentricity	Y Dir - Eccentricity	Story Range	
Ecc. Ratio (All Diaph.)	0.05	Top Story	Story6 ~
Overwrite Eccentricities	Overwrite	Bottom Story	Story2 ~

Figura 46 Carga Lateral en dirección Y

7.8. Combinaciones de Carga

En el ETABS debemos crear las combinaciones de carga para realizar el diseño por ultima resistencia, cargamos las siguientes combinaciones:

	C	1
•	C	I

General Data			
Load Combination Name	C1		
Combination Type	Linea	r Add	~
Notes		Modify/Show No	tes
Auto Combination	No		
Dead	~	1.4	Add
Load Name	~	Scale Factor	
			Delete

Figura 47 ETABS: Combinación de Carga 1

• C2

Combination Type	Linear	Add	
Notes		Modify/Show Not	es
Auto Combination	No		
Dead	~	1.2	Add
Live	~	1.2	Add

Figura 48 ETABS: Combinación de Carga 2

• C3

Load Combination Name	C3		
Combination Type	Linear	Add	~
Notes		Modify/Show No	otes
Auto Combination	No		
Load Name		Could Footon	
Load Name		Scale Factor	
Dead	~	1.2	Add
Dead Live	~	1.2 1	Add Delete

• C4

Load Combination Name	04		
Combination Type	Linear	Add	~
Notes		Modify/Show Not	es
Auto Combination	No		
			1
Load Name		Scale Factor	1
Load Name Dead	~	Scale Factor 1.2	Add
Load Name Dead Live	~	Scale Factor 1.2 1	Add Delete

Figura 50 ETABS: Combinación de Carga 4

• C5

G	eneral Data			
	Load Combination Name	C5		
	Combination Type	Line	ear Add	~
	Notes		Modify/Show Notes	9
	Auto Combination	No		
D	efine Combination of Load Case/Comb Load Name	bo R	esults Scale Factor	
	Dead	\sim	0.9	Add
	SXdin		1	Delete

• C6

General Data			
Load Combination Name	C6		
Combination Type	Lin	ear Add	\sim
Notes		Modify/Show Not	es
Auto Combination	No		
Define Combination of Load Case/Con Load Name	ıbo R	esults Scale Factor]
Dead	~	0.9	Add
SYdin		1	Delete
L			1

Figura 52 ETABS: Combinación de Carga 6

• Envolvente

También creamos una envolvente para conocer los máximos valores de todas las

combinaciones en cada punto.

Envo	olvente	
Env	elope	~
	Modify/Show No	otes
No		
Combo Re	sults Scale Factor	
~	1	Add
	1	Delete
	1	
	1	
	1	
	1	
	Envi Envi No Combo Re	Envolvente Envelope Modify/Show No No Combo Results Scale Factor 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figura 53 ETABS: Combinación Envolvente

8. Análisis Espectral

Se van a realizar tres chequeos para comprobar que el diseño presentado cumple con los requerimientos solicitados por la NEC de diseño sismo resistente.

8.1. Ajuste del Corte Basal

El valor del cortante dinámico total en la base no debe ser:

- < 80% del cortante basal V obtenido por el método estático (estructuras regulares)
- < 85% del cortante basal V obtenido por el método estático (estructuras irregulares)

Nuestro edificio al ser una estructura irregular el cortante nos regimos por el límite de

85%.

Lo primero que se va a obtener son los valores de cortante basal V obtenido por el método estático para ello seleccionamos en las tablas de resultados la opción de "Load Pattern Definitions – Auto Seismic – User Coefficient" y genera la siguiente tabla.

EL	ad Patt	ern Definition	s - Auto Seismic	- User Coefficient	t					-	
File	Edit	Format-Filt	er-Sort Select	Options							
Units: Filter:	As Not None	ed Hidde	en Columns: No	Sort: None			Load Pattern De	finitions - Auto Sei	smic - User Coef	ficient	~
	15	Y Dir?	Y Dir Plus Ecc?	Y Dir Minus Ecc?	Ecc Ratio	Top Story	Bottom Story	с	к	Weight Used kgf	Base Shear kgf
•		No	No	No	0.05	Story6	Story2	0.1836	1		
		No	No	No	0.05	Story6	Story2	0.1836	1	166091.92	30494.48
		No	No	No	0.05	Story6	Story2	0.1836	1	166091.92	30494.48
		No	No	No	0.05	Story6	Story2	0.1836	1	166091.92	30494.48
		Yes	Yes	Yes	0.05	Story6	Story2	0.1836	1		
		Yes	No	No	0.05	Story6	Story2	0.1836	1	166091.92	30494.48
		No	Yes	No	0.05	Story6	Story2	0.1836	1	166091.92	30494.48
		No	No	Yes	0.05	Story6	Story2	0.1836	1	166091.92	30494.48

Figura 54 ETABS: Load Pattern Definitions – Auto Seismic – User Coefficient

Ese valor utilizamos para encontrar los limites.

Cortante Ba	isal Estatico
Vx (ton)	30.49
Vx*0.85 (ton)	25.9165
Vy (ton)	30.49
Vy*0.85 (ton)	25.9165

Tabla 11 Valores Cortante Basal V

Ahora para encontrar los valores del cortante dinámico total en ambas direcciones seleccionamos en las tablas de resultados la opción "Story Forces" que nos genera la siguiente tabla.

E Sto	ry Forces								-
<u>F</u> ile	Edit Format-	Filter-Sort Sel	ect Options						
Units: A Filter: (As Noted H [Story] = 'Story1')	idden Columns: N AND ([Output Cas	lo Sort: N e] = 'SXdin' OR [O	one utput Case] = 'SY	'din')	Story Force	8		
	Story	Output Case	Case Type	Step Туре	Step Number	Location	P kgf	VX kgf	VY kgf
•	Story1	SXdin	LinRespSpec	Max		Тор	1274.59	9400.15	2145.45
	Story1	SXdin	LinRespSpec	Max		Bottom	1274.59	9400.15	2145.45
	Story1	SYdin	LinRespSpec	Max		Тор	5241.65	3279.8	16164.79
	Story1	SYdin	LinRespSpec	Max		Bottom	5241.65	3279.8	16164.79

Figura 55 ETABS: Story Forces

Cortante Ba	sal Dinámico
Vx (ton)	9.4
Vy (ton)	16.16

Tabla 12 Valores Cortante Dinámico

Se puede observar que los valores son menores al 85% por lo tanto se debe realizar el ajuste para conocer cuánto se debe ajustar dividimos el valor límite para el valor del cortante basal dinámico.

Ajuste Corl	tante Basal
Vx	Ajustar
Factor Vx	2.757
Vy	Ajustar
Factor Vy	1.604

Tabla 13 Ajuste Cortante Basal

El ajuste debemos realizarlo en los casos de carga, donde multiplicamos ese número

por el valor de factor de escala que ya teníamos previamente, obteniendo un nuevo factor.

inordi				
Load Case Name		SXdin		Design
Load Case Type		Response Spectrum	~ ~	Notes
Mass Source		Previous (MsSrc1)		
Analysis Model		Default		
ade Applied				
ads Applied Load Type	Load Name	Function	Scale Factor	0
ads Applied Load Type Acceleration	Load Name U1	Function NECsinR ~	Scale Factor 0.3446	1 Add
ads Applied Load Type Acceleration	Load Name U1	Function NECsinR ~	Scale Factor 0.3446	1 Add Delete

Figura 56 ETABS: Ajuste SXdin

Lo mismo para la dirección en Y.

Load Case Name		SYdin		Design
Load Case Type		Response Spectrum	~	Notes
Mass Source		Previous (MsSrc1)		_
Analysis Model		Default		-
ads Applied				
ads Applied Load Type	Load Name	Function	Scale Factor	0
ads Applied Load Type Acceleration ~	Load Name U2	Function	Scale Factor 0.2005	Add
ads Applied Load Type Acceleration ~	Load Name U2	Function	Scale Factor 0.2005	1 Add Delete

Figura 57 ETABS: Ajuste SYdin

Con estos nuevos factores volvemos a encontrar los valores del cortante dinámico

total en ambas direcciones los cuales han cambiado.

E Stor	Story Forces —									
File	File Edit Format-Filter-Sort Select Options									
Units: A	Jnits: As Noted Hidden Columns: No Sort: None Story Forces									
Filter: ([Story] = 'Story1')	AND ([Output Cas	e] = 'SXdin' OR [O	utput Case] = 'SY	(din')					
	Story	Output Case	Case Type	Step Type	Step Number	Location	P kgf	VX kgf	VY kgf	
•	Story1	SXdin	LinRespSpec	Max		Тор	2051.79	25915.62	11392.21	
	Story1	SXdin	LinRespSpec	Max		Bottom	2051.79	25915.62	11392.21	
	Story1	SYdin	LinRespSpec	Max		Тор	4759.04	5685.5	25919.63	
	Story1	SYdin	LinRespSpec	Max		Bottom	4759.04	5685.5	25919.63	

Figura 58 ETABS: Story Forces Corregido

Comprobamos que cumplan con el requisito.

	Cortante Basal Dinámico				
85.00%	Vx (ton) 25.915				
85.01%	Vy (ton)	25.919			

Tabla 14 Comprobación Cortante Basal Dinámico

Esta vez sí cumple ya no es menor al 85% del cortante basal V obtenido por el método estático.

8.2. Dimensiones Finales

El haber realizado el ajuste significa que la fuerza del sismo va a ser mayor por lo cual se debe decidir nuevas dimensiones de columnas y vigas junto con nuevas distribuciones ya que las anteriores al momento de diseñar presentaban varios errores debido a este cambio.

8.2.1. Columnas

• Columna 30x30 cm

General Data			Design Type	Rebar Materia				
Property Name	COL 30X30		P-M2-M3 Design (Column)	Longitudin	al Bars	Rebar		×
Material	fo 240 kg/cm2 🗸 🗸	• 24 •	O M3 Design Only (Beam)	Confineme	nt Bars (Ties)	Rebar		~
Notional Size Data	Modify/Show Notional Size	3	Beinforcement Configuration	Confinement	Ram	Check/D	esian	
Display Color	Change	« 1 •	Rectangular	(i) Ties		() Be	inforcement to be	Checked
Notes	Modify/Show Notes		O Circular	 Spirals 		O Re	inforcement to be	Designed
Shape			Longtudnal Bars					
Section Shape	Concrete Rectangular 🗸 🗸		Clear Cover for Confinement Bars				0.04	m
Section Desparts Course			Number of Longitudinal Bars Along 3	-dir Face			3	
Source: User Defined		Property Modifiers	Number of Longitudinal Bars Along 2	dr Face			3	
		Moth/Show Mothers	Longitudinal Bar Size and Area		12	~	0.000113	m ²
Section Dimensions		Currently User Specified	Corner Bar Size and Area		12	~	0.000113	m²
Depth	0.3 m	Reinforcement						
Width	0.3 m	Modify/Show Rebar	Confinement Bara					
			Confinement Bar Size and Area		10	~	0.000079	m ²
			Longitudinal Spacing of Confinement	Bars (Along 1-Axis)			0.15	m
			Number of Confinement Bars in 3-dir				4	=
			N + 10 + 10 + 24					-

Figura 59 ETABS: Configuración Columna 30x30 cm

• Columna 50x50 cm

E Frame Section Property Data		×	E Frame Section Property Reinforcement	Data		
General Data		-	Design Type	Rebar Material		
Property Name	COL 50X50		P-M2-M3 Design (Column)	Longitudinal Bars	Rebar	×
Material	Fe 240 kg/am2 🗸 🗸	2	O M3 Design Only (Beam)	Confinement Bars (Ties)	Rebar	×
Notional Size Data	Modify/Show Notional Size	3	Reinformement Configuration	Confinement Rare	Charle /Design	
Display Color	Change	• - + •	Rectangular	Ties	Reinforcement to b	e Checked
Notes	Modify/Show Notes		O Circular	 Spirals 	O Reinforcement to b	e Designed
Shape		• • •	Longtudinal Bars			
Section Shape	Concrete Rectangular V		Clear Cover for Confinement Bars		0.04	m
Section Property Source			Number of Longitudinal Bans Along 3-de	r Face	3	
Source: User Defined		Property Modifiers	Number of Longitudinal Bars Along 2-de	Face	3	
		Modfy/Show Modifiers	Longtudinal Bar Size and Area	20	··· 0.000314	m ²
Section Dimensions		Currently User Specified	Comer Bar Size and Area	20	··· 0.000314	m ²
Depth	0.5 m	Reinforcement				
Width	[0.5] m	Modify/Show Rebar	Confinement Bars			
			Confinement Bar Size and Area	10	··· 0.000079	m²
			Longitudinal Spacing of Confinement B	ars (Along 1-Axis)	0.15	m
			Number of Confinement Bars in 3-dir		4	
		ок	Number of Confinement Bars in 2-dir		4	

Figura 60 ETABS: Configuración Columna 50x50 cm

8.2.2. Vigas

• Viga 25x30 cm

General Data		
Property Name	VIGA 25X30	
Material	fc 240 kg/cm2 🗸 🗸	2
Notional Size Data	Modify/Show Notional Size	3
Display Color	Change	▲ ▲
Notes	Modify/Show Notes	
Shape		
Section Shape	Concrete Rectangular \sim	
Section Property Source		
Source: User Defined		Property Modifiers
Section Dimensions		Modify/Show Modifiers
Section Dimensions		Currently User Specified
Depth	0.3 m	Reinforcement
Width	0.25 m	Modify/Show Rebar

Figura 61 ETABS: Configuración Viga 25x30 cm

• Viga 25x40 cm

General Data						
Property Name	Property Name VIGA 25X40					
Material	fc 240 kg/cm2 🗸 🗸	2				
Notional Size Data	Modify/Show Notional Size	3				
Display Color	Change	 				
Notes	Modify/Show Notes					
Shape Section Shape	Concrete Rectangular V					
Section Property Source						
Source: User Defined		Property Modifiers				
Section Dimensions		Modify/Show Modifiers				
Deeth	0 4	Currently User Specified				
Depth	0.4	Reinforcement				
Width	0.25 m	Modify/Show Rebar				

Figura 62 ETABS: Configuración Viga 25x40 cm

• Viga 30x50 cm

General Data		-0.26808. 0.21098 m
Property Name	VIGA 30X50	
Material	fc 240 kg/cm2 🗸 🗸	2
Notional Size Data	Modify/Show Notional Size	
Display Color	Change	
Notes	Modify/Show Notes	
Shape		
Section Shape	Concrete Rectangular V	
Section Property Source		
Source: User Defined		Property Modifiers
Casting Disconting		Modify/Show Modifiers
Section Dimensions		Currently User Specified
Depth	0.5 m	Reinforcement
Width	0.3 m	Modify/Show Rebar

Figura 63 ETABS: Configuración Viga 30x50 cm

8.2.3. Asignación de Secciones

A continuación, se van a mostrar de los elementos con su respectiva sección en diferentes vistas de la edificación.

• Eje B

• Eje 5

Figura 65 ETABS: Vista Corte 5-5

• Vista 3D

Figura 66 ETABS: Vista 3D de la Estructura

8.3. Torsión en Planta

Al ya tener la estructura final con los elementos y las secciones definitivas se continúa realizando los chequeos de análisis estructural, para saber si cumple con la torsión en planta en la pestaña de tablas de resultados escogemos la opción de "Modal Participating Mass Ratios".

ЕМ	odal Part	ticipating Mass	s Ratios							-	
<u>F</u> ile	<u>E</u> dit	Format-Filter	r-Sort Select	<u>Options</u>							
Units:	As Note	d Hidden	Columns: No	Sort: None			Modal Participat	ing Mass Ratios			~
Filter:	None										
		UZ	SumUX	SumUY	SumUZ	RX	RY	RZ	SumRX	SumRY	SumRZ
•	427	0	0.2947	0.0427	0	0.0611	0.4431	0.15	0.0611	0.4431	0.15
	123	0	0.3014	0.2551	0	0.6226	0.0133	0.0376	0.6837	0.4564	0.1875
	215	0	0.3475	0.2766	0	0.0365	0.2076	0.1666	0.7202	0.664	0.3541
	071	0	0.4758	0.2837	0	0.0083	0.0366	0.2176	0.7285	0.7005	0.5716
	096	0	0.4811	0.2933	0	0.0039	0.009	0.0187	0.7323	0.7095	0.5903
	002	0	0.4844	0.2935	0	0.0072	0.0002	0.0019	0.7396	0.7097	0.5922
	003	0	0.486	0.2939	0	0.0057	0.0143	0.069	0.7452	0.7241	0.6612
	653	0	0.4923	0.8592	0	0.0816	0.0012	0.0222	0.8268	0.7253	0.6834
	036	0	0.4976	0.8627	0	0.0039	0.0213	0.0575	0.8307	0.7465	0.7409
	545	0	0.501	0.9172	0	0.0289	0.001	0.0004	0.8596	0.7475	0.7413
	-06	0	0.5114	0.9172	0	0.0003	0.0127	0.0367	0.8599	0.7602	0.778
	-05	0	0.5153	0.9173	0	0.001	0.0065	0.0157	0.8609	0.7667	0.7937

Figura 67 ETABS: Modal Participating Mass Ratios

En esta tabla nos fijamos en la última columna de Sum RZ que indica cuanto rota alrededor del eje Z. En la cual los dos primeros modos deben tener valores pequeños en el mejor de los casos que sean cero, además deben ser menores al resto con cierta diferencia en este caso se logra cumplir ya que son la mitad del tercer valor, entonces se define que si cumple con la torsión en planta.

8.4. Derivas

En este chequeo se debe controla la deriva de piso inelástica máxima, para ello buscamos en la NEC la deriva máxima para nuestro tipo de estructura. El edificio va a ser de hormigón armado por la tanto la deriva máxima inelástica que puede experimentar es de 0.02.

Estructuras de:	∆ _M máxima (sin unidad)
Hormigón armado, estructuras metálicas y de madera	0.02
De mampostería	0.01

Tabla 7 : Valores de Ammáximos, expresados como fracción de la altura de piso

Figura 68 Tabla 7 de la NEC de Peligro Sísmico

Pero para poder chequear con el ETABS necesitamos ocupar la siguiente formula:
$\Delta_{\rm M} = 0.75 {\rm R} \Delta_{\rm E}$

Dónde:

 Δ_{M} Deriva máxima inelástica

 Δ_E Desplazamiento obtenido en aplicación de las fuerzas laterales de diseño reducidas

R Factor de reducción de resistencia (véase la sección <u>6.3.4</u>)

Donde se va a despejar y hallar el desplazamiento Δ_E . Porque el ETABS proporciona los valores de la deriva estática lo cual facilita el chequeo.

$$\Delta_E = \frac{\Delta_m}{0.75 * R}$$
$$\Delta_E = \frac{0.02}{0.75 * 8}$$
$$\Delta_E = 0.0033$$

Para verificar nos dirigimos a la herramienta "Story Response Plots" y graficamos para los dos sentidos.

• Sentido X

Figura 69 ETABS: Deriva sentido X

Como se observa en la imagen el valor máximo es menor que 0.0033.

• Sentido Y

Figura 70 ETABS: Deriva sentido Y

Como se observa en la imagen el valor máximo es menor que 0.0033. Con esto concluimos que cumple los tres chequeos y se puede pasar a la siguiente fase de diseño de elementos.

9. Diseño de Elementos

9.1.Diseño de Vigas

El programa ETABS ya nos genera el acero longitudinal para todas las vigas, pero debemos comprobar para una viga si los valores son correctos y también diseñar el acero transversal. Antes de mandarle a diseñar debemos cargar todas las combinaciones. E Design Load Combinations Selection - Concrete Frame Design

Choose Combinations		
List of Combinations		Design Combinations
		C1 C2
		C3 C4
	>>>	C5 C6
	«	Envolvente
	Show	

Figura 71 ETABS: Cargar combinaciones de carga

Después de esto mandamos a diseñar y obtenemos los valores del acero longitudinal para todas las vigas.

Figura 72 ETABS: Diseño de elementos en hormigón armado

Vamos a utilizar la viga C 3-5 del "Story 1" para comprobar que está bien diseñado, se escogió esta viga porque tiene el cortante mayor y eso nos va a servir al momento de diseñar el acero transversal.

Figura 73 ETABS: Vosta Corte C-C con diseño de elementos

9.1.1. Acero Longitudinal

Los valores de área de acero en cm² que requiere dicha viga según el ETABS son los siguientes:

Los datos de la viga son los siguientes:

Datos Geor	netria			
b (m)	0.3	Datos de Materiales		
h (m)	0.5	fc (Mpa) 2		
rec (m)	0.04	fy (Mpa)	413.64	
d (m)	0.46	Es (Mpa)	200000	

Tabla 15 Datos de la Viga

El ETABS nos genera la siguiente información del momento flector que experimenta

la viga en su reporte.

	Station Loc m	Design M . tonf-m	Design P . tonf	Combo Name
Top (+2 Axis) End-I	0.25	-14.6043	0	Envolvente
Top (+2 Axis) Middle	4.71538	-3.6901	0	Envolvente
Top (+2 Axis) End-J	6.7	-14.7604	0	Envolvente
Bot (-2 Axis) End-I	1.73846	3.6901	0	Envolvente
Bot (-2 Axis) Middle	3.22692	13.2568	0	C2
Bot (-2 Axis) End-J	6.7	7.3802	0	Envolvente

Flexural Design Moment, $\mathbf{M}_{\scriptscriptstyle u3}\;$ and Axial Force, $\mathbf{P}_{\scriptscriptstyle u}$

Tabla 16 ETABS: Momentos Flector

Para que sea más entendible la información vamos a ocupar la siguiente gráfica como

modelo base.

Figura 75 Ejemplo de diseño de vigas

Guiándonos en la imagen generamos el siguiente diagrama que indica el momento

que siente la viga en los respectivos puntos.

Figura 76 Momentos Flector de la viga C 3-5 del "Story 1"

Empezamos escogiendo el momento ultimo dado por el ETABS, el cual es el de la

esquina superior izquierda.

Mu negativo 14.76 ton m

Continuamos calculando el acero requerido, primero calculamos la constante k con la siguiente formula.

$$k = \frac{0.85 * f'c * b * d}{fy}$$
k = 0.0068 m²

78

Al ya tener el valor de la constante ya podemos encontrar el acero requerido con esta expresión.

$$As = k \left(1 - \sqrt{1 - \frac{2 * Mu}{\phi * k * d * fy}} \right)$$

Continuamos con la comprobación del requerimiento de acero, por lo tanto, debemos encontrar el acero mínimo.

• Método 1

$$As_{min} = \frac{1.4}{fy} * b * d$$

As min1 = 4.67 cm2

• Método 2

$$As_{min} = \frac{\sqrt{f'c}}{4*fy}*b*d$$

As min2 = 4.09 cm2

Se escoge el valor mayor:

Comprobamos el acero requerido con el acero mínimo.

As > As min OK

Calculamos la cuantía del acero.

$$\rho = \frac{As}{b * d}$$
$$\rho = 0.0065$$

Calculamos la cuantía de acero máximo.

$\rho_b = 0.85 * \beta 1 * \frac{f'c}{fy} * \frac{0.003}{\frac{fy}{Es} + 0.003}$
ρ b = 0.0248
ρ_{max} = 0.5 * ρ_{b}
ρ max = 0.0124

Comprobamos que cumpla.

```
ρ < ρ max OK
```

Chequeamos el acero por temperatura, se tiene como valor que la cuantía mínima de

acero por temperatura es 0.0018.

$$As \ temp = \rho * b * d$$

As temp = 2.48 cm2

Comprobamos que si cumple.

As > As temp OK

Como todo cumple el acero requerido en ese punto de la viga es 8.95 cm².

Este proceso se repita con los otros 5 momentos dados por el ETABS y nos queda la siguiente gráfica de acero requerido.

Figura 77 Acero requerido diseño Excel

Los valores son muy parecidos a los proporcionados por el ETABS entonces se comprueba que está bien.

Realizamos la configuración de varillas de acero en orden que cumple con el acero requerido.

1			2 3					
As	8.95	cm^2	As	4.67	cm^2	As	9.05	cm^2
# varillas	3	2	# varillas	2		# varillas	2	2
φ	18	16	φ	18		φ	18	16
As colocado	11.66	cm^2	As colocado	5.09	cm^2	As colocado	9.11	cm^2
	OK		OK				OK	
						6		
4	-		5			6	5	
As 4	4.67	cm^2	5 As	8.03	cm^2	As 6	4.67	cm^2
As # varillas	4.67	cm^2	5 As # varillas	8.03	cm^2	As # varillas	4.67	cm^2
As # varillas φ	4.67 3 16	cm^2	5 As # varillas φ	8.03 3 16	cm^2 1 16	As # varillas φ	4.67 3 16	cm^2
As # varillas φ As colocado	4.67 3 16 6.03	cm^2 cm^2	5 As # varillas φ As colocado	8.03 3 16 8.04	cm^2 1 16 cm^2	As # varillas φ As colocado	4.67 3 16 6.03	cm^2 cm^2

Tabla 17 Configuración de Acero Longitudinal

A continuación, se muestra el acero colocado.

	11.66	5.09	11.66	
As colocado				cm^2
	6.03	8.04	6.03	

Figura 78 Configuración del Acero para la viga

9.1.2. Acero transversal

Para el acero transversal ocupamos los mismos datos per incluimos unos extras.

Datos Extra				
β1	0.85			
α	1.25			
L (m)	6.95			

Tabla 18 Datos Extra para el acero transversal

También debemos saber el valor de la cortante máxima en la viga, ese dato se obtiene

del ETABS.

Vmuerta (ton) = 7.8996

Figura 79 ETABS: Cortante máximo de la viga C 3-5 del "Story 1"

El V_a es el cortante por fuerzas gravitacionales solo se obtiene de la carga muerta.

 $V_a = Vmuerta * 1.2 * 0.75$ $V_a = 7.8996 * 1.2 * 0.75$ $V_a = 7.11 tonf$

Para calcular el cortante probable (V_P) primero debemos hallar los siguientes

momentos probables:

 $M_{i} + M_{j}$ = Momentos resistentes negativos inicial y final $M_{i} + M_{j}$ = Momentos resistentes positivos inicial y final

La fórmula del momento probable es la siguiente:

$$M_p = 1.25 * A_s * fy * \left(d - \frac{a}{2}\right) / 1.02 * 10^{-3}$$

Primero debemos obtener la variable a utilizando las áreas de acero requerido que se obtuvo anteriormente pero solo de los que están ubicados a las esquinas.

$$a = \frac{A_s * \propto * fy}{0.85 * f'c * b}$$

Se calcula las a:

Con estos datos ya se puede calculas los momentos probables.

Con la siguiente ecuación se calcula el cortante probable (V_p)

$$V_p = \left(\frac{M_{i-} + M_{j+}}{L}; \frac{M_{i+} + M_{j-}}{L}\right)$$
$$Vp [ton] = 4.37$$

Con los dos cortante ya se puede calcular el esfuerzo de corte solicitante mayorado (Vu).

$$Vu = Va + Vp$$

Vu [ton] = 11.48

Sabemos lo siguiente:

$$V_u = V_u hiperestático + V_u$$
 isostático

También que

Si
$$V_p \ge 0.50 V_u$$
 entonces $V_c = 0$

Pero esto no se cumple ya que la mitad de Vu es 5.74 lo cual es mayor que Vp, por lo tanto, no se desprecia la contribución que tiene el hormigón. Se va a ocupar la siguiente fórmula para conocer su valor.

$$V_c = 0.53 * \sqrt{fc} * b * d$$
$$V_c = 11.33 \ tonf$$

Continuamos calculando el área de refuerzo para la zona de confinamiento que tiene espaciamientos menores porque lo que ahí se generan las rotulas plásticas.

La longitud de la zona de confinamiento es igual a 2h.

$$L = 2h = 1m$$

Calculamos Vs que es el numerado de la fórmula para hallar el área de corte (A_v) .

$$A_{v} = \frac{\frac{V_{u}}{\phi} - V_{c}}{fy * d}$$

El siguiente paso es calcular el espaciamiento de los estribos, el ACI 18.4.2.4 indica escoger el menor valor de las siguientes opciones.

$$s = \frac{d}{4}$$

$$s = 6 * \emptyset \text{ Varilla longitudinal}$$

$$s = 24 * \emptyset \text{ Estribo}$$

$$s = 150 \text{ mm}$$

El diámetro de varilla más grande que se ocupa es de 1.8cm, el estribo que se va a ocupar es de 10 mm, se comparan las respuestas y se obtiene que:

$$S = 10.8 \ cm \approx 10 \ cm$$

Con este valor del espaciamiento se obtiene el acero requerido.

$$A_{v} = Av * S$$
$$A_{v} = 0.0205 * 10$$
Av [cm2/cm] = 0.205

Se calcula el acero mínimo mediante dos métodos y se escoge el valor mayor.

• Método 1

$$A_{v,min} \ge 0.2 \sqrt{f_c'} \frac{b_w s}{f_y}$$

Av min 1 = 0.2247

• Método 2

$$A_{v,min} \ge 3.5 \frac{b_w s}{f_{yt}}$$

Av min 2 = 0.2538

Como la respuesta del segundo método es mayor se define lo siguiente.

El Av min es mayor que el Av por lo tanto se ocupa ese valor para realizar la

configuración de los estribos y el espaciamiento de 10 cm.

As	0.26@10cm
# ramas [mm]	2
ф	10
As colocado (cm^2)	1.57
	ОК

Tabla 19 Acero en zona de confinamiento

Para la zona que no está en confinamiento se repite el mismo proceso solo que en las

opciones de espaciamiento no es d/4 sino d/2. Se obtiene el siguiente resultado.

$$S = 23 \ cm \approx 20 \ cm$$

Con este valor del espaciamiento se obtiene el acero requerido.

```
A_{v} = Av * SA_{v} = 0.0205 * 20Av [cm2/cm] = 0.410
```

Se obtiene que el acero mínimo es:

El Av min es mayor que el Av por lo tanto se ocupa ese valor para realizar la

configuración de los estribos y el espaciamiento de 20 cm.

As	0.51@20cm
# ramas [mm]	2
ф	10
As colocado (cm^2)	1.57
	ОК

Tabla 20	Acero j	fuera	de la	a zona	de	confinar	nienta
----------	---------	-------	-------	--------	----	----------	--------

9.1.3. Configuraciones de Vigas

Acero Longitudinal

• Viga 25x30 cm

0	Vigas	G -	Η
---	-------	-----	---

	1		2				3	
# varillas	2		# varillas	2		# varillas	2	
ф	12		ф	12		ф	12	
As colocado	2.26	cm^2	As colocado	2.26	cm^2	As colocado	2.26	cm^2
	4			5			6	
# varillas	2		# varillas	2	1	# varillas	2	
ф	12		ф	12	14	ф	12	
As colocado	2.26	cm^2	As colocado	3.80	cm^2	As colocado	2.26	cm^2

Tabla 21 Configuración de acero longitudinal viga G-H

1			2			3		
# varillas	2		# varillas	# varillas 2 1		# varillas	2	3
ф	12		ф	12	14	ф	12	14
As colocado	2.26	cm^2	As colocado	As colocado 3.80 cr		As colocado	6.88	cm^2
	4			5			6	
# varillas	2		# varillas	2	1	# varillas	2	1
ф	12		ф	12	14	ф	12	10
As colocado	2.26	cm^2	As colocado	3.80	cm^2	As colocado	3.05	cm^2

• Vigas A' - B

Tabla 22 Configuración de acero longitudinal viga A'-B

• Viga 25x40 cm

	1							
1			2			3		
# varillas	2		# varillas	2		# varillas	2	
ф	14		ф	14		ф	14	
As colocado	3.08	cm^2	As colocado	3.08	cm^2	As colocado	3.08	cm^2
4		5		6				
# varillas	2		# varillas	2		# varillas	2	
ф	14		ф	14		ф	14	
As colocado	3.08	cm^2	As colocado	3.08	cm^2	As colocado	3.08	cm^2

 \circ Acero requerido de 3 cm²

Tabla 23 Configuración de acero longitudinal viga 25x40: requerido 3 cm2

	1			2		3		
# varillas	3		# varillas	2		# varillas	3	
ф	14		ф	14		ф	14	
As colocado	4.62	cm^2	As colocado	3.08	cm^2	As colocado	4.62	cm^2
	4			5			6	
# varillas	2		# varillas	2		# varillas	2	
ф	14		ф	14		ф	14	
As colocado	3.08	cm^2	As colocado	3.08	cm^2	As colocado	3.08	cm^2

\circ Acero requerido de 4.60 cm²

Tabla 24 Configuración de acero longitudinal viga 25x40: requerido 4.6 cm2

 \circ Acero requerido de 5.40 cm²

	1			2		3		
# varillas	2	2	# varillas	2		# varillas	2	2
ф	14	12	φ	14		ф	14	12
As colocado	5.34	cm^2	As colocado	As colocado 3.08 cr		As colocado	5.34	cm^2
	4			5			6	
# varillas	2		# varillas	2		# varillas	2	
ф	14		ф	14		ф	14	
As colocado	3.08	cm^2	As colocado	3.08	cm^2	As colocado	3.08	cm^2

Tabla 25 Configuración de acero longitudinal viga 25x40: requerido 5.4 cm2

• Viga 30x50 cm

	1			2		3		
# varillas	4	1	# varillas	# varillas 3		# varillas	4	1
ф	14	16	φ	14		ф	14	16
As colocado	8.17	cm^2	As colocado	As colocado 4.62		As colocado	8.17	cm^2
	4			5			6	
# varillas	3		# varillas	3	1	# varillas	3	
ф	14		φ	14	16	ф	14	
As colocado	4.62	cm^2	As colocado	6.63	cm^2	As colocado	4.62	cm^2

 \circ Acero requerido de 8 cm²

Tabla 26 Configuración de acero longitudinal viga 30x50: requerido 8cm2

	1			2		3		
# varillas	3	2	# varillas	2		# varillas	2	2
φ	18	16	ф	18		ф	18	16
As colocado	11.66	cm^2	As colocado	As colocado 5.09 cm^2		As colocado	9.11	cm^2
	4			5			6	
# varillas	3		# varillas	3	1	# varillas	3	
ф	16		φ	16	16	ф	16	
As colocado	6.03	cm^2	As colocado	8.04	cm^2	As colocado	6.03	cm^2

 \circ Acero requerido de 11.5 cm²

Tabla 27 Configuración de acero longitudinal viga 30x50: requerido 11.5cm2

• Acero Transversal

Para el acero transversal se va a ocupar 2 ramas de varillas de 10 mm y en la zona de confinamiento el espaciamiento es de 10 cm mientras que en la otra zona el espaciamiento es de 20 cm.

9.2. Diseño de Columnas

Para iniciar el diseño estructural de las columnas se realiza el análisis estructural de todo el edificio, con el fin de evaluar los elementos que reciben una mayor demanda. Se utiliza la norma NEC 2015 como base para el diseño de estos elementos.

Figura 80 - Diagrama de carga axial de la estructura

Figura 81 - Diagrama de momentos de la estructura

A partir del análisis estructural, se observa que las columnas ubicadas en la sección C son los elementos que experimentan una mayor demanda. Además, también se tiene en cuenta que, en el nivel superior, los elementos del eje F soportan una carga más alta. Por lo tanto, se consideran las configuraciones obtenidas en el pre dimensionamiento, utilizando una columna de 50 x 50 para aquellas de mayor demanda, y una columna de 30 x 30 para las de menor rango.

9.2.1. Diseño Columnas 50X50

Para los datos de geometría y materiales se utiliza un hormigón de resistencia de 240 kg/cm2.

fla (ka/am2)	240
TC (kg/CH12)	240
fy (kg/cm2)	4200
b (cm)	50
h (cm)	50
r (cm)	4
Ec (kg/cm2)	233928,1941
d (cm)	46
estribo (cm)	1,2
Lc (m)	6,95

Figura 82 Datos generales de geometría y materiales.

Figura 83 Disposición de las varillas en la columna.

Se verifica la cuantía mínima según el esquema de acero propuesto.

$$\rho \qquad \frac{25,133}{2500} \quad 0,0100531 \quad \text{Cumple} \qquad 0.01 \le \frac{\rho_g}{A_g} \le 0.03$$

Cargas y momentos actuantes obtenidos del análisis estructural del ETABS, que corresponden a la influencia de las 6 combinaciones de cargas según la NEC 2015.

Pu (tn)	74,55
Mux (tn m)	4,43
Muy (tn m)	4,43
abs Mux (tn m)	4,43
abs Muy (tn m)	4,43

Figura 84 Valores de carga axial y momento

Se realiza los diagramas de interacción de la columna en ambos sentidos y verificar la capacidad de la columna admite las cargas y momentos actuantes correspondiente al análisis estructural.

Figura 85 Diagramas de interacción en sentido X y Y.

Se lleva a cabo el cálculo del momento probable para verificar que la resistencia de un cortante probable provocado por el momento antes mencionado. Como primer paso se amplifica el diagrama de interacción en ambos sentidos en un 1.25, lo que permite encontrar el momento probable de acuerdo a la carga axial de la columna. A partir de esto se encuentra el cortante probable 1.

Pu (tn)	74,55		
Mpx (tn m)	42,6	se vió en el gráfico	
Mpy (tn m)	42,6	se vió en el gráfico	
Mp (tn m)	42,6	La fuerza cortante de	- V - [V V]
Lc (m)	6,95	diseño de la columna	<i>V_e</i> < [<i>Vp</i> ₁ ; <i>Vp</i> ₂]
Mp1 (tn m)	42,6		
Mp2 (tn m)	42,6		
		$Vp_1 = \frac{Mp_1 + Mp_1}{r}$	2
Vp1 (tn)	12,25899281	Lc Lc	

Figura 86 Cálculo de cortante probable 1.

Figura 87 Diagramas de interacción amplificados.

De igual manera se realiza el cálculo para obtener cortante probable 2 se realiza los

siguientes cálculos:

Figura 88 Cálculo de cortante probable 2.

Figura 89 Altura de columnas entre pisos, área de aceros, y dimensiones.

En ambos casos se realiza la comparación entre vigas y columnas para que sus uniones puedan resistir a las cargas actuantes.

Cálculo de la fuerza cortante para el diseño de estribos. A partir del cortante probable,

se determina el cortante que actúa en la columna para definir la configuración de los estribos en toda la sección.

Ve				
Ve (tn)	10,46249885		La fuerza cortante de diseño de la columna	$V_e < [Vp_1; Vp_2]$
Cálculo de condiciones				
Pu (tn)	74,55	1	Si Pu < 0,05 * Ag * f'c	
0.05*Ag*f'c	30			
Verificación	Calcular Vc		$Vc = 0,00 \ tonf \rightarrow Si \ Pu$	< 0,05 * Ag * f´c

Figura 90 Cálculo de la fuerza cortante para el diseño de los estribos.

Se calcula el cortante permitido para verificar que es mayor al cortante que recibe la

columna.

Cálculo de Vc Vc (tn) Verificación	18,40315611 ojo con Verific Cumple	Se debe cumplir que: $Ve \leq \phi * (V_c + 2,20\sqrt{f'c} * bw * d)$ ación Sí: $Vc > Ve$, no sera necesario realizar esta verificación y se procede con el cálculo de acero transversal.
Cálculo de acero minim	o corte	
Av min1 S	- 0,036885556	
Av min2 S	- 0,041666667	$\frac{Av_{min}}{s} > \left[0,20 * \sqrt{f'c} * \frac{bw}{fy}; 3,50 * \frac{bw}{fy}\right]$
Av min2 S	- 0,041666667	

Figura 91 Cálculo del cortante permitido y verificación.

Para el cálculo de separación de estribos se toma en cuenta el número de ramales

necesarios en los estribos y el diámetro del estribo a utilizarse.

Cálculo separación de estribos					
$s < \left[6 * db; \frac{b}{4}; 12,00\right]$)cm]				
s1 (cm)	12	12			
s2 (cm)	12,5	13			
s3 (cm)	12	12			
s (cm)	12				
	,	$Av = Avmin * s = 0,3333 \text{ cm}^2$			
Av (cm2)	0,5	0			
Ramas	2				
estribo (cm)	1,2				
Av final (cm2)	2,261946711				
Verificación	Cumple				

Figura 92 Cálculo de separación de los estribos.

Adicionalmente se realiza el diseño por confinamiento de los estribos lo que permite a la columna mantener una mejor reacción ante cargas sísmicas.

Figura 93 Diseño por confinamiento de los estribos.

Es necesario definir las longitudes de confinamiento que se presenta a lo largo de la columna como se observa en la figura sobre la separación de estribos.

Figura 94 Longitudes de confinamiento.

Es necesario que el diseño cumpla la norma de columna fuerte-viga débil. Para esto se utiliza el diagrama de interacción para encontrar los momentos nominales de la columna en ambos sentidos y se realiza la comparación con un factor de 1.2 de los momentos máximo que puede sufrir las vigas.

Figura 95 Verificación Columna Fuerte, Viga Débil.

Resumen final del diseño Columna 50X50. Se obtiene la configuración del diseño

final que cumple con el reglamento de la NEC-2015.

Figura 96 Diseño final de la columna de 50x50 cm.

9.2.2. Columnas 30X30

Datos de geometría y materialidad, para este caso se utiliza un hormigón de resistencia de 240 kg/cm2.

f'c (kg/cm2)	240
fy (kg/cm2)	4200
b (cm)	30
h (cm)	30
r (cm)	4
Ec (kg/cm2)	233928,1941
d (cm)	26
estribo (cm)	1
Lc (m)	5,35

Figura 97 Datos de geometría y materiales.

Figura 98 Disposición de las varillas.

Verificar la cuantía mínima según el esquema de acero propuesto.

	9,048	0.0100521	Cumplo	$0.01 < \frac{\rho_g}{\rho_g} < 0.03$
þ	900	0,0100551	Cumple	$0.01 \leq A_g \leq 0.05$

Cargas y momentos actuantes obtenidos del análisis estructural del ETABS, que corresponden a la influencia de las 6 combinaciones de cargas según la NEC 2015.

Pu (tn)	8
Mux (tn m)	2,48
Muy (tn m)	2,48
abs Mux (tn m)	2,48
abs Muy (tn m)	2,48

Figura 99 Valores de carga axial y momentos.

Se realiza los diagramas de interacción de la columna en ambos sentidos y verificar la capacidad de la columna admite las cargas y momentos actuantes correspondiente al análisis estructural.

Figura 100 Diagramas de interacción en sentido X y Y.

Se lleva a cabo el cálculo del momento probable para verificar que la resistencia de un cortante probable provocado por el momento antes mencionado. Como primer paso se amplifica el diagrama de interacción en ambos sentidos en un 1.25, lo que permite encontrar el momento probable de acuerdo a la carga axial de la columna. A partir de esto se encuentra el cortante probable 1.

Figura 101 Cálculo de momento y cortante probable 1.

De igual manera se realiza el cálculo para obtener cortante probable 2, donde se realiza los siguientes cálculos:

VP 2 As ∗∝∗ fy 1,25 α $a = \frac{A3 + C}{0,85 * f'c * b}$ 3,098529412 a1 (cm) 3,098529412 a2 (cm) d1 (cm) 36 $Mp = As * \alpha * fy * \left(d - \frac{a}{2}\right)$ d2 (cm) 36 Mp3 (tn m) 5,444077445 Mp4 (tn m) 5,444077445 $Mp_3 + Mp_4$ $Vp_2 =$ Vp2 (tn) 3,780609337 Н

Figura 102 Cálculo de momento y cortante probable 2.

Figura 103 Dimensiones de la columna, acero de refuerzo, y distancia entre vigas.

En ambos casos se realiza la comparación entre vigas y columnas para que sus uniones puedan resistir a las cargas actuantes.

Para el cálculo de la fuerza cortante para el diseño de estribos a partir del cortante probable, se determina el cortante que actúa en la columna para definir la configuración de los estribos en toda la sección.

Se calcula el cortante permitido para verificar que es mayor al cortante que recibe la columna.

Para el diseño por confinamiento de los estribos se realiza un cálculo de separación de estribos, donde se toma en cuenta el número de ramales necesarios en los estribos y el diámetro del estribo a utilizarse.

s (cm)	8
hch (cm)	22
bch (cm)	22
fy (kg/cm2)	4200
Ag (cm2)	900
Ach (cm2)	484
f'c (kg/cm2)	240

Dirección x	
Ash1	2,593246753
Dirección y	
Ash1	2,593246753
x (cm2)	2,593246753

$$A_{sh1} = 0.3 * \frac{s * b_{ch} * f'c}{Fy} * (\frac{A_g}{A_{ch}} - 1)$$

 $N^{\circ}ramales = \frac{A_{sh}}{A_v}$

Db x (cm)

N ramas

Dirección y	
Ash2	0,90514286
y (cm2)	2,59324675
$A_{sh2} = 0,09$	$9 * \frac{s * b_{ch} * f'}{Fy}$
Dh y (cm)	1
Db y (cm)	T
N ramas	4

0,90514286

Dirección x

Ash2

1

4

Es necesario definir las longitudes de confinamiento que se presenta a lo largo de la columna como se observa en la figura sobre la separación de estribos.

Figura 106 Longitudes de confinamiento.

Es necesario que el diseño cumpla la norma de columna fuerte-viga débil. Para esto se utiliza el diagrama de interacción para encontrar los momentos nominales de la columna en ambos sentidos y se realiza la comparación con un factor de 1.2 de los momentos máximo que puede sufrir las vigas.

Figura 107 Verificación columna fuerte, viga debil.

Finalmente, se obtiene la configuración del diseño final que cumple con el reglamento de la NEC-2015.

Figura 108 Diseño final de la columna de 30x30 cm.

9.3. Diseño de Cimentaciones

9.3.1. Diseño Zapatas combinadas (C2-C3)

En base a la cercanía entre ambos elementos y la demanda de carga axial, es necesario realizar un diseño de zapatas combinadas, de esa manera optimizar la estructura.

Figura 109 Datos de cargas y momentos para la zapara combinada.

Se obtiene el q admisible a partir del estudio de suelos presentado previamente.

Datos iniciales		
q admisible (tn/m2)	36	
y suelo (tn/m3)	2,05	
Lc (m) distancia ejes	2,72	

Figura 110 Valores de q admisible.

Cargas y momentos actuantes obtenidos del análisis estructural del ETABS, que

corresponden a la influencia de las 6 combinaciones de cargas según la NEC 2015.

PU1 (tn)	69,33
Mu1 (tn m)	2,8
Pu2 (tn)	146,59
Mu2 (tn m)	5,5

Figura 111 Cargas y momentos actuantes de ETABS.

f's (l/g/sm2)	
$f_{\alpha}(ka/am^2)$	
	40
fy (kg/cm2) 420	00
yh (tn/m3) 2	2,4

Figura 112 Información general de los materiales.

Se plantea un área de zapata inicial para la zapata combinada.

Figura 113 Área de zapata inicial.

Se obtiene el centroide de la resultante debido a las cargas actuantes.

Ubicación de la resultante		
L (m) L/2 (m)	4,270144498 2,135072249 <mark>se elimna excentriciades</mark>	$L = 2 \times (\frac{1}{2} \text{ width of col. } 1 + \bar{x})$
Centroide de Zapata (m) Ubicación L/2 (m)	2,135072249 2,135072249	$R=P_1+P_2$
Ubicación de la resultante		
Espesor mínimo (cm) Recubrimiento (cm) d (cm)	150 4 36 propuesto verificar	L/2 L/2
H (cm) (verificado)	40 verificar valor	(a) Si las cargas P ₁ y P ₂ no tienen excenti
7.9.3 Zapatas 7.9.3.1 Espesor mínimo de zapatas El espesor mínimo del borde de un	de concreto reforzado a zapata reforzada será de 150 mm. Si la zapata apoya so	bre pilotes, dicho espesor minimo será de 300
mm.		P

Figura 114 Determinación de la resultante de cargas.

Se realiza un análisis estructural del diagrama de momentos que soporta la zapata la

cual es considerada como una viga isostática.

Analysis in a second			PB
Ancho de la zapata		Name of Street o	STA
b (m) b (m) final	1,532273745 1,6	$b = \frac{A_z}{L_z}$	
Reacción neta por unidad	de longitud (ÚLTIMA) :		1 1/2
Wnu (tn/m)	50,5650336		Lym tr/m

Figura 115 Análisis de cargas sobre la zapata.

Figura 116 Diagrama de corte de la zapata.

Figura 117 Diagrama de cortante y momento último.

Se realiza la verificación por punzonamiento debido a las dos columnas que parten

desde las zapatas.

igura 12.21. Reducción de la sección crítica de corte por punzonamiento por efecto del tamaño de la zapata

Figura 118 Sección crítica para punzonamiento.

$$V_u = F_c P - p_u b_1 b_2$$

FR (Φ)	0,75	
f'c (kg/cm2)	240	
vcR (kg/cm2)	11,61895004	E F
vu (kg/cm2)	6,36242245	RVC
Verificación	CUMPLE	

Figura 119 Verificación de esfuerzo cortante máximo.

$$V_u = F_c P - p_u b_1 b_2$$

Figura 120 Cortante último columna 2.

Es necesario verificar la resistencia del concreto antes esfuerzo cortantes máximos, el cual no debe exceder de:

Figura 121 Verificación de cortantes máximos.

En el caso de elementos anchos como zapatas, b no debe ser menor que cuatro veces el peralte efectivo d, el espesor no debe ser mayor a 600 mm y la relación M/Vd no debe exceder 2.0. Para esto se recurre a la siguiente ecuación.

 $V_{cR} = F_R 0.16 \sqrt{f_c} bd$ $\left(V_{cR} = F_R 0.5 \sqrt{f_c} b d\right)$

Figura 122 Verificación VcR.

A continuación, se realiza el diseño a flexión para los momentos negativos dentro

de la zapata combinada.

DISEÑO A FLEXIÓN (-)		
fy(kg/cm2)	4200	
f'c (kg/cm2)	240	
f"c (kg/cm2)	204	
Mu (kg cm)	2739687,512	
Φ	0,9	
b (cm)	160	
d (cm)	36	
ρ	0,003631019	
As (cm2)	20,91466962	
Acero mínimo		

$$\left(A_{s,min} = \frac{0.7\sqrt{f_c'}}{f_y}bd\right)$$

fy (kg/cm2)	4200
f'c (kg/cm2)	240
b (cm)	160
d (cm)	36
As min (cm2)	14,87225605

Acero máximo

$$\left(A_s = \frac{f_c^*}{f_y} \frac{6000 \ \beta_1}{f_y + 6000} bd\right)$$

 $\rho = \frac{f''c}{fy} \left[1 - \sqrt{1 - \frac{2Mu}{F_R b d^2 f''c}} \right]$

Figura 123 Diseño a flexión para momentos negativos.
fy (kg/cm2)	4200	
f''c (kg/cm2)	204	
ß1	0,85	
b (cm)	160	
d (cm)	36	
As (cm2)	139,8857143	
As máx (cm2)	104,9142857	
As final (cm2)	20,91466962	
Separación de varillas		
Diámetro de varilla (mm)	16	
acero por varilla (cm2)	2,010619298	
b (cm)	160	
S (cm)	15,38150464	3
S final (cm)	15	
S max (cm)	50	
S diseño (cm)	15	

$$s = \frac{b a_0}{As}$$

Cuando las zapatas tengan un espesor (total) mayor a 15 cm, se colocará acero en el lecho superior, para evitar agrietamientos en el concreto, tal y como se indica a continuación:

Figura 124 Cálculo de separación de varillas.

NECESITA		
x1 (cm) fy (kg/cm2) As1 (cm2/cm) As1 (cm2)	40 4200 0,044897959 4,489795918 en cada metro	$\left(a_{sl} = \frac{660 x_l}{f_y (x_l + 100)} \right)$
Separación varillas		
		$100a_{0}$
Diámetro de varilla (mm)	10	$s = - \frac{s}{s}$
acero por varilla (cm2)	0,785398163	As
S1 (cm)	17,49295909	
S1 final (cm)	15	
S max (cm)	50	
S1 diseño (cm)	15	

Figura 125 Separación de varillas.

A continuación, se muestra el diseño para los momentos positivos que se encuentran alrededor de la zapata combinada.

DISEÑO A FLEXIÓN (+)	
fy(kg/cm2)	4200
f'c (kg/cm2)	240
f"c (kg/cm2)	204
Mu (kg cm)	4273695,242 momento positivo
Φ	0,9
b (cm)	160
d (cm)	36
ρ	0,005798504
As (cm2)	33,39938076

$$\rho = \frac{f''c}{fy} \left[1 - \sqrt{1 - \frac{2Mu}{F_R bd^2 f''c}} \right]$$

Acero mínimo

$$\left(A_{s,min} = \frac{0.7\sqrt{f_c'}}{f_y}bd\right)$$

fy (kg/cm2)	4200
f'c (kg/cm2)	240
b (cm)	160
d (cm)	36
As min (cm2)	14,87225605

Acero máximo

$$\left(A_s = \frac{f_c^*}{f_y} \frac{6000 \ \beta_1}{f_y + 6000} bd\right)$$

fy (kg/cm2)	4200
f''c (kg/cm2)	204
ß1	0,85
b (cm)	160
d (cm)	36
As (cm2)	139,8857143
As máx (cm2)	104,9142857

33,39938076

As final (cm2)

Diámetro de varilla (mm)	20
acero por varilla (cm2)	3,141592654
b (cm)	160
S (cm)	15,04982467
S final (cm)	15
S max (cm)	50
S diseño (cm)	15

c —	ba_0	
3	-	As

Figura 126 Diseño de zapata combinada para momentos positivos.

A continuación, se realiza el diseño por flexión del lado más corto donde se asienta la columna 1.

Figura 127 Diseño por flexión del lado más corto para la columna 1.

A continuación, se realiza el diseño a flexión de la columna 2

Figura 128 Diseño a flexión para la columna 2.

A continuación, se realiza el diseño a flexión de la zona intermedia de la zapata.

Debido a que representa una longitud considerable se considera una viga en voladizo entre columnas.

Acero de refuerzo entre columnas	
Longitud entre colum a paño ext (m)	3,22
C1 + 0,75d (m)	0,77
C2 + 1,5d (m)	1,04
a (m)	1,41

Acero mínimo

$$\left(A_{s,min} = \frac{0.7\sqrt{f_c'}}{f_y}bd\right)$$

fy (kg/cm2)	4200
f'c (kg/cm2)	240
b (cm)	100 1 metro (cm)
d (cm)	36
As min (cm2)	9,295160031

M₁

w + 0.75d+ w + 0.75d

 \leq w + 1.54

For negative moment

Diámetro de varilla (mm)	14
acero por varilla (cm2)	1,5393804
S (cm)	16,56109626
S final (cm)	15
S max (cm)	50
S diseño (cm)	15

Acero de refuerzo en cantiliver

L (longitud de la zapata) (m)	4,270144498
C1 + 0,75d (m)	0,77
C2 + 0,5d (m)	1,04
a (m)	1,41
a' (m)	1,050144498
a'/2 (m)	0,525072249

Acero mínimo

$$\left(A_{s,min} = \frac{0.7\sqrt{f_c'}}{f_y}bd\right)$$

fy (kg/cm2)	4200
f'c (kg/cm2)	240
b (cm)	100 1 metro (cm)
d (cm)	36
As min (cm2)	9,295160031

Separación	de	varillas	

Diámetro de varilla (mm)	14
acero por varilla (cm2)	1,5393804
S (cm)	16,56109626
S final (cm)	15
S max (cm)	50
S diseño (cm)	15

$$s = \frac{100a_0}{As}$$

 $s = \frac{100a_0}{As}$

El peralte total de la zapata resulta

Figura 129 Diseño a flexión de la zona intermedia de la zapata.

the

M2

a

d

w + 1.5d

b

Peralte total de la zapata	
H (cm)	41,00
Revisión de peralta de zapata	
PtU = PU cargas + PU peso prop	bio zapata + PU suelo
Pu cargas (tn)	215,92
Peso propio zapata (tn)	8,526624534
Pu suelo (tn)	20,02868575
Pu f (tn)	244,4753103
qu (tn/m2)	35,782646
q admisible (tn/m2)	36
Verificación	Cumple

Para finalizar el diseño de la zapata corrida se verifica el peralte total de la zapata.

Figura 130 Verificación de peralte de la zapata.

El peralte total de la zapata resulta

 $h = d + \frac{d_b}{2} + r$

Resumen del diseño de la zapata combinada, donde se encuentran todas las configuraciones

refuerzo de acero dependiendo la zona de la zapata.

Figura 131 Diseño final de la zapata combinada.

9.3.2. Diseño Zapatas aisladas

9.3.2.1. Diseño de Zapata C4

Para el diseño de zapatas aisladas se retoma la información del estudio de suelo presentado previamente, respecto al ángulo de fricción, peso específico y cohesión.

Caracteristicas del su	uelo
Phi (grados)	37,70
Yd (kn/m3)	19,71
Y' (kn/m3)	19,50
Concreto (kn/m3)	24,00
Cohesión (kPa)	42,17

Tabla 28 Caracteristicas del suelo.

Se realiza un pre dimensionamiento mediante el uso de las cargas actuantes que se

derivaron a partir de las combinaciones de cargas establecidas por la NEC-2015.

7 Correction de predimensionamient	_
2. concector ac preamensionannen	D

Datos Predimensionan	niento
B (m)	1,93
L (m)	1,93

Cargas Actuantes	5
PD superestructura (kgf)	80856
PL superestrcutura (kgf)	40428
MD superestructura (kgf m)	10107
ML superestructura (kgf m)	7580,25

Cargas últimas	
Pu (kgf)	118034,95
Mu (kgf m)	5402,11

Presiones en el s	uelo
q neto max	36000
q neto min	27051,89688
q admisible	36000

q admisible/qneto max2,44749E-07q min (verificacion)Cumple

_

Figura 132 Corrección de predimensionamiento.

Para el diseño estructural es necesario verificar si la zapata tiene la capacidad de

soportar un primer cortante. Con esto permite que no existan fisuras en el soporte del

elemento. Además, se comprueba el punzonamiento que presenta la zapata.

3. Diseño Es	tructural		
Primor Cortanto		_	
Materiales			
f'c (kg/cm2)	240	1	
fy (kg/cm2)	4200	3	$R \ge 50 mm$
Datos Verificado Predimens	ionamiento	Presiones en	el suelo
B (m)	2,00	q neto max	33560,32
L (m)	2,00	q neto min	25457,155
		q netro promedio	29508,7375
Cargas últimas			
Pu (kgf)	118034,95	Primer Cor	tante
Mu (kgf m)	5402,11	Vu (kgf)	96715
		Beta	1
Peralte Predimensionar	niento	alfa	0,4
1.5-2	1,5	Vc 1 (kgf)	293122,8716
Peralte (m)	0,4	Vc 2 (kgf)	304509,4426
recubrimiento (m)	0,05	Vc 3 (kgf)	202789,408
d (m)	0,35	Vc (kgf)	202789,408
ancho columna (m)	0,5	phi Vc (kgf)	152092,056
		Vc (Verificación)	Cumple
Perímetro crítico		$b_0 = perímetro de l$	a sección crítica
Perímetro crítico lado (m)	0,85	$\beta_c = C_2$	/C ₁
Perímetro crítico (m)	3,4	$\alpha_s = (40, 10)$	50, 20)
área crítica (m2)	0,7225		
			$\alpha_{-} = 20$
		$u_5 = 40$ $u_5 = 5$	3

Figura 133 Diseño estructural de la zapata.

Adicional al Primer Cortante es necesario verificar un Segundo Cortante en dos

direcciones para esto es necesario encontrar una sección crítica donde puede suscitarse esta

falla.

Figura 134 Sección crítica de la zapata.

Figura 135 Medidas de la sección crítica.

Segundo Cortante

Influencia critica	
d' (m)	0,4
área de influencia (m2)	0,8

Segundo Cortante	
Vu (kgf)	23607
Vc (kgf)	57475
phi Vc (kgf)	43106,30464
Vc (Verificación)	Cumple

Figura 136 Segundo cortante.

Para finalizar se realiza el diseño a flexión y se verifica que las presiones en el suelo

sean aceptables y la configuración de refuerzo se la correcta.

Flexión

fy (kg/cm2)	4200
As min (cm2)	14,4
diametro varilla (cm)	1,4
#Varillas (n)	10
As (cm2)	15,39
phi	0,9

Presiones en el suelo	
q neto max	33560,32
q neto min	25457,155
q pendiente	4051,5825
qs	30521,63313

a (cm)	1,426191
c (cm)	1,677871
es	0,059579291
es (Verificación)	Cumple

l' (m)	0,75
Mu (kg cm/cm)	9154
As mu (cm2)	14,56651646
As min (cm2)	15,39
As min (verificación)	Cumple
# varillas corregidas	10
As corregido (cm2)	15,393804
As min (verificación)	Cumple
a corregido (cm)	1,426190665
c corregido (cm)	1,677871371
es	0,059579291
es (Verificación)	Cumple
Mn (kg cm)	2216785
phi Mn (kg cm)	1995106
Mu (kg cm)	1830793
Mn (Verificación)	Cumple
Espaciamiento	18,94956605
S (cm) final	20

Figura 137 Diseño por flexión, cálculo de presiones, cálculo de Mu, Mn, y espaciamiento.

Resumen final del diseño de la Zapata Aislada C4 con sus respectivas configuraciones

de acero de refuerzo.

Figura 138 Diseño final de zapata aislada C4.

9.3.2.2. Diseño de Zapata F4

Para el diseño de zapatas aisladas se retoma la información del estudio de suelo

presentado previamente, respecto al ángulo de fricción, peso específico y cohesión.

Caracteristicas del suelo	
Phi (grados)	37,70
Yd (kn/m3)	19,71
Y' (kn/m3)	19,50
Concreto (kn/m3)	24,00
Cohesión (kPa)	42,17

Tabla 29 Caracteristicas del suelo.

Se realiza un predimensionamiento mediante el uso de las cargas actuantes que se

derivaron a partir de las combinaciones de cargas establecidas por la NEC-2015.

Cargas últimas	
Pu (kgf)	63080,98
Mu (kgf m)	5029,92

Tabla 30 Cargas últimas.

2. Corrección de predimensionamiento

Datos Predimensionamiento	
B (m)	1,52
L (m)	1,52

Cargas Actuantes	
PD superestructura (kgf)	80856
PL superestrcutura (kgf)	40428
MD superestructura (kgf m)	10107
ML superestructura (kgf m)	7580,25

Cargas últimas	
Pu (kgf)	63080,98
Mu (kgf m)	5029,92

Presiones en el suelo	
q neto max	36000
q neto min	18746,3108
q admisible	36000

q admisible/qneto max q min (verificacion) 3,93753E-07 solver Cumple

Figura 139 Corrección del predimensionamiento.

Para el diseño estructural es necesario verificar si la zapata tiene la capacidad de soportar un primer cortante. Con esto permite que no existan fisuras en el soporte del elemento. Además, se comprueba el punzonamiento que presenta la zapata.

3. Diseño Es	structural			
Primer Cortante		_		
Materiales				
f'c (kg/cm2)	240	L	R > 50 mm	F
fy (kg/cm2)	4200			→ '
Datos Verificado Predimensi	ionamiento	Presiones en el	suelo	
B (m)	1,60	q neto max	32009,05469	
L (m)	1,60	q neto min	17272,96094	
		q netro promedio	24641,00781	
Cargas últimas				
Pu (kgf)	63080,98	Primer Corta	nte	
Mu (kgf m)	5029,92	Vu (kgf)	45278	
		Beta	1	
Peralte Predimensionar	miento	alfa	0,4	
1.5-2	1,5	Vc 1 (kgf)	293122,8716	
Peralte (m)	0,4	Vc 2 (kgf)	304509,4426	
recubrimiento (m)	0,05	Vc 3 (kgf)	202789,408	
d (m)	0,35	Vc (kgf)	202789,408	
ancho columna (m)	0,5	phi Vc (kgf)	152092,056	
		Vc (Verificación)	Cumple	

Figura 140 Diseño estructural de la zapata.

Perímetro crítico		
Perímetro crítico lado (m)	0,85	
Perímetro crítico (m)	3,4	
área crítica (m2)	0,7225	

Figura 141 Perímetro crítico de la zapata.

Adicional al Primer Cortante es necesario verificar un Segundo Cortante en dos direcciones para esto es necesario encontrar una sección crítica donde puede suscitarse esta falla.

Segundo Cortante

Influencia critica		
d' (m)	0,2	
área de influencia (m2)	0,32	

Segundo Cortante		
Vu (kgf)	7885	
Vc (kgf)	45980	
phi Vc (kgf)	34485,04371	
Vc (Verificación)	Cumple	

Figura 144 Verificación de segundo cortante.

Para finalizar se realiza el diseño a flexión y se verifica que las presiones en el suelo

sean aceptables y la configuración de refuerzo se la correcta.

Flexión

fy (kg/cm2)	4200
As min (cm2)	11,52
diametro varilla (cm)	1,4
#Varillas (n)	8
As (cm2)	12,32
phi	0,9

Presiones en el suelo		
q neto max	32009,05469	
q neto min	17272,96094	
q pendiente	9210,058594	
qs	26943,52246	

a (cm)	1,426191
c (cm)	1,677871
es	0,059579291
es (Verificación)	Cumple

l' (m)	0,55
Mu (kg cm/cm)	4586
As mu (cm2)	5,838064713
As min (cm2)	12,32
As min (verificación)	Cumple
# varillas corregidas	8
As corregido (cm2)	12,3150432
As min (verificación)	Cumple
a corregido (cm)	1,426190665
c corregido (cm)	1,677871371
es	0,059579291
es (Verificación)	Cumple
Mn (kg cm)	1773428
phi Mn (kg cm)	1596085
Mu (kg cm)	733757
Mn (Verificación)	Cumple

Espaciamiento	18,47565595
S (cm) final	20

Figura 145 Diseño por flexión y configuración del refuerzo.

Finalmente, se obtienen los resultados del diseño de la Zapata Aislada F4.

Figura 146 Diseño final de zapata aislada F4.

9.4. Diseño de muros:

Una vez realizados los respectivos ensayos de suelo y obtenido la información

necesaria de estos, se realiza un ensayo de los siguientes datos:

DATOS SUELO			
yd (kg/m3) 1630			
yh (kg/m3) 2400			
phi (grados) 32			
Ka	0,289136		
u 0,3927013			

Figura 147 Información general del suelo para el diseño de muros.

Estos datos serán necesarios para determinar el empuje del suelo sobre el muro que se diseñará

9.4.1. Verificación espesor mínimo:

Una de las primeras verificaciones que se debe hacer es la del espesor mínimo que

debe tener el muro a diseñar. Aplicando en este caso la tabla 11.3.1.1 de la norma ACI 318,

misma que indica el espesor mínimo que debe tener el muro.

Tipo de muro	Espesor mínimo del muro, h		
		100 mm	(a)
De carga ^[1]	El mayor de:	1/25 de la menor entre la longitud y la altura no soportadas	(b)
No portante		100 mm	(c)
	El mayor de:	1/30 de la menor entre la longitud y la altura no soportadas	(d)
teriores de sótanos cimentaciones ^[1]		190 mm	(c)

Tabla 11.3.1.1 — Espesor mínimo del muro, h

Tabla 31 Espesor mínimo del muro

Ya que se cuenta con las medidas del muro, lo único que se está buscando es un espesor que funcione.

VERIFICACIÓN ESPESOR		
MINIM		
Espesor (cm)	50	
L. Muro (cm)	1616	
Altura (cm)	726	
Espesor mínimo (cm)	29,04	CUMPLE

Tabla 32 Verificación espesor mínimo.

En este caso el espesor mínimo requerido será de aproximadamente 30 centímetros, pero por cuestiones de seguridad y mayor resistencia se determinó un espesor de 50 centímetros.

9.4.2. Pesos y momentos:

Una vez obtenidas las medidas del muro, se procede a determinar los volúmenes de cada elemento individual que conforma el muro (pantalla y base), así como la fuerza de empuje generada por el suelo detrás del muro.

Figura 148 Determinación de pesos, brazos, momentos, y fuerzas.

Seguido a esto, se realiza el cálculo de la resultante de fuerzas en la base del muro debido a las reacciones del suelo.

Figura 149 Resultante de fuerzas.

Se obtuvo una resultante de distribución triangular, lo que indica que los esfuerzos en un lado del muro serán mayores. Luego, se procede a determinar los factores de seguridad, los cuales deben ser mayores a 1,5 para evitar fallos por volcamiento y deslizamiento en el muro.

FACTORES DE SEGURIDAD

FS Volcamiento	2,17	CUMPLE
FS Deslizamiento	4,45	CUMPLE

Figura 150 Factores de seguridad por volcamiento y desplazamiento.

9.4.3. Refuerzo de muro:

Para encontrar el refuerzo que utilizará el muro se escoge un diámetro de varilla arbitrariamente, para realizar los cálculos correspondientes y determinar si la varilla escogida es correcta para el diseño. Finalmente, se determinó un diámetro de varilla de 18 mm para el refuerzo, además teniendo en cuenta el espaciamiento, el cuál según la sección 7.7.2.4 de la norma ACI debe ser de máximo 45 cm. Sin embargo, para este muro se determinó un espaciado entre varillas de 15 cm.

REFUERZO DE MUROS

DISEÑO A FLEXIÓN		
F (Kg)	12420,327	
M (Kg*m)	30057,191	
Mu (Kg*m)	48091,506	

PERALTE EFECTIVO			
Recub. (cm)	7,5		
h (cm)	50		
Diámetro varilla escogido (cm)	1,8		
d (cm)	41,6		

ESPACIAMIENTO			
h (cm)	50		
S max (cm)	45		
S final (cm)	15		
# Varillas	107,7333333		
# Varillas final	107		
S transversal (cm)	33,2		
S trans. Final (cm)	20		

Figura 151 Prediseño de muro.

7.7.2.4 El espaciamiento máximo, s, del refuerzo requerido en 7.5.2.3 debe ser el menor entre 5h y 450 mm.

Una vez escogida la varilla se procede a realizar un cálculo de Mn y Phi*Mn para determinar si la varilla de acero escogida cumple con cuantías.

Figura 152 Cálculo de Mn y As mínimo.

Finalmente, se verifica si la varillas escogida cumple con las condiciones.

CÁLCULO DE AS				VERIFIC	ACIÓN		
Mu (Kg*m)	48091,506			a (cm)	3,96449964		
Mn (Kg*m)	53435,007			c (cm)	4,664117224		
ρ req	0,0005085				0.022757475	CUMPLE	
As req (cm2)	34,185881			ε	0,023737473	CONTRE	
A varilla (cm2)	0,3194942			Mn (Kg*m)	453062,1366		
Duarilla (cm)	1 0			φ Mn (Kg*m)	407755,923		
D variila (ciri)	1,0			Mu (Kg*m)	48091,50638		
A escogida (cm2)	2,54469	CUMPLE		φMn > Mu?	SI	CUMPLE	
A total (cm2)	272,28184						

Figura 153 Verificación de acero escogido.

٦

Con esto se puede determinar el refuerzo para flexión del muro.

Г

Se escogen 107 varillas de 18mm espaciadas cada 15 cm	
Diseño final a f	flexión
107 Φ 18 mm @ 15 cm	Longitudinal
2 Φ 18 mm @ 20 cm	Transversal
# total de varillas utilizadas	214

Figura 154 Refuerzo a flexión del muro.

9.4.4. Elementos de borde:

En el diseño del muro se debe verificar si el muro necesita de elementos de borde, en este caso se debe revisar la relación entre la altura y la longitud del muro. En este caso, al tener una relación menor a 2, se determina que no se utilizarán elementos de borde.

En caso de utilizarse, se deberá aplicar la tabla 18.10.6.5 (b) de la norma ACI para determinar los espaciamientos en estas secciones.

Figura 155 Espaciamiento verticala máximo del refuerzo transversal en el borde del muro.

9.4.5. Verificación carga axial:

Aplicando la tabla 11.5.3.2, se realiza una verificación de carga axial del muro, aplicando un factor k que depende de las condiciones de borde del muro, y aplicando la ecuación de la tabla se determina la capacidad de carga axial del muro. Se obtiene lo siguiente:

VERIFIC	ACIÓN			
CARGA	AXIAL		Tabla 11.5.3.2 — Factor de longitud efectiv	a k para
f'c (Mpa)	21]	Condisiones de haude	
L (mm)	16160		Marca and a set of the	k
b (mm)	500		desplazamiento lateral, v	
Ag (mm2)	8080000	1	(a) Restringidos contra rotación en uno o ambos extremos	0.8
k	0,8]	(superior, inferior o ambos)	1.0
lc (mm)	7260		(b) No restringidos contra la rotación en ambos extremos	1.0
Pn (N)	81026790		Muros no arriostrados contra desplazamiento lateral	2.0
Pn (Ton)	8102,679		$P_n = 0.55 f_c' A_g \left[1 - \left(\frac{k\ell_c}{32h} \right) \right]$	(11.5.3.1)
φPn (Ton)	7292,4111			
Pu (Ton)	5000			
φPn > Pu?	SI	CUMPLE		

Figura 156 Verificación de carga axial.

9.4.6. Diseño a corte:

Una de los aspectos más importantes en el diseño de muros es la capacidad de resistir corte, por lo que se aplican las ecuaciones correspondientes para determinar si el muro logra soportar la fuerza cortante, la cual resulta ser la fuerza de empuje del suelo. Para este caso se logró cumplir satisfactoriamente las condiciones de corte para el muro.

DISEÑO A CORTE			
Hw (cm)	726		
Lw (cm)	1616		
Espesor (cm)	50		
Hw/Lw	0,4492574		
αc	0,8		

CÁLCULO DE φVn				
φv	0,75			
λ	1			
f'c (Kg/cm2)	210			
ρt	0,0018			
fy (Kg/cm2)	4200			
Acv (cm2)	80800			
Vn (Kg)	1547570,6			
φVn (Kg)	1160677,9			
VERIFICA	ción			
	4469677.0			

$$V_n = A_{cv} \left(\alpha_c \lambda \sqrt{f_c'} + \rho_t f_y \right)$$

$$\alpha_c = 0.80 \text{ para } \frac{h_w}{\ell_w} \le 1.5$$

$$\alpha_c = 0.53 \text{ para } \frac{h_w}{\ell_w} \ge 2.0$$

VERIFICA		
φVn <mark>(</mark> Kg)	1160677,9	
Vu (Kg)	12420,327	
φVn > Vu?	SI	CUM

Figura 157 Diseño del muro a corte.

PLE

9.4.7. Refuerzo transversal:

Aplicando la sección 7.6 de la norma ACI se determinan los límites de refuerzo del muro, y se determinó un espaciamiento de 15 cm, al igual que para el refuerzo longitudinal.

ESPACIAMIENTO		
TRANSVERSAL		
h (Espesor) (cm)	50	
H (Altura) (cm)	726	
Recub. (cm)	7,5	
S max (cm)	45	
S final (cm)	15	
# Varillas	48,4	
# Varillas final	48	
S transversal (cm)	30,2	
S trans. Final (cm)	23	

7.6 — Lín 7.6.1 preesforzad	n ites del re Refuerzo das	fuerzo mínimo	а	flexión	en	losas	no
7.6.1.1	Debe color	carse un ár	ea m	nínima de	refue	rzo a fle	xión

7.6.2.3 En losas con tendones no adheridos, el área mínima de refuerzo corrugado adherido $A_{s,\min}$ debe ser:

 $A_{s,\min} \ge 0.004 A_{ct}$ (7.6.2.3)

donde A_{ct} es el área de la porción de la sección transversal entre la cara de tracción en flexión y el centroide de la sección bruta.

Figura 158 Espaciamiento transversal del muro.

Al igual que el refuerzo colocado anteriormente, se escoge un diámetro de varilla arbitrariamente y se determina si este logra cumplir con las condiciones del muro.

CALCULO DE AS min						
REFUERZO TRANSVERSAL						
b (cm)	50					
S (cm)	15					
Ag (cm2)	750					
ρ temp	0,0018					
As min (cm2) 1,35						
CÁLCULO D	E AS Y					
CÁLCULO D VERIFICA	e as y Ción					
CÁLCULO D VERIFICA As de una varilla (cm2)	E AS Y CIÓN 1,35					

2,2619467

750

0,0030159

escogida (cm) As escogida (cm2)

Ag (cm2)

ρ

Tabla 11.6.1 —	Refuerzo mínim	o para muros con	$V_{\mu} \leq 0.04\phi \alpha_c \lambda_{\gamma}$	f' Acv	, en el plano	del murc
----------------	----------------	------------------	---	--------	---------------	----------

Tipo de muro	Tipo de refuerzo no preesforzado	Tamaño de la barra o alambre	$f_{\boldsymbol{y}}$, MPa	longitudinal mínimo ^[1] , ρ _ℓ	Refuerzo transversal mínimo, ρ,
		< No. 16	≥ 420	0.0012	0.0020
	Barras corrugadas	5 NO. 10	< 420	0.0015	0.0025
Construido en		> No. 16	Cualquiera	0.0015	0.0025
obra	Refuerzo de alambre electrosoldado	≤ MW200 ó MD200	Cualquiera	0.0012	0.0020
Prefabricado ^[2]	Barras corrugadas o refuerzo de alambre electrosoldado	Cualquiera	Cualquiera	0.0010	0.0010

Diseño final transversal							
48 Φ 12 mm @ 15 cm	Longitudinal						
2 Ф 12 mm @ 23 cm	Transversal						
# total de varillas utilizadas	96						

Figura 159 Cálculo de As min.

Finalmente se determinó que se utilizará una varilla de 12 mm para el refuerzo

transversal del muro, espaciadas cada 15 cm.

CUMPLE

9.4.8. Diagrama de interacciones del muro:

Una vez determinadas las dimensiones y refuerzo del muro, se procede a realizar el diagrama de interacciones del muro para determinar las combinaciones de cargas máximas que puede soportar el muro.

DIAGRAMA					
INTERACCIÓN MURO					
fy (kg/cm2)	4200				
f'c (kg/cm2)	210				
β1	0,85				
a (cm)	1349,375				
b (cm)	50				
L (cm)	1616				
recub (cm)	7,5				
D. estribo (cm)	1,2				
E (kg/cm2)	2000000				
D. varilla (cm)	1,8				
c (cm)	1587,5				

Compr	esión Máxima]	Tensión	Máxima						
Pn (Tn)	15507,54793		Tn (Tn)	1132,89601						
φPn (Tn)	10079,90615		φTn (Tn)	1019,60641						
ρ	0,334%									
		_								
	Resumen									
c (cm)	Pn (Tn)	Mn (Tn-m)	ф	εs						
1587,500	13054,368	20213,065	0,650	0,0015						

Figura 160 Datos para el diagrama de interacción del muro.

Se realiza una tabla como la que se muestra a continuación, donde cada capa representa una fila de varillas en sentido transversal. En esta tabla se organizan toda la información del muro, incluyendo números de varillas, diámetros de varilla, área, distancia al centroíde d, esfuerzos, fuerza aplicada momentos a compresión y tensión, factor φ , brazo, etc.

Capa	Número de varillas	Diámetro (cm)	Área (cm2)	d (cm)	ES	fs (kg/cm2)	Estado	fs corregido (Kg/cm2)	F (kg)	Compresión (kg)	Tensión (kg)	ф	Brazo (cm)	Momento (Kg*cm)
1	2	1,8	5,089	27,5	0,0029	4200	COMPRESIÓN	4021,5	20466,942	20466,9421	0	0,73	780,5	15974448
2	2	1,8	5,089	42,5	0,0029	4200	COMPRESIÓN	4021,5	20466,942	20466,9421	0	0,73	765,5	15667444
3	2	1,8	5,089	57,5	0,0029	4200	COMPRESIÓN	4021,5	20466,942	20466,9421	0	0,72	750,5	15360440
4	2	1,8	5,089	72,5	0,0029	4200	COMPRESIÓN	4021,5	20466,942	20466,9421	0	0,72	735,5	15053436
5	2	1,8	5,089	87,5	0,0028	4200	COMPRESIÓN	4021,5	20466,942	20466,9421	0	0,72	720,5	14746432
6	2	1,8	5,089	102,5	0,0028	4200	COMPRESIÓN	4021,5	20466,942	20466,9421	0	0,72	705,5	14439428
7	2	1,8	5,089	117,5	0,0028	4200	COMPRESIÓN	4021,5	20466,942	20466,9421	0	0,71	690,5	14132423
8	2	1,8	5,089	132,5	0,0027	4200	COMPRESIÓN	4021,5	20466,942	20466,9421	0	0,71	675,5	13825419
9	2	1,8	5,089	147,5	0,0027	4200	COMPRESIÓN	4021,5	20466,942	20466,9421	0	0,71	660,5	13518415
10	2	1,8	5,089	162,5	0,0027	4200	COMPRESIÓN	4021,5	20466,942	20466,9421	0	0,71	645,5	13211411
11	2	1,8	5,089	177,5	0,0027	4200	COMPRESIÓN	4021,5	20466,942	20466,9421	0	0,71	630,5	12904407
12	2	1,8	5,089	192,5	0,0026	4200	COMPRESIÓN	4021,5	20466,942	20466,9421	0	0,70	615,5	12597403
13	2	1,8	5,089	207,5	0,0026	4200	COMPRESION	4021,5	20466,942	20466,9421	0	0,70	600,5	12290399
14	2	1,8	5,089	222,5	0,0026	4200	COMPRESION	4021,5	20466,942	20466,9421	0	0,70	585,5	11983395
15	2	1,8	5,089	237,5	0,0026	4200	COMPRESION	4021,5	20466,942	20466,9421	0	0,70	570,5	11676390
16	2	1,8	5,089	252,5	0,0025	4200	COMPRESION	4021,5	20466,942	20466,9421	0	0,69	555,5	11369386
17	2	1,8	5,089	267,5	0,0025	4200	COMPRESION	4021,5	20466,942	20466,9421	0	0,69	540,5	11062382
18	2	1,8	5,089	282,5	0,0025	4200	COMPRESION	4021,5	20466,942	20466,9421	0	0,69	525,5	10755378
19	2	1,8	5,089	297,5	0,0024	4200	COMPRESION	4021,5	20466,942	20466,9421	0	0,69	510,5	10448374
20	2	1,8	5,089	312,5	0,0024	4200	COMPRESION	4021,5	20466,942	20466,9421	0	0,68	495,5	10141370
21	2	1,8	5,089	327,5	0,0024	4200	COMPRESION	4021,5	20466,942	20466,9421	0	0,68	480,5	9834365,7
22	2	1,8	5,089	342,5	0,0024	4200	COMPRESION	4021,5	20466,942	20466,9421	0	0,68	465,5	9527361,5
23	2	1,8	5,089	357,5	0,0023	4200	COMPRESION	4021,5	20466,942	20466,9421	0	0,68	450,5	9220357,4
24	2	1,8	5,089	372,5	0,0023	4200	COMPRESION	4021,5	20466,942	20466,9421	0	0,67	435,5	8913353,3
25	2	1,8	5,089	387,5	0,0023	4200	COMPRESION	4021,5	20466,942	20466,9421	0	0,67	420,5	8606349,1
26	2	1,8	5,089	402,5	0,0022	4200	COMPRESION	4021,5	20466,942	20466,9421	0	0,67	405,5	8299345
27	2	1,8	5,089	417,5	0,0022	4200	COMPRESION	4021,5	20466,942	20466,9421	0	0,67	390,5	7992340,9
28	2	1,8	5,089	432,5	0,0022	4200	COMPRESION	4021,5	20466,942	20466,9421	0	0,67	375,5	7685336,7
29	2	1,8	5,089	447,5	0,0022	4200	COMPRESION	4021,5	20466,942	20466,9421	0	0,66	360,5	7378332,6
30	2	1,8	5,089	462,5	0,0021	4200	COMPRESIÓN	4021,5	20466,942	20466,9421	0	0,66	345,5	/0/1328,5
31	2	1,0	5,089	4/7,5	0,0021	4193,273391	COMPRESIÓN	4010,775591	20442,090	20442,0970	0	0,00	330,5	6750377,7
32	2	1,0	5,089	492,5	0,0021	4130,302077	COMPRESIÓN	3900,082077	20154,500	20134,300	0	0,00	313,3	0338702,3
33	2	1,0	5,089	507,5	0,0020	4001,009704	COMPRESIÓN	3903,309704	19803,834	19803,8342	0	0,65	300,5	5909003,2
34	2	1,0	5,089	527.5	0,0020	3068 503037	COMPRESIÓN	3700.003037	19377,302	19377,3024	0	0,65	203,5	5217612.5
36	2	1.8	5,089	552.5	0,0020	3911 811024	COMPRESIÓN	3733 311024	19000 239	19200,7700	0	0,65	255.5	4854561
37	2	1,0	5,089	567.5	0.0019	3855 11811	COMPRESIÓN	3676 61811	18711 707	18711 707	0	0,65	240.5	4500165.5
38	2	1.8	5,089	582.5	0.0019	3798 425197	COMPRESIÓN	3619 925197	18423 175	18423 1753	0	0,65	2255	4154426
39	2	1.8	5,089	597.5	0.0019	3741 732283	COMPRESIÓN	3563 232283	18134 643	18134 6435	0	0,65	210.5	3817342.5
40	2	1.8	5.089	612.5	0.0018	3685.03937	COMPRESIÓN	3506,53937	17846.112	17846.1117	0	0.65	195.5	3488914.8
41	2	1.8	5.089	627.5	0.0018	3628,346457	COMPRESIÓN	3449.846457	17557.580	17557.5799	0	0.65	180.5	3169143.2
42	2	1.8	5.089	642.5	0.0018	3571.653543	COMPRESIÓN	3393,153543	17269.048	17269.0481	0	0.65	165.5	2858027.5
43	2	1.8	5.089	657.5	0.0018	3514,96063	COMPRESIÓN	3336,46063	16980.516	16980.5163	0	0.65	150.5	2555567.7
44	2	1,8	5,089	672,5	0,0017	3458,267717	COMPRESIÓN	3279,767717	16691,985	16691,9845	0	0,65	135,5	2261763,9
45	2	1.8	5,089	687.5	0.0017	3401.574803	COMPRESIÓN	3223.074803	16403,453	16403,4528	0	0.65	120.5	1976616.1
46	2	1,8	5,089	702,5	0,0017	3344,88189	COMPRESIÓN	3166,38189	16114,921	16114,921	0	0,65	105,5	1700124,2
47	2	1,8	5,089	717,5	0,0016	3288,188976	COMPRESIÓN	3109,688976	15826,389	15826,3892	0	0,65	90,5	1432288,2
48	2	1.8	5.089	732.5	0.0016	3231.496063	COMPRESIÓN	3052 996063	15537.857	15537 8574	0	0.65	75.5	1173108.2
49	2	1.8	5.089	747.5	0.0016	3174.80315	COMPRESIÓN	2996.30315	15249.326	15249.3256	0	0.65	60.5	922584.2
50	2	1.8	5.089	762.5	0.0016	3118,110236	COMPRESIÓN	2939.610236	14960,794	14960,7938	0	0.65	45.5	680716.12
51	2	1.8	5,089	777,5	0,0015	3061,417323	COMPRESIÓN	2882,917323	14672,262	14672,262	0	0,65	30,5	447503,99
52	2	1,8	5,089	792,5	0,0015	3004,724409	COMPRESIÓN	2826,224409	14383,730	14383,7303	0	0,65	15,5	222947,82
53	2	1,8	5,089	807,5	0,0015	2948,031496	COMPRESIÓN	2769,531496	14095,198	14095,1985	0	0,65	0,5	7047,5992
CONCRETO	_			674,6875			COMPRESIÓN		12043171,9	12043171,9	0		133,3125	1,606E+09
TOTAL			269,737							13054368,2	0			2,021E+09

Figura 161 Cálculos realizados para el diagrama de interacción del muro.

Finalmente se obtiene la compresión máxima, pues para este caso se asume que todas las capas de acero del muro se encuentran a compresión.

COMPRESIÓN	13054368
TENSIÓN	0
DIFERENCIA	13054368

Figura 162 Compresión máxima.

Con los cálculos realizados previamente se procede a determinar los valores de C, Pn, Mn y Phi, para encontrar los puntos que formarán parte del diagrama de interacción.

C (cm)	Pn (Tn)	Mn (Tn m)	Φ	Φ Pn (Tn)	@ Mn (Tn m)	0.8*Pn	0.8*@ Pn
Tn max	-1132,896	0,000	0,9	-1019,6064	0	7190,782995	4674,008947
27,5	-217,889	1046,513	0,9	-196,09991	941,861897	7190,782995	4674,008947
42,5	-143,296	1626,196	0,9	-128,96603	1463,57613	7190,782995	4674,008947
72,5	6,171	2758,636	0,9	5,554095	2482,77243	7190,782995	4674,008947
102,5	155,638	3851,755	0,9	140,07422	3466,57924	7190,782995	4674,008947
132,5	305,105	4905,060	0,9	274,59434	4414,5537	7190,782995	4674,008947
162,5	454,572	5919,366	0,9	409,11446	5327,42954	7190,782995	4674,008947
192,5	604,038	6894,695	0,9	543,63458	6205,22532	7190,782995	4674,008947
222,5	753,505	7829,876	0,9	678,1547	7046,88882	7190,782995	4674,008947
252,5	902,972	8726,047	0,9	812,67483	7853,44258	7190,782995	4674,008947
282,5	1052,439	9583,248	0,9	947,19495	8624,92306	7190,782995	4674,008947
312,5	1201,906	10400,655	0,9	1081,7151	9360,5893	7190,782995	4674,008947
342,5	1351,372	11178,689	0,9	1216,2352	10060,82	7190,782995	4674,008947
372,5	1500,839	11917,740	0,9	1350,7553	10725,9656	7190,782995	4674,008947
402,5	1650,306	12617,395	0,9	1485,2754	11355,6559	7190,782995	4674,008947
432,5	1799,773	13277,292	0,9	1619,7956	11949,5631	7190,782995	4674,008947
462,5	1949,240	13898,198	0,9	1754,3157	12508,3781	7190,782995	4674,008947
492,5	2098,706	14480,099	0,9	1888,8358	13032,089	7190,782995	4674,008947
522,5	2248,173	15021,858	0,9	2023,3559	13519,6723	7190,782995	4674,008947
552,5	2397,640	15524,621	0,9	2157,876	13972,1588	7190,782995	4674,008947
582,5	2547,107	15988,405	0,9	2292,3962	14389,5642	7190,782995	4674,008947
612,5	2696,574	16412,387	0,8813	2376,4702	14464,1135	7190,782995	4674,008947
642,5	2846,040	16797,008	0,8510	2422,0875	14294,8855	7190,782995	4674,008947
672,5	2995,507	17142,645	0,8235	2466,7464	14116,6598	7190,782995	4674,008947
702,5	3144,974	17448,878	0,7983	2510,5697	13929,0893	7190,782995	4674,008947
732,5	3294,441	17715,358	0,7751	2553,6602	13731,9221	7190,782995	4674,008947
762,5	3443,908	17942,850	0,7538	2596,1042	13525,7715	7190,782995	4674,008947
792,5	3593,374	18131,332	0,7341	2637,9752	13310,6091	7190,782995	4674,008947
822,5	3742,841	18279,672	0,7159	2679,3359	13085,6155	7190,782995	4674,008947
852,5	3892,308	18389,021	0,6989	2720,2401	12851,6424	7190,782995	4674,008947
882,5	4041,775	18459,387	0,6831	2760,7345	12608,6853	7190,782995	4674,008947
912,5	4191,242	18489,949	0,6683	2800,8594	12356,1831	7190,782995	4674,008947
942,5	4340,708	18481,155	0,6544	2840,6502	12094,4535	7190,782995	4674,008947
972,5	4489,773	18436,648	0,65	2918,3525	11983,8213	7190,782995	4674,008947
1002,5	4638,042	18359,457	0,65	3014,727	11933,6472	7190,782995	4674,008947
1032,5	4785,560	18249,287	0,65	3110,6142	11862,0364	7190,782995	4674,008947
1062,5	4932,444	18106,248	0,65	3206,0886	11769,0614	7190,782995	4674,008947
1092,5	5078,743	1/930,1/8	0,65	3301,1828	11654,6155	/190,/82995	4674,008947
1122,5	5224,432	17720,595	0,65	3395,8809	11518,3868	7190,782995	4674,008947
1152,5	5369,631	1/4//,/49	0,65	3490,2603	11360,5367	/190,/82995	4674,008947
1182,5	5514,377	1/201,52/	0,65	3584,3453	11180,9924	7190,782995	46/4,00894/
1212,5	5658,656	16891,609	0,65	36/8,1261	10979,5459	7190,782995	46/4,00894/
1242,5	5802,526	16548,040	0,65	3771,0421	10/56,2259	7190,782995	46/4,00894/
12/2,5	5946,039	101/0,834	0,65	3804,9252	10311,0422	7190,782995	4674,008947
1302,5	6089,194	15/39,01/	0,05	3957,9762	10243,001	7190,782995	4674,008947
1332,5	6231,999	10014,002	0,65	4050,7993	9954,05353	7190,782995	4074,008947
1202,5	6516 762	14030,035	0,65	4145,4555	9045,45451	7190,782995	4074,008947
1422.5	6658 699	13776 489	0,65	4328 1542	8954 7177	7190,782995	4674,008947
1462,5	6000,035	13//0,403	0,05	4520,1542	05577.45204	7190,702995	4074,000547
1452,5	6800,401	13195,637	0,65	4420,2608	8577,16381	7190,782995	4674,008947
1482,5	0941,884	12580,754	0,65	4512,2245	81/7,49035	7190,782995	4674,008947
1512,5	7083,121	11931,660	0,65	4604,0285	7755,57873	7190,782995	46/4,00894/
1542,5	7224,148	10520.000	0,65	4095,0901	/311,45918	7190,782995	4674,008947
15/2,5	7425 402	10159 402	0,65	4/8/,2458	6603.06333	7190,782995	4674,008947
1367,3 Do mar	8089 470	10138,403	0,05	4033,0090 5843 5113	0002,90223	7100 782005	4674,008947
Philliax	0300,479	0,000	0,05	3042,3112	0	1190,102993	4014,008941

Figura 163 Puntos obtenidos para el diagrama de interacción.

Con los puntos obtenidos previamente se procede a graficar el diagrama de

interacciones para determinar las cargas máximas que puede soportar el muro.

Figura 164 - Diagrama de iteraciones del muro

10.REVIT

Una vez realizado el diseño estructural de todos los elementos estructurales junto con sus refuerzos, definida la malla estructural y las dimensiones, se procede a modelar la estructura en el programa Revit, siguiendo un procedimiento para el modelado de cada elemento y la colocación de estos de acuerdo a los cálculos estructurales y correcciones que se realizan al momento de colocar en conjunto todos los elementos.

10.1. Planos arquitectónicos en AutoCAD

El primer paso antes de realizar el modelado del edificio es el desarrollo de planos arquitectónicos en el programa AutoCAD, donde se define la malla estructural de acuerdo con el programa arquitectónico que se esté manejando. Una vez definido la función del edificio y el plan espacial se procede a diseñar la forma de cada parte del edificio, teniendo en cuenta factores como el contexto del lugar, soleamiento, y armonía con el resto de proyectos adjuntos.

Una vez definido todo esto se diseñan los planos. Se muestra una de las plantas principales como referencia, el resto de plantas se anexan.

Figura 165 – Piso 3

10.2. Planos arquitectónicos en Revit

Una vez obtenidos los planos arquitectónicos en AutoCAD se procede a exportarlos a Revit, donde haciendo uso de los planos se dibujará el resto de elementos estructurales según los cálculos realizados. Cabe recalcar que durante el proceso de modelado existen elementos que deberán modificarse con el objetivo de tener un modelo más práctico con conexiones coherentes entre los diferentes elementos.

Una vez modificados los planos de AutoCAD, se organizan las plantas de manera que estén dispuestas en forma de columna, una seguida de otra, separadas una distancia determinada, pues esto será de ayuda al momento de dibujar ejes y algún otro elemento en Revit. Al importar el archivo CAD se programa de modo que el sistema de coordenadas, unidades, y el nivel donde se importarán las platas estén especificados.

📳 Importar forma	tos CAD							?	×
Buscar en:] TESIS ~								•	Vistas 👻
Historial	Nombre Edificio primav EDIFICIO PRIM	/era final AVERA REVIT	Tamaño	Tipo de elemento Carpeta de archivos Carpeta de archivos	Fecha o 8/10/20	de modificac 023 18:31 23 15:27	-Vista previa		
Documentos	PLANIMETRÍA Planos Edificio	PROPUESTA 5 ORIGINAL	2.756 KB 789 KB 44 KB	Archivo DWG Archivo DWG Archivo DWG	26/6/20 13/7/20 18/7/20	023 13:04 023 10:13 023 1:59	4		
Mi PC	REVT2-0-C2-17	A PRIMAVERA 7-06-2023-Plano - S-1 - Sin no. 7-06-2023-Plano - S-3 - Sin no.	646 KB 282 KB 238 KB	Archivo DWG Archivo DWG Archivo DWG	10/7/20 1/7/20 1/7/20	023 2:42 23 15:22 23 15:22			
Mis sitios d									
Favoritos									
	< Nombre de archivo:	PLANTAS CASA PRIMAVERA.dwg				>			
Escritorio	Tipo de	Archivos DWG (*.dwg)				~			
Sólo vista actual		Colores:	Mantener	~	Posición:	Automático -	Centro a centro)	~
		Unidades de importación:	Autodetectar	~ 1.000000	colocal ch.	Orientación	n de vista		
Herramientas 👻		2	Corregir líneas li	geramente fuera de eje		A <u>b</u> rir		Can	celar

Figura 166 - Importación de planos a Revit

Figura 167 - Planos arquitectónicos exportados a AutoCAD

Una vez exportados los planos se procede a crear los diferentes planos o niveles con los que contará el edificio, teniendo en cuenta una diferencia de nivel entre cada piso de 2.88 metros. Además, se generan niveles para cada piso del edificio, contando subsuelo, los 4 pisos, rooftop y cubierta. Se tiene que la altura total del edificio es de 17.28 metros contados desde la parte baja de las zapatas hasta la parte más alta de la cubierta.

Figura 168 - Niveles para cada piso del edificio

Una vez definidos los niveles se crea una rejilla de acuerdo con la configuración de la malla estructural. Se trazan los ejes de modo que pasen por cada viga y columna, teniendo una intersección de ejes en cada columna, para los ejes verticales siendo denominados por números, y los ejes horizontales siendo denominados por letras. Del mismo modo se realizan diferentes copias de los planos, una para cada nivel y los planos de cada piso se encuentran finalmente listos para empezar a colocar los elementos estructurales.

Figura 169 - Creación de rejilla para los planos

10.3. Modelado de elementos estructurales

Una vez definida la rejilla se proceden a crear las secciones de los elementos que se utilizarán, siendo que para las columnas existen tres tipos: 30x30, 40x40, y 50x50, mientras que para las vigas existen tres tipos: 25x30, 25x40, y 30x50.

Figura 170 - Configuración de secciones transversales.

. La disposición de estos elementos depende de los requerimientos de carga obtenidos en el análisis estructural, siendo que las secciones de mayores dimensiones se utilizarán donde se requiera soportar mayor carga, mientras que las secciones menores se utilizarán en el resto del proyecto. Una vez definidas las secciones se colocan de acuerdo con los planos arquitectónicos y el análisis estructural realizado previamente.

Figura 171 - Colocación de columnas

Además, se debe tener cuidado en las conexiones de los elementos, pues si llegara a existir una intersección de volúmenes debido a una mala conexión, podría haber valores de volúmenes duplicados y al momento de obtener las cantidades puede haber errores.

Figura 172 - Colocación de vigas y columnas

A continuación, se detallan los siguientes elementos estructurales utilizados en el armado estructural:

Figura 173 – Viga

Figura 175 - Zapata Ccombinada

Figura 176 - Muro estructural

Seguido a esto se agregan el resto de elementos como escaleras y losas:

Figura 177 – Losa

Figura 178 – Escaleras

Una vez encontrados todos los elementos estructurales, se genera la estructura completa, de modo que todos los elementos se encuentren conectados, de acuerdo a los planos arquitectónicos, siempre teniendo cuidado de que los elementos son se intersequen para evitar tener volúmenes duplicados y las cantidades de materiales sean erróneas.

Figura 179 - Estructura final del edificio

10.4. Modelado de los refuerzos estructurales

Una vez definida la estructura del edificio, se procede con la colocación de los elementos de refuerzo como las varillas, ganchos, ramas y estribos según los cálculos realizados y especificaciones de la norma, siempre teniendo cuidado de que los elementos como las varillas de un elemento no se crucen con las varillas de otros elementos, pues se trata de que los refuerzos encajen sin problema.

10.4.1. Refuerzo de vigas

Una vez determinadas las dimensiones finales de los elementos estructurales se procede con la colocación de los aceros de refuerzo de acuerdo al diseño estructural realizado previamente. Haciendo memoria, las vigas tenían varias configuraciones de armado del refuerzo con varillas cuyos diámetros varían entre 10 milímetros hasta 18 milímetros, y estas configuraciones dependían de la solicitud de carga obtenidas de ETABS. Estas configuraciones se especificaron en las tablas mostradas anteriormente. Finalmente, se aplican estas configuraciones a cada una de las vigas del proyecto.

Figura 180 Detalle de conexión entre vita y columna.

Figura 181 Detalle 3D de los estribos de la viga.

Figura 182 Detalle del refuerzo de una viga, incluye varillas y estribos.

10.4.2. Refuerzo de cimentaciones

Al igual que con las vigas, se colocan aceros de refuerzo según el diseño realizado. Debido a que las cimentaciones cuentan solamente con dos tipos de zapatas, las configuraciones de estas son pocas, siendo que, para todas las zapatas existe una capa inferior de varillas de diámetro mayor, y una capa superior de varillas de diámetro menor, de manera que se forma una especie de jaula conformado por dichas varillas junto con ganchos de 12 centímetros.

Figura 183 - Detalle de zapata combinada

Figura 184 - Armado en 3D de zapata combinada

Figura 185 Detalle de refuerzo de zapata aislada.

10.4.3. Refuerzo de muros

Al igual que los elementos anteriores, se realizó la colocación del acero de refuerzo a los muros, que, en este caso, son tres: muro principal, muro secundario largo, y muro secundario corto. De acuerdo con el diseño estructural realizado, cada muro tiene dos capas de varillas de 18 milímetros que recorren toda la longitud y altura de dichos muros, para terminar en ganchos de 90 grados con 12 centímetros de longitud. Hacia la parte inferior de cada muro las varillas se extienden en forma de L para conectar con el refuerzo de las zapatas de cada muro, garantizando una conexión eficiente y resistente entre estos elementos.

Una vez colocados todos los aceros en los muros se obtienen los siguientes detalles:

Figura 186 - Armado de muro estructural

Figura 189 Corte longitudinal muro.

A manera de isometría, se puede observar la forma del muro, junto con el armado de los aceros, además de las conexiones con otros elementos estructurales como vigas y columnas, cuyos refuerzos están dispuestos de tal manera que se conecten y se amarren a los aceros del muro, para garantizar una mayor resistencia en las conexiones.

Figura 190 - Detalle 3D del armado de muro(isometría)

10.5 Planillas de aceros

Una vez colocados todos los aceros de refuerzo, se procede al desarrollo de la planilla de aceros, la cual es una tabla que contiene toda la información del refuerzo de acero de un elemento. En ella se puede encontrar información como marca, cantidades, diámetros, longitudes, pesos totales, entre otros. Con esta información se puede conocer la cantidad de acero que se utilizó en un tipo de elemento, y es importante para determinar el presupuesto.

PLANILLA DE ACEROS - MUROS										
Marca	Recuento	Cantidad	Diámetro de barra	A	в	С	D	Longitud de barra	Longitud total de barra	Peso Total
80	1	107	18 mm	150 mm	7600 mm	350 mm	0 mm	7.99 m	850.65 m	1699.60 kg
246	2	58	12 mm	150 mm	3250 mm	150 mm	0 mm	3.50 m	200.10 m	177.69 kg
264	2	96	12 mm	150 mm	16100 mm	150 mm	0 mm	16.31 m	1560.00 m	1385.28 kg
274	1	107	18 mm	0 mm	150 mm	7350 mm	350 mm	7.76 m	823.90 m	1646.15 kg
Muro Principal: 6 368 3434.65 m 4908.72 kg										
144	1	87	18 mm	4450 mm	350 mm	0 mm	0 mm	4.75 m	413.25 m	825.67 kg
145	1	88	18 mm	4700 mm	350 mm	0 mm	0 mm	4.98 m	435.60 m	870.33 kg
253	1	7	18 mm	4650 mm	350 mm	0 mm	0 mm	4.95 m	34.65 m	69.23 kg
254	1	7	18 mm	4450 mm	350 mm	0 mm	0 mm	4.74 m	32.90 m	65.73 kg
265	1	22	18 mm	150 mm	4700 mm	350 mm	0 mm	5.12 m	111.10 m	221.98 kg
266	1	22	18 mm	0 mm	150 mm	4450 mm	350 mm	4.89 m	106.70 m	213.19 kg
272	2	58	12 mm	150 mm	13250 mm	150 mm	0 mm	13.46 m	777.20 m	690.15 kg
273	2	58	12 mm	1800 mm	0 mm	0 mm	0 mm	1.76 m	104.40 m	92.71 kg
Muro Secundario: 10 349 2015.80 m 3048.99 kg										
137	1	10	10 mm	150 mm	16050 mm	150 mm	0 mm	16.26 m	162.50 m	100.26 kg
140	1	10	14 mm	150 mm	16050 mm	150 mm	0 mm	16.26 m	162.00 m	195.70 kg
269	1	106	16 mm	150 mm	1550 mm	150 mm	0 mm	1.81 m	185.50 m	292.72 kg
270	1	106	20 mm	150 mm	1600 mm	150 mm	0 mm	1.79 m	185.50 m	457.44 kg
Zapata Muro Principal: 4 232 695.50 m 1046.12 kg										
139	1	87	20 mm	150 mm	1600 mm	150 mm	0 mm	1.79 m	152.25 m	375.45 kg
141	1	10	10 mm	150 mm	13200 mm	150 mm	0 mm	13.44 m	134.00 m	82.68 kg
142	1	10	14 mm	150 mm	13200 mm	150 mm	0 mm	13.44 m	134.00 m	161.87 kg
248	1	22	16 mm	150 mm	900 mm	150 mm	0 mm	1.14 m	24.20 m	38.19 kg
249	1	22	20 mm	150 mm	900 mm	150 mm	0 mm	1.14 m	24.20 m	59.68 kg
250	1	6	10 mm	150 mm	3300 mm	150 mm	0 mm	3.51 m	21.00 m	12.96 kg
251	1	6	14 mm	150 mm	3300 mm	150 mm	0 mm	3.52 m	21.00 m	25.37 kg
271	1	87	16 mm	150 mm	1550 mm	150 mm	0 mm	1.81 m	152.25 m	240.25 kg
Zapata	Muro Secundario: 8	250							662.90 m	996.44 kg
Total ge	eneral: 28	1199							6808.85 m	10000.27 kg

11. Resultados

Los resultados obtenidos reflejan la eficacia del enfoque integrado utilizando el software ETABS para el análisis de la estructura, el diseño de elementos estructurales de acuerdo con las normativas vigentes y el empleo de REVIT para la generación de planos detallados y cálculos precisos de cantidades de materiales.

En el análisis estructural llevado a cabo con ETABS, se obtuvo como principal resultado la simulación de la estructura del edificio "Buena Vista" la cual cumple con todos los chequeos necesarios que demuestran que es viable su construcción. Este modelamiento está compuesto de los elementos estructurales finales del edificio, se le ha aplicado carga viva, muerta y laterales, se le realizó los análisis dinámico y estático que ponen a prueba a la estructura. Además, mediante la realización de la tesis se logró una comprensión profunda del comportamiento de la estructura frente a diversas cargas y condiciones, lo que permitió optimizar el diseño para mejorar su estabilidad y resistencia. Los resultados muestran la eficacia de las técnicas implementadas para garantizar la seguridad estructural del edificio, especialmente en áreas con alta actividad sísmica.

Figura 191 Modelo Digital del edificio.

En relación con el diseño de los elementos estructurales se tiene como resultados principales los Excels programados para diseñar cada uno de los elementos estructurales, ya sea para vigas, columnas, muros, zapatas y losas. Estas hojas de cálculo se las realizaron conforme a las normas de construcción de Ecuador e internacionales. La selección meticulosa de materiales y la aplicación de técnicas de diseño estructural avanzadas dieron como resultado una estructura capaz de soportar las cargas previstas y garantizar la seguridad de los ocupantes.

La implementación de REVIT para la generación de planos detallados y el cálculo preciso de las cantidades de materiales demostró ser una estrategia efectiva para agilizar el proceso de diseño y construcción. Los resultados obtenidos a través de REVIT proporcionaron una base sólida y fiable para la planificación y ejecución eficientes de la construcción, reduciendo los errores y optimizando la gestión de recursos, lo que a su vez contribuyó a la minimización de costos y al cumplimiento de los plazos establecidos.

En conjunto, los resultados de esta investigación respaldan la viabilidad y eficacia de la integración de herramientas tecnológicas avanzadas, como ETABS y REVIT, para lograr una planificación y ejecución exitosas en el campo de la ingeniería estructural y la arquitectura. Estos hallazgos sientan las bases para futuras aplicaciones en el diseño y construcción de edificios, con énfasis en la seguridad, la eficiencia y la sostenibilidad.

12.Conclusiones

Se concluye que se realizó el análisis y diseño estructural del edificio "Buena Vista" respetando los requisitos que solicita la Norma Ecuatoriana de la Construcción y con esos resultados se pudo modelar el edificio en el programa REVIT tomando en cuenta el refuerzo estructural de los diferentes elementos.

Se puede confirmar que la propuesta presentada como diseño estructural para el edificio "Buena Vista" con los tres diferentes chequeos de ajuste de corte basal, torsión en planta y las derivas en planta. En el ajuste de corte basal se demostró que para nuestro edificio que es irregular si cumple que el valor del cortante dinámico total en la base es menor al 85% del cortante basal V obtenido por el método estático, esto se comprueba en la tabla 14. En el chequeo de torsión en planta se ocupa el programa ETABS para verificar los modos de vibración ocupando la opción de "Modal Participating Mass Ratios", ahí nos indica los modos de vibración donde se aprecia que los dos primeros son considerablemente menores esto nos indica que el comportamiento del edificio es traslacional esto quiere decir que tiene un movimiento lineal sin experimentar torsiones en las diferentes plantas del edificio. En el chequeo de derivas igual se demostró que si cumple debido a que la deriva admisible es de 0.0033 y el ETABS nos indica que las derivas máximas en los ejes X y Y son de 0.0020 y de 0.0024 respectivamente. Esto indica que se cumplieron los requisitos solicitados por la NEC de diseño sismo resistente. Se demostró que el software ETABS es una gran ayuda para los ingenieros civiles ya que brinda una ayuda para realizar el diseño estructural de los elementos estructurales, en el caso de las vigas nos indica cuanto acero longitudinal se debe colocar en cada viga y en esta tesis se demostró que se puede confiar en los resultados obtenidos por el programa. En el caso de las columnas nos ayuda a comprobar que la configuración de acero cumple con las normas como el requisito de columna fuerte y viga débil.

Por último la importancia de ocupar el programa REVIT y la metodología BIM siendo este muy utilizado en la actualidad ya que facilita la creación de planos, nos brinda información para realizar un presupuesto del proyecto, un cronograma valorado entre otros. Permite un mejor trabajo interdisciplinario porque permite realizar diferentes diseños ya sea sanitario, eléctrico, arquitectónico, estructural ocupando la misma base del proyecto. En un caso profesional nos brinda una mejor visualización de la estructura o para presentar en una reunión a un cliente para que tengas una mejor imagen del proyecto.

13.Recomendaciones

Es de suma importancia asegurarse que el diseño realizado cumpla con las normas de la construcción aplicadas. Se debe verificar toda la información extraída de normas y códigos y todos los cálculos obtenidos para garantizar seguridad, durabilidad y eficiencia de la obra. Además, se recomienda un monitoreo y mantenimiento constante del edificio para mantener la integridad del proyecto y alargar su vida útil lo máximo posible.

Se recomienda para futuros trabajos que utilicen esta tesis como base o guía que implementen el diseño de losas, de esta manera se obtendría una memoria técnica más útil ya que habría la información de cómo diseñar este elemento. También realizar una nueva propuesta de diseño estructural ocupando un sistema estructural diferente ya sea muros de corte o mixto. Se puede ocupar la misma estructura pero cambiando el material en vez de hormigón armado ocupar acero y realizar un análisis de costos para conocer cuánto difiere.

En cuanto a la metodología BIM usando REVIT se recomienda que se continúe aplicando para mejorar la colaboración entre arquitectos, ingenieros, entre otros. Al trabajar en REVIT es importante que la información del proyecto esté siempre actualizada y se mantenga consistente a lo largo de las fases del proyecto para agilizar la toma de decisiones y disminuir errores. Se recomienda tomar cursos de manejo del programa ya que es un software que no lo enseñan en la malla de la universidad por lo tanto es necesario aprender de fuentes externas y también investigando uno mismo. Para futuros proyecto se podría ahondar más en los beneficios y herramientas del programa, se podría realizar un diseño sanitario o eléctrico de la casa, o demostrar como el REVIT puede simplificar el proceso de análisis presupuestal.

Es importante recalcar el desarrollo de cálculos manuales para validar ciertos aspectos del diseño como conexiones o elementos estructurales, pues esto nos da mayor seguridad y confianza en los resultados obtenidos. Además, al realizar cálculos manuales, nos podemos dar cuenta de cualquier cuestión o problema que podría ocurrir, cosa que es más difícil de identificar en un diseño realizado en programas como ETABS. Por esto, se debe tener mucho cuidado al momento de realizar modelos digitales de edificios y siempre es bueno verificar la información otorgada por los programas con la información obtenida con los cálculos manuales.

Como última recomendación se tiene el diseño sismo resistente, pues para este caso de estudio, este diseño tiene mayor importancia, por lo que desde un inicio se deben considerar varios aspectos sísmicos como el espectro de diseño o las cargas sísmicas, para garantizar una buena respuesta del edificio ante un sismo y una buena resistencia y capacidad de absorción de energía sísmica. Además, se recomienda realizar un estudio de suelos completo para conocer las condiciones geotécnicas y en base a esto realizar un buen diseño.

REFERENCIAS BIBLIOGRÁFICAS

American Concrete Institute. (2019). ACI 318-19: Building Code Requirements for Structural Concrete. Farmington Hills, MI: American Concrete Institute. doi:10.14359/51716937

Ministerio de Desarrollo Urbano y Vivienda. (2015). Norma Ecuatoriana de la Construcción.
 Peligro Sísmico - Diseño Sismo Resistente. Quito, Ecuador: Dirección de
 Comunicación Social, MIDUVI

Ministerio de Desarrollo Urbano y Vivienda. (2015). Norma Ecuatoriana de la Construcción.
 Estructuras de Hormigón Armado. Quito, Ecuador: Dirección de Comunicación
 Social. MIDUVI.

Ministerio de Desarrollo Urbano y Vivienda. (2015). *Norma Ecuatoriana de la Construcción. Cargas (No sísmicas)*. Quito, Ecuador: Dirección de Comunicación Social. MIDUVI.

ESTRUKTEM. (2017). Informe Geotécnico. Quito.

Fuentes, S., González, L., Calderín, F., & Sánchez, Y. (13 de Junio de 2018). *CONSIDERACIONES ACERCA DEL DISEÑO SISMORRESISTENTE DE EDIFICIOS DE ACERO EN CUBA*. Obtenido de Centro de Información y Gestión
Tecnológica de Santiago de Cuba:
https://www.redalyc.org/journal/1813/181358509002/html/#:~:text=Los% 20p% C3%
B3rticos% 20resistentes% 20a% 20momentos% 20poseen% 20elevada% 20capacidad% 2
0de% 20disipaci% C3% B3n,y% 20fuerza% 20axial% 20en% 20columnas.

Jiménez, D., & Cuervo, O. (Junio de 2014). Evaluación del uso de sistemas estructur aluación del uso de sistemas estructurales apor ales aporticados par ticados para. Obtenido de Universidad de La Salle :

https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1485&context=ing_civil

ANEXO A: PLANOS ARQUITECTÓNICOS

Figura 192 Subsuelo.

Figura 194 Piso 2.

Figura 195 Piso 3.

Figura 196 Piso 4.

Figura 197 Rooftop.

ANEXO B: PLANOS ESTRUCTURALES

Figura 198 Planos Zapatas.

Figura 199 Detalles Zapatas

Figura 200 Planos Muro Principal.

Figura 201 Planos Muro Secundario.

Figura 202 Planos Columnas.

Figura 203 Planos Vigas Piso 1

Figura 204 Planos Vigas Piso 2.

Figura 205 Planos Vigas Piso 3.

Figura 206 Planos Vigas Piso 4.

Figura 207 Planos Vigas Rooftop.