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Finalmente, agradezco con todo mi corazón a Alejandro, con quien he estado de
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Resumen

Este estudio se centra en la caracterización de los parámetros de difusión que

describen la difusión molecular en el espacio extra-axonal de los fantasmas de ma-

teria blanca utilizando secuencias de Eco de Esṕın con Gradiente Pulsado (PGSE)

en Resonancia Magnética Nuclear (NMR), basándose en la corrección de datos

debido a artifacts1. Al calibrar con precisión el sistema de gradiente y corregir

los errores relacionados con la orientación del gradiente en la secuencia PGSE,

logramos mediciones de difusión fiables. Los datos obtenidos son consistentes con

la literatura existente sobre los procesos de difusión.

Para caracterizar los parámetros de difusión, uno de los objetivos de este tra-

bajo fue caracterizar la difusión del fantoma ensamblado en el laboratorio en difer-

entes direcciones espaciales para complementar las caracterizaciones previas real-

izadas en el laboratorio, que se limitaron a una sola dirección espacial. Además,

este estudio contribuye a corregir datos contra artifacts inducidos por errores de

calibración del hardware.

1El término artifacts se refiere a errores sistemáticos en los datos de medición que pueden
distorsionar los resultados de un experimento o análisis.
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Se emplearon dos modelos fenomenológicos: la Ley de Potencia y el Aproxi-

mante de Padé. Los resultados revelan variaciones significativas en la tortuosidad

con la orientación de la difusión, indicando que los modelos predicen una saturación

a ángulos más altos, sugiriendo la máxima complejidad en las v́ıas de difusión.

Se identificaron escalas temporales caracteŕısticas para la transición de la di-

fusión libre a la restringida, influenciadas por la alineación de las fibras y la com-

plejidad estructural, alineándose con teoŕıas previas. Estos hallazgos mejoran la

precisión de la medición y el modelado de la difusión en NMR, proporcionando

una comprensión más profunda de la dinámica de difusión.

Las implicaciones de estos resultados son significativas para la imagen médica,

donde una comprensión precisa de los procesos de difusión es crucial. La inves-

tigación futura se centrará en aplicar ecuaciones para la longitud y el tiempo de

correlación a las curvas de difusión corregidas, con el objetivo de mejorar el mod-

elado y la predicción de los procesos de difusión. Este trabajo subraya la impor-

tancia de una caracterización precisa de la difusión para avanzar en las técnicas

de diagnóstico y comprender las propiedades microestructurales de los tejidos,

particularmente en el contexto de enfermedades neurodegenerativas.

Palabras clave: Eco de Esṕın con Gradiente Pulsado (PGSE), Resonancia

Magnética Nuclear (NMR), Difusión Molecular, Fantomas de Materia Blanca,

Tortuosidad, Enfermedades Neurodegenerativas
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Abstract

This study focuses on the characterization of diffusion parameters describing molec-

ular diffusion in the extra-axonal space of white-matter phantoms using Pulsed

Gradient Spin Echo (PGSE) sequences in Nuclear Magnetic Resonance (NMR),

based on data correction due to artifacts. By accurately calibrating the gradi-

ent system and correcting errors related to the gradient orientation in the PGSE

sequence, we achieve reliable diffusion measurements. The obtained data are con-

sistent with existing literature on diffusion processes.

To characterize the diffusion parameters, one of the objectives of this work

was to characterize the diffusion of the phantom assembled in the laboratory in

different spatial directions to complement previous characterizations conducted

in the laboratory, which were limited to a single spatial direction. Additionally,

this study contributes to correcting data against artifacts induced by hardware

calibration errors.

Two phenomenological models are employed: the Power Law and the Padé

Approximant. The results reveal significant variations in tortuosity with diffu-
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sion orientation, indicating that the models predict saturation at higher angles,

suggesting maximum complexity in diffusion pathways.

Characteristic timescales for the transition from free to restricted diffusion are

identified, influenced by fiber alignment and structural complexity, aligning with

previous theories. These findings enhance the accuracy of diffusion measurement

and modeling in NMR, providing a deeper understanding of diffusion dynamics.

The implications of these results are significant for medical imaging, where a

precise understanding of diffusion processes is crucial. Future research will focus on

applying equations for correlation length and time to the corrected diffusion curves,

aiming to improve the modeling and prediction of diffusion processes. This work

underscores the importance of accurate diffusion characterization in advancing

diagnostic techniques and understanding the microstructural properties of tissues,

particularly in the context of neurodegenerative diseases.

Keywords: Pulsed Gradient Spin Echo (PGSE), Nuclear Magnetic Resonance

(NMR), Molecular difussion, White-Matter Phantoms, Tortuosity, Neurodegener-

ative Diseases
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Chapter 1

Introduction

The integration of nuclear magnetic resonance (NMR) methodologies in medical

imaging has revolutionized diagnostic practices, providing clinicians with detailed

insights into anatomical structures and physiological processes. NMR’s versatility

enables multi-parametric imaging, enhancing diagnostic accuracy and prognostic

capabilities [2].

NMR imaging, known as MRI, is essential in non-invasive diagnostics but faces

resolution limitations, especially at micro and sub-micrometer scales crucial for

clinical and research purposes. Detecting variations in axon diameter is key for

identifying early signs of neurodegenerative diseases, necessitating advanced imag-

ing techniques.

Changes in axonal diameter can indicate diseases like multiple sclerosis, Alzheimer’s,

and ALS. In multiple sclerosis, axonal damage and demyelination lead to changes in
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axonal diameter before clinical symptoms appear [3]. In Alzheimer’s, early axonal

alterations can be detected before significant neuronal loss [4]. Advanced NMR

techniques like Diffusion-Weighted Imaging (DWI) and Pulsed Gradient Spin Echo

(PGSE) achieve higher resolution, capturing these changes [5, 1].

Visualizing axonal diameter changes precisely is crucial for early detection and

patient management, enabling timely intervention and potentially slowing disease

progression. Early identification of axonal damage in multiple sclerosis can prompt

earlier therapy initiation, while in Alzheimer’s, it can aid patient stratification

for clinical trials [6]. Moreover, precise measurements enhance understanding of

disease mechanisms, correlating imaging findings with clinical data to inform new

therapeutic strategies.

DWI exploits water molecule diffusion properties to detect microscopic patho-

logical changes [7], valuable for early disease stages like tumor development. PGSE

improves diffusion measurement precision, enhancing NMR imaging resolution and

detecting minute differences in diffusion rates [1].

Applying PGSE alongside DWI offers deeper insights into tissue microarchitec-

ture and cellular morphology, extending NMR imaging utility beyond traditional

boundaries. Integrating advanced pulse sequences into clinical NMR imaging pro-

tocols improves diagnostic accuracy and prognostic assessment, enabling earlier

detection of pathological changes and transforming patient outcomes. Ongoing

refinement of these methodologies overcomes conventional imaging limitations, ad-

vancing diagnostic capabilities.
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The second chapter introduces fundamental NMR concepts, covering its his-

torical development, quantum mechanical principles, nuclear spin, magnetization,

and the effects of magnetic fields and RF pulses. It also explains spin-lattice re-

laxation (T1), spin-spin relaxation (T2), and pulse sequences like Spin Echo and

PGSE.

The third chapter focuses on mathematical modeling of molecular diffusion,

essential for NMR-based diffusion studies. It explores Fick’s laws and the diffu-

sion equation, differentiating between free and restricted diffusion, and discusses

the influence of microstructural barriers, introducing concepts like tortuosity and

effective diffusion in porous media.

The fourth chapter focus on the characterization of apparent diffusion coeffi-

cients of the extra-axonal space of a white-matter phantom. Details of the exper-

imental methodologies, including NMR equipment setup, calibration, and sample

preparation are described. It explains the process of acquir- ing and processing

NMR images, highlighting the importance of precise calibration and error correc-

tion.

The fifth chapter presents a quantitative analysis of the hindered diffusion

within the extra-axonal space of the phantom, analyzing the diffusion parameters

extracted from the experimental data. It discusses variations in tortuosity with

diffusion orientation using Power Law and Padé Approximant models, identifying

characteristic timescales for the transition from free to restricted diffusion, influ-

enced by fiber alignment and structural complexity. The chapter emphasizes the

significance of geometric constraints on diffusion dynamics and provides a compre-
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hensive analysis of the findings, demonstrating how advanced modeling enhances

diffusion measurement accuracy and understanding.
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Chapter 2

Nuclear magnetic resonance

2.1 Nuclear magnetic resonance

The beggining of NMR can be traced back to the early 20th century, with the

development of quantum mechanics providing the theoretical framework neces-

sary to understand the magnetic properties of atomic nuclei. The fundamental

experiments by Isidor Rabi in the 1930s, which demonstrated the magnetic res-

onance of atomic beams, laid the groundwork for NMR, earning him the Nobel

Prize in Physics in 1944. This was followed by the pioneering work of Felix Bloch

and Edward Mills Purcell in the late 1940s, who independently discovered nuclear

magnetic resonance in bulk matter, a breakthrough that would earn them the

Nobel Prize in Physics in 1952 [2].

This chapter delves into the physical principles behind NMR, exploring how it
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exploits the quantum behavior of atomic nuclei when exposed to magnetic fields

and radiofrequency (RF) pulses. Through the lens of classical mechanics and

quantum theory, we will unravel how NMR harnesses the intrinsic properties of

nuclear spins to yield unparalleled insights into molecular structures, dynamics,

and interactions. By dissecting the fundamental equations and concepts, this

chapter aims to equip readers with a thorough understanding of NMR’s theoretical

foundations.

2.1.1 Quantum mechanics and nuclear spin

Nuclear Magnetic Resonance (NMR) is a manifestation of quantum mechanics

at work, illustrating the unique interaction between nuclear spins and external

magnetic fields. At the heart of this interaction is the quantum mechanical concept

of spin (I ), an intrinsic form of angular momentum carried by atomic nuclei,

which is quantized according to quantum theory. This spin gives rise to a nuclear

magnetic moment (µ), fundamental to the NMR phenomenon, described by the

equation:

µ = −γI (2.1)

where γ denotes the gyromagnetic ratio, specific to each type of nucleus and I

is the spin angular momentum operator.

Upon application of an external magnetic field, denoted as B = B0ẑ where B0
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is the magnetic field strength and ẑ is the unit vector in the direction of the field,

the energy levels associated with nuclear magnetic moments split into discrete

values.

The system’s Hamiltonian, which describes its total energy, incorporates the

interaction between the magnetic moment and the field:

Hi = µi ·B = −γIi,zB0 (2.2)

This shows that the energy eigenstates of nuclear spins are quantized along

the magnetic field direction, resulting in distinct energy levels defined by the spin

angular momentum projections, Ii,z = mℏ, where m = ±1
2
for nuclei with spin 1

2

such as a proton (1H).

These energy eigenstates correspond to the different orientations of spin along

the field, given by the magnetic quantum number m, and are spaced by the energy

difference ∆E, which the Zeeman effect captures:

∆E = ℏγB0 (2.3)

where ℏ is the reduced Planck constant. The condition for resonance in NMR

is fulfilled when the energy of an applied radiofrequency (RF) photon equates to

∆E, prompting transitions between the spin states. These transitions yield the

NMR signal, as the system absorbs or emits photons to conserve energy [8].
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2.1.2 Magnetization

With the energy differential established between the two levels, the lower energy

state will be predominantly occupied in accordance with the Boltzmann distribu-

tion. This uneven distribution of spin states across the energy levels culminates

in a net magnetization (M) for the ensemble of nuclei, described by:

M =
∑
i

µi (2.4)

where the summation runs over all individual spins within the sample, empha-

sizing the collective magnetic behavior. In the presence of B0, nuclear spins are

thermally distributed between the energy states, with a larger population residing

in the ground state due to the lower energy, resulting in a net magnetization that

is aligned parallel to B0. In NMR, the net magnetization M is crucial for gener-

ating a detectable signal. For the signal to be maximized, the individual magnetic

moments must align and sum up to form a sufficiently large collective magnetic

moment. This coherence is essential for distinguishing between various tissues or

spin types, as it affects the net magnetization’s ability to interact with the applied

magnetic fields and produce discernible differences in the signal.

The distribution of spin alignments and resulting magnetization is determined

by the Boltzmann distribution, which at thermal equilibrium predicts a greater

population in the lower energy state. The Boltzmann distribution is given by:
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N+

N−
= e−∆E/kT (2.5)

where N+ and N− are the populations of the lower and higher energy states, k

is the Boltzmann constant, and T is the absolute temperature.

The dynamics of this magnetization, particularly its progression back to equi-

librium after perturbation, are governed by the Bloch equations. These equations

mathematically model the temporal evolution of magnetization, encapsulating the

effects of relaxation processes (explained in detail in section 2.1.4).

2.1.3 Rotating frame transformation and the resonant RF

field

To effectively analyze the signal of magnetization coherence in NMR, it is crucial to

measure it accurately, even though perfect coherence does not last forever. Some

spins precess along the magnetic field B0 at different rates, leading to dephasing

and resulting in an exponential decay of the signal, characterized by the transverse

relaxation time (which will be explained in section 2.1.4). This decay describes

how quickly the spins lose their coherence due to interactions and variations in the

local magnetic environment.

To simplify the analysis of these precessing spins, the concept of the rotating

frame is employed. This involves transforming to a reference frame that rotates at

the Larmor frequency ω0, effectively “removing” the apparent motion of the spins
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due to this precession when the rotation is about the axis of the static magnetic

field. This approximation is particularly useful for protons in the same medium,

such as water, because their Larmor frequencies are the same. By setting the

rotating frame frequency ω to ω0, the effective frequency difference ω′ = ω − ω0

becomes zero, simplifying the analysis of the decay rate.

The rotating frame transformation is mathematically represented by the uni-

tary operator exp(iωtIz), where Iz is the z-component of the angular momentum

operator. The transformations for different quantum mechanical entities are:

State Vector: |Ψ′⟩ = exp(iωtIz)|Ψ⟩ (2.6)

Density Matrix: ρ′ = exp(iωtIz)ρ exp(−iωtIz) (2.7)

Observable Operators: A′ = exp(iωtIz)A exp(−iωtIz) (2.8)

These transformations adjust the frame of reference to account for the rotational

effects induced by the magnetic field, simplifying the system’s dynamics by focusing

on deviations from this rotational motion.

In the rotating frame, the Hamiltonian is modified to include an additional

term to account for the rotation, ensuring the Schrödinger equation remains valid.

The transformed Hamiltonian is:

H′ = exp(iωtIz)H exp(−iωtIz)− ωIz (2.9)

For a Hamiltonian governed by the Zeeman interaction in a static magnetic field
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B0 along the z-axis, we have:

HZeeman = −γB0Iz (2.10)

In the rotating frame, this Hamiltonian becomes:

H′ = −γB0Iz − ωIz = −(γB0 + ω)Iz (2.11)

resulting in an effective magnetic field in the z-direction:

B′
0 = B0 −

|ω|
γ

(2.12)

This concept is particularly useful when considering the free induction decay

(FID) in NMR. FID occurs after an RF pulse is applied, and the net magnetization

vector begins to precess and dephase in the transverse plane. The rotating frame

helps to visualize this process by transforming the complex precessional motion

into a simpler form, allowing easier analysis and measurement of the decay.
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Figure 2.1: Left: The decaying signal with a sinusoidal part shows the Free Induction
Decay (FID), combining exponential decay due to transverse relaxation (T2) and oscil-
lations from Larmor precession (ω0). Right: In the rotating frame, the FID signal is
simplified to show only the exponential decay, removing the oscillatory component and
highlighting the T2 relaxation process.

Initially, the spin system’s density matrix in the laboratory frame is approxi-

mated by ρlab(0) ≈ Iz. Transforming this to the rotating frame involves a passive

rotation about the z-axis by −ω0t, resulting in:

ρrot(0) = exp(−iω0tIz)ρlab(0) exp(iω0tIz) ≈ Iz (2.13)

This transformation indicates that the initial conditions remain unchanged be-

tween the laboratory and rotating frames. The active rotation induced by the RF

field B1 in the rotating frame is represented by:

ρrot(t) ≈ exp(iω1tIx)Iz exp(−iω1tIx) ≈ Iz cos(ω1t) + Iy sin(ω1t) (2.14)

This expression shows the interconversion of spin states, with ω1 = γB1 being the
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rate of this conversion. Transforming the rotating frame density matrix back to

the laboratory frame requires the reverse of the initial transformation:

ρlab(t) ≈ exp(iω0tIz)ρrot(t) exp(−iω0tIz) (2.15)

When we introduce a resonant radiofrequency (RF) field, the Hamiltonian in the

laboratory frame is:

Hlab = −γB0Iz − 2γB1 cos(ωt)Ix (2.16)

This can be represented as two counter-rotating circularly polarized components.

Hence, we may rewrite equation (2.16) as:

Hlab = −γB0Iz − γB1 exp(iωtIz)Ix exp(−iωtIz)− γB1 exp(−iωtIz)Ix exp(iωtIz)

(2.17)

Simplifying the transformation to the rotating frame rotating at frequency ω about

the z-axis in the same (clockwise) sense as the spin phases. We find:

Hrot = −γ

(
B0 −

ω

γ

)
Iz − γB1Ix − γB1 exp(−i2ωtIz)Ix exp(i2ωtIz) (2.18)

At resonance (ω = ω0), the counter-rotating component fluctuates rapidly,

averaging out to zero. The effective Hamiltonian in the rotating frame simplifies

to:

Hrot = −γ

(
B0 −

ω

γ

)
Iz − γB1Ix (2.19)

Here, the RF field B1 dominates, causing the spins to nutate around the B1 axis.

This resonant condition is crucial for achieving a 90° (or π/2) pulse, which tilts the
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magnetization vector into the transverse plane, representing a fundamental NMR

phenomenon where equilibrium magnetization is disturbed.

The behavior of nuclear spins under a resonant RF magnetic field is described

by the dynamics of a magnetization vector. In the laboratory frame, the magne-

tization vector precesses around B0 at ω0 and around B1 at ω1. In the rotating

frame, B1 appears stationary, and at resonance, the effective longitudinal field is

nullified, emphasizing the precession around B1. This results in laboratory-frame

observables that exhibit both precession about the longitudinal z-axis and nuta-

tion about the transverse x-axis, reflecting the combined effects of the static and

RF fields:

Mx = M0 sin(ω0t) sin(ω1t), My = M0 cos(ω0t) sin(ω1t), (2.20)

Mz = M0 cos(ω1t) (2.21)

where M0 = NγTr(Izρ0). This combination of precession about the laboratory-

frame z-axis and nutation about the rotating frame x-axis is shown in Figure 2.2.
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Figure 2.2: The behavior of nuclear spins under a resonant RF magnetic field is described
by the dynamics of a magnetization vector. In (a) the evolution within the laboratory
frame is presented, characterized by the influence of a longitudinal magnetic field, B0,
and a transverse rotating field, B1. At resonance, the rotation rate ω aligns with ω0 =
γB0, causing the magnetization vector to precess around B0 at ω0 and around B1 at
ω1. In (b) the scenario is depicted in the rotating frame where B1 appears stationary.
At resonance in this frame, the effective longitudinal field is nullified, emphasizing the
precession around B1. Image taken from [1].

If the RF field is not precisely on resonance, an additional longitudinal compo-

nent (B0−ω/γ) appears, leading to oblique precession patterns. The effectiveness

of an RF pulse is maximized when its frequency closely matches the Larmor fre-

quency of the spins, ensuring that the RF field vector B1 dominates the spin dy-

namics, allowing selective perturbations of the spin system. Detailed calculations

can be found by Callaghan in [1].

2.1.4 Spin-Lattice and Spin-Spin Relaxation

Spin-lattice relaxation (T1) describes the process by which the component of the

magnetization vector along the direction of the static magnetic field B0 returns to
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its equilibrium state after being disturbed. This mechanism is fundamentally as-

sociated with the exchange of energy between the spin system and its surrounding

environment, or ‘lattice’. The rate of this energy exchange is characterized by the

relaxation time T1.

The rate of change of the longitudinal magnetization Mz is described by the

differential equation:

dMz

dt
= −Mz −M0

T1

(2.22)

where M0 is the equilibrium magnetization along B0. The solution to this equation

gives the evolution of Mz over time:

Mz(t) = M0(1− e−t/T1) (2.23)

This equation illustrates that Mz(t) gradually returns to its equilibrium value M0.

T1 relaxation is influenced by the molecular environment surrounding the spins.

Spin-spin relaxation (T2), unlike spin-lattice relaxation, involves the loss of

phase coherence among spins in the transverse plane, perpendicular to B0. This

dephasing is not directly caused by energy exchange with the lattice but rather by

interactions among the spins themselves.

The rate of change of the transverse magnetization components Mx and My is

described by:

dMx,y

dt
= −Mx,y

T2

(2.24)

The solution to this equation, which describes the exponential decay of the trans-
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verse magnetization, is:

Mx,y(t) = Mx,y(0)e
−t/T2 (2.25)

This expression indicates that Mx,y(t) decays exponentially with the characteristic

time constant T2. Transverse relaxation T2 is generally shorter than T1 because it

is sensitive to any interaction that causes phase shifts among spins.

These relaxation processes are critical in understanding Free Induction Decay

(FID). After an RF pulse is applied, the net magnetization vector precesses and

dephases in the transverse plane, producing the FID signal. The T2 relaxation time

directly affects the decay rate of the FID signal, while T1 governs the recovery of

the longitudinal magnetization, which is crucial for the signal intensity.

Figure 2.3: Left: Longitudinal relaxation (T1) shows how the magnetization Mz grad-
ually returns to its equilibrium value M0 after being disturbed. The recovery follows
an exponential curve modeled as equation (2.23). Right: Transverse relaxation (T2)
depicts the exponential decay of the transverse magnetization components Mx and My

over time, modeled as equation (2.25). This decay represents the loss of phase coherence
among spins.
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2.2 Pulse sequences

2.2.1 Spin Echo

Spin echo is a phenomenon central to NMR that counteracts signal decay due to

inhomogeneities in the external magnetic field. The concept was first introduced

by Erwin Hahn in 1950 and has since become a fundamental technique in NMR

and MRI to refocus spin magnetization, enhancing signal clarity and measurement

accuracy. In an NMR experiment, the initial phase coherence of the nuclear spins is

disrupted over time, predominantly due to microscopic variations in the magnetic

field, resulting in signal dephasing. The spin echo sequence ingeniously reverses

this dephasing through the application of a 180◦ RF pulse, which effectively inverts

the spin system and allows the spins to rephase, forming an echo of the original

NMR signal.

The Hahn echo consists of steps described in the Figure 2.4.
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Figure 2.4: The sequence begins with (1) the initial alignment of the magnetization
vector M along the external magnetic field. (2) A 90◦ pulse along the x-axis tips M
into the transverse plane. (3) Magnetization vectors then undergo free induction decay,
depicted by their spread in the plane due to magnetic field inhomogeneities. (4) At τ , a
180° pulse along the x-axis is applied, flipping the vectors to the opposite side. (5) This
leads to rephasing of the vectors as they converge back towards alignment. (6) Complete
rephasing occurs at 2τ , forming a spin echo, with the magnetization vector again fully
horizontal but opposite the initial direction. The sequence and timing of the pulses are
marked on the timeline above, with red bars indicating the application of the 90◦ and
180◦ pulses.

2.2.2 Pulse Gradient Spin Echo (PGSE)

The PGSE sequence is designed to measure molecular diffusion by applying mag-

netic field gradients, encoding and then decoding the position of spins. When spins

diffuse within a medium, their positions differ at the end of the experiment. Con-

sequently, the final gradient does not fully reverse the phase accumulated during

the initial gradient, leading to a reduction in the final magnetization. Thereby,
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the echo amplitude E is attenuated by diffusion, described by the Stejskal-Tanner

equation:

E = E(0) exp (−γ2g2δ2tdD) (2.26)

where E(0) is the initial echo amplitude, γ the gyromagnetic ratio, g the gradient

strength, δ the duration of the gradient pulse, ∆ the diffusion time, D the diffusion

coefficient and td = (∆ − δ/3) that is a modified diffusion time that accounts for

the effective observation period of molecular diffusion in the presence of gradient

pulses. This sequence allows for the investigation of microstructural environments

by observing how diffusion is affected by obstacles like cell membranes [9].

Considering the equation (2.26) we can call bvalue to the term that accompanies

the diffusion coefficient and define it as bvalue(∆, δ) = γ2g2δ2td.

The PGSE sequence is pivotal for measuring diffusion in MRI. It involves the

application of two gradient pulses separated by a 180◦ RF pulse, as shown in Figure

2.5. The first gradient pulse dephases the spins, while the 180◦ pulse inverts their

phase, allowing the second gradient pulse to rephase them, forming a spin echo.

The attenuation of the echo amplitude by diffusion is quantified by the Stejskal-

Tanner equation, providing insights into the microstructure of the tissue.
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Figure 2.5: PGSE sequence with gradient amplitude g, pulse duration δ, and gradient
pulse spacing ∆. τ is the time between the 90◦ and 180◦ RF pulse.
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Chapter 3

Molecular diffusion

3.1 Molecular Diffusion

Diffusion is a fundamental process describing the movement of particles from re-

gions of higher concentration to lower concentration. The molecular diffusion

process can be described by Fick’s laws, where the first law,

J = −D∇ϕ (3.1)

relates the diffusion flux J to the diffusion coefficient D and the concentration

gradient ∇ϕ.

This chapter delves into the physical principles of diffusion, guided by insights

from NMR studies, to unravel the intricacies of molecular motion. Through NMR,
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we gain a unique lens to observe diffusion, enabling the quantification and visual-

ization of this essential process in real-time and in situ [1].

3.1.1 Free Diffusion

Figure 3.1: Representation of a transverse cross-section of axonal tracts (gray figures)
and the diffusion in the interstices. The black path indicates the movement of water in
free diffusion.

In an ideal scenario where spins are free to move, the motion can be modeled as

a random walk. This random motion in three-dimensional space can be described

mathematically considering that the displacements are uncoupled and the motions

in any direction are equiprobable. The following equation describes the motion in

one dimension for each discrete site i on a lattice with a grid of separation l:

Wi(t+∆t) =
1

2
Wi−1(t) +

1

2
Wi+1(t) (3.2)

where Wi(t) represents the probability of finding a nucleus at site i at time t.
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Transitioning to a continuum by applying a Taylor expansion, we derive the

diffusion equation:

∂W

∂t
= D0

∂2W

∂x2
(3.3)

where D0 represents the diffusion coefficient, characterized by [10]:

D0 = lim
∆t→0,l→0

l2

2∆t
(3.4)

This diffusion coefficient is fundamental in describing how the macroscopic diffu-

sion process emerges from microscopic random walks, historically derived by Albert

Einstein for Brownian motion. The mean square displacement, in one dimension,

is given by:

⟨(x(t)− x(0))2⟩ = 2D0t (3.5)

and, in three dimensions,

⟨(r(t)− r(0))2⟩ = 6D0t (3.6)
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3.1.2 Restricted Diffusion

Figure 3.2: Representation of a transverse cross-section of axonal tracts (gray figures)
and the diffusion in the interstices. The red path indicates the movement of water in
restricted diffusion.

In biological tissues, diffusion is often restricted by cellular structures, altering

the free diffusion model. The mean square displacement no longer follows the

linear relationship and is described by equation (3.1.2) that describes short times.

For longer times, where diffusion encounters physical barriers, the displacement

saturates due to these restrictions, indicating the physical limits imposed by the

microstructure.

The saturation level can be related to the microstructural geometry, necessitat-

ing the treatment of x(t) as a stochastic variable. Analyzing a stochastic variable

involves defining its behavior through its autocorrelation function ⟨x(t)x(0)⟩, which

measures the ‘memory’ of the process by indicating how correlated a variable re-

mains with its past states. At t = 0, the autocorrelation function equals the mean
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squared value of the variable ⟨x2⟩.

As time progresses, the autocorrelation typically decays, reflecting the dimin-

ishing influence of the initial state on x(t). The decay rate of this function is

crucial for understanding how quickly the properties of the system change over

time. The autocorrelation function can be normalized to yield the autocorrelation

decay function g(t), expressed as

g(t) =
⟨x(t)x(0)⟩ − ⟨x⟩2

⟨x2⟩ − ⟨x⟩2
(3.7)

Here, ⟨x⟩ is the mean value of x. This normalization helps in comparing the

correlation functions of different systems or different states of the same system on

a similar scale.

The correlation time, τc, is a measure of the average time over which the

function g(t) retains significant values. It is defined as:

τc =

∫ ∞

0

g(t) dt (3.8)

The correlation time, τc measures the average duration over which g(t) retains

significant values, providing insights into the lasting impact of past states on future

states of the system. In the context of magnetic resonance, τc helps describe how

quickly spins lose memory of their initial orientations due to interactions with their

environment.

For restricted diffusion, as t → ∞, the mean square displacement equation
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stabilizes:

lim
t→∞

⟨∆x2(t)⟩ = 2D0τc = l2c (3.9)

where lc is defined as the correlation length of the system [10].

3.1.3 Tortuosity and Effective Diffusion in Porous Media

Figure 3.3: Representation of a transverse cross-section of axonal tracts (gray figures)
and the diffusion in the interstices. The green path indicates the movement of water in
tortuous diffusion.

Tortuosity is a key concept in the study of diffusion through porous media, which

often contains regions inaccessible to diffusing particles, thereby affecting the path-

way and efficiency of diffusion. The effective diffusion coefficient, Deff(t), captures

these dynamics and is mathematically described as:

Deff(t) =
⟨(r(t)− r(0))2⟩

6t
(3.10)
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This expression, which is analogous to the time-dependent diffusion coefficient

(3.6), quantifies the incoherent random motion of spins within the pore spaces.

Over time, as more spins encounter barriers, Deff(t) evolves, eventually approach-

ing a steady state that reflects the connectivity and structural complexity of the

medium.

For media with well-defined correlation lengths, lc, described in equation (3.9),

the long-term behavior of diffusion is governed by the relationship:

lim
t→∞

Deff(t)

D0

=
Deff(∞)

D0

=
1

α
(3.11)

Here, 1/α quantifies the tortuosity of the pore space, indicating how the geometric

constraints of the medium impede the free diffusion of particles.

Generally, for porous media, this regime is characterized by the fact that Deff(t)

becomes constant when t → ∞. In this context, tortuosity α is defined as a mea-

sure of the connectivity between the pores in which diffusion occurs [1]. Specifi-

cally, α can provide insights into the structural complexity and the extent of the

restrictions within the medium.
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Chapter 4

Characterization of apparent

diffusion coefficients of the

extra-axonal space of the

white-matter phantom

The experiment was conducted at the Spectroscopy and Nuclear Magnetic Res-

onance Imaging Laboratory within the Department of Medical Physics at In-

stituto Balseiro in Bariloche, Argentina. It was employed a 9.4 Tesla Bruker

Avance III HD WB NMR spectrometer, featuring a 1H resonance frequency of

ωz = 400.15 MHz. Utilization included a Micro 2.5 probe, which is capable of

generating magnetic field gradients up to 1500 mT/m across three spatial dimen-

sions, and equipped with a resonator diameter of 20 mm. The temperature during
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the experiments was maintained at 25 ◦C. The objective of these measurements

is to investigate the variation of the diffusion coefficient as a function of the sys-

tem’s evolution time. This analysis facilitates the identification of distinct diffusion

regimes decribed in Section 3.

In this research, the experimental setup detailed in the master thesis project

“Filtros Selectivos de Dinámicas Traslacionales en Microestructuras de Materia

Blanca con MRI” by Lic. Ezequiel L. Saidman, supervised by Dr. Gonzalo A.

Álvarez [10]. Comprehensive specifications and procedural nuances of the original

experimental design are fully described in this reference.

The core objective of our replication was to observe restricted diffusion effects

similar to those found in the extra-axonal regions of the brain. To this end,

aramid (Kevlar) fibers with diameters approximating those of axonal structures

in human and murine brains (approximately 10 µm) were used. These fibers were

arranged into compact mesh-like bundles within a 15 ml Falcon tube, simulating

the structured complexity of brain tissue. The assembly was immersed in distilled

water to facilitate diffusion studies, mirroring the hydration conditions in neural

environments. This setup is expected to exhibit three diffusive behaviors based on

the interaction of water molecules with the microstructured environment.



47

4.1 Measurement of difussion coefficient using

PGSE sequence

In the conducted experiment, the objective was to capture images by varying the

angle of gradient application from 0◦ (transverse) to 90◦ (longitudinal). Utilizing

the principles of the PGSE sequence, as elucidated in Figure 2.5, the apparatus was

configured to systematically alter the angle corresponding to a specified diffusion

time, ∆. For this experiment, ∆ was set within the range from 8.1 to 100 ms, and

the bvalue varies from 300 to 3000 s·mm−2. The experimental setup was arranged in

two configurations: the first configuration captured 10 images for each angle across

the specified ∆, culminating in a total of 110 images; the second configuration

captured 2 images for each angle and each ∆, resulting in a total of 22 images.

Additional, the pulse duration δ was set to 2.5 ms.

For data processing, Python was employed and brukerapi library was used to

read the data. The extraction of image information involved considering three sets

of coordinates corresponding to the regions of interest (ROI) whose evolution was

to be evaluated in terms of direction and pulse spacing. Figure 4.1b illustrates

each ROI, distinguishing them by color: Large Fiber (red), Small Fiber (green),

and Free Water (blue).
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(a) Phantom (b) Regions of Interest (ROIs)

Figure 4.1: Transverse phantom image obtained by the NMR technique. (a) Large Fiber
(restricted) ROI. (b) Small Fiber (restricted) ROI. (c) Free Water (unrestricted) ROI.
Acquisition in field of view 15 × 15 mm with a slice thickness of 1 mm, and a resolution
of 192 × 90 px.

The image data are stored in a tensor, representing spatial variations in the

net magnetization of the ensemble of spins. Each pixel in the image is encoded on

a grayscale spectrum, where the intensity of each pixel corresponds to the mag-

netization properties of the tissue being imaged. Specifically, pixels that appear

white indicate tissues with very short T1 relaxation times or very long T2 relax-

ation times. Conversely, pixels that appear black correspond to regions where T2

relaxation occurs very rapidly, indicating minimal transverse magnetization at the

time of measurement. This encoding scheme allows for detailed visualization of

tissue characteristics based on their magnetic relaxation properties.

Utilizing the images obtained from the spectrometer, the subsequent step in-

volved analyzing the behavior of magnetization as a function of the bvalue. Figure
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Figure 4.2: Representation of the Normalized Magnetization signal decay of the Large
and Small Fiber, respectively, at ∆ = 8.1 ms.

4.2 illustrates the behavior of the normalized magnetization, highlighting that an

increase in the bvalue correlates with a progressive loss of signal, which may be

attributable to artifacts. Adittional, as increasing the angle θ for each fiber, the

signal loss signal faster.

To address the issue of signal loss, a linear fit represented as y = ax + b was

applied. Large bvalues were discarded, and a range of 300 to 600 s·mm−2 was used

for the fitting. This relationship was integrated with the Stejskal-Tanner equation

(2.26), expressed as:

ln

(
M

M0

)
= −bvalueD (4.1)

where the diffusion coefficient value a and the intercept b were determined.

At zero gradient, the bvalue is effectively nullified, yielding a recalibrated value

for M0, which is crucial for normalization. Subsequently, the value b for the linear

fit is used to determine the initial value. To correct further errors, it was con-

sidered that the normalization might be inaccurately applied, indicating that the
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experimental form of the equation (2.26) should include a factor A to account for

artifacts, as follows:

M

M0

= Ae−bvalueD (4.2)

Thus,

ln

(
M

M0

)
= ln (A)− bvalueD (4.3)

where ln(A) corresponds to the intercept b of the previous linear fit.

By analyzing the initial magnetization and the average diffusion coefficient for

each ∆ time, a constant behavior is observed only for small ∆ values (up to 50 ms).

Therefore, the entire calibration will be conducted using eight bvalues, ranging from

8.1 to 50 ms.

With this adjusted normalization approach, the diffusion coefficient values were

accurately determined and corrected. The initial step involves analyzing the re-

gion of interest (ROI) for free water to observe unrestricted behavior. This analysis

helps determine the unrestricted diffusion coefficient, which is essential for correctly

normalizing the fiber data. Furthermore, this approach facilitates a deeper inves-

tigation of the physical concepts underlying diffusion in the absence of obstacles.
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4.1.1 Free water, Unrestricted Diffusion as a Function of

Diffusion Orientation θ

Figure 4.3: Normalized free water diffusion coefficient as a function of θ.

By plotting the water diffusion coefficient as a function of the gradient orienta-

tion, it is observed that the curves exhibit an increase, displaying behavior that

is theoretically incorrect. For free water, the diffusion coefficient should remain

constant regardless of the gradient angle, as there are no obstacles that might

cause restricted diffusion behavior, whether the gradient is longitudinal or trans-

verse. This indicates that there is likely a calibration error in the gradient that is

affecting the results, assuming that γ and δ of the bvalue contain no error, as the

sequence remains consistent across all experiments.
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4.1.2 Calibrating the gradient system

In NMR experiments, the gradient system is used to apply spatially varying mag-

netic fields, which are crucial for encoding spatial information and for diffusion

measurements using techniques like PGSE. Ideally, these gradients should be uni-

form and well-calibrated to ensure accurate measurements.

However, as explained before, it is observed that the gradient strength can vary

with the orientation of the applied gradient. This orientation dependency can be

expressed in terms of an angle θ, which represents the direction of the gradient

relative to a reference axis.

To describe the gradient vector g as a function of this angle, we consider its

components along the x-axis and z-axis:

g = gx cos θx̂+ gz sin θẑ (4.4)

However, a discrepancy is observed between the gradient components along

the x-axis and z-axis. The reference value of gx is used as the correct one. Thus,

introducing a correction ∆g for gz,

gz = gx +∆g (4.5)

Consequently, at θ = 0◦, only the x-component is present, and at θ = 90◦, only

the z-component is dominant. This directional dependency of the gradient must be
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carefully calibrated to ensure accurate measurements across different orientations.

The magnitude of the gradient vector can be calculated as follows:

g =| g | = (g2x cos
2 θ + g2z sin

2 θ)1/2 (4.6)

= (g2x cos
2 θ + (gx +∆g)2 sin2 θ)1/2 (4.7)

= (g2x + 2gx∆g sin2 θ + (∆g)2 sin4 θ)1/2 (4.8)

Assuming (∆g)2 ≈ 0

g = gx

(
1 +

2∆g

gx
sin2 θ

)1/2

(4.9)

By re-writing the equation with σ = 2∆g/gx, the following expression is obtained:

g2 = g2x
(
1 + σ sin2 θ

)
(4.10)

The parameter σ contains information about the gradient gx and the gradient error

∆g. Now, replacing the gradient g into equation (2.26), this can be expressed as:

ln

(
M

M0

)
= −γ2δ2tdg

2
x

(
1 + σ sin2 θ

)
D0 = −γ2g2xδ

2tdDeff (4.11)

where the effective diffusion coefficient Deff is,

Deff = D0

(
1 + σ sin2 θ

)
(4.12)

Consequently, the new diffusion coefficient Deff depends on both the angle and
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the gradient correction.

(a)

(b)

Figure 4.4: (a) The plot illustrates the fit 4.12 applied to the corrected curves of the
experimental values of the diffusion coefficient as a function of θ. (b) The fitting pa-
rameters σ and D0 are displayed. A red horizontal line indicates the mean value of each
parameter.
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Recalling that the experimental curves in Figure 4.3 exhibited an increasing

behavior as a function of θ, we can adjust the effective diffusion coefficientDeff since

it includes the term that accounts for this behavior due to the angle θ and σ, which

contains information about the gradient. Therefore, by fitting the experimental

curves using Equation (4.12), we can obtain the numerical values that model these

parameters.

Thus, through data fitting (Figure 4.4a), we obtain:

σ = 5.10× 10−2 (4.13)

and,

D0 = 2.25× 10−3 mm2

s
(4.14)

The value D0 is which it is going to be used to normalize the fiber curves. It

is also the value referred to as the unrestricted diffusion coefficient.
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4.2 Geometrical Analysis of Restricted Diffusion

4.2.1 Restricted Diffusion as a Function of Diffusion Time

∆

Figure 4.5: Corrected free water normalized diffusion coefficient as a function of ∆

Given that the corrected plot of the free water diffusion coefficient as a func-

tion of diffusion time display a constant behavior—characterized by noise, which

manifests not as systematic but as consistent fluctuations—this outcome aligns

with theoretical expectations, see Figure 4.5. It demonstrates that the diffusion

coefficient remains unchanged with an increase in diffusion time for free water.

This constancy underscores that the expression for Deff is correctly formulated to

depend solely on the gradient orientation.
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Since no additional correction is needed for Deff in relation to ∆ in an unre-

stricted medium, the next step is to adjust the fiber data using the Deff correction

to calculate Dapp. This corrected value depends on both the gradient orientation

θ and the diffusion time ∆ for the restricted medium.

4.2.2 Restricted Diffusion as a Function of Diffusion Ori-

entation θ

The diffusion coefficient is influenced by factors such as gradient intensity, diffusion

time, and surface restrictions. Consequently, the new diffusion coefficient, Dapp, is

defined as:

Dapp =
D

1 + σ sin2 θ
(4.15)

Here, D represents the experimental values obtained initially, and σ is the param-

eter determined for the unrestricted correction (4.13).

Given the porous media behavior of both the large and small fibers, they will

exhibit restricted medium characteristics. This behavior depends on both θ and

∆, resulting in the following corrected curves:
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(a)

(b)

Figure 4.6: (a) and (b) depict the D versus θ plots for large and small fibers, respectively.
In both graphs, the curves represent the corrected apparent diffusion coefficient (Dapp)
values.
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(a)

(b)

Figure 4.7: (a) and (b) depict the D versus θ plots for large fiber, small fiber, and free
water at diffusion times ∆ = 8.102782 ms and ∆ = 50.0 ms, respectively. The blue
curves represent free water, red curves represent large fibers, and green curves represent
small fibers. Both experimental (Exp) and corrected (Corr) data are shown.
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The Figures 4.7 illustrate the behavior of the diffusion coefficient D as a func-

tion of the angle θ for different diffusion times. For free water (blue curves),

the corrected data maintains a constant behavior across θ, indicating consistent

diffusion properties as expected.

In the case of the fibers, the corrected curves do not flatten completely because

the diffusion coefficient is expected to increase with the angle θ. This increase

is due to a reduced collision frequency with restrictions, such as walls, at higher

angles. While the corrected fiber curves initially match the experimental data,

they diverge as θ increases due to the applied gradient correction.

Specifically, Figure 4.7a shows smoother curves compared to Figure 4.7b, which

displays some noise attributed to the longer diffusion time. The smoothing effect

in the shorter diffusion time plot is indicative of less complex interactions within

the medium, whereas the noise in the longer diffusion time plot suggests increased

complexity and potential artifacts. These observations are critical for validating

the correction applied to the diffusion measurements and understanding the un-

derlying physical processes in different media.

4.2.3 Fibers Diffusion as a Function of Diffusion Time ∆

For short diffusion times, the motion of diffusing particles is primarily governed by

their free path before encountering any barriers. In this regime, the diffusion coef-

ficient can be approximated by considering the immediate interactions of particles

with the pore boundaries. This behavior is characterized by a time-dependent
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relationship, often described by a term involving
√
D0t [11]. The short-time ap-

proximation is crucial for understanding how particles initially interact with the

microstructure of the medium, giving insight into the surface-area-to-volume ratio

(S/Vp) and the initial boundary effects on diffusion [12].

In the intermediate time regime, particles begin to encounter the geometric

constraints of the medium more frequently. This results in a more complex time

dependence of the diffusion coefficient, which can be captured by terms like β/t.

The intermediate regime reflects the transition from free diffusion to the restricted

diffusion imposed by the microstructure of the medium [13]. During this period,

the diffusion process is influenced by the size and connectivity of the pores, as well

as the overall arrangement of obstacles within the medium.

For long diffusion times, the effective diffusion coefficient approaches a steady

state, reflecting the overall connectivity and structural complexity of the medium.

The long-time behavior is often dominated by the tortuosity of the medium ex-

plained in Section 3.1.3. The steady-state value provides insight into the extent to

which the medium impedes diffusion relative to free diffusion. At this stage, the

diffusion process is significantly influenced by the tortuosity, which quantifies how

convoluted the path of the diffusing particles is due to the medium’s structure.

The subsequent step involves analyzing the behavior of the corrected curves

depicted in Figure 4.6 and interpreting their implications with respect to time and

size. To accomplish this, two phenomenological models will be used: the Power

Law and the Padé Approximant. These models will facilitate the derivation of

results based on the parameters adjusted for our curves. In this part of the fitting
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of D/D0 vs ∆, only the large fiber ROI will be used because the plot of the small

fiber is very noisy and contains many artifacts, making it difficult to adjust the

data to the phenomenological models.

Power Law Model

The Power Law model:

D(t)

D0

=
1

α
+

β1

t
− β2

t3/2
(4.16)

is particularly useful for describing the diffusion process over a wide range of

timescales [14]. This model captures the initial, intermediate, and long-term be-

haviors of diffusion in a porous medium through its parameters. The parameter α

represents the long-time steady-state diffusion behavior, indicating the tortuosity

of the medium. A higher α value suggests greater impediments to diffusion due

to a more tortuous path. The term β1/t describes the intermediate time regime,

where particles frequently encounter geometric constraints, providing insight into

the pore size and the connectivity of the medium. Additionally, β2/t
3/2 accounts

for the complex long-term interactions and hindrances, reflecting the overall struc-

tural complexity of the medium.

The Power Law model is ideal for scenarios requiring a detailed understanding

of the diffusion process across multiple timescales, especially when dealing with

media that have complex structures with varying tortuosity and connectivity. In

our analysis, the parameter β2 was set to zero. This decision was based on data

adjustments showing that β2 was sufficiently close to zero, justifying its exclusion
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from the model. As a result:

D(t)

D0

=
1

α
+

β1

t
(4.17)

Figure 4.8: Experimental data of Large fiberfibers D/D0 as a function of ∆ fitted with
the Power Law model. The scatter points represent the experimental data, while the
curves represent the fitting.

Padé Approximant

The Padé approximant offers a robust method for interpolating between the short-

time and long-time diffusion behaviors. It is expressed as follows:
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D(t)

D0

= 1−
(
1− 1

α

)
c
√
t+ (1− 1/α)t/Θ

(1− 1/α) + c
√
t+ (1− 1/α)t/Θ

(4.18)

The parameters in this model are designed to capture different aspects of the

diffusion process. The term (1−1/α) represents the deviation from the steady-state

diffusion behavior due to tortuosity. The parameter c
√
t captures the short-time

diffusion behavior, reflecting the initial interactions of diffusing particles with the

pore walls. Here, c = (4/9
√
π)(S/Vp)(D0), where S/Vp is the surface-area-to-

volume ratio of the pores [1]. Additionally, (1− 1/α) t/Θ accounts for the inter-

mediate and long-time diffusion behaviors, providing a smooth transition between

the short-time and long-time limits. Θ is a fitting parameter with dimensions of

time, scaling with the square of the pore size.

It will be set c to zero because the experimental setup does not achieve the

microtime and microstructure resolution required to observe short-time diffusion

effects. This simplification is appropriate as it eliminates the short-time term

from the Padé approximant, focusing the analysis on the intermediate and long-

time diffusion behaviors, which are more relevant to our study. By setting c to

zero, the equation simplifies to:

D(t)

D0

= 1−
(
1− 1

α

)
t/Θ

1 + t/Θ
(4.19)
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Figure 4.9: Experimental data of fibers D/D0 as a function of ∆ fitted with the Padé
Aproximant. The scatter points represent the experimental data, while the curves rep-
resent the fitting.

This adjustment focuses our analysis on the more significant intermediate and

long-term effects, providing a clearer understanding of how tortuosity and the

medium’s structure influence diffusion over these timescales.
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Chapter 5

Quantitative analysis of the

hindered diffusion within the

extra-axonal space

5.1 Difussion Parameters

5.1.1 Tortuosity

Figure 5.1 illustrates the parameter 1/α as a function of θ for both the Power

Law and Padé Approximant models. Here, 1/α represents the tortuosity of the

medium, where higher values indicate more convoluted pathways. Both models

show 1/α increasing with θ, but the Power Law model consistently predicts higher
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tortuosity. This suggests that the Power Law model might be more sensitive to

changes in tortuosity or might overestimate the tortuosity compared to the Padé

Approximant.

Figure 5.1: Tortuosity 1/α as a function of θ for the Power Law and Padé Approximant
models.

Notably, the Padé Approximant model shows 1/α stabilizing at higher angles,

indicating that the tortuosity reaches a constant value. This saturation suggests

that beyond a certain angle, the medium’s geometric constraints and diffusion

paths have reached maximum complexity, and further increases in θ do not sig-

nificantly affect the diffusion process.This saturation is crucial for our study as it

indicates a limit to the tortuosity, reflecting a threshold in the medium’s structural

complexity.
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Considering the cylindrical symmetry of the fibers, which are aligned along the

z-axis, the angle θ = 0◦ represents transverse diffusion. In this orientation, the

diffusion path encounters the maximum number of obstacles due to the perpendic-

ular arrangement of fibers, resulting in higher tortuosity. Conversely, at θ = 90◦,

the diffusion is parallel to the fibers, resembling more free diffusion with fewer ob-

structions, also explained in Figure 4.7. This geometrical setup explains why the

tortuosity is lower at higher angles and why the Padé Approximant model shows

saturation.

The angle at which this occurs signifies the point where the diffusion pathways

are most intricately entangled transversely. Beyond this angle, further increases

in θ align the diffusion paths more parallel to the fibers, thereby reducing the

influence of structural constraints. Understanding this behavior provides insights

into the geometrical and diffusive constraints within the medium, highlighting

the importance of θ in determining the diffusion characteristics and the effective

tortuosity of the system.

By analyzing the convergence behavior of 1/α with θ, valuable information

about the interaction between diffusion pathways and fiber alignment is obtained.

The distinction between the models suggests that while both can describe the

general trend, the Padé Approximant’s saturation feature offers a more realistic

depiction of the upper limits of tortuosity in highly structured media.
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5.1.2 Convergence times to tortuosity

β1 represents the characteristic timescale for the intermediate diffusion regime,

capturing how quickly particles transition from free diffusion to encountering ge-

ometric constraints. This timescale is influenced by the microstructural barriers

and the alignment of fibers.

Figure 5.2: β1 as a function of θ for the Power Law model.

The initial decrease in β1 as θ increases suggests that up to θ ≈ 40◦, particles

face more resistance in their diffusion pathways. This indicates that the fibers are

aligned in a way that presents more obstructions to particle movement, making

the diffusion process more tortuous and requiring a longer time for particles to

transition from free diffusion to encountering significant geometric constraints.
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Around θ = 40◦, β1 reaches a minimum, reflecting the most obstructed diffusion

pathway with the highest resistance. Beyond this angle, β1 increases, indicating

that the diffusion paths become less obstructed and less tortuous, allowing for a

quicker transition to the intermediate diffusion regime. This change in β1 reflects

the enhanced impact of microstructural barriers on the diffusion process, making

the intermediate diffusion regime more significant.

In terms of the fiber geometry, at smaller angles, the particles move trans-

versely to the fiber alignment, encountering more obstacles and a higher degree

of tortuosity, which is why β1 is lower. As θ increases towards 90 ◦, the diffusion

path aligns more optimally with the fiber structure, encountering fewer barriers

and more resembling free diffusion, resulting in a higher β1 Thus, β1 serves as an

indicator of how the diffusion pathways change with the angle θ, highlighting the

transitions between different diffusion regimes and the corresponding impact of

microstructural barriers on the diffusion process.
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Figure 5.3: Θ as a function of θ for the Padé Approximant model.

Finally, Figure 5.3 presents Θ as a function of θ for the Padé Approximant

model. Θ is a fitting parameter representing a characteristic time scale that in-

fluences the transition from short to long-time diffusion behavior. The plot shows

that Θ increases with θ, remaining relatively low and stable for θ < 30◦ and then

increasing significantly.

For smaller angles, the time scale Θ is short, indicating that the transition from

short to long-time behavior happens quickly due to the high number of obstacles

encountered in the transverse direction. As θ increases, the diffusion path aligns

more with the fibers, reducing the number of obstacles, which results in a longer

transition time to the steady-state diffusion regime.
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The significant increase in Θ at higher angles reflects reduced geometric con-

straints and a shift towards free diffusion behavior. This indicates that the medium’s

complexity and connectivity impact the diffusion dynamics, with longer Θ values

at higher angles suggesting that diffusion in these directions remains less restricted

for longer periods before transitioning to the steady-state behavior.

In the Padé Approximant model, the term t/Θ decreases as Θ increases, show-

ing that higher Θ values lead to a slower transition from short to long-time diffusion

behavior. This is consistent with the physical interpretation that at higher angles,

the particles experience fewer geometric constraints, and the diffusion remains in

the short-time regime for an extended period.
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Chapter 6

Conclusions

The initial phase of the study focused on identifying and correcting artifacts that

could potentially distort the diffusion measurements. By calibrating the gradient

system and accounting for errors related to gradient orientation, induced by hard-

ware calibration errors, we ensured the reliability of the experimental data. The

calibration process revealed a dependency of the gradient on the angle θ, leading to

the formulation of an effective diffusion coefficient Deff that considers these varia-

tions. This correction was encapsulated in the parameter Dapp, which includes the

factor σ to account for gradient inconsistencies. Notably, the measured diffusion

coefficient D0 for the free diffusion of water was found to be 2.25 × 10−3 mm2/s,

consistent with the literature value for water at T = 25◦C [15].

The study employed two primary models to characterize the diffusion param-

eters: the Power Law model and the Padé Approximant. These models provided

insights into the diffusion behavior across different time scales, capturing the nu-
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ances of short-term, intermediate, and long-term diffusion processes. The Power

Law model was particularly useful for describing the steady-state diffusion behav-

ior and the intermediate regime, while the Padé Approximant offered a robust

method for interpolating between different diffusion behaviors.

One of the objectives of this work was to characterize the diffusion of the phan-

tom assembled in the laboratory in different spatial directions. This complements

previous characterizations conducted in the laboratory, which were limited to a

single spatial direction. This objective was successfully achieved through data

analysis.

The results demonstrated that tortuosity, a measure of the complexity of dif-

fusion pathways, varied significantly with the angle of diffusion orientation. The

Padé Approximant model revealed that tortuosity approaches a constant value at

higher angles, indicating a saturation point beyond which additional increases in

θ do not significantly affect the diffusion process. This finding underscores the

importance of geometric constraints in influencing diffusion dynamics.

The study identified characteristic timescales for the transition from free diffu-

sion to restricted diffusion, influenced by the alignment of fibers and the structural

complexity of the medium. The parameter β1, representing the intermediate diffu-

sion regime, showed a minimum at θ ≈ 40◦, reflecting the most obstructed diffusion

pathway. This transition is crucial for understanding how particles interact with

microstructural barriers over time.

This study contributes to the field of NMR and diffusion research by offering



75

a refined approach to measuring and characterizing diffusion in structured media.

The integration of artifact correction and advanced modeling techniques enhances

the accuracy of diffusion measurements, providing deeper insights into the under-

lying physical processes.

The next step in this research is to apply the equations for correlation length

and correlation time to the corrected diffusion curves obtained in this study. These

equations will require numerical solutions to fully capture the dynamics of diffusion

in porous media. The correlation length reflects the average distance over which

particles are affected by the microstructure, while the correlation time represents

the timescale over which particles experience these structural influences. Under-

standing these parameters will provide deeper insights into the physical behavior

of diffusion in complex media, enabling more precise modeling and prediction of

diffusion processes.

Future research should focus on further refining the models used in this study

and exploring their applicability to other types of structured media. Additionally,

the development of more sophisticated calibration techniques and the incorpora-

tion of higher-resolution imaging methods could provide even greater insights into

diffusion processes at the microscopic level.

In conclusion, this study successfully addressed the challenges of artifact cor-

rection and diffusion parameter characterization in NMR, offering valuable contri-

butions to the understanding of molecular diffusion in porous media. The findings

underscore the importance of precise calibration and advanced modeling in achiev-

ing accurate and meaningful results in diffusion research.
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Furthermore, the methodologies and findings of this study have significant im-

plications for clinical applications. By enhancing our ability to accurately measure

and characterize diffusion in structured media, we can improve imaging techniques

used in medical diagnostics, such as axonal imaging for early detection of neuro-

logical conditions. This approach can also aid in the characterization of differ-

ent tissues and pathological pathways, leading to better diagnosis and treatment

planning in various medical fields. The ability to precisely model diffusion in

complex biological tissues could revolutionize our understanding and management

of diseases, ultimately contributing to more effective and personalized healthcare

solutions.
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