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RESUMEN 

La segmentación de imágenes cumple un rol importante para el diagnóstico, pronto 

diagnóstico y monitoreo correcto de enfermedades cardiovasculares. Esta tarea manual 

se realiza por radiólogos, los cuales pueden inducir error por fatiga visual. Para ello, se 

han desarrollado algoritmos de inteligencia artificial, específicamente de Deep 

Learning, los cuales han ayudado a incrementar la precisión en los diagnósticos por 

parte de los médicos. Tradicionalmente, los Convolutional Neural Networs (CNN) se 

han optado como los mejores modelos para la segmentación de imágenes; sin embargo, 

debido a sus limitaciones, se han propuestos alternativas con los modelos de Visual 

Transformers (ViT). 

En esta investigación, realizamos una comparación estadística entre estos dos modelos 

para la segmentación de imágenes cardiacas MR del dataset ACDC. Se escogieron 5 

modelos por cada tipo, se entrenaron y se compararon las métricas de Dice Coefficient y 

ASSD de forma estadística. Se encontró que los CNNs son más robustos en la 

segmentación de imágenes cardiacas sin la utilización de data augmentation, mientras 

que se observaron grandes oportunidades con los ViTs para tareas más complejas dado a 

su mecanismo de self-attetion. 

Palabras Clave: estudio comparativo, segmentación de imágenes, enfermedades 

cardiovasculares, CNNs, ViT, Deep Learning.  
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ABSTRACT 

Image segmentation plays a crucial role in the accurate and timely diagnosis and 

monitoring of cardiovascular diseases. This task is typically performed by radiologists, 

who may introduce errors due to visual fatigue. To address this, artificial intelligence 

algorithms, specifically based on Deep Learning, have been developed, aiding in 

increased diagnostic precision for medical professionals. Conventionally, Convolutional 

Neural Networks (CNNs) have been preferred for image segmentation; however, due to 

their limitations, alternatives such as Visual Transformers (ViTs) have been proposed. 

In this research, we conducted a statistical comparison between these two models for the 

segmentation of cardiac MR images from the ACDC dataset. We selected five models 

for each type, trained them, and statistically compared the Dice Coefficient and Average 

Symmetric Surface Distance (ASSD) metrics. The findings revealed that CNNs exhibit 

greater robustness in cardiac image segmentation without the use of data augmentation. 

On the other hand, ViTs showed significant potential for more complex tasks, given 

their self-attention mechanism. 

 

Keywords: comparative study, image segmentation, cardiovascular diseases, CNNs, 

ViT, Deep Learning. 
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INTRODUCTION 

Cardiovascular diseases (CVDs) are the number one cause of deaths in the 

world; in 2021 20,5 million of people died because of them. According to the World 

Heart Federation (WHF), CVD was the leading cause of death worldwide in 2021 [1]. 

Nowadays, the quantity of heart diseases that have been identified by doctors is huge 

and every one of them affects in a unique way a patient’s cardiovascular health 

involving the heart, the arteries, even the circulatory system [2]. Some of these 

pathologies include hypertrophic cardiomyopathy, a pathology involving the heart 

muscle; myocardial infarction, a disease caused by the obstruction of one of the 

coronary arteries that supplies blood to the heart; dilated cardiomyopathy, a pathology 

of the heart muscle that results in the enlargement of the ventricles causing the heart to 

function inadequately and not pumping enough blood to the rest of the body; abnormal 

right ventricle, a condition in which the right ventricle of the heart experiences an 

abnormality, either in its structure or its performance. All these diseases are the leading 

causes of sudden death among young individuals and can result in heart failure and 

stroke-related functional limitations, a huge portion of those affected go undetected [3], 

[4], [5], [6]. Historically, the statistics show the quantity, but it does not show the pain 

and the difficulties that people who have these diseases face every day. Therefore, the 

tools to detect it on time should be prioritized and investigated.  

Over the years, healthcare professionals have created ways to diagnose these 

diseases and search for an accurate treatment for the patients. Imaging techniques such 

as magnetic resonance image (MRI), chest X-ray, computed tomography, and 

ultrasound are widely used to assess cardiac structures and their functions, and aid in 

disease diagnosis, monitoring, and treatment planning [7], [8], [9], [10]. All these 

methods are used for identifying anatomical structures and diagnosing pathologies. 
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Recognizing and segmenting specific anatomical structures in medical images such as 

MRI, doctors can better understand the location and extent of diseases, which can lead 

to timely treatment. Cardiac image segmentation is a crucial step in the diagnosis of 

diseases and can have a significant impact on patient outcomes [11]. 

Image segmentation is a technique where the input image is split into regions or 

segments with similar characteristics. Hence, segmentation is a precise way to identify 

anatomical structures, to facilitate and automate certain tasks in the field of radiology 

[12]. Accurate segmentation of cardiac images holds particular significance when it 

comes to the preparation and supervision of cardiac intervention procedures, as well as 

evaluating cardiac performance and identifying cardiac conditions [13]. To evaluate 

cardiac anatomy in a medical image, it is necessary to identify some parts of the heart 

like for example: the left ventricular (LV) endocardium, the left ventricular epicardium 

(or myocardium - MYO) and the right ventricular (RV) endocardium. Additionally, 

evaluation of the function of the left and right ventricles should be performed [14]. 

Another important part of the heart to analyze is the left atrium [15].  

The analysis of parts of the heart in an MRI is performed by a radiologist so the 

results are exposed to human error. The segmentation work of a radiologist nowadays is 

mostly done manually. Therefore, it is not only inefficient but also tedious to complete 

due to the demand that exists in reading medical images. Furthermore, it depends on the 

perspective of the specialist, and it can be subject to errors such as exhaustion or 

distractions on the part of the radiologist. For this reason, the task consumes time and is 

prone to intra- and inter-observer variability [16], [17], [18]. This task continues to be 

semi-automatic because of the lack of accuracy of fully automatic cardiac segmentation 

methods. These methods have limitations in the cardiac medical field, such as over-

segmentation and high sensitivity to noise, additionally, the segmentation process entails 
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longer processing time and some of the features involved become redundant, resulting 

in a lack of precision in the results obtained [17].  

In the last decade, deep learning techniques have been used to improve the 

accuracy and efficiency of medical image segmentation. Moreover, within deep 

learning, Convolutional Neural Networks (CNNs) have become the preferred methods 

due to their outstanding performance in image analysis tasks. CNNs have the advantage 

of learning about the characteristics and the complex patterns in an automatic manner. 

Also, they can process a huge amount of data and identify patterns regardless of their 

location in the image [19]. 

In the last two years, Vision Transformers (Vit) have sparked the interest of 

researchers for image analysis tasks. ViT are a variation of the Transformers models, but 

their main difference is that Transformers were originally designed for processing 

sequences of words, whereas ViT are tailored for image data. These models use an 

attention structure called "multi-head attention," enabling them to focus on distinct parts 

of the input image simultaneously, which is a significant advantage [20]. One advantage 

of ViT models is their capability to generalize effectively to new input images, making 

them versatile for a wide range of image processing applications. Additionally, ViT are 

flexible in terms of input image size and resolution. 

CNNs and ViT have become the most widely used approaches for medical image 

segmentation [21], obtaining state-of-the-art performance in various benchmarks [22], 

[17], [16], [23]. CNNs are a popular choice due to their ability to learn relevant features 

from images and their ability to process enormous amounts of data. Vision 

Transformers, on the other hand, are selected due to their capacity to capture large-scale 

context information and their ability to process high-resolution images. In medical 

image segmentation some CNN and ViT models include Grid Net [24], MA-Net [25], 
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FCN [26], U-Net [14], U-Net ++ [27], DeepLabV3 [28], DeepLabV3+ [29], LinkNet 

[30]. Lvit [31], TransFuse [32], TransBTS [33], TransBridge [34], TransUNet [35], 

MissFormer [36], ScaleFormer [37], SegFormer [38], SwinUnet [39]. 

Both, Vision Transformers and Convolutional Neural Networks have a neural 

network architecture. Although, there are some differences, for example, the mechanism 

of attention. ViT uses multiple attention or “multi-head” while, CNN focuses its 

attention on local characteristics using convolutional layers in specific segments of the 

image [40], [41]. Another interesting difference is flexibility in applications, CNN could 

be re-used for more than one project just changing or adjusting the last layers (Full 

connected layers) to the specific purpose. Meanwhile, ViT uses a lot of resources to be 

applied so in a different context it would be difficult for it to work effectively [42]. 

Additionally, ViT models have something called “weak inductive bias” which is related 

to the amount of data that the model needs to be trained. So, while ViT needs a great 

amount of data for the model to be well trained, CNNs does not need much data to be 

well trained. This is due to pooling layers, and its capacity to recognize visual patterns 

regardless of the location in the image [43].  

Recently, some of the comparative studies between CNNs and ViTs have shown 

some improvement in terms of choosing the best model and seeing the differences in 

application [40], [43], [44], [45]. Selecting the optimal tool makes it easier to satisfy 

clinical needs so, this research not only could help in the advances of the medical field, 

but also promotes the reduction of costs and times; in this way, quality of patient care is 

improved by the automation and optimization of clinical processes, which leads to more 

precise and timely diagnoses, reducing mortality [46]. 

The demand for image segmentation tasks is massive, it is an essential and 

fundamental component of computer vision and machine learning applied to medicine 
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[47]. Since this is a demanded task, new opportunities are emerging to develop artificial 

intelligence tools that can directly support healthcare professionals in diagnosing CVDs 

[48]. With technological evolution, new models are continually being developed to 

address specific goals in medical image segmentation so, a comparative study between 

these models could develop an accurate tool for the job and in an unbiased manner 

determine which model is statistically better than others. 

In this paper, we perform a comparative study between Transformers and CNNs 

for cardiac image segmentation. After a thorough literature review, 5 CNNs 

architectures and 5 ViT architectures were selected for comparison. Namely, the U-Net, 

U-Net ++, DeepLabV3, DeepLabV3+, LinkNet, MissFormer, TransUNet, ScaleFormer, 

SegFormer and SwinUNet. The architectures are evaluated on the Automated Cardiac 

Diagnosis Challenge (ACDC) dataset [16]. Two widely used metrics are used for 

evaluation, the Dice Coefficient and Average Symmetric Surface Distance (ASSD) [49], 

[50]. To obtain statistically significant conclusions, we perform a one-way ANOVA 

followed by a Tukey test.  Our results demonstrate that CNNs models are statistically 

better than Transformers in terms of Dice Coefficient and ASSD, in addition to having 

lesser trainable parameters. Furthermore, the model that achieved the best performance 

was Linknet with a 0,90 mean dice coefficient and 0,30 ASSD mean.   

DEVELOPMENT 

Related work 

Image segmentation is one of the earliest challenges in the field of computer 

vision. The initial endeavors in this field date back to as early as 1970-72 when 

researchers started exploring traditional methods like region growing and optimization 

techniques. The first one is a segmentation method based on the approximation of 

regions. It sets the starting points in the image (seeds) and then grows the region around 
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these seeds, adding pixels that have similar characteristics to those of the seed. 

Optimization techniques for image segmentation involve tuning neural network models 

to minimize a loss function adjusting the model parameters [51], [52], [53]. Before the 

year 2000, a lot of methods were applied in the field of digital image processing, some 

of these methods are: Clustering, Threshold, Region, and Edge Segmentation [54]. 

Sanchez-Ortiz et al. [55] defines the Clustering algorithm and mentions that it uses the 

intensity distribution of the image to group pixels into regions and assigns them a 

degree of membership. On the other hand, Santiago, C et al. [56] defines the Edge 

segmentation method saying that it uses the information of the edges in the vicinity of 

the shape model to detect the structure of interest. Liu, T et al. [57] provides a definition 

of the Threshold method, which involves choosing a threshold value and classifying 

each pixel as part of the object or the background according to whether its intensity is 

greater or less than that threshold. Pairs of thresholds ensure the pixel points from the 

region of interest are not excluded. Meanwhile, Galea, R et al. [58] deals with the 

Region segmentation method and says that this method is based on detecting the area of 

interest using a localization procedure, which is then fed to the segmentation 

network.These historic advances in image segmentation laid the foundation for the 

evolution of neural networks models used today for cardiac image segmentation. Then, 

the convolutional neural networks were benefit from technological advances and 

knowledge accumulated over the years to achieve outstanding accuracy in the 

segmentation of cardiac structures in medical images, thereby improving the diagnosis 

and treatment of cardiac disorders. There are many titles where it specifies 

modifications of a base CNN structure [16], [47], [59]. Since most algorithms applied in 

medical image segmentation fall under the category of Convolutional Neural Networks 

or its variations, this architecture has been proof as one of the most used and common in 
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the field of image segmentation, especially when its medical images [60], [61], [62]. 

Zotti et al. [14] presented a U-Net based architecture with a multi-resolution grid 

architecture; the network learns high- and low-level features useful for recording and 

segmenting cardiac anatomy. The model was tested in the ACDC dataset and achieved a 

Dice Score of 0,91. El-Taraboulsi, T et al. [63] introduced a V-Net model which 

employs a reversible mechanism and asymmetrical convolutions maintaining image size 

and quality so, V-Net can train high-quality images on a single GPU. The model was 

tested in MICCAI dataset and has a Dice Score of 0,92. Holger R. Roth et al. [64] bring 

in a Fully Convolutional Network model that is trained in an end-to-end, allowing it to 

learn features and make predictions at the pixel level. It has a cascaded approach, where 

a second-stage FCN is employed to focus more on boundary regions, improving the 

accuracy of segmentation results. This model has shown promising results in achieving 

state-of-the-art segmentation performance in medical imaging applications having a 

Dice Score of 0,82. Zhanwei Xu et al. [65] show a model that combines Faster R-CNN 

and U-net Network for efficient segmentation. It uses a region proposal Network, a 3D 

U-net Network, and an Edge-loss head to achieve competitive segmentation 

performance with reduced computational cost and inference time. The model was tested 

in MM-WHS2017 dataset and has a Dice Score of 0,86. Mahendra Khened et al. [26] 

propose a model that uses multiple scales and dense residual connections for cardiac 

segmentation and automated diagnosis. The network uses a dual loss function that 

combines the advantages of cross entropy loss and Dice loss. Furthermore, an expert 

classifier is proposed to improve the classification accuracy of patients with specific 

pathologies. The model was tested in ACDC dataset and has a mean Dice Score of 0,91. 

Ange Lou et al. [66] introduce a model called DC-UNet which uses a dual-channel 

CNN block to provide more effective features with fewer parameters and replaces the 
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skip connection between encoder and decoder with a residual module. DC-UNet has 

been evaluated on three datasets with tough cases and has shown a relative 

improvement in performance compared to the classical U-Net model. This model was 

tested in two datasets: ISBI-2012 Electron Microscopy dataset and the CVC-ClinicDB 

dataset getting an accuracy of 92.71%. 

These historic advances in image segmentation laid the foundation for the 

evolution of neural networks models used today for cardiac image segmentation. Then, 

the convolutional neural networks were benefit from technological advances and 

knowledge accumulated over the years to achieve outstanding accuracy in the 

segmentation of cardiac structures in medical images, thereby improving the diagnosis 

and treatment of cardiac disorders. There are many titles where it specifies 

modifications of a base CNN structure [16], [47], [59]. Since most algorithms applied in 

medical image segmentation fall under the category of Convolutional Neural Networks 

or its variations, this architecture has been proof as one of the most used and common in 

the field of image segmentation, especially when its medical images [60], [61], [62]. 

Zotti et al. [14] presented a U-Net based architecture with a multi-resolution grid 

architecture; the network learns high- and low-level features useful for recording and 

segmenting cardiac anatomy. The model was tested in the ACDC dataset and achieved a 

Dice Score of 0,91. El-Taraboulsi, T et al. [63] introduced a V-Net model which 

employs a reversible mechanism and asymmetrical convolutions maintaining image size 

and quality so, V-Net can train high-quality images on a single GPU. The model was 

tested in MICCAI dataset and has a Dice Score of 0,92. Holger R. Roth et al. [64] bring 

in a Fully Convolutional Network model that is trained in an end-to-end, allowing it to 

learn features and make predictions at the pixel level. It has a cascaded approach, where 

a second-stage FCN is employed to focus more on boundary regions, improving the 
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accuracy of segmentation results. This model has shown promising results in achieving 

state-of-the-art segmentation performance in medical imaging applications having a 

Dice Score of 0,82. Zhanwei Xu et al. [65] show a model that combines Faster R-CNN 

and U-net Network for efficient segmentation. It uses a region proposal Network, a 3D 

U-net Network, and an Edge-loss head to achieve competitive segmentation 

performance with reduced computational cost and inference time. The model was tested 

in MM-WHS2017 dataset and has a Dice Score of 0,86. Mahendra Khened et al. [26] 

propose a model that uses multiple scales and dense residual connections for cardiac 

segmentation and automated diagnosis. The network uses a dual loss function that 

combines the advantages of cross entropy loss and Dice loss. Furthermore, an expert 

classifier is proposed to improve the classification accuracy of patients with specific 

pathologies. The model was tested in ACDC dataset and has a mean Dice Score of 0,91. 

Ange Lou et al. [66] introduce a model called DC-UNet which uses a dual-channel 

CNN block to provide more effective features with fewer parameters and replaces the 

skip connection between encoder and decoder with a residual module. DC-UNet has 

been evaluated on three datasets with tough cases and has shown a relative 

improvement in performance compared to the classical U-Net model. This model was 

tested in two datasets: ISBI-2012 Electron Microscopy dataset and the CVC-ClinicDB 

dataset getting an accuracy of 92.71%. 

Just like CNNs, Vision Transformers models are also a type of neural network 

architecture. When discussing transformers, it is a widespread practice to associate them 

with natural language processing (NLP), rather than image-related tasks. However, 

transformers have already been used for image segmentation tasks, the problem or 

limitation is that medical image is usually different from a natural image. The most used 

thing about a transformer model is their attention capacity since combined with the 
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convolutional layers they achieve a deep analysis so, Transformers are a powerful 

architecture, but, since they are images, they merge with other architectures to achieve 

this segmentation task. The most common thing is to have a fusion between CNN and 

Transformers. These hybrid models are the most used because they mitigate the 

limitations of transformers and use their strengths for this type of computational task 

[67], [68]. Yutong Xie et al. [69] presented the CoTr framework which uses CNN to 

extract feature representations from 3D medical images and DeTrans to model long-

range dependency on the extracted feature maps. The DeTrans uses a deformable self-

attention mechanism to reduce computational and spatial complexities. The model was 

tested in the Beyond the Cranial Vault (BCV) database and achieved a Dice Score of 

0,82. Yunhe Gao et al. [70] introduce UTNet, a hybrid architecture that combines 

Transformer's self-attention mechanism with a convolutional neural network for 

medical image segmentation. It captures long-range associative features and 

dynamically aggregates relevant features. The network is trained from scratch and 

evaluated on a multi-label, multi-vendor cardiac magnetic resonance imaging cohort 

database and achieved a 0,88. Boxiang Yun et al. [71] shows an architecture named 

SpecTr which uses transformers to learn contextual features across spectral bands in a 

U-shape architecture. It decomposes the input hyperspectral image into spectral images, 

applies depth-wise convolution, spectral normalization, and transformers with sparsity 

constraint to produce spatial-spectral contextual feature maps, which are decoded to 

generate the segmentation map. The model was tested un a multi-dimensional 

choledoch dataset and achieved a Dice Score of 0,78. Ali Hatamizadeh et al. [72] 

propose the UNETR model that uses transformers to capture long-range dependencies 

in 3D medical image segmentation. It divides the input volume into patches, projects 

them into an embedding space, and adds a positional embedding to preserve spatial 
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information. UNETR achieves state-of-the-art performance on two public datasets: the 

Vanderbilt Body CT (BTCV) and the Medical Segmentation Decathlon (MSD) getting a 

Dice score of 0,90. Chang Yao et al. [73] introduce a model called Transclaw U-Net 

which combines convolution and transformer operations for better medical image 

segmentation by using self-attention and combining encoding, upsampling and 

decoding parts. This model is tested in the Synapse Multi-organ Segmentation Dataset 

and achieved a Dice coefficient of 0,78. 

Methodology 

In this section, we begin by describing the CNN and ViT models selected for 

comparison and the hyperparameter values applied for each architecture. We then 

describe the dataset in which the models are tested, and evaluation metrics utilized. 

Finally, we present the statistical test performed to analyze the results. 

Selection of the models. 

After conducting research on the models that have already been applied in medical 

image segmentation, the most used and most mentioned in scientific literature were 

Convolutional Networks and Vision Transformers. The models for CNN architecture are 

the following: UNet++ [74], DeepLab [75], DeepLab+ [60], UNet [14], LinkNet [76]. 

And the models of Vision Transformers are: MissFormer [36], SegFormer [38], 

SwinUNet [39], ScaleFormer [37] and TransUNet [35]. These models have been 

selected because of their state-of-the-art results in medical image segmentation, natural 

images segmentation, and its code is open source. 
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Information of each model and training details.  

Convolutional Neural Networks models. 

The first model is the U-Net++. The base of this architecture are the nested and 

dense skip connections [74], which at the feature extraction stage can capture low level 

features such as brightness and image texture [77]. This model is recognized for its 

proficiency in  effectively capturing intricate details within primary objects, which 

simplifies the learning process. UNet++ comprises two key components: an encoder and 

a decoder, connected through multiple interconnected blocks for processing. The 

primary concept behind the development of this model is to bridge the gap between the 

features extracted by the encoder and the prerequisites of the decoder before their fusion 

[74]. UNet++ operates across multiple levels of complexity, incorporating redesigned 

connections that link the decoder and encoder at equivalent levels of granularity [78]. 

By incorporating U-Nets of varying depths within its structure, all sharing a single 

encoder and interweaving the decoders [78], this approach eliminates the need to 

determine the network's depth. Consequently, it improves overall segmentation 

performance, accelerates prediction speed, and prevents restrictive connections that 

might hinder information exchange between the decoder and encoder, especially when 

their processing features are at the same level of detail. The model's hyperparameters 

were the same as in the investigation made by Zhou et al. [74]. Furthermore, a 

Resnet152 encoder was implemented considering the findings from Kim et al. [79]. The 

U-net++ model is depicted in Figure 1. 
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Figure 1  

UNet++ architecture 

 

 

Note: Adapted UNet++ Model of Zhou et al. [57] with Resnet152 as encoder. 

The second model is U-Net which is a U-shaped encoder-decoder network 

architecture, which consists of four encoder blocks and four decoder blocks that are 

connected via a bridge, it is a symmetrical architecture [80]. U-Net is a top-performing 

cardiovascular magnetic resonance (CMR) segmentation model [63]. U-Net which is 

the most important semantic segmentation framework of CNN and works well for pixel-

level prediction tasks [81]. Consists of a convolutional encoder followed by a decoder 

composed of upward convolutions combined with skip connections [82]. The skip 

connections provide additional information that helps the decoder to generate better 

semantic features [83].  The U-Net network structure has multi-scale skip connections 

and a learnable up-convolution layer, which becomes a popular method for medical 

image segmentation. Additionally, this architecture uses an “overlap-tile strategy” to 

tackle large images while minimally impacting processing power [63]. For the training 
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details we chose the same as for UNet++ because the objective was to analyze the 

improvement of these models using the same training and compare the results. The U-

net model is depicted in Figure 2. 

Figure 2 

UNet architecture 

 

Note: Adapted UNet Model of Neven & Goedemé [84] with Resnet152 as encoder. 

The third model used is DeepLabV3+ which is an enhanced network consisting of 

two main components: an encoder and a decoder. The encoder's role is to train the 

network to obtain feature maps and capture high-level semantic information [85]. While 

the decoder, is responsible for projecting these learned features from the encoder to the 

pixel space to achieve pixel segmentation. The encoder comprises a core network, often 

based on a traditional CNN such as a ResNet, also, employs a residual module, which 

enables the network to focus on learning the difference or the "residue" between the 

input and the desired output, simplifying the training process. Additionally, it uses the 

atrous convolution which is a technique that expands the convolutional feature map 

during convolution operations to increase the receptive field allowing each 
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convolutional output to encompass an impressive range of information [85]. This model 

significantly boosts the effectiveness of segmentation by combining with an atrous 

convolution [86]. We implement DeepLabV3+ with a Resnet101 encoder block and 

training hyperparameters as mentioned in Chen et al. [87]. The DeepLabV3+ model is 

depicted in Figure 3. 

Figure 3 

DeepLabV3+ architecture 

 

Note: Adapted DeepLabV3+ Model with Resnet101 as encoder of Chen et al. [87]. 

On the other hand, DeepLabV3 addresses two crucial aspects. Firstly, it deliberately 

sacrifices fine-grained details in features to facilitate the learning of more abstract 

representations. However, this capacity to overlook minor variations can be problematic 

in tasks that demand intricate information within specific regions. To tackle this issue, 

the DeepLab architecture relies on a technique called Atrous Convolution, also known 

as the dilated convolution, which serves as its principal component [88]. This model 

initiates with the training of a deep convolutional network, followed by the 
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transformation of all fully connected layers into convolutional layers. It enhances the 

feature resolution through atrous convolutional layers, which allows responses about 

features, for example, instead of calculating every 32 pixels, this charge will be reduced 

to 8 pixels, making it more efficient. Consequently, DeepLab offers several advantages: 

first, it exhibits enhanced speed due to the utilization of atrous convolutions; second, it 

delivers heightened precision by providing accurate results on challenging data; and 

third, it maintains simplicity by comprising two well-established modules [89]. For 

DeepLabV3 training details we chose the ones selected for DeplabV3+ to see if there 

was an improvement of the results under the same conditions. The DeepLabV3 model is 

depicted in Figure 4. 

Figure 4 

DeepLabV3 architecture 

Note: Adapted DeepLabV3 Model of [90] with Resnet101 as encoder. 

The last model studied is LinkNet which is a deep neural network architecture, used 

in problems where multi-class segmentation is required (which can be used in 

unmanned vehicles and some more areas) [76]. This model pushes the performance by 

introducing global context encoding module and geometrical layout encoding module. 

The objective of the LinkNet is to recover loss spatial information that can be used by 

the decoder and its up-sampling operations. In addition to how the decoder shares 
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knowledge with the encoder, this provides a network with a lower use of parameters, 

providing an efficient network [91]. After each data reduction phase, the feature maps of 

the encoder layer are combined with the feature maps of the decoder layer that have the 

same resolution [82]. The training details are the same as the ones mentioned by 

Chaurasia et al. [76]. LinkNet used RestNet18 as the encoder block, which is lighter 

than the others used encoders. The LinkNet model is depicted in Figure 5. 

Figure 5 

LinkNet architecture 

 

 

Note: Adapted LinkNet Model with Resnet18 as encoder of Chaurasia et al. [76].  

Vision Transformers models. 

The first chosen ViT is MISSFormer, which was proposed by Huang et al. [36]. 

This model is an encoder-decoder architecture with a transformer bridge attached 

between them. Its main characteristic is to take the multi-scale information of the 
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encoder and extract both the long-range dependencies and local context; this allows the 

model to learn more comprehensive representations of medical image segmentation. 

The multi-scale features come from the overlapping patches, which capture the global 

and local from the input image. Then, they pass to the hierarchical enhanced 

transformer blocks and merging layers; this process does not need computational 

complexity. The merging layers oversee downsampling features by merging the 

overlapping patches. The resultant data goes to the bridge and then to the decoder. It 

upsamples and concatenates the information to recover the original image size and the 

segmented map. The model training details are the same as those mentioned in the 

investigation by Huang et al. [36]. The MissFormer model is depicted in Figure 6. 

Figure 6 

MISSFormer architecture 

 

Note: Adapted MISSFormer Model of Huang et al. [36]. 
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The second model proposed by Huang et al. [37] is ScaleFormer. It uses the 

ResUNet as the backbone to extract local features hierarchically. Thus, there are 

convolutional blocks, which makes this algorithm hybrid. The purpose of the encoder is 

to go deeply and find different fine-grained features in local-level details. Then, the 

intra-scale transformer takes global-level features from the previous information. The 

main characteristic of the transformer block is to compare the captured scales and model 

the mutual information of the objects. The output joins with the CNN's features to pass 

to the decoder and find the segmented map. The model training details are the same as 

those mentioned in the investigation [37]. The ScaleFormer model is depicted in 

Figure7. 

Figure 7 

ScaleFormer architecture 

Note: Adapted ScaleFormer Model of Huang et al. [37]. 

On the other hand, the proposed model by Xie et al. [38] is Segformer, this model 

was the base for other models, such as MISSFormer [36]. The authors tried different 

Mix Transformer (MiT) encoders, in which the MiT-B0 is the lightweight, and MiT-B5 

is the largest with better performance. In this case, the selected encoder is the first due 
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to its efficiency, compact architecture, and convenience for real-time application [38]. 

The first step of the model is to divide the input image with patches of size 4x4. This 

output goes to the encoder, which has hierarchical transformer blocks and generates 

features at multi-scale maps. These low and high-resolution features help boost the 

performance of the model. The resulting information goes to the All-MLP decoder, 

which consists of multiple layer perceptron (MLPs). This method is more lightweight 

than others, including the decoders from CNN. It is possible due to the skip connections 

that oversee combining features from different scales. This decoder aggregates the 

information from the encoder's layers and then produces the segmented mask. The 

model training details are the same as those mentioned in the investigation [38]. The 

SegFormer model is depicted in Figure 8. 

Figure 8 

SegFormer architecture 

 

Note: Adapted SegFormer Model of Xie et al. [38]. 
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The next model is the SwinUNet proposed by Cao et al. [39]. The architecture is an 

encoder, bottleneck, decoder, and skip connections. First, the encoder receives sequence 

embedding from splitting the input images by non-overlapping patches of size 4x4. This 

information passes through a linear embedding layer for projecting feature dimensions 

into arbitrary dimensions. Then, the encoder extracts high-level features and global and 

long-range semantic information. Patch merging blocks are between the Swin 

transformers blocks, and they oversee downsampling and increasing dimensions. The 

data goes to the decoder, whose u-shape is inspired by the U-Net model. This part of the 

model has Swin Transformers and patch expanding layers that fuse the extracted 

features with multi-scale features from the encoder. To do so, skip connections help to 

preserve spatial information. The last layer of the model returns the resolution of the 

input image. In this case, the output is a pixel-wise segmentation map in which each 

pixel is assigned to a class of the corresponding label or region. The model training 

details are the same as those mentioned in the investigation [39] The SwinUnet model is 

depicted in Figure 9. 
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Figure 9 

SwinUnet architecture 

 

Note: Adapted SwinUNet Model of Cao et al. [39]. 

The last model for ViT is the TransUNet proposed by Chen et al. [35]. In this case, 

the model uses a self-attention mechanism in the decoder via a transformer. Due to this 

process in the encoder, we assigned this model as a hybrid. First, the input image passes 

through a CNN backbone, which extracts high-level features. The output of the first 

encoder does not go directly to the transformer encoder but to the patch embedding 

layer. On the other hand, the transformer encoder captures long-range dependencies and 

high-level semantic information. The features pass to the transformer decoder. The 

authors introduced a cascade upsampler (CUP) to output the final segmentation mask 
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with multiple upsampling steps. The model training details are the same as those 

mentioned in the investigation [35] The TransUnet model is depicted in Figure 10. 

Figure 10 

TransUnet model architecture 

Note: Adapted TransUNet Model of Chen et al. [35]. 

Training Details. 

For all models we used a loss function hyperparameter. It measures the difference 

between model’s estimation from input to output, and ground truth value so its principal 

task is fitting the model to the given training data [92], [59]. The most used loss 

function for image segmentation is Dice Loss, Tversky Loss Function and Cross 

Entropy [93]. In fact, Dice Loss and Cross Entropy are the loss function more 

representative in CNN models, both use weighted loss terms to overcome class 

imbalance [94]. For the CNN models, the selected loss function was Dice Loss. On the 

other hand, for ViT models, the loss function depends on how the authors trained their 

models (e.g., Huang et al. trained Miss Former with weights of 0.6 and 0.4 for Dice 

Loss and Cross Entropy Loss, respectively. [36]) 
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To train any model, it is also necessary to use a non-linearity or activation function. 

For this study, the selected one is SoftMax, which is used for the task of multiclass 

classification. It modifies a vector of real numbers into a probability distribution, each 

one of them associated to a class. This function is typically used in the final layer of the 

neural network [95], [96]. 

Besides, we used two optimizers and applied one of them depending on the 

architecture of each model. The two optimizers are Adaptive Moment Estimation 

(Adam) and Stochastic Gradient Descent (SGD). The first one computes individual 

adaptive learning rates for different parameters from estimates of first and second 

moments of the gradients. Also, includes bias correction and momentum term [97]. The 

second one (SGD) is a variant of gradient descent that uses a random subset of the 

training data to estimate the gradient of the loss function. Instead of computing the 

gradient of the entire dataset, SGD computes the gradient of a randomly selected mini 

batch of the dataset. This makes it computationally efficient and allows it to scale to 

large datasets [98].  

To train the models, 200 epochs were established as the standard due to the usage of 

non-pretrained models [36]  [37]. Like the hyperparameters mentioned above, the 

learning rate depended on how each author trained the model. For the CNNs the chosen 

optimizer was Adam, and for ViT, it depended on the methods used by the authors, in 

general the chosen one was SGD. It is important to mention that data augmentation was 

not performed to avoid randomness. Table 1 presents the hyperparameters and number 

of parameters for CNNs and Table 2 for ViT. It is worth mentioning that all the models 

are implemented with Python 3.10 and run in the Google Collab environment using an 

NVIDIA V100 GPU.  
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Table 1 

Hyperparameters for CNNs 

Model Optimizer Learning 
Rate 

Epochs Batch Size Activation 
Function 

Loss 
Function 

Parameters 
 Train Validation Test 

UNet Adam 3e-4 200 16 16 1 SoftMax Dice 
Loss 

83'615,684 

Unet++ Adam 3e-4 200 16 16 1 SoftMax Dice 
Loss 

67'151,044 

DeepLabV3 Adam 7e-3 200 6 6 1 SoftMax Dice 
Loss 

58'620,356 

DeepLabV3+ Adam 7e-3 200 6 6 1 SoftMax Dice 
Loss 

45'664,212 

LinkNet Adam 5e-4 200 10 10 1 SoftMax Dice 
Loss 

11'657,604 

Table 2 

Hyperparameters for ViT 

 

Model Optimizer 

Learning 
Rate 

 Momentum 
 Weight 
Decay 

Epochs 

Batch Size 
Activation 
Function 

Loss 
Function  Parameters 

Train Validation Test 

SwinUNet SGD 
1e-3 
 0.9 

 1e-4 
200 24 24 1 SoftMax 

Dice Loss 
(0.6) + Cross 
Entropy (0.4) 

2’7168,420 

TransUNet SGD 
1e-2 
 0.9 

 1e-4 
200 6 6 1 SoftMax 

Dice Loss 
(0.5) + Cross 
Entropy (0.5) 

105'912,260 

SegFormer AdamW 
6e-5 

 - 
 - 

200 16 16 1 SoftMax 
Dice Loss 

(0.6) + Cross 
Entropy (0.4) 

7'718,244 

ScaleFormer SGD 
3e-3 
 0.9 

 1e-4 
200 8 8 1 SoftMax 

Dice Loss 
(0.6) + Cross 
Entropy (0.4) 

113'814,164 

MISSFormer SGD 
1e-3 
 0.9 

 1e-4 
200 24 24 1 SoftMax 

Dice Loss 
(0.6) + Cross 
Entropy (0.4) 

42'462,212 
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Database & Preprocessing. 

The Automated Cardiac Diagnosis Challenge (ACDC) comprises of 4D cardiac 

cine-MR images from 150 patients with the corresponding ground truth segmentation of 

the left ventricle cavity (LVC), left ventricle myocardium (LVM), and right ventricle 

cavity (RVC) on end diastolic and end systolic phases. The images were collected over a 

6-year period from the University Hospital of Dijon using two scanners with different 

intensities, which resulted in a variation in image resolution [99]. The patients are 

evenly divided into 5 medical groups, which are dilated cardiomyopathy (DCM), 

hypertrophic cardiomyopathy (HCM), myocardial infarction with altered left ventricular 

ejection fraction (MINF), abnormal right ventricle (ARV), and patients without cardiac 

disease (NOR) [16]. The 150 scans are divided into 90 images for training, 10 for 

validation, and 50 images for testing. The images for the validation set were selected 

randomly for each case (i.e., one for each patient type). The ACDC database was 

selected because it is one of the largest data sets available for CMR evaluation and has 

been widely used for computational analysis of medical images. 

Image preprocessing was essential for training and validating the models. The 

first step was to understand the metadata: the mode for the image size was 

(216x256x10, and the spacing mode was (1.56x1.56x10). It was necessary to 

standardize the image as a square; thus, the final image size was set to 256x256x10. The 

size of the images ranged from 154 to 256 in length, 154 to 512 in width, and 6 to 18 in 

slice number. This data was practical for rescaling the images without losing 

information and calculating the scaling factor. The method applied for input images was 

Linear, while for ground truth was KNearestNeightbor. Each ground truth image has a 

number assigned to a segmented label; 0 corresponds to the resume, 1 for the right 

ventricle, 2 for the myocardium, and 3 for the left ventricle. The min-max normalization 
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task and elimination of outliers were applied to the raw images at pixel level; the pixels 

higher than the mean plus three times the standard deviation, were eliminated. For train 

CNNs, we decided to use the mode of all the spatial axes; however, for each 

transformer, we decided to use the image sizes the authors recommended in their 

investigations. For example, Chen et al. trained MissFormer using an initial image size 

of 512x512, which led them to have better results corresponding to the metrics they 

used to evaluate the model [35]. 

Evaluation Metrics.  

Two widely used evaluation metrics in image segmentation have been chosen, 

which correspond to the Dice Coefficient and ASSD [100]. 

Dice Coefficient measures the pixel-to-pixel similarity between the segmentation 

mask predicted by the model and the ground truth segmentation [63]. The score ranges 

between 0 and 1, where 1 means a perfect similarity and 0 no similarity [80]. The Dice 

Coefficient is presented in Eq. 1, where true positive (TP) represent the pixel that is 

classified correctly from the predicted mask to a class of the ground truth, false positive 

(FP) is the pixel that is incorrectly assigned to a label; and false negative (FN) means 

that the pixel was incorrectly assigned to a different class or the background. 

 

𝐷𝑖𝑐𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  =   ! ⋅$%
!⋅$% &'% & '(

                   

(1) 

The Average Surface Distance (ASSD) measures the average distance between the 

surface pixel S(A) of the gold standard A or the ground truth and the corresponding 



 37 

surface pixel S(B) of the segmentation result B or the predicted mask [74]. ASSD is 

presented in Eq 2.  

𝐴𝑆𝑆𝐷(𝐴, 𝐵) =
1

𝑆(𝐴) + 𝑆(𝐵)	45 𝑠7𝑆), 𝑆(𝐵)8	
*!∈*())

+	5 𝑑(𝑆. , 𝑆(𝐴))
*"	∈*(.)

: 

(2) 

Statistical Test  

We perform a statistical test between the models considering the Dice Coefficients 

and ASSD evaluation metrics per label and for means in general. Ending with 8 groups 

of data (Label1 – Dice, Label2 – Dice, Label3 – Dice, Label1 – ASSD, Label2 – ASSD, 

Label3 – ASSD, Resume - Dice, Resume - ASSD) and each group had a sample size of 

50. The statistical test applied is the One-Way ANOVA, followed by the Tukey test, 

which are parametric tests that compare the mean values of each metric. To accomplish 

this, we use the statistical software Minitab and followed the next steps: 

1. The first step is to define hypothesis for the One-Way ANOVA test: 

Null Hypothesis (H₀): There is no significant difference among the group means. 

Alternative Hypothesis (H₁): At least one group mean is different from the others. 

2. The second step is to choose a statistical test: 

For comparing means, first we must know the distribution of our data to either 

choose a parametric test or a non-parametric test. To do so, we do a test to check the 

normality and a test to check equal variances. The Anderson-Darling test was used and, 

with a p-value > 0,005 in all our groups, we can say that our data are not normally 

distributed. Later, Levene's test was applied and with a p-value > 0,05 in all the groups, 

we say the rest of our has not equal variances.  



 38 

3. The third step is to perform the test and analyze the results with the significance 

level (α) of 0.05. 

We applied a One way-ANOVA for each of our 8 groups and analyze if the p-value 

is < 0,05 so we can establish either to accept the Null hypothesis or reject it.   

4. The fourth step is to perform the Tukey test.  

We applied a Tukey test for each of our 8 groups. The Tukey test is not a hypothesis 

test so there is not a p-value. Instead, aims to determine which pairs of means exhibit 

significant differences from one another. Minitab put in descending order the groups 

analyzed according to their means and then group them giving them a letter. Means that 

do not share a letter are significantly different. 

Results and discussion 

The quantitate evaluation on the results are presented in Table 3. From these 

results, it is observed that the leading models are CNNs. LinkNet Dice and ASSD 

perform and SegFormer computational capacity is significantly better that the others 9 

models. LinkNet achieved a mean Dice score of 0,90 and a mean ASSD of 0,30. 

As established in section 3.5, Dice Coefficient measures the overlap between the 

predicted and ground truth segmentations, providing a measure of segmentation 

accuracy while the ASSD measures the distance between the predicted and ground truth 

surfaces, providing insight into the spatial accuracy of the segmentation. So, in this 

study we prefer having a good Dice score than having a good ASSD because we must 

analyze the whole anatomy structure and not only the border of this structure. Given the 

above, it does not matter if SwinUnet achieved the best ASSD since it also has the worst 

Dice.  
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The discussion of the current research starts with papers such as the literature 

review from Maurício et al. [101], which show an equilibrated analysis of ViT and CNN 

for image segmentation. They mentioned that visual transformers perform better due to 

their self-attention mechanism. Despite the slight difference in the results of some 

investigations, ViT's are more robust than convolutional neural networks. The datasets 

of the cited research ranged from 168 patches to 2.9 million images. One investigation 

concludes that ViT could learn patterns in small datasets. However, Deininger et al. 

[102] shows that to surpass CNN's performance, ViT might need more challenging tasks 

to benefit its characteristics. In the current investigation, we've trained the models with 

1800 images for the training set and 200 for the validation set, which is not massive data 

compared to others. The models were not pre-trained, supporting the conclusion 

mentioned by Wu et al. [103], which is that ViT fails to generalize when training with 

fewer images. Also, this investigation did not use data augmentation. Coccomini et al. 

[104] show that with data augmentation, CNNs could generalize better, but ViT reduces 

the bias in identifying anomalies when one or more techniques are used. The reason 

stands out due to significant changes in the attention mechanism of ViT models. 

Another study says that CNNs were more robust than ViT in patch-based attacks with 

data perturbation as input [105]. The authors replaced the ReLU activation function 

with the transformed-based architecture activation function GELU. They concluded that 

the self-attention mechanism of a ViT is the key to its robustness. 
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Table 3 

Comparative results in terms of metrics and computational capacity. Best results are in 

bold.  

Method 

Right Ventricle Myocardium Left Ventricle Resume 
Computational 

Cap 

Dice 

Coeff 
ASSD 

Dice 

Coeff 
ASSD 

Dice 

Coeff 
ASSD 

Dice 

Coeff 
ASSD  

LinkNet 0,8909 0,3249 0,8694 0,3043 0,9293 0,2616 0,8965 0,2960 11'657,604 

Unet 0,8852 0,3162 0,8712 0,3033 0,9243 0,2860 0,8936 0,3018 67'151,044 

DeepLab V3+ 0,8791 0,3333 0,8605 0,3066 0,9255 0,2696 0,8883 0,3031 45'664,212 

Unet++ 0,8730 0,3562 0,8627 0,3107 0,9214 0,2856 0,8857 0,3175 83'615,684 

ScaleFormer 0,8585 0,3679 0,8469 0,3381 0,9134 0,2906 0,8729 0,3322 113'814,164 

DeepLab V3 0,8608 0,3730 0,8376 0,3781 0,9056 0,3044 0,8680 0,3518 58'620,356 

TransUnet 0,8600 0,3808 0,8117 0,4246 0,8883 0,3515 0,8533 0,3856 105'912,260 

SegFormer 0,6638 0,3309 0,7283 0,4445 0,8189 0,4111 0,7370 0,3955 7'718,244 

MissFormer 0,5874 0,3453 0,5876 0,4594 0,7293 0,4534 0,6347 0,4193 42'462,212 

SwinUnet 0,5676 0,2983 0,5679 0,3889 0,6911 0,4336 0,6088 0,3736 271'684,20 

 

On the other hand, we have the statistical analysis for the models which are 

shown in Tables 4, 5 and 6. The p-value of each Anderson-Darling and Levene´s tests 

were < 0,05 so we know that our data does not have a normal distribution and that the 

variances are not equal. Due to this, a non-parametric test is needed. But since the 

Minitab Support established that if the data contains 2 to 9 groups and the sample size 

for each group is at least 15 is recommended to use ANOVA. This is suggested because 

it will work fine with symmetric and non-normal distributions and, will have more 

power [101].  
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So, using a confidence level (α) of 0.05 in the One-Way ANOVA test we can 

conclude that apart from Label1-ASSD (Right Ventricle), in all data groups at least one 

mean is different. This can be seen in Table 4, where all p-values are < 0,05 rejecting the 

null hypothesis that was raised previously. For the right ventricle with the ASSD metric, 

the p-value >0.05 therefore the null hypothesis is accepted, and it is determined that no 

mean is different so, no model achieves a statistically different ASSD. 

Table 4 

Summary of results One way-ANOVA. Statistically significant results are in bold.      

Groups p-value 
Label 1-Dice 0,000 
Label 2-Dice 0,000 
Label3-Dice 0,000 

Label1-ASSD 0,203 
Label2-ASSD 0,000 
Label3-ASSD 0,000 

Mean-Dice 0,000 
Mean-ASSD 0,000 

  
After performing the Tukey test the results were summarized in Table 5 and 6. 

As we explained, Minitab classified the means and gave each group a letter to establish 

if it is different from one another. For the Dice analysis we show in Table5 the groups 

that achieved the higher and equal results. Table 5 shows us Linknet, UNet, DeepLab 

V3+, Unet++, DeepLab V3, TransUnet, ScaleFormer achieve the best Dice mean for 

image segmentation of Right Ventricle. On the other hand, UNet, Linknet, Unet++, 

DeepLab V3+ achieve the best Dice mean for image segmentation of Myocardium. 

Conversely, Linknet, DeepLab V3+, UNet, Unet++, ScaleFormer, DeepLab V3, 

TransUnet achieve the best Dice mean for image segmentation of Left Ventricle. Finally, 

Table 5 presents Linknet as the model with the best Dice mean in the segmented 

resume. 



 42 

Table 5 

Summary of results Tukey test Dice means. 

Dice Coefficient 
Right 

Ventricle 
Myocardium Left 

Ventricle 
General 

Linknet UNet Linknet Linknet 

UNet Linknet DeepLab 
V3+ 

 

DeepLab 
V3+ 

Unet++ UNet 
 

Unet++ DeepLab 
V3+ 

Unet++ 
 

DeepLab 
V3 

 
ScaleFormer 

 

TransUnet 
 

DeepLab 
V3 

 

ScaleFormer 
 

TransUnet 
 

 

For the ASSD analysis we show in Table 6 the groups that achieved the best and 

equal results and demonstrate all the models achieve the same ASSD mean for the 

image segmentation of Right Ventricle. Conversely, UNet, Linknet, DeepLab V3+, 

Unet++ achieve the best ASSD mean for image segmentation of the Myocardium. On 

the other hand, Linknet, DeepLab V3+, Unet++, UNet, ScaleFormer and DeepLab V3 

achieve the best ASSD mean for image segmentation of Left Ventricle. Finally, Linknet, 

UNet and DeepLab V3+ are the models with the best ASSD mean in the segmented 

resume. These could be because LinkNet had Nuclei segmentation; by incorporating 

nuclei segmentation into an architecture, the model can better identify and outline 

individual cell nuclei, which is important in various medical applications where precise 

delineation of nuclei is essential such as medical imaging modalities like microscopy or 

radiology. If we apply this quality to the orders methods could achieve better results.  
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Table 6 

Summary of results Tukey test ASSD means. 

ASSD 
Right 

Ventricle 
Myocardium Left Ventricle General 

No 
difference 

UNet Linknet Linknet 
 

Linknet DeepLab V3+ UNet  
DeepLab V3+ Unet++ DeepLab V3+  

Unet++ UNet 
 

  
ScaleFormer 

 
  

DeepLab V3 
 

A qualitative examination of the different method’s performance is undertaken. 

The best and worst segmentation and edge prediction results are shown in Figures 11 – 

12.  As illustrated in Figure 11, LinkNet segment and predict almost perfectly by 

comparing to the other models that do not predict with precision; some can capture the 

desire areas, but pixels are not the same as the ground truth. This figure shows the best 

predictions for dice coefficient. In Figure 12, LinkNet also demonstrates good 

segmentation and prediction compared to the other models; even though, the image 

shows the worst predictions per model. In this case, TransUNet shows a good 

performance, but it only predicted two out of three desired areas.  
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Figure 11 

All tested models’ examples in order of dice coefficient results (best predictions).   

  

Figure 12 

All tested models’ examples in order of dice coefficient results (worst predictions).   
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In conclusion, based on the information gathered from this investigation, the 

quantitative, qualitative, and statistically results, we attempt to present the next 

inferences: From Table 3, CNNs architectures have the best Dice and ASSD means and 

also require less computing capacity on average. From Table 5 and Table 6, CNNs 

architectures achieved the best Dice and ASSD predicting the Right Ventricle, 

Myocardium and Left Ventricle given that they had higher scores without significance 

difference. Also, CNNs achieve better Dice and ASSD in the segmented resume. 

Finally, in the Figures 15 and 16 we can check what was previously established. 

CONCLUSIONS 

Cardiovascular diseases are considered one of the deadliest diseases. It is vital to 

diagnose CVDs in time to control them and in some cases save the patient's life. In this 

paper, we compared the performance of five CNN networks and five Transformer 

networks on the ACDC dataset. Results have evidenced that the Convolutional Neural 

Network architectures outperforms the other 10 models both qualitatively and 

quantitatively in terms of Dice Coefficient, ASSD and computational capacity. 

Moreover, it has been presented that LinkNet is an efficient and effective medical image 

segmentation method. As a future avenue, the models of cardiac image segmentation 

can be combined with hyperparameters optimization like Gradient Boosting, Random 

Forest or they also can be combined with data augmentation to improve the dataset and 

have better results in both architectures given that some architectures need more data to 

achieve better train. Doing this study demonstrates that comparisons could lead to detect 

the characteristics that made a model be an accurate tool for cardiac image segmentation 

and then apply these features in other models and achieves better scores. 
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