UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierias

A proposal for teaching automation laboratory using a sorting festo machine

•

Robert Steven Regalado Tamayo

Ingeniería en Electrónica y Automatización

Trabajo de fin de carrera presentado como requisito para la obtención del título de Ingeniero en Electronica y Automatización

Quito, 07 de febrero de 2024

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingeniería

HOJA DE CALIFICACIÓN DE TRABAJO DE FIN DE CARRERA

A proposal for teaching automation laboratory using a sorting festo machine

Robert Steven Regalado Tamayo

Nombre del profesor, Título académico

Diego Benitez

Quito, 07 de febrero de 2024

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este trabajo en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación Superior del Ecuador.

Nombres y apellidos	Robert Steven Regalado Tamayo
Código:	00210224
Cédula de identidad:	1722656608
Lugar y fecha:	Quito, 07 de febrero de 2024

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado como una publicación, incluso a pesar de estar disponible sin restricciones a través de un repositorio institucional. Esta declaración se alinea con las prácticas y recomendaciones presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017) Discussion document on best practice for issues around theses publishing, disponible en http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following capstone project is available through Universidad San Francisco de Quito USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be considered a publication. This statement follows the recommendations presented by the Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion document on best practice for issues around theses publishing available on http://bit.ly/COPETheses.

RESUMEN

Este trabajo presenta una propuesta de laboratorio de automatización utilizando un módulo FESTO de clasificación. La práctica de laboratorio funcionará como introducción a las aplicaciones en el campo industrial mediante el desarrollo de una Interfaz Hombre-Máquina en el software Labview. El usuario tiene la posibilidad de manejar todos los sensores y actuadores de la máquina clasificadora. Finalmente, el usuario puede elegir entre Easyport o PLC Siemens, para controlar la máquina con la lógica programable que el usuario desee.

Palabras clave: Clasificación, HMI, sensor, interactivo, educación, electrónico.

ABSTRACT

This paper presents a proposal for an automation laboratory using a sorting FESTO module. The laboratory practice will work as an introduction into the applications in the industrial field by developing a Human-Machine Interface in the software Labview. The user has the possibility to manage all the sensors and actuators of the sorting machine. Finally, the user can choose between Easyport or Siemens PLC, to control the machine with the programable logic that the user desires.

Key words: Sorting, HMI, sensor, interactive, education, electronic.

TABLA DE CONTENIDO

INTRODUCTION	10
FESTO SORTING MACHINE	10
LABVIEW INTERFACE AND EASYPORT CONNECTION	11
PLC SIEMENS - TIAPORTAL	11
STUDENTS SURVEY	11
RESULTS	11
CONCLUSION	12
REFERENCES	12
APPENDIX	13

ÍNDICE DE TABLAS

TABLE I	10.
TABLE II	11

ÍNDICE DE FIGURAS

10
10
11
11
12
12
12
12
12
12
12

A proposal for teaching automation laboratory using a sorting festo machine

Robert Regalado Colegio de Ciencias e Ingenierías Universidad San Francisco de Quito Quito, Ecuador rregalado@estud.usfq.edu.ec Malena Loza

Colegio de Ciencias e Ingenierías Universidad San Francisco de Quito Quito, Ecuador mloza@usfq.edu.ec

Diego Benítez

Colegio de Ciencias e Ingenierías Universidad San Francisco de Quito Quito, Ecuador dbenitez@usfq.edu.ec

Abstract—This paper presents a proposal for an automation laboratory using a sorting FESTO module. The laboratory practice will work as an introduction into the applications in the industrial field by developing a Human-Machine Interface in the software Labview. The user has the possibility to manage all the sensors and actuators of the sorting machine. Finally, the user can choose between Easyport or Siemens PLC, to control the machine with the programable logic that the user desires.

keywords—Sorting, HMI, sensor, interactive, education, electronic.

I. INTRODUCTION

Nowadays, students can investigate scientific phenomena using tools like data collection techniques, models, and theories of science in physical laboratories that support interactions with the material world or in virtual laboratories that take advantage of simulations [1]. Finding ways for students to have a more active development through practice is fundamental in learning electronics and automation. [2]. Considering a lot of students retire from Electronics Engineering in the earliest of the career, is crucial to incentive them by showing how they could applied all the knowledge acquires in the first two years of the career.

For the development of the practice we will have an initial vision of the operation of LabVIEW and the interface of a SIEMENS PLC.

LabVIEW works as a graphical environment for programming, using a block method that allows interconnecting inputs and outputs in an intuitive way [3]. These blocks function as a flowchart, in which many of them are a library that helps to simplify the student's work [4].

The Festo Sorting Machine consists of a modular machine that provides various inputs (actuators) and outputs (sensors) for the manipulation and control of a cap sorting system. [5]

This paper is organized in the following manner: First, Section II describes the hole identification of the elements of the Festo Sorting Machine. Section III describes in a brief way how to connect with the software Labview by using EasyPort. Section IV, describes also in a brief way how to communicate by PLC SIEMENS - TIAPORTAL. Later, in Section V an example of how the interface and the programmable logic will work. Results and discussion about the impact of the laboratory proposal are given in Section VI. Finally, our concluding remarks are given in Section VII.

Fig. 1: Festo Sorting Machine.

Fig. 2: Festo Sorting Machine upper diagram view.

II. FESTO SORTING MACHINE

The first step is to know the Festo sorting module, this one will be represented by the figure 1.

Then, we must know where all the sensors and actuators are, them are shown in figure 2.

All sensors and actuators are summarized in Table 1.

TABLE I:	Inputs
----------	--------

Number	Туре	Function
1	Optical Sensor	Detect any kind of material in the band
2	Fork Light Barrier	Detect any kind of material which enters the detection module
3	Diffuse Light Sensor	Detects the red and the metallic work pieces
4	Inductive Proximity Sensor	Detects the metallic work piece
5	Retro-Reflective Sensor	To know if the chutes are full

Now we can identify them in the real Machine that we have in Lab. The sensors are identified by numbers in the figure 3.

Finally the outputs are described on the Table 2.

Fig. 3: Inputs in the Festo Machine.

	TABLE II: Outputs					
Number	Туре	Function				
1	Conveyor Belt Motor	Moves the belt of the system				
2	Section 1 Motor	Ejects to the first chute				
3	Section 2 Motor	Ejects to the second chute				
4	Pneumatic Piston	Stop the piece to start the process				

III. LABVIEW INTERFACE AND EASYPORT CONNECTION

In order to use Easy Port for communicate the Festo Sorting Machine, The students will be using Labview Software and the extension of ActiveX, so it is necessary to have ActiveX controller installed on Labview.

The detail description on how to connect to LabVIEW using EasyPort are described on appendix. On resume we have to:

- 1) Add the ActiveX Container
- 2) Chose Insert ActiveX object, by making a right click on the ActiveX Container
- 3) Then look for Festo Controller
- 4) On the programming side, we add the communication protocol by looking for Connectivity -¿ ActiveX -¿ Automation Open Invoke Node
- 5) Then, we must add three invokes nodes Connectivity -¿ ActiveX -¿ Invoke Node
- 6) The Automation Open, is to set the protocol of the communication between Labview and the sorting machine, and the two invokes nodes are to see the correct module of the Easyport side, and set an automation send of data.
- 7) Then we finally make a while structure and the end of the communication protocol.
- 8) To send or get the information, we must add the Invoke Nodes of SetOutputWord and GetDigitalInput
- 9) After making the blocks, we put the system in function to identify all the sensors.
- 10) After we identify the sensors(inputs), we must identify the actuators(outputs).
- 11) After identifying the whole system, we can proceed to program the Labview part.

IV. PLC SIEMENS - TIAPORTAL

Now, in order to connect to a PLC, it is necessary to have TIAPORTAL which is the software to program the PLC SIEMENS. Also the detail description on how to connect to LabVIEW using EasyPort are described on appendix. On resume we have to:

Fig. 4: Example of Labview Interface.

- Connect the PLC with the computer through the Ethernet port. Open TiaPortal icon.
- Create a new project.
- Choose a new device
- Add new device and choose CPU of your PLC, in this case is: CPU 1215C DC/DC/DC, 6ES7 215 -1AG40-0XB0, V4.4
- We need to deactivate all of protections, so we must choose the following options.
- Program In Labview.

V. STUDENTS SURVEY

In order to know if the proposal has an impact on the perspective of students about the career; A survey has been conducted to ten engineering students of third semester of different careers of San Francisco University (USFQ). The statements shown in the questionnaire are:

- 1) Which engineering are you studing?
- 2) Semester that you are taking?
- 3) The manual has enough information to make a successful communication between LabVIEW and the Festo Machine?
- 4) The manual was difficult to understand or the manual skips steps to make the machine works?
- 5) The laboratory practice elevates my desire in the applications of electronic engineer in the industry?
- 6) Does the system proposed in the manual allow to control all sensors and actuators of the machine?
- 7) Do you consider it necessary to have COMPLETE programming knowledge to be able to carry out the practice proposed in the manual?
- 8) In which semester do you think it is possible to carry out the practice proposed by the manual?

The survey presents multiple choice answers that are shown in the Results.

VI. RESULTS

This section describes how will look an interface made by students in the laboratory proposed by the paper and also shows the results of the survey made to engineering students

A. Practice Results

The Labview interface results are shown in the figure 4:

Ingeniería a la que perteneces

B. Survey Results

The results of the survey in general provides positive feedback

VII. CONCLUSION

This work represents an easy way to give a simple example of industrial applications to students that are starting their career on Electronic and Automation engineering. Therefore, it helps students increase their desire to learn electronic engineering, using interactive tools and modular machines such as the FESTO sorter machine.. The Lab-VIEW interface meets all these characteristics of learning to give a clear view about the programming side and the Human Machine Interface, based on simplicity's and functionality. There is several ways to make an interactive laboratory for young students of the career, this work is a good example on how to get to more students even outside the career.

References

- T. De Jong, M. C. Linn, and Z. C. Zacharia, "Physical and virtual laboratories in science and engineering education," *Science*, vol. 340, no. 6130, pp. 305–308, 2013.
- [2] e. a. Betancur Vargas, Carlos Mauricio, Practicas de laboratorio en ingenieria electronica. Editorial Bonaventuriana, 2014. [Online]. Available: https://www-digitaliapublishing-com.ezbiblio.usfq.edu.ec/a/ 125112
- [3] C. Elliott, V. Vijayakumar, W. Zink, and R. Hansen, "National instruments labview: a programming environment for laboratory automation and measurement," *JALA: Journal of the Association for Laboratory Automation*, vol. 12, no. 1, pp. 17–24, 2007.
- [4] J. A. O. L. Quintero M., Christian G and H. J. A. de la Hoz., *Instrumentacion electronica aplicada: practicas de laboratorio.* Universidad del Norte Editorial, 2014.
- [5] M. P. Frank Ebel, Sorting Station Manual, 2006, fact Sheet.

Appendix 1

UNIVERSIDAD SAN FRANCISCO

MANUAL DE LABORATORIO

FESTO SORTING MACHINE

Automatismos Industriales

WORK OF A SORTING FESTO MACHINE

ABSTRACT:

The following document presents a laboratory practice to learn about an industrial automation process. The systems consist of a Festo sorting module which will take 4 different types of caps that will enter on a band to be identified later, and then get classified into 3 different chutes depending on the material of the cap.

The practice can be divided into parts, the first one consists of only the communication of the Festo sorting module with the software Labview by using an Easyport module or by using a PLC siemens. The second part will be the programing in Labview or a PLC.

PRACTIC DEVELOPMENT

The first step is to know the Festo sorting module, this one will be represented by the figure.

Figure 1.

Figure 2.

INPUTS					
Number	Туре	Function			
	Ontical Sensor	Detect any kind of material in the			
1	Optical Sensor	band			
2	Fork Light Barrier	Detect any kind of material which			
2	FOR Light Damer	enters the detection module			
	Diffuse Light Sensor	The diffuse light sensor detects the			
3	Diffuse Light Sensor	red and the metallic workpieces			
4	Inductive Proximity Sensor	Detects the metallic workpiece			
5	Retro-Reflective Sensor	To know if the chutes are full			

OUTPUTS					
Number	Туре	Function			
1	Conveyor Belt Motor	To move the belt			
2	Section 1 Motor	Ejects to the first chute			
3	Section 2 Motor	Ejects to the second chute			
4	Inductive Proximity Sensor	Pneumatic piston to stop the piece			

COMMUNICATE BY EASYPORT

In order to use Easy Port for communicate the Festo Sorting Machine, The students will be using Labview Software and the extension of ActiveX, so it's necessary to have ActiveX controller installed on Labview.

1. Add the ActiveX Container.

PAGE 3

16

2. Chose Insert ActiveX object, by making a right click on the ActiveX Container

🔼 Ur	ntitled	1 Front	: Panel *							
File	Edit	View	Project	Operate	Tools	Window	v H	elp		
	4	≥ @ () II 🔘	24pt Applic	ation Fo	ont 🔻		• 1 •••	₩-	***
									Ac	tiveX Container
										Visible Items
										Find Terminal
										Change to Indicator
										Make Type Def.
										Description and Tin
										Description and rip
										Create
										Replace
										Data Operations
										Fit Control to Pane
										Scale Object with Pane
										Autosizing
										Property Browser
										Properties

3. Then look for Festo Controller

Ur	ntitled 1 Front F	oanel *				
File	Edit View	Project Operate	Tools Window	v Help		
	* 🕹 🖉	24pt Appl	ication Font 💌	¥⇔* •⊡* ≝* ॐ*	r	
				Active	X Container	
						į set
					Select ActiveX Object	×
					Create Control	
					Validate Servers	
					CWSlide Control (National Instruments)	
					DeviceManager Class	
					East Description Active Control	
					Festo EasyPort ActiveX Control HHComponentActivator Class	
					Festo EasyPort ActiveX Control HHComponentActivator Class HHCtrl Object	
					Festo EasyPort ActiveX Control HHComponentActivator Class HHCtrl Object HHCtrl Object HHCtrl Object	
					Festo EasyPort ActiveX Control HHComponentActivator Class HHCtrl Object HHCtrl Object HHCtrl Object Httrl Object HtmlDlgHelper Class	
					Festo EasyPort ActiveX Control HHComponentActivator Class HHCtrl Object HHCtrl Object HHCtrl Object HtmlDlgHelper Class LHTaaBrowser.TaaDisplav	
					Festo EasyPort ActiveX Control HHComponentActivator Class HHCtrl Object HHCtrl Object HHCtrl Object HtmlDIgHelper Class LHTaaBrowser.TaaDisplav	
					Festo EasyPort ActiveX Control HHComponentActivator Class HHCtrl Object HHCtrl Object HHCtrl Object HtmlDlgHelper Class LHTaoBrowser.TaoDisolav	
					Festo EasyPort ActiveX Control HHComponentActivator Class HHCtrl Object HHCtrl Object HHCtrl Object HHCtrl Object HHDlgHelper Class LHTaoBrowser.TaoDisplav	

5. Then, we must add three invokes nodes Connectivity -> ActiveX -> Invoke Node

6. The Automation Open, is to set the protocol of the communication between Labview and the sorting machine, and the two invokes nodes are to see the correct module of the Easyport side, and set an automation send of data.

In this step, is necessary to connect the blocks to the EasyPort to appear.

7. Then we finally make a while structure and the end of the communication protocol.

8. To send or get the information, we must add the Invoke Nodes of SetOutputWord and GetDigitalInput

Depending on how we want to manage the data, we will transform to Boolean data or work it like a constant value.

Inputs and Outputs

Due to, we need to have the data from each sensor, we must transform the constant value to an array of Boolean information, where each element will be each sensor.

9. After making the blocks, we put the system in function to identify all the sensors.

10. After we identify the sensors(inputs), we must identify the actuators(outputs).

11. After identifying the whole system, we can proceed to program the Labview part.

COMMUNICATE BY PLC SIEMENS - TIAPORTAL

1. Connect the PLC with the computer through the Ethernet port. Open TiaPortal icon.

2. Create a new project.

				PORT
iat 🦃	Open existing project	Create new project Project name: Path	Teorial 2. Stan Parktore: Socurrent: Nutoriation Vire	
····· •	Migrate project	Adhar Damment Spector	Antesines :	
	Welcome Tour	Creating project The project 1 March Make one Decommission of Created Platter and	Gentlanum Raport is being	- One
Oraner A Olegenetica	 Installed software Those 			
	🌒 User lintestace language			

3. Choose new device.

			Totally Integrated Automation PORTA
rt 🎼	🔊 💿 Open existing project	First steps Project: "Tutorial" was opened successfully. Please select the nex	t step:
PLC programming Motion &	Create new project Migrate project Close project	start	
technology Drive parameterization	Welcome Tour	Devices & Street Configure a device A retworks	e n
Visualization 🧊 Online & Diagnostics 🦯	 First steps 	Notion & Configure technology object	15
	Help	Configure an HM	e screen
	🚯 User interface language	Froject view Open the project	view

4. "Add new device" and choose CPU of your PLC, in this case is: CPU 1215C DC/DC/DC, 6ES7 215 -1AG40oXBo, V4.4

5. We need to deactivate all of protections, so we must choose the following options.

6. Program In Labview

References.

- Ebel, F. Ersoy, M. Häusser, G. (2016). "Sorting station manual" Festo didactic SE. Denkendorf, Germany
- Loza, M. (2023) "Tutorial de conexión de PLC SIEMENS S7-1200" Ecuador.
- Festo didactic SE (2017). "MPS Sorting Station" . Denkendorf, Germany