
UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Posgrados

Spontaneous Scalarization of Einstein–Power–Maxwell systems

Tesis en torno a una hipótesis o problema
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Resumen

Este trabajo explora la escalarización espontánea de agujeros negros soportados por

fuentes electromagnéticas. En este marco, el modelo escalar Einstein–Maxwell es re-

visado, y el modelo Einstein–Power–Maxwell es propuesto. Para este último, mostramos

que, para valores particulares de la potencia, surge un agujero negro escalarizado bien

comportado, estable y termodinámicamente favorecido, superando al agujero negro libre

de escalares.

Palabras clave: escalarización espontánea, agujeros negros, potencia–maxwell, elec-

trodinámica no lineal.
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Abstract

This work explore spontaneous scalarization of black holes supported by electromagnetic

sources. Within this framework, the Einstein–Maxwell scalar model is reviewed, and

the Einstein–Power–Maxwell model is proposed. In the latter, we showed that, for a

particular value of the power, a well behaved, stable and thermodynamically favoured

scalarized black hole solution emerges, outperforming the scalar–free black hole.

Keywords: spontaneous scalarization, black holes, power–maxwell, non–linear elec-

trodynamics.
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Chapter 1

Introduction

The detection of gravitational waves by LIGO-Virgo-Kagra collaboration [1–7] has ush-

ered in a new era in physics, enabling the exploration of hitherto uncharted areas of

gravitational phenomena. These observations enable us to test General Relativity (GR),

with Black Holes (BHs) capturing the scientific community’s attention for testing GR in

strong gravity regimes. This interest has grown significantly with the breakthroughs in

supermassive imaging BH shadows by the Event Horizon Telescope [8–13].

While GR is a well tested theory in the weak field regime, both phenomenological and

theoretical factors suggest the need of and extension or modification of the theory. On one

hand, GR lacks consistency with the observed accelerated expansion of the universe. On

the other hand, it presents various challenges when attempting to unify it with quantum

theories. Among several possibilities, in the quest to construct a renormalizable theory

it is proposed that the Einstein–Hilbert action should be supplemented with non–linear

terms, such as second order curvature invariants non–minimal coupled to dynamical scalar

fields [14–17].

In this context, new modified gravity theories have emerged, one of such theories

feature a mechanism that is supressed when gravity is weak. This mechanism initially

proposed by Damour and Esposito–Farèse (DEF model) in 1993 [18] to study neutron

stars, is known as spontaneous scalarization (SS), that resembles a phase transition in

which the scalar field needs to adopt a non–trivial configuration when a certain quan-

13
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tity surpasses a threshold. Although, DEF model has been severely constrained by GR

tests involving binary pulsars [19–24], SS has garned renewed interest due to the realiza-

tion that BH solutions of GR can also exhibit scalarization with appropiate scalar field

couplings in extended scalar–tensor theories [15, 25–28], Einstein–Maxwell scalar (EMS)

models [29] and other novel approaches [30, 31]. These models challenge the ”no–hair”

theorem [32] which posits that the only observable properties of a BH should be its mass,

charge, and angular momentum.

The hallmark of SS is a tachyonic instability that becomes apparent through linear

perturbation in the scalar field, leading to a transition toward a system characterized by

non–trivial scalar hair. This instability entails a growth in the scalar field, eventually

quenched by non–linear effects in the system. Consequently, the spacetime settles into a

stable configuration featuring a BH coupled with scalar hair (also known as hairy BH).

Within this framework, one of the most outstanding theories is the extended scalar–tensor

Gauss Bonnet model firstly proposed by Doneva and O’ Silva in [15, 25] where scalarized

Schwarzschild–like BHs arise under extreme curvature conditions. To understand the

latter, let us consider a non–minimal coupling between a massless non–trivial scalar field

ϕ, with Schwarzschild Gauss–Bonnet scalar

G = R2 − 4RµνR
µν +RµναβR

µναβ =
48M2

r6
,

where R is the Ricci scalar, Rµν is the Ricci tensor, Rµναβ is the Riemann tensor and M

is the mass. The dynamics of the scalar field is given by

2ϕ+ f,ϕ(ϕ)G = 0, (1.1)

where f(ϕ) is the coupling function, 2 = ∇µ∇µ and f,ϕ = df/dϕ. To satisfy the above

equation and ensure the existence of a scalar–free solution when ϕ = 0, we require that

f,ϕ(0) = 0. Now, the SS occurs when the scalar–free solution is unstable under scalar

perturbations ϕ → ϕ0 + δϕ with ϕ0 = 0 without loss of generality. In this scenario, the
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dynamics obey (
2− µ2

eff

)
δϕ = 0, (1.2)

where µ2
eff = f,ϕϕ(0)G/4 is an effective mass acquired by the scalar field with f,ϕϕ =

d2f/dϕ2. Note by that taking f,ϕϕ < 0 implies µ2
eff < 0 so, a tachyonic instability sets in,

driving the system away from the scalar–free solution. Additionally, within this model,

scalarized BHs are thermodynamically preferred over the vacuum solutions and stable

against radial perturbations [33]. In similar vein, Herdeiro and his colleagues presented

analogous results in EMS models in [29]. However, in this instance, the SS is triggered

by a matter source, akin to the conventional DEF model [18], rather than relying on

higher curvature corrections. This EMS model examines electrovacuum BHs, where SS

is induced by the Maxwell scalar F 2 = FµνF
µν serving as an electromagnetic source of

matter. Their study demonstrates that, through non–linear numerical simulations, the

solution results in a perturbatively stable scalarized BH, which is energetically favoured

over the Reissner–Nordström (RN) BH as well.

In recent years, numerous SS models have been investigated (see for instance [16, 34–

43]). However, non–linear electrodynamics (NLED) models have not received sufficiently

attention. To date, there has been only one study in this regard in [31], which involves

a coupling between a scalar field and the Born–Infeld scalar [44, 45]. Given the ongoing

research on regular BHs in both four and higher dimensions [46–50], there appears to

be a growing need for a more profound understanding of SS in NLED models. In this

context, our work presents a new proposal involving a specific class of NLED referred to

as the Einstein–Power–Maxwell (EPM) model where the matter source is expressed as an

arbitrary power of the Maxwell invariant, namely (FµνF
µν)n [51, 52]. The organization

of this work is as follows. In the next chapter, we examine the EMS model proposed in

[29] as it serves as the principal reference for the strategy in solving the Einstein field

equations, relevant to the new EPM proposal. Subsequently, in chapter 3 we will deve

into the specific details of the SS of EPM systems. Finally, the last chapter, will be

dedicated to presenting our final remarks and conclusions.

In this work we shall use geometrical units with c = 4πG = 1.



Chapter 2

Spontaneous scalarization of

Reissner–Nordström Black Holes

In this chapter we will examine SS of RN BHs as initially proposed by Herdeiro and

colleagues in Ref. [29] which is a component of EMS models. This chapter is structured

as follows. Firstly, we will introduce the proposal along with the equations of motion of

the model. Secondly, we will outline the necessary conditions for solving the scalarized

system. Finally, we present the results divided in two parts: a specific solution and the

bifurcation diagram of scalarized RN BHs.

2.1 Einstein–Maxwell scalar model

Let us start by considering the following action,

S =
1

4

∫
d4x

√
−g [R− 2∇µϕ∇µϕ− f(ϕ)I] , (2.1)

where R is the Ricci scalar, ϕ = ϕ(r) is the scalar field, f(ϕ) is the coupling function and

I = FµνF
µν , (2.2)

16
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is the electromagnetic source where Fµν is the Maxwell Tensor with a pure electric con-

nection: A = V (r)dt.

The generic line element for spherical configuration is

ds2 = −N(r)e−2δ(r)dt2 +
dr2

N(r)
+ r2dθ2 + r2 sin2(θ)dφ2, (2.3)

with

N(r) = 1− 2m(r)

r
, (2.4)

where m(r) is the mass function.

The variational principle on the action (2.1) leads in the following field equations

2ϕ− f,ϕ(ϕ)
I
4
= 0, (2.5)(

eδr2f(ϕ)V ′)′ = 0, (2.6)

Gµν + gµν(∇ϕ)2 − 2∇µϕ∇νϕ+
gµν
2

f(ϕ)I − 2f(ϕ)F σ
µFνσ = 0, (2.7)

with 2 = ∇µ∇µ. We note that, the dynamics of the scalar field is given by Eq. (2.5)

which is trivially satisfied for the scalar–free solution (ϕ = 0) when f,ϕ(ϕ) ∝ ϕ = 0. Now,

to explore the existence of SS, let us analyze whether the scalar–free solution becomes

unstable under perturbation ϕ → ϕ0 + δϕ, with ϕ0 = 0. Eq. (2.5) becomes,

(
2− f,ϕϕ(0)

I
4

)
δϕ = 0, (2.8)

where we identify the effective mass as,

µ2
eff ≡ f,ϕϕ(0)

I
4
. (2.9)

Note that, in order to exhibit tachyonic instability we require f,ϕϕ(0) and I to have

opposite sign. In this particular, we have I = −2e2δV ′2 < 0, then f,ϕϕ(0) > 0. To satisfy

the condition, the simplest compatible coupling function that also admits the scalar–free
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solution (in contrast to the case of Einstein–Maxwell dilaton [53]) is

f(ϕ) = e−αϕ2

, (2.10)

with α a dimensionless negative constant called coupling constant.

Introducing the metric in equations (2.5)–(2.7), we obtain the explicit equations of motion

m′ =
1

2
r2Nϕ′2 +

1

2
e2δ−αϕ2

r2V ′2, (2.11)

δ′ + rϕ′2 = 0, (2.12)(
eδ−αϕ2

r2V ′
)′

= 0, (2.13)(
e−δr2ϕ′N

)′
= αeδ−αϕ2

ϕr2V ′2. (2.14)

From (2.13), we notice the existence of a first integral,

V ′(r) = −e−δ+αϕ2Q2

r2
, (2.15)

where Q is the electric charge.

Given that the equations (2.11)–(2.15) are second order non–linear coupled partial differ-

ential equations, their resolution poses a non–trivial challenge. Therefore, it is common

practice to employ various numerical techniques with the shooting method standing out

as the most prevalent choice. This method entails an iterative process wherein initial

values for the unknowns are adjusted to meet the prescribed conditions at the boundary.

In this model, the functions to be solved numerically, between the event horizon rH , and

infinity, are the mass function, the δ(r) function and the scalar field. The conditions at

infinity are well known as we require an asymptotically flat solution. However, at this

stage, the exact values of the functions at rH are unknown. To reduce the number of
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unknowns, we expand the functions in the vicinity of rH

m(r) =
rH
2

+m1(r − rH) + ...

δ(r) = δ0 + δ1(r − rH) + ...

ϕ(r) = ϕ0 + ϕ1(r − rH) + ...

V (r) = v1(r − rH) + ...

(2.16)

with

δ1 = −ϕ2
1rH ,

v1 = −e−δ0+αϕ2
0

r2H

m1 =
eαϕ

2
0Q2

2r2H
,

ϕ1 =
1

rH

αϕ0Q
2eαϕ

2
0

r2H −Q2eαϕ
2
0

,

(2.17)

from where we reduced the unknowns to two: δ0 and ϕ0. Furthermore, note that our

system remains invariant under δ → δ + δ̃, where δ̃ is a constant, so we can initially set

δ0 = 0. Consequently, we reduce the number of unknown parameters to just one, ϕ0, which

will serve as the shooting parameter. It is worth noticing that, even using the shooting

method to reduce the unknowns at the horizon to one, the system has 3 extra degrees

of freedom: Q, rH and α. Therefore, the system continues to be a difficult numerical

challenge. Additionally, in order to solve the system, we require specific conditions as we

shall see in detail in the next subsection.

2.2 Requirements

2.2.1 Asymptotically flat solution

SS mechanism leads to indistinguishable theories from GR in low curvature regimes. In

consequence, as observers at infinity the scalarized solution must be asymptotically flat.
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Then, the condition states

ϕ → 0,

δ → 0,

(2.18)

and

f(0) → 1, (2.19)

to allow the existence of the scalar–free solution. For a coupling function with an expo-

nential form such as (2.10), the last aforementioned requirement is trivially satisfied. In

particular, for this model, we recover the RN solution whose line element is

ds2 = −N(r) +
dr2

N(r)
+ r2(dθ2 + sin2(θ)dφ2), (2.20)

with

N(r) = 1− 2M

r
+

Q2

r2
. (2.21)

2.2.2 Virial Identity

The virial identity is an integral identity used to establish no–go theorems and to verify

the accuracy of numerical calculations in non–linear field theories. The construction

of the identity follows the classical approach of particle mechanics [54–57]. The virial

identity imposed over a system of N bound particles, relates the averages over time of

the total kinetic energy T ,

⟨T ⟩ = −1

2

N∑
i=1

⟨F⃗i · r⃗i⟩ , (2.22)

where F⃗i is the force of the ith particle in position r⃗i.

Consider a conservative force, F⃗ = −∇U with central potentials like U(r) = krn. For

one particle with n = −1 as special case, the virial reads,

⟨T ⟩ = 1

2
⟨r∂U

∂r
⟩ = n

2
⟨U⟩ . (2.23)
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The previous expression, by definition, can be written in terms of an integral. For periodic

motion then, ∫ tf

ti

(
T +

U

2

)
dt = 0. (2.24)

Interestingly, we note that, the previous virial–like identity can be recovered by a scaling

argument of the classical action,

S =

∫ tf

ti

Ldt

=

∫ tf

ti

(T − U) dt,

(2.25)

with T and U = U(r) homogeneous functions of degree 2 and -1 respectively. By consid-

ering a reescaling by the factor γ: r⃗(t) → γr⃗, the action is

Sγ =

∫ tf

ti

(
γ2T − γ−1U

)
dt. (2.26)

We notice that, in order to remain stationary at the original solution, the action must

obey

∂S

∂γ

∣∣∣
γ=1

= 0, (2.27)

from where we recover Eq. (2.24).

In the standard variational treatment, we consider an action functional S that depends

on the generalized coordinates qj with j = 1, ..., N and its first time derivatives q̇j =

dqj/dt, which is given by

S[qj(t), q̇j(t), t] =
∫ tf

ti

L(qj, q̇j, t). (2.28)

In addition to the approach described above, the equations of motion can be derived from

an effective action,

Seff

[
qj(r),

dqj(r))

dr
, r

]
=

∫ ∞

ri

Leff

(
qj,

dqj
dr

, r

)
dr, (2.29)
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which extremizes a particular spacial path, described by the map

[ri,∞] ∈ R → Rn

r → qj(r).

(2.30)

Analogously, we can employ a scale transformation

r → r̃ = ri + λ(r − ri), (2.31)

where λ is a positive constant which induces a new profile

qj(r) → qλj (r) = qj(r̃). (2.32)

Note that, (2.31) scales r but keeps ri fixed, and the case when r = r̃ is recovered for

λ = 1. Then, the effective action becomes a function of λ,

Sλ
eff =

∫ ∞

ri

Lλ
eff

(
qj(r),

dqj(r)

dr
, r

)
dr,

=

∫ ∞

ri

Leff

(
qj(r̃),

dqj(r̃)

dr
, r

)
dr,

=

∫ ∞

ri

Leff

(
qj(r̃), λ

dqj(r̃)

dr̃
, r̃

)
dr̃

λ
,

from where the stationary condition follows,

∂Sλ
eff

∂λ

∣∣∣∣∣
λ=1

= 0. (2.33)

The Eq. (2.33) leads to the original equations of motion of the standard variational

principle as long as

∫ ∞

ri

[∑
j

∂Leff

∂q′j
q′j − Leff −

∂Leff

∂r
(r − ri)

]
dr = 0. (2.34)

is satisfied.

In this work, we face particular problems where the effective Lagrangian can be written
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as

L′
eff (qj, q

′
j, r) = Leff (qj, q

′
j, r) +

d

dr
f(qj, q

′
j, r), (2.35)

where the contribution of the total derivative df/dr does not affect the equations of

motion.

Even though, the treatment is developed for systems with finite degrees of freedom,

this strategy can be directly extended to fields. As an illustrative example of GR, let us

consider the following parametrization

ds2 = −σ2(r)

(
1− 2m(r)

r

)
dt2 +

(
1− 2m(r)

r

)−1

dr2 + r2dΩ2,

that allows us to write the effective Einstein–Hilbert action

Seff =

∫
L′

eff (σ,m;σ′m′; r)dr

=

∫
σr2Rdr

=

∫
4σm′dr +

∫
d

dr
[2σ′r(2m− r) + 2σ(m′r −m)] dr

from where we recognize,

f(σ,m;σ′m′; r) = 2σ′r(2m− r) + 2σ(m′r −m).

Then, the effective lagrangian for this particular expression is just

Leff (σ,m;σ′m′; r) = 4σm′.

Now, by considering the full RN action (2.1) with electromagnetic source (2.2) and metric

(2.3), the effective Lagrangian takes the form

Leff = e−δm′ − 1

2
e−δr2Nϕ′2 +

1

2
eδ−αϕ2

r2V ′2. (2.36)

Notice that when using the effective Lagrangian (2.36), the Euler–Lagrange equations
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yield the same equations of motion obtained through variational principle, as given in

equations (2.11)–(2.14).

Now, by assuming (2.36) and the existence of an event horizon, rH = ri, the virial–like

identity explicitly reads (for details see Appendix C),

∫ ∞

rH

dr

{
e−δr2ϕ′2

[
1 +

2rH
r

(m
r
− 1

)]}
=

∫ ∞

rH

dr

[
e−δ−αϕ2

(
1− 2rH

r

)
Q2

r2

]
. (2.37)

This virial–like provides insights into the constrains on our system. In particular, the

charge must be non–zero, as the left hand side of the above expression consistently remains

non–negative. Therefore, it establishes a no–go theorem regarding the charge to admit

the existence of scalarized charged BH. Additionally, the identity serves as a tool to verify

the numerical accuracy of the results. To achieve this, the virial–like identity is rearranged

to make it equal to zero. Typically, a numerical solution is considered well–behaved, if it

yields a value less than 10−4.

2.2.3 Bekenstein–type Identities

Bekenstein–type identities impose certain constrains on the scalarized solutions through

the integration of the scalar field equation (2.5) and multiplication by specific factors.

Following Brihaye and others in Ref. [58], we present two examples:

1. Multiplying Eq. (2.5) by f,ϕ and after integrating by parts and using the divergence

theorem, we get, ∫
V

d4x
√
−g

[
f,ϕϕ (∇ϕ)2 + f 2

,ϕ

I
4

]
= 0, (2.38)

from where we require f,ϕϕ and I to have opposite sign.

2. Multiplying Eq. (2.5) by ϕ, we get

∫
V

d4x
√
−g

[
(∇ϕ)2 + ϕf,ϕ

I
4

]
= 0. (2.39)

from where we require ϕf,ϕ and I to have opposite sign.
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In particular, for scalarized RN BH with (2.2) and (2.10) we need f,ϕϕ and ϕf,ϕ to be

positive for all α < 0.

Now, with all the requirements in place, we will reproduce the main results of Herdeiro

and others [29] in the next section.

2.3 Einstein–Maxwell scalar Black Holes solution

At this point, we would like to remark that, the objective is to solve the system (2.11)–

(2.15) for any rH < r < ∞, where the boundary conditions are fixed by (2.16), and by

the requirement in subsection 2.2.1. Since, we are considering a coupling function such

as (2.10) with α < 0, the requirement 2.2.3 is trivially satisfied while the virial identity

specified in 2.2.2 holds for any Q ̸= 0.

With the aforementioned pieces in place, we are now equipped to solve the system.

The results of a specific solution is presented in the following subsection 2.3.1. Subse-

quently, in subsection 2.3.2 we explore the domain of existence where a family of scalarized

solutions bifurcates from the scalar–free solution.

2.3.1 Specific solution for a scalarized charged Black Hole

The system of equations (2.11)–(2.15) must be solved for the scalar field, the mass func-

tion and the metric function δ(r) numerically (see Appendix A for details). In figure 2.1

we present the results for the scalarized RN BH, for parameters α = −2, Q = 0.45 and

M = 0.4454. Note that, as in Ref. [29], all the profiles exhibit well behaved charac-

teristics. Specifically, ϕ(r) and δ(r) are monotonically decreasing functions that asymp-

totically approach zero as r → ∞. Furthermore, m(r) reaches a maximum value, M ,

which coincides with the RN mass value. Lastly, as expected from equation (2.15), the

expression −r2V ′(r) converges to the value Q.
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Figure 2.1: Profile of a scalarized RN BH (solid lines) with α = −2, Q = 0.45 and
M = 0.4454 and, mass function for free RN BH (dot–dashed line) for same Q and M .

2.3.2 Bifurcation Diagram for charged Black Holes

The bifurcation diagram is a graphical representation within a parameter space where a

deviation of scalarized BHs from the scalar–free solution is shown. It is bounded by the

existence line and a critical set (orange and blue line in Fig. 2.2 respectively). The first

denotes the points at which scalarized solutions bifurcate from RN BHs, while the second

involves physical considerations fixed depending on the model of study, as we shall see.

Between these two bounds there is the domain of existence which refers to the region

where we can find a family of scalarized solutions.

For finding the existence line, let us consider a spherical harmonics decomposition of

the scalar field as

δϕ(r, 0, φ) =
∑
ℓm

YℓmUℓ(r), (2.40)

from where the perturbed scalar field equation (2.8) becomes,

eδ

r2
d

dr

(
r2N

eδ
dUℓ

dr

)
−
[
ℓ(ℓ+ 1)

r2
+ µ2

eff

]
Uℓ = 0. (2.41)

The above expression represents an eigenvalue problem for particular values of ℓ. Since

we require an asymptotically vanishing scalar field, a discrete set of BHs can be obtained
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which correspond to the bifurcation points of the RN solution.

For spherical symmetric system ℓ = 0, we find the exact solution for (2.41),

U0(r) = Pu

[
1 +

2Q2(r − rH)

r (r2H −Q2)

]
, (2.42)

where

u =
−1 +

√
4α + 1

2
, (2.43)

rH = M +
√
M2 −Q2, (2.44)

and Pu is a Legendre function (the steps for finding U0 are detailed in Appendix B).

Since ϕ(r) = 0 as r → ∞, the task of identifying the bifurcation points is reduced to

study the zeros of U0 in the limit of infinity. Consequently, the expression is simplified

to generic parameters (α,Q, rH) and it becomes feasible to obtain the existence line for

any α < −1/4.

For finding the domain of existence, one implements a numerical recurrence by fixing

Q, α and varying rH . For each rH , the equations of motion (2.11)-(2.14) are solved,

and the initial guess for ϕ0 is the real value obtained from the shooting method of the

previous solution. Each α–branch ends at the numerical defined critical set determined by

the divergence of the temperature and vanishing area at the horizon. The whole domain

of existence is depicted in Fig. 2.2 (See Appendix A for numerical details). In the domain

of existence, there exist a region of nonuniqueness (q < 1) in which scalarized and scalar–

free BHs coexist. For this region, the scalarized solutions prove to be entropically favoured

over the RN BHs, see Fig.2.3.

It is worth noticing that, for the family of scalarized solutions in the domain of exis-

tence, the virial identity yielded a value of ∼ 10−5. Therefore, all the solutions exhibit

good numerical behavior.
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(solid line) and scalar–free (dashed line) EMS BHs at α = −20.



Chapter 3

Non–linear electrodynamics and

Power–Maxwell

The motivation behind NLED, initially proposed by Born and Infeld in 1934, [45], is

twofold. Firstly, it addresses the issue that the self-energy of a point charge is infinite in

classical electrodynamics. Secondly, the theory aims to unify quantum mechanics with

electrodynamics. To tackle the first issue, it is necessary to impose an upper bound, b,

on the energy. Consequently, the Lagrangian of Maxwell’s theory

L = −1

4
FµνF

µν = −1

2

(
E2 −B2

)
,

has to be replaced by

L = b2

1−

√√√√
1− E2 −B2

b2
−

(
E⃗ · B⃗

)2

b4

 .

This replacement is akin to the idea of special relativity where 1
2
mv2 is substituted by the

relativistic expression mc2
(
1−

√
1− v2

c2

)
, reflecting the limitation of particle velocities

by the speed of light, c.

Although this new field theory failed in unifying with quantum mechanics, the Born–

Infeld theory has found extensions to a wide array of models. These include its in-

29
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corporation into string theory [59, 60], gravitational theories for modeling regular BHs

[46–50, 61, 62], applications in cosmology tackling problems such us inflation or dark

energy [63–65], implications in condensed matter [66] and other contexts [67, 68]. These

models of NLED encompass a variety of functional forms, including logarithmic, double-

logarithmic, exponential, rational, arcsin, power-law, inverse and others [69].

Despite its extensive applications in various physical problems, NLED has not been

thoroughly explored in the context of SS. As far as we know, there is only one study in

this domain, as presented in [31] involving a coupling between the scalar field and the

Born–Infeld scalar [44, 45]. Nevertheless, we believe that further research on SS in NLED

is compulsory. One specific class arises from the generalization of the Born–Infeld model:

the power Maxwell model, in which the matter source is determined by a Lagrangian

expressed as an arbitrary power of the Maxwell invariant, namely

L ∼ (FµνF
µν)n

[51, 52]. It is worth noting that when the power of the absolute value of the Maxwell

scalar is set to be d/4 (where d represents the spacetime dimension), the power–Maxwell

action exhibits conformal invariance. However, this conformal invariance is not upheld in

higher dimensions, despite the RN solution maintaining it in four dimensions. In light of

this, in [52] the authors introduce a relaxation of the conformal condition by considering

an arbitrary power of the Maxwell scalar. Within their research, they demonstrate that

for power values of n greater than 1/2 or less than 0, the scalar curvature displays a

singularity at the origin. Conversely, for values of n ranging from 0 to 1/2, the scalar

curvature diverges at infinity. Notably, when n falls within the range of (1/2, 3/2) with

a rational number with an odd denominator, the solution exhibits behavior akin to the

standard RN solution in the sense that the charge contribution in the metric decreases

more rapidly than the mass contribution. In this chapter, we study the SS on an EPM

system for a particular value of the power n within the range of (1/2,3/2).
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3.1 Einstein–Power–Maxwell model

Let us consider the same action as in (2.1), namely,

S =
1

4

∫
d4x

√
−g [R− 2∇µϕ∇µϕ− f(ϕ)I] , (3.1)

where in this case, the electromagnetic source I is given by

I = (FµνF
µν)n (3.2)

with F = dA as the usual Maxwell tensor with an electric gauge connection only (i.e

A = V (r)dt) and n a positive constant.

Again, the line element is the same as (2.3):

ds2 = −N(r)e−2δ(r)dt2 +
dr2

N(r)
+ r2dθ2 + r2 sin2(θ)dφ2, (3.3)

with

N(r) = 1− 2m(r)

r
. (3.4)

The equations of motion of the system can be obtained either through the variational

principle, or by utilizing the following effective Lagrangian

Leff = e−δm′ − 1

2
e−δr2Nϕ

′2 − 2n−2r2e−δf(ϕ)
(
−e2δV ′2)n . (3.5)

from where, the explicit equations of motion are

m′ =
1

2
r2Nϕ

′2 − 2n−2(2n− 1)r2f(ϕ)
(
−e2δV ′2)n , (3.6)

δ′ + rϕ′2 = 0, (3.7)[
eδf(ϕ)r2n

(
−2e2δV ′2)n−1

V ′
]′
= 0, (3.8)(

e−δr2ϕ′N
)′
= 2n−2r2f,ϕ(ϕ)e

−δ
(
−e2δV ′2)n . (3.9)
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The integration of (3.8) is straightforward leading to,

V ′(r) = e−δ

[
(−1)nQ

2n−1nr2f(ϕ)

] 1
2n−1

, (3.10)

where Q is the electric charge. Note that, as expected, when n → 1, the aforementioned

equations simplify to (2.11)-(2.15) corresponding to the scalarized RN BHs as discussed

in the previous chapter.

Now, we aim to identify the necessary ingredients for scalarization of EPM systems.

To achieve this, we will adopt the same strategy as outlined in section 2.2 of the preceding

chapter. Once we have the conditions in place, we can proceed to solve the system. All

the steps involved in this process are elaborated upon in the next section.

3.2 Scalarization of Einstein–Power–Maxwell Black

Holes

As previously discussed, SS arise when the system is ‘tachyonical’ unstable under pertur-

bations of the scalar field. In this case, the dynamics of the scalar field obeys

∇µ∇µϕ− f,ϕ(ϕ)
(FµνF

µν)n

4
= 0. (3.11)

If we perturb the scalar field in the form of ϕ → ϕ0+δϕ with ϕ0 = 0, the above expression

is reduced to, [
2− f,ϕϕ(0)

(FµνF
µν)n

4

]
δϕ = 0, (3.12)

from where we identify the effective mass in the background as,

µ2
eff ≡ f,ϕϕ(0)

(FµνF
µν)n

4
. (3.13)

Then, to promote the system to SS, it is required a negative effective mass, which re-

quires that f,ϕϕ(0) and I = (FµνF
µν)n to have opposite signs. In particular, for the
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parametrization (3.3), the electromagnetic source is

I =
(
−2e2δV ′2)n , (3.14)

from where we note a dependence of I in the particular values of n. To analyze the

allowed values of n, let us study the virial identity for this model (see Appendix C for

details). By using the general expression (2.34) with ri = rH and the effective Lagrangian

(3.5), we obtain

∫ ∞

rH

dr

{
e−δr2ϕ

′2

[
1 +

2rH
r

(m
r
− 1

)]}
=

− 1

2

∫ ∞

rH

dr

{
r2e−δf(ϕ)

(
−2e2δV ′2)n(3− 2n− 2rH

r

)}
.

(3.15)

Since the left hand side of (3.15) is consistently positive, we must confine ourselves to

non–zero charges and specific values of n, in order to ensure that the right hand side

of (3.15) remains positive as well. Two particular cases arise. On one hand, we have

n > 1 satisfying (−1)n > 0. On the other hand, n ≤ 1 but it must satisfy (−1)n < 0.

To determine an specific value of n let us take a closer look at the classical solution.

Following [52, 70], the scalar–free line element can be written as

ds2 = −
(
1 +

C

r
+

B

rβ

)
dt2 +

(
1 +

C

r
+

B

rβ

)−1

dr2 + r2
(
dθ2 + sin2(θ)dφ2

)
, (3.16)

where C = −2M ,

B = −4(−1)n (2Q2)
n
(2n− 1)2

2 (3− 2n)
, (3.17)

and

β =
2

2n− 1
. (3.18)

It is worth noticing that, although β could be arbitrary, the simplest choice is to consider

it as a natural number in which case n must take the values shown in Table 3.1.

Notably, there are two viable options for n that correspond to the cases where n ≤ 1

with (−1)n < 0. The first option is n = 1, but this case essentially recovers the RN BH
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β n β n

1 3/2 6 2/3
2 1 7 9/14
3 5/6 8 5/8
4 3/4 9 11/18
5 7/10 10 3/5

Table 3.1: Corresponding values of n for the first ten values of β.

that was covered by Herdeiro in Ref.[29], as detailed in chapter 2. The second choice

which satisfies the virial condition is n = 3
5
. Therefore, we will focus our attention on

this specific choice.

Thus, for the SS of a system triggered by an electromagnetic source such as (3.14)

with n = 3
5
, the system must meet the following requirements:

1. Tachyonic Instability. Given that I < 0, to guarantee that the effective mass (3.13)

is negative, we demand f,ϕϕ(0) to be positive.

2. Asymptotically flat solution. To ensure the recovery of the scalar–free solution at

infinity, the scalarized solution must adhere to the condition of asymptotic flatness

which requires ϕ → 0, f(ϕ → 0) = 1, δ → 0 and

N(r) = 1− 2M

r
+ 2

(2Q2)
3/5

45r10
, (3.19)

as r → ∞.

3. Bekenstein–type identities. This condition requires both f,ϕϕ and ϕf,ϕ to be positive.

Once more, the simplest coupling function that trivially fulfill all of the aforementioned

requirements is

f(ϕ) = e−αϕ2

, (3.20)

with α < 0.

The coupling function (3.20) and the previous requirements allows us to solve the system

(3.6)–(3.9) for any rH < r < ∞. The results are presented in the following subsection.
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3.2.1 Results and Discussion

As in the SS of the RN BH, the system must be solved for the scalar field, the mass

function and the δ(r) function. Due to the asymptotically flat requirement, the conditions

of the functions at infinity are well known but, once again their values at rH are unknown.

Then, one finds the approximate solutions to the equations of motion,

m(r) =
rH
2

+m1(r − rH) + ...

δ(r) = δ0 + δ1(r − rH) + ...

ϕ(r) = ϕ0 + ϕ1(r − rH) + ...

V (r) = v1(r − rH) + ...

(3.21)

with

δ1 = −ϕ2
1rH ,

v1 = e−δ0

[
(−1)nQ

2n−1nr2Hf(ϕ0)

] 1
2n−1

,

m1 = −2n−2(2n− 1)r2Hf(ϕ0)

[
(−1)nQ

2n−1nr2Hf(ϕ0)

] 2n
2n−1

,

ϕ1 =
(−1)n2n−2nrHf,ϕ(ϕ0)

n+ (2n− 1)Q
[

(−1)nQ

2n−1nr2Hf(ϕ0)

] 1
2n−1

[
(−1)nQ

2n−1nr2Hf(ϕ0)

] 2n
2n−1

,

(3.22)

from where we recognize δ0 and ϕ0 as the unknowns of the system. Similar to SS of RN

BH, this system remains invariant under δ → δ + δ̃ with δ̃ constant. As a result, δ0 = 0

and we are left with just ϕ0 as the sole unknown parameter to be determined using the

shooting method.

For the numerical solution, we identify the degrees of freedom of the system as Q, rH ,

α and the initial guess of ϕ0 (numerical details can be found in Appendix A). Figures 3.1

and 3.2 present the results for a particular solution for the specific values in the legend.

The scalar field and δ are depicted as functions of r, both remaining regular and positive

at the horizon and decreasing monotonously as r → ∞. The function −r10V ′ is also

shown, converging to a constant determined by the expression in (3.10). Finally, in Fig.
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3.2 the mass function for the scalarized and scalar–free BHs are displayed, with both

functions converging to the expected constant M .

ϕ (r )

2m(r )

-r 10 V ' (r )

15 δ (r )

1 5 10 50 100 500 1000
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Log(r)

Figure 3.1: Profile for scalarized EPM system for Q = 0.3, α = −50 and rH = 0.1.

Now, in order to construct the bifurcation diagram, we will follow the same strategy

as for the RN model. Firstly, to obtain the existence line (orange dashed line in Fig. 3.3),

we will employ the same spherical harmonics decomposition of the scalar field

ϕ(r, θ, φ) =
∑
ℓm

Yℓm(θ, φ)Uℓ(r), (3.23)

by substituting the previous expression in the scalar field equation (3.12) from where we

obtain

eδ

r2
d

dr

(
r2N

eδ
dUℓ

dr

)
−
[
ℓ(ℓ+ 1)

r2
+ µ2

eff

]
Uℓ = 0, (3.24)

where N is the scalar–free function (3.19) of the metric (3.3). For the spherical symmetric

case, ℓ = 0, identifying the bifurcation points involves studying the zeros of the solution

for U0. However, Eq. (3.24) lacks an analytical solution for U0 so we implement a

numerical technique in which we select the value of q = Q/M for which U0 has roots

closest to zero (see Appendix A for details). In consequence, we will obtain the first

bifurcation points in the background of the EPM system.

Secondly, the upper bound of the domain of existence (blue line in Fig. 3.3) can be
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Figure 3.2: Mass function for scalarized and scalar–free EPM BH with Q = 0.3, α = −50,
rϕ ̸=0
H = 0.95 and rϕ=0

H = 0.9177.

obtained through the usual numerical recurrence fixing Q and α and varying rH . Each

α–branch ends at the numerical critical set determined by the area at the horizon (which

approaches to zero). The entire solution is depicted in Fig. 3.3.

critical set
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0 10 20 30 40 50 60
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Q
/M

Scalarized EPM Black Holes

Classical EPM Black Holes

Figure 3.3: Bifurcation diagram for EPM systems with power 3/5.

Note that, as in the previous case, there exists a nonuniqueness region in the domain

of existence where scalar–free and the scalarized BHs coexist defined by the values of

q for which the metric N has real roots. In such a region, the scalarized solutions are
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entropically preferred as shown in Fig. 3.4 for the specific values in the legend.
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Figure 3.4: q = Q/M vs. aH = AH

16πM2 diagram where AH is the horizon area for scalarized
(solid line) and scalar–free (dashed line) EPM BHs at α = −100.

Let us summarize the main results. The equations of motion were solved throughout

demanding numerical calculations. To minimize the difficulty of this task we implemented

the shooting method over the parameter ϕ0, while the other (model–dependent) free

parameters, Q, α and rH were given by hand. By implementing recurrence steps, it

was possible to construct a particular solution (Fig. 3.1) and the bifurcation diagram

(Fig. 3.3). Both behaviours are particularly similar to the case of SS of RN BHs [29].

Furthermore, there exist a region of coexistence (at ∼ q = 0.6 in Fig. 2.3) between the

scalar–free and scalarized BHs. In this region, the scalarized BH has a bigger horizon

area which implies a bigger entropy. Therefore, the scalarized BHs are thermodynamically

favoured over the scalar–free state. Furthermore, all the scalarized solutions are well–

behaved, exhibiting values of approximate 10−6 for the virial identity.



Chapter 4

Conclusions

In this work, we investigated the spontaneous scalarization supported by a non–linear

electrodynamic source non–minimally coupled to a scalar field. Our primary focus was on

proposing an scalarized Einstein–Power–Maxwell model L ∝ (FµνF
µν)n , a generalization

of the previously introduced scalarized Einstein–Maxwell scalar model and scalarized

Born–Infeld model in [29] and [31], respectively.

For a coupling function with an exponential form e−αϕ2
with α < 0, our solutions

satisfied all the conditions. Namely, a negative effective mass, the asymptotically flatness

condition, the Bekenstein–type identities and the virial identity. Our findings revealed

that, based on the virial identity, the power of the Maxwell scalar cannot take any arbi-

trary value but it must be constrained in a very specific way in order to ensure scalariza-

tion. We specifically focused on the case where n < 1 and set the power in a way that the

free solution corresponds to a straightforward modification of the Reissner–Nordström

metric, namely, a metric containing r−β with β ∈ N. Our analysis indicated that the

scalarized solution is entropically favored compared to its hairless counterpart, aligning

with observations for the scalarized Reissner–Nordström black hole.

It could be interesting to explore arbitrary (n, l,m) scalar clouds and to study the sta-

bility of the solution against perturbations, similar to the analysis in [29]. Additionally,

given the golden era for testing strong gravity, a further comparison of the phenomenol-

ogy of scalarized Einstein–Power–Maxwell systems with current data could be intriguing.
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However, these and other aspects lie out of the scope of the present work and we leave

them for future developments. Finally, to improve the efficiency in the numerical calcu-

lations, we suggest the use of a cluster.
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Appendix A

Numerical Setup

In the context of GR, solving the equations of motion is a primary objective, often tackled

using numerical methods. The shooting method is a common technique, particularly for

challenging problems, as is the case in this work.

For the problems covered here, the functions requiring numerical solutions within the

range rH < r < ∞ include the mass function, the scalar field and the metric function

δ(r). It is necessary to set the boundary conditions at infinity and at the event horizon.

Guided by the requirement of asymptotic flatness, the conditions at infinity are well

defined, while the values of the functions at the horizon remain unknown. To reduce

the number of unknowns, one states an expansion of the functions around the horizon

and look at symmetries. In consequence, it becomes feasible to reduce the unknown

parameters to one, ϕ0 (the scalar field at the horizon), which will serve as the shooting

parameter. Note that, this method requires an initial guess value for ϕ0 which must be

close to its real value, in order to find a well behaved solution. From now on, we will

denote the initial guess (input) as ϕ̃0 and the real value (output) as ϕ0. It is important

to highlight that, there exist other model–dependent free parameters that need to be

provided manually. In the models examined in this work, these include the charge, the

coupling constant, the radius of the horizon and ϕ̃0 as the free parameters. Setting this

parameters poses a challenge, as each parameter has only one value for which a scalarized

solution is obtained.
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This chapter is dedicated to elucidating the particularities of the numerical calculation

for scalarized asymptotically flat systems. It is divided into two sections. The first section

outlines the numerical implementation for solving a specific solution, while the second

section is centered around the construction of the bifurcation diagram.

A.1 Particular Solution

To address the numerical problem, we implemented a defined function, denoted as F

which receives the input parameters of the problem (Q, α, δ0, rH , ϕ0, rf ). Here, rf

represents the final point of integration, essentially infinity. The function contains the

expansion around the horizon, the equations of motion and the specific method for solving

the partial differential equations. The function returns a value, R which is crucial for the

application of the shooting method. This value is determined for the boundary condition

of the scalar field at the horizon. By defining R = (rϕ)′ as ϕ = 0 when r → ∞, it implies

that R = 0. Therefore, when fixing the charge, the coupling constant and the horizon

radius, and varying ϕ̃0, the shooting method aims to find a numerically stable solution

by driving R towards zero. Numerical stability is achieved when ϕ̃0 = ϕ0.

For practical implementation, we utilized Wolfram Mathematica. The equations of

motion were solved using the NDSolve function with ExplicitRungeKutta as the chosen

method. To find ϕ0, FindRoot was employed, specifying F = 0 which means R = 0.

Notable, we found that, the models invetigated in this work are not rf dependent, and

for our purposes, we fixed rf = 1000.

A.2 Bifurcation Diagram

The bifurcation diagram is bounded by two key components: the existence line serving

as the lower bound, and the domain of existence with the critical set acting as the upper

bound. The initial segment represents the first bifurcation points departing from the

scalar–free solution, whereas the latter segment corresponds to the family of scalarized

solutions. Both parts are constructed through numerical computation. However, in
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certain special models such us the one in Ref. [29], the existence line can be computed

in a semi–analytical manner (previously elucidated in subsection 2.3.2).

On one hand, in constructing of the existence line, we initiate the process by introduc-

ing a small perturbation of the scalar field, δϕ in the background of the scalar–free solu-

tion. For spherically symmetric system, we propose a spherical harmonic decomposition

of δϕ. Then, replacing it into the scalar field equation, we derive an ordinary differential

equation for a radial function, U(r). As the perturbation tends to zero while we approach

the infinity, U(r) maintains the same behaviour, indicating its depending solely on the

free parameters, such as q = Q/M and α. Therefore, for finding the first bifurcation point

at a fixed α, we must vary q until determining its value for which U(r → ∞) approaches

zero most closely. The main difference between the semi-analytical procedure and the

complete numerical treatment is that the first uses directly the expression of U0 to find its

roots for fixed α, while in the latter, one has to solve the differential equation at each step

in the variation of q. In both approaches, the variation of q can be implemented through a

For Loop. In the full numerical treatment, it is recommended to create another function

similar to F for solving the differential equation for U0 and apply the shooting method

for the condition of U0 at the horizon. Note that, after implementing the code for a fixed

α, we should vary this parameter in small steps and repeat the process as well.

On the other hand, when building the domain of existence and the critical set, a

complete numerical calculation is employed. For this process, we shall work around a

particular solution that needs to be initially obtained. Each point in the bifurcation dia-

gram over the domain of existence corresponds to one scalarized solution linked to specific

values of the free parameters. In the models addressed in this work, the bifurcation dia-

grams are depicted as α vs. q = Q/M diagrams. It is noteworthy that, M is proportional

to rH . By fixing α and Q while varying rH , a ‘vertical line’ is obtained in the diagram.

For each point on the vertical line, the equations of motion are solved following the same

procedure explained in the previous section A.1. Additionally, the value of ϕ̃0 needs to

be specified at each step. As the shooting method demands the closest value of ϕ̃0 to

ϕ0, a form of recursion is implemented for this parameter where ϕ0 from the previous
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solution is utilized as the input ϕ̃0 for finding the new solution. Once a line is obtained,

α is varied and the process repeated. The critical set is defined by numerical parameters.

For scalarized EPM systems the area at the horizon tends to zero and for the scalarized

EMS systems in [29] it was shown that the temperature of the horizon diverges and the

area at the horizon vanishes.

It is important to highlight that, as we approach the critical set, the steps in rH are

reduced to the order of (at least) 10−5 due to the requirements of the shooting method.

Essentially, there is a maximum solution beyond which ϕ0 cannot serve as the input ϕ̃0 for

the next solution because these two are too separated from one another. Consequently,

the shooting method does not return a numerically stable solution. Therefore, to avoid

this problem, it becomes necessary to decrease the space between the two solutions,

indicating a reduction in the steps in rH . Note that, to circumvent this issue, using a

cluster where the steps in rH are sufficiently small from the beginning, could be a viable

approach.



Appendix B

Analytical solution of the scalar field

equation of Reissner–Nordström

Black Hole

This chapter provides the step-by-step guide for obtaining the analytical solution of the

ordinary differential equation (ODE) for U0(r):

1

r2
d

dr

(
r2N

dU0

dr

)
− µ2

effU0 = 0. (B.1)

with

N(r) = 1− 2M

r
+

Q2

r2
, (B.2)

and

µ2
eff = α

Q2

r4
, (B.3)

which correspond to the free-scalar solution of RN BH. Expanding (B.1) we get

(
− r4

Q2
+

2Mr3

Q2
− r2

)
d2U0

dr2
− 2

(
r3

Q2
− r2M

Q2

)
dU0

dr
+ αU0 = 0. (B.4)

Given that U0(r) represents the radial component resulting from the scalar field de-

composition, it is reasonable to seek a solution in the form of a Legendre Polynomial.
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Then, the ODE for Legendre Polynomials can be seen like

(1− x2)
d2y

dx2
− 2x

dy

dx
+ u(u+ 1)y = 0, (B.5)

where its solution is the Legendre Polynomial:

Pu(x). (B.6)

Now, we would like to make (B.4) formally the same as (B.5), hence, we propose

U0(r) = ξ(f(r)). (B.7)

Substituting U0 in (B.1) and grouping terms, we get,

(
− r4

Q2
+

2Mr3

Q2
− r2

)(
df

dr

)2
d2ξ

df 2
+

[(
− r4

Q2
+

2Mr3

Q2
− r2

)
d2f

dr2

− 2

(
r3

Q2
− r2M

Q2

)
df

dr

]
dξ

df
+ αξ = 0.

(B.8)

Comparing (B.8) with (B.5) we recognize that ξ = y, f = x and

u =

√
4α + 1− 1

2
, (B.9)

1− f 2 =

(
− r4

Q2
+

2Mr3

Q2
− r2

)(
df

dr

)2

, (B.10)

−2f =

(
− r4

Q2
+

2Mr3

Q2
− r2

)
d2f

dr2
− 2

(
r3

Q2
− r2M

Q2

)
df

dr
. (B.11)

Then, we propose a polynomial form of f

f(r) = A+Brn, (B.12)

where A and B are constants. After replacing the proposal in the differential equations
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and solving for n = 1, we found

f(r) = 1 +
2Q2

r2H −Q2
− 2Q2rH

r(r2H −Q2)
, (B.13)

where

rH = M +
√

M2 −Q2, (B.14)

is the RN horizon. Finally, the solution for (B.1) can be expressed in terms of a Legendre

Polynomial as

U0(r) = Pu

[
1 +

2Q2(r − rH)

r (r2H −Q2)

]
. (B.15)



Appendix C

Mathematical derivation of the virial

identity for electromagnetic sources

This chapter explores the step-by-step guide for obtaining the virial identities for scalar-

ized systems supported by electromagnetic matter sources: the Maxwell invariant and

the power-Maxwell invariant.

The virial identity (in general), for scalarized BHs, with an event horizon rH , triggered

by electromagnetic sources, is given by

∫ ∞

rH

[∑
j

∂Leff

∂q′j
q′j − Leff −

∂Leff

∂r
(r − rH)

]
dr = 0. (C.1)

C.1 Virial Identity of Einstein–Maxwell scalar model

For an EMS model, with electromagnetic source (2.2) and metric (2.3), the effective

Lagrangian is given by

Leff = e−δm′ − 1

2
e−δr2Nϕ′2 +

1

2
eδ−αϕ2

r2V ′2. (C.2)
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Then, the virial identity (C.1) becomes

0 =

∫ ∞

rH

[∑
j

∂Leff

∂q′j
q′j − Leff −

∂Leff

∂r
(r − rH)

]
dr

=

∫ ∞

rH

[
����
e−δm′ −������

e−δr2Nϕ′2 +�������
eδ−αϕ2

r2V ′2 −����
e−δm′ +

1

2
e−δr2Nϕ′2 − 1

2
eδ−αϕ2

r2V ′2
]
dr

+

∫ ∞

rH

[
+������
e−δr2Nϕ′2 − e−δrrHNϕ′2 +

1

2
e−δr2N ′ϕ′2(r − rH)−�������

eδ−αϕ2

r2V ′2 + eδ−αϕ2

rrHV
′2
]
dr

=

∫ ∞

rH

[
1

2
e−δr2Nϕ′2 − 1

2
eδ−αϕ2

r2V ′2 − e−δrrHNϕ′2 +
1

2
e−δr2N ′ϕ′2(r − rH) + eδ−αϕ2

rrHV
′2
]
dr,

but

N =1− 2m

r
,

N ′ =
∂N

∂r
=

2m

r2
,

V ′2 =e−2δ+2αϕ2Q2

r4
.

Replacing

0 =

∫ ∞

rH

[
1

2
e−δr2ϕ′2 − 1

2
e−δr2

2m

r
ϕ′2 − 1

2
eδ−αϕ2

r2e−2δ+2αϕ2Q2

r4

]
dr

+

∫ ∞

rH

[
−e−δrrHϕ

′2 + e−δrrH
2m

r
ϕ′2 +

1

2
e−δr2

2m

r2
ϕ′2(r − rH) + eδ−αϕ2

rrHe
−2δ+2αϕ2Q2

r4

]
dr

=

∫ ∞

rH

[
1

2
e−δr2ϕ′2 − e−δmrϕ′2 − 1

2
e−δ+αϕ2Q2

r2
− e−δrrHϕ

′2 + e−δ2mrHϕ
′2
]
dr

+

∫ ∞

rH

[
e−δmrϕ′2 − e−δmrHϕ

′2 + e−δ+αϕ2

rH
Q2

r3

]
dr.

Rearranging terms

0 =

∫ ∞

rH

[
1

2
e−δr2ϕ′2

(
1−

�
�
�2m

r
− 2rH

r
+

4mrH
r2

+
�
�
�2m

r
− 2mrH

r2

)]
dr

+

∫ ∞

rH

[
−1

2
e−δ+αϕ2Q2

r2

(
1− 2rH

r

)]
dr.

Finally, we obtain

∫ ∞

rH

1

2
e−δr2ϕ′2

[
1 +

2rH
r

(m
r
− 1

)]
dr =

∫ ∞

rH

[
1

2
e−δ+αϕ2Q2

r2

(
1− 2rH

r

)]
dr
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C.2 Virial Identity of Einstein–Power–Maxwell model

For an EPM system, with metric (3.3) and source (3.14), the effective lagrangian takes

the form

Leff = e−δm′ − 1

2
e−δr2Nϕ

′2 − 1

4
r2e−δf(ϕ)

(
−2e2δV ′2)n . (C.3)

Similarly to the previous section, by replacing the lagrangian in (C.1) we have

0 =

∫ ∞

rH

[
����
e−δm′ −������

e−δr2Nϕ′2 − n

2
r2e−δf(ϕ)

(
−2e2δV ′2)n −����

e−δm′ +
1

2
e−δr2Nϕ

′2

]
dr

+

∫ ∞

rH

[
1

4
r2e−δf(ϕ)

(
−2e2δV ′2)n +������

e−δr2Nϕ′2 − e−δrrHNϕ′2
]
dr

+

∫ ∞

rH

[
1

2
e−δr3N ′ϕ′2(r − rH) +

1

2
re−δf

(
−2e2δV ′2)n (r − rH)

]
dr,

Rearranging

0 =

∫ ∞

rH

[
r2e−δf

(
−2e2δV ′2)n(−n

2
+

1

4
+

1

2
− rH

2r

)]
dr

+

∫ ∞

rH

1

2
e−δr2ϕ′2

[
N − 2N

rH
r

+N ′(r − rH)
]
dr

0 =

∫ ∞

rH

1

4
r2e−δf

(
−2e2δV ′2)n(3− 2n− 2rH

r

)
dr

+

∫ ∞

rH

1

2
e−δr2ϕ′2

[
1−

�
�
�2m

r
− 2rH

r
+

4mrH
r2

+
�
�
�2m

r
− 2mrH

r

]
dr.

Finally,

∫ ∞

rH

dr

{
e−δr2ϕ

′2

[
1 +

2rH
r

(m
r
− 1

)]}
=

− 1

2

∫ ∞

rH

dr

{
r2e−δf(ϕ)

(
−2e2δV ′2)n(3− 2n− 2rH

r

)}
.

(C.4)
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