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Resumen

En este trabajo, se utiliza el enfoque de expansión invariante para determinar el

Hamiltoniano de las subredes de grafeno consistente con los elementos de simetría

del grupo puntual D3h. El estudio incluye los efectos del momento, el pseudoe-

spín y los términos activos de espín. Inicialmente, el Hamiltoniano se genera

utilizando el método de enlace fuerte, hasta el tercer orden alrededor del punto

de alta simetría K de Dirac. Posteriormente, el mismo Hamiltoniano se deriva

utilizando el enfoque teórico de grupos. Se explican varios conceptos de la teoría

de grupos, con ejemplos proporcionados para ayudar al lector a familiarizarse con

el formalismo de expansión invariante. El principal producto de este trabajo es

un software desarrollado para generar operadores Hamiltonianos para un grupo

puntual arbitrario. El análisis resalta las principales deficiencias de los enfoques

de enlace fuerte y teóricos de grupos en la derivación de Hamiltonianos modelo

efectivos, y muestra cómo combinarlos para describir materiales de manera exitosa.

Palabras clave: expansión invariante, enlace fuerte, grupo puntual D3h
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Abstract

In this work, the invariant expansion approach is utilized to determine the Hamil-

tonian for graphene sublattices consistent with the symmetry elements of the point

group D3h. The study includes the effects of momentum, pseudospin, and spin ac-

tive terms. Initially, the Hamiltonian is generated using the tight-binding method,

up to third order around the high symmetry K Dirac point. Subsequently, the

same Hamiltonian is derived using the group theoretical approach. Several con-

cepts of group theory are explained, with examples provided to help the reader

familiarize themselves with the invariant expansion formalism. The main prod-

uct of this work is software developed to generate Hamiltonian operators for an

arbitrary point group. The analysis highlights key shortcomings of both the tight-

binding and group theoretical approaches in deriving effective model Hamiltonians,

and shows how to combine them to successfully describe materials.

Keywords: invariant expansion, tight binding, D3h point group
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Chapter 1

Introduction

Tight-binding (TB) models provide an effective, though not systematic, way to

predict how electrons behave in solids by allowing the choice of an arbitrary number

of neighbors to describe the physics of a material. They are especially useful for

understanding materials with complex band structures, like graphene, and help

explain special features such as the linear dispersion at the Fermi level3,4.

However, any perturbation added to the TB Hamiltonian is usually considered

with highly informed criteria, which can lead to the exclusion of important terms,

failing to explain significant physical processes. While these omissions are often

negligible in materials with relatively light atoms like graphene3, more complex

systems do not follow this trend.

An alternative approach utilizes group theory tools to synthesize Hamiltonians

by exploiting the symmetries of materials, known as invariant expansion. This
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method determines which point group best describes a material and selects a basis

set of wave functions that characterize the properties of the electrons, resulting in

a Hamiltonian described by a reducible representation of the point group.

The main advantage of this approach is its focus on the macroscopic charac-

teristics of the material, in contrast to TB models, which are often considered a

microscopic approach to solid-state physics. This perspective provides a clearer

understanding of the overall physical system, which is usually lost when using the

TB approach3,5.

The primary purpose of this work is to develop tools to generalize the ideas

of invariant expansion to other physical systems, using graphene as a model. The

ultimate goal is to establish a foundation for describing electron transport in low-

dimensional materials.

1.1 The Tight Binding Model in Graphene

The primitive lattice vectors a1 and a2 of the Bravais lattice in Cartesian coor-

dinates are shown in Figure 1.1a. The parameter a = 2.46 Å6 is the distance

between two atoms of the sub-lattice A or B 3,7.

a1 = a (1, 0) , a2 = a

(
1

2
,

√
3

2

)
(1.1)
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The primitive reciprocal lattice vectors b1 and b2 (1.2) are obtained using the

relation ai · bj = 2πδij. These form the reciprocal lattice shown in Figure 1.1b.

b1 =
2π

a

(
1, − 1√

3

)
, b2 =

2π

a

(
0,

2√
3

)
(1.2)

a2
a1

A

B

(a)

b2

b1

κx

κy

KK′

(b)

Figure 1.1: (a) The primitive lattice vectors on the honeycomb crystal structure
of monolayer graphene. The shaded rhomb is a unit cell with atoms A and B,
one of each sub-lattice. (b) The reciprocal lattice vectors. The coloured hexagon
represents the first Brillouin zone. Both Dirac valleys K and K′ are displayed.

Since the dispersion relation in the π electrons of graphene is independent of the

rest of the eigenvalues of the Hamiltonian, the energy bands can be approximated

by a TB model to an arbitrary number of nearest-neighbors6,8. For this work,

we choose to use third nearest neighbors to provide a general description of the

system, from which we can study simplifications or extend the analysis for more

generality as needed.

The normalized Bloch electronic wave function (1.3) for the carbon pz orbitals

in the K Dirac valley consists of a linear combination of Bloch functions that use
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coefficients cλn(κ), and a π-orbital function Φλκ(r) that contains phase compo-

nents dependent on atom position vectors Rλ on each sublattice λ = A,B, which

correspond to the two atomic wavefunctions in the unit cell, as seen in Figure

1.1a3,6. The summations extend over all N unit cells within the lattice.

Ψκn(r) =
∑
λ

cλn(κ)Φλ(r) (1.3)

Φλ(r) =
1√
N

∑
Rλ

eiκ·Rλ ϕλ (r−Rλ) (1.4)

First, second, and third nearest neighbors for an atom in the unit cell are

defined by equations (1.5) to (1.7), respectively. Notice that in all cases, the

symmetry of the system allows to obtain all vectors by a rotation matrix R(θ)3.

The complete sets of vectors are mentioned in Annex A.

τ
(j)
1 = R(2jπ/3)τ

(3)
1 , j = 1, . . . , 3 , τ

(3)
1 = a

(
0,

1√
3

)
(1.5)

τ
(j)
2 = R(jπ/3)a1, j = 1, . . . , 6 (1.6)

τ
(j)
3 = R(2jπ/3)τ

(3)
3 , j = 1, . . . , 3 , τ

(3)
3 = a

(
0, − 2√

3

)
(1.7)

Electron mobility is influenced by interactions among sites within the lattice.

The most general form of the energy of the j-th band, using its eigenbasis |Ψj⟩, is

given by Equation 1.86. Bands span over n atomic wavefunctions in the unit cell

j = 1, 2, . . . , n. The Hamiltonian matrix elements Hij = ⟨Φi| Ĥ |Φj⟩ and overlap

matrix elements Sij = ⟨Φi|Φj⟩ appear in the expansion. The coefficients c∗ij are
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τ
(1)
1

τ
(2)
1

τ
(3)
1

(a) K = 1

τ
(1)
2τ

(2)
2

τ
(3)
2

τ
(4)
2 τ

(5)
2

τ
(6)
2

(b) K = 2

τ
(1)
3

τ
(2)
3

τ
(3)
3

(c) K = 3

Figure 1.2: First K-nearest neighbors around carbon a B atom in graphene lattice:
(a) nearest-neighbors, (b) next nearest-neighbors, (c) next next nearest-neighbors.

also functions of the momentum vector κ, therefore are determined for each κ6.

ϵj(κ) =
⟨Ψj| Ĥ |Ψj⟩
⟨Ψj|Ψj⟩

=

∑
i,l c

∗
jicjl ⟨Φi| Ĥ |Φl⟩∑
i,l Silc∗jicjl

(1.8)

∂ ϵj
∂ c∗jm

=

∑
l Hmlcjl∑

i,l c
∗
jicjl ⟨Ψi|Ψl⟩

−
∑

i,l Hilc
∗
jicjl

∑
l Smlcjl(∑

i,l Silc∗jicjl

)2 = 0 (1.9)

The minimum values of the eigenvalues ϵj are found when optimized with

respect to c∗ij, obtaining Equation (1.9). The optimization leads to the matrix

equation ∑
l

Hmlcjl = ϵj
∑
l

Smlcjl, (1.10)

which may be expressed in matrix form as Hψj = ϵj Sψj, where each column vector

is defined as ψj = (cj1, cj2, . . . , cjN) over all n wavefunctions in the unit cell. The

overlap matrix S quantifies the physical overlap between atomic orbitals located

on adjacent atoms within the lattice, and therefore contributes to the eigenvalues
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ϵj. These are finally found by solving the secular equation

det (H− ϵj S) = 0, (1.11)

returning n eigenvalues for a given κ at symmetrical points in the unit cell.

In graphene, the matrix indices obey the sublattice structure in Equation (1.4),

therefore i = λ and j = λ′, for two atomic orbitals for π electrons. The elements of

the Hamiltonian matrix (1.12) are commonly referred to as the transfer integrals.

These elements characterize the hopping of electrons between atomic sites and

change depending on the interacting sublattices. The elements of S, often referred

to as overlap integrals, are illustrated by Equation (1.13).

Hλλ′ =
1

N

∑
Rλ,Rλ′

eiκ·(Rλ′−Rλ) ⟨ϕλ(r−Rλ)|H |ϕλ′(r−Rλ′)⟩ (1.12)

Sλλ′ =
1

N

∑
Rλ,Rλ′

eiκ·(Rλ′−Rλ) ⟨ϕλ(r−Rλ) |ϕλ′(r−Rλ′)⟩ (1.13)

It is noteworthy that the complex phase factor in the summation (1.12) rep-

resents the displacement between atom sites to a defined neighbor number m,

Rλ′ −Rλ = τ
(j)
m , which represents the neighboring sites under consideration. The

integral contains a matrix element of the Hamiltonian in the |ϕλ⟩ basis. This has
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been redefined as the hopping terms (1.14).

tm ≡ ⟨ϕλ(r−Rλ)| Ĥ |ϕλ′(r−Rλ − τ (j)
m )⟩ (1.14)

sm ≡ ⟨ϕλ(r−Rλ)|ϕλ′(r−Rλ − τ (j)
m )⟩ (1.15)

The Slater-Koster scheme neglects overlap integrals, i.e., Sλλ′ = 0 for any

λ ̸= λ′, and only on-site overlaps are SAA = 1, enabling the approximation S = 19.

However, the complete scheme considers the overlap scalars sAA′ (1.15) for as many

neighbors as needed. In this case, we have s1, s2, and s3 for the first, second,

and third neighbors, respectively. These are real numbers. Many calculations con-

ducted in this study will employ the Slater-Koster scheme to simplify the problem.

Consequently, in graphene, the off-diagonal elements of the overlap matrix S are

set to zero (SAB = SBA = 0), unless otherwise specified.

1.2 Transfer and Overlap Integrals

1.2.1 Hamiltonian and olverlap matrix elements

In the context of the three nearest-neighbors approximation, the diagonal elements

of the Hamiltonian consider both the on-site energy ϵ̃2p and the t2 hopping term

between the same lattice. Conversely, the off-diagonal elements contain the t1 and
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t3 hopping terms between different lattices. These parameters are real scalars.

HAA = H(0)
AA +H(2)

AA = ϵ̃2p + t2 f2(κ) (1.16)

HAB = H(1)
AB +H(3)

AB = t1 f1(κ) + t3 f3(κ) (1.17)

The diagonal terms (1.16) are equivalent across sub-lattices, i.e. (HAA = HBB),

as both contain identical carbon atoms. Additionally, the off-diagonal elements

(1.17) are each other’s complex conjugates (HBA = H∗
AB).

Notice the super-indices represent the neighbor number. Also, the appearance

of the terms fi(κ), which re-scale and add a phase shift to the hopping terms,

depends on the neighbor number (i = 0, 1, 2, 3). As an example, let’s calculate the

on-site energy i = 0. The summation occurs so that every neighboring orbital is

itself, i.e. the distance between neighbors is R′
A −RA = 0.

HAA =
1

N

∑
R′

A=RA

eiκ·(R
′
A−RA) ⟨ϕA(r−RA)| Ĥ |ϕA(r−R′

A)⟩ (1.18)

HAA =
1

N

∑
R′

A=RA

eiκ·0 ϵ̃2p ⟨ϕA(r−RA)|ϕA(r−RA)⟩ (1.19)

The basis for the pz orbitals is orthonormal, so the term ⟨ϕA|ϕA⟩ = 1. The phase

shift in this case is zero, and no dependence on κ is left. The summation then

spans all sites in the lattice, as shown in (1.20).

H(0)
AA =

1

N

N∑
i=1

ϵ̃2p = ϵ̃2p (1.20)
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The case for H(2)
AA is slightly different, since a phase is induced by the hopping

of electrons between neighboring sites. The geometry that satisfies this criterion is

R′
A−RA = τ

(j)
2 . As shown in Equation (1.6) and Figure 1.2b, there are j = 1, . . . , 6

second nearest-neighbors that belong to the same lattice.

H(2)
AA =

1

N

∑
R′

A=RA+τ
(j)
2

eiκ·(R
′
A−RA) ⟨ϕA(r−RA)| Ĥ |ϕA(r−R′

A)⟩ , (1.21)

H(2)
AA = t2 f2(κ) , where f2(κ) ≡

6∑
j=1

eiκ·τ
(j)
2 . (1.22)

The resulting energy term (1.22) is the product of a hopping term t2, and

the second nearest-neighbor phase factor f2. The remaining transfer integrals are

computed in a similar manner.

H(1)
AB = t1 f1(κ) , f1(κ) ≡

3∑
j=1

eiκ·τ
(j)
1 (1.23)

H(3)
AB = t3 f3(κ) , f3(κ) ≡

3∑
j=1

eiκ·τ
(j)
3 (1.24)

The overlap matrix elements (1.25) and (1.26) each contain an overlap term

associated with a nearest-neighbor. These are listed in (1.27).

SAA = S(0)
AA + S(2)

AA = 1 + s2 f2(κ) (1.25)

SAB = S(1)
AB + S(3)

AB = s1 f1(κ) + s3 f3(κ) (1.26)

When comparing the definition of the overlap (1.13) and transfer integrals
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(1.12), the most notable difference is the Hamiltonian operator Ĥ. It re-centers

the orbital functions ϕλ(r−Rλ), simplifying the inner product term. In the case of

the overlap integrals, there is no operator, so the inner products are not obvious.

However, these have the same value for all sites which belong to the same neighbor

number. For instance, all overlaps s1 are the same for all j = 1, . . . , 3.

s1 = ⟨ϕA(r−RA) |ϕB(r−RB − τ (j)
1 )⟩ , ∀j = 1, . . . , 3

s2 = ⟨ϕA(r−RA) |ϕA(r−RA − τ (j)
2 )⟩ , ∀j = 1, . . . , 6

s3 = ⟨ϕA(r−RA) |ϕB(r−RB − τ (j)
3 )⟩ , ∀j = 1, . . . , 3

(1.27)

1.2.2 Phase factors

All phase factors are sums of exponential functions that can be manipulated into

more comprehensible equations. The first (1.28) and third (1.29) phase factors are

very similar, since |τ 3| = 2|τ 1|. Both are complex valued functions:

f1(κ) =
(
ei

aκx
2 + e−iaκx

2

)
e
−i

aκy

2
√
3 + e

i
aκy√

3 = e
i
aκy√

3 + 2e
−i

aκy

2
√
3 cos

(aκx
2

)
, (1.28)

f3(κ) =
(
eiκxa + e−iκxa

)
e
i
κya√

3 + e
−i

2κya√
3 = e

− 2iκya√
3 + 2e

iκya√
3 cos (κxa). (1.29)

The second nearest-neighbor phase factor (1.30) is a real valued function, so it
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re-scales the hopping and overlap terms, as a function of κ as shown:

f2(κ) =
(
ei

a
2
κx + e−ia

2
κx
) (
ei

√
3
2
aκy + e−i

√
3

2
aκy

)
+ 2 cos (aκx) ,

f2(κ) = 4 cos

(√
3aκy
2

)
cos
(aκx

2

)
+ 4 cos2

(aκx
2

)
− 2. (1.30)

There is a relation between f1 and f2 that helps simplify analytical manipu-

lations when solving for the eigenvalues of the Hamiltonian matrix. The simplest

identity is obtained by calculating the squared absolute value of f1 is (1.32), and

comparing it to (1.30). From now on, we redefine f(κ) ≡ f1(κ).

|f(κ)|2 = f ∗
1 f1 = 4 cos

(√
3κya

2

)
cos
(κxa

2

)
+ 4 cos2

(κxa
2

)
+ 1 (1.31)

f2(κ) = |f(κ)|2 − 3 (1.32)

1.3 Eigenvalue equation

The eigenvalue equation at K yields a characteristic polynomial P (ϵ) with two pos-

sible eigenvalues ϵ+ and ϵ−, and eigenvectors ψ+ and ψ−. Using matrix elements

(1.16), (1.17), (1.25), and (1.26), the P (ϵ) polynomial takes the form

P (ϵ) = det (H− ϵS) = (HAA − ϵSAA)
2 − |HAB − ϵSAB|2 = 0. (1.33)

Notice the absolute value makes it difficult to solve for ϵ in some cases. The
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relation (1.32) allows for a convenient redefinition of the on-site energy, as shown

in (1.34). Consequently, the matrix element HAA changes according to (1.35), and

the SAA term changes similarly. The eigenvalues are then obtained by cases.

ϵ̃2p = ϵ2p − 3t2 (1.34)

HAA = ϵ2p + t2 |f(κ)|2 (1.35)

These relations also allow us to express the Hamiltonian matrix in a more

condensed form (1.36). Since this is a 2 × 2 matrix, the eigenvalue equation will

yield a characteristic polynomial P (ϵ) with two possible eigenvalues ϵ+ and ϵ−,

and corresponding eigenvectors ψ+ and ψ−. This matrix can be manipulated to

find simpler approximations for graphene, if needed.

H =

 ϵ2p + t2 |f(κ)|2 t1f(κ) + t3f3(κ)

t1f
∗(κ) + t3f

∗
3 (κ) ϵ2p + t2 |f(κ)|2

 (1.36)

After solving the characteristic equation for the nearest neighbors Hamiltonian

and rearrangement of terms, and introducing the variable n = ±1, which defines

the two energy bands of the π electrons, we have the eigenvalue

ϵn(κ) =
ϵ2p + nt1|f(κ)|
1 + ns1|f(κ)|

. (1.37)

The first-nearest neighbors approximation takes t2 = t3 = 0 and s2 = s3 = 0.

The terms t1 = −3.070 eV, s1 = 0.070 eV6,10 differ by two orders of magnitude,
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which suggests that overlap integrals might be negligible in systems like graphene

in particular situations. The energy eigenvalues for the next-nearest neighbors

Hamiltonian are obtained by solving the characteristic polynomial, and using a

similar rearrangement of terms as before, obtaining (1.38).

ϵn(κ) =
ϵ2p + nt1|f(κ)|+ t2|f(κ)|2

1 + ns1|f(κ)|+ s2 (3 + |f(κ)|2) (1.38)

The eigenvectors ψ+ and ψ− (1.39) are obtained by replacing each ϵ+ and

ϵ− back into H − ϵn1 = 0, and then row reducing the matrix. Let’s define the

function f̂(κ) = f/|f |. The property f − f ∗ = 0 holds. The complete process of

row reduction is shown in Annex B.

ψ+ =
1√
2

(
1, f̂ ∗

)
, ψ− =

1√
2

(
−f̂ , 1

)
. (1.39)

The matrix H−ϵS for the next next-nearest neighbors takes the complete form

(1.36). The analytic expression for the eigenvalues in this case is complicated since

there is no explicit relation between the variables s1, s3, f and f3. Therefore, the

three-neighbor approximation will be only addressed using a Taylor expansion of

the phase factors f and f3.

A series expansion of the elements of the Hamiltonian around high symme-

try points K contains several material-dependent coefficients, which are shown in

complete form in Annex C. Notice that the Hamiltonian satisfies HAB = H∗
BA and

HAB = H∗
BA to be a Hermitian operator.
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1.4 Spin-Orbit Coupling Hamiltonian

The physics of interest in this system occurs around the Fermi level, which is

located at 0, where both valence and conduction bands for the π electrons touch,

at the high symmetry points ±K, as shown in Figure 1.3a.

(a) (b)

Figure 1.3: (a) Bands at points of high symmetry at the edge of the first Brillouin
zone. (b) Energy surfaces around Dirac points2.

Pristine graphene is famous for having a dispersion relation dominated by k-

linear terms around the high symmetry points ±K, where k is the magnitude of

the momentum vector. These are often called the Dirac points, because the energy

surfaces of π electrons in the vicinity of these points, which are shown in Figure

1.3b, resemble those for the massless free fermions from the Dirac equation3.

The interesting fact is that after adding perturbations to the system, this sym-

metry breaks and the apparent relativistic behavior in graphene disappears. The

first perturbation to consider is the intrinsic spin-orbit coupling (SOC) in graphene,

which induces spectral gaps at the Dirac points, right on top of the smallest gap
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between the conduction and valence bands. This effect is seen from second-nearest

neighbors onwards. SOC could have important applications in quantum comput-

ing due to its relatively long spin lifetimes, enough for us to use electron spins

as carriers of information4, as well as a long mean free path which is useful for

spintronics11. The Hamiltonian for this system is3

Hso(κ) =

hso 0

0 −hso

 = σz ⊗ hso ≡ σz hso, (1.40)

where hso is a 2× 2 matrix by definition (1.41). Notice the SOC hopping constant

value is λso = 12µeV4, which is significantly smaller than the hopping and overlap

terms for the first-nearest neighbors approximation.

hso = iλso
∑
j,k

s ·
(
τ
(j)
1 × τ (k)

1

)
e
iκ·

(
τ
(j)
1 −τ

(k)
1

)
(1.41)

It is evident that since the first-nearest neighbor vectors exist in the xy plane,

the cross product τ (j)
1 ×τ (k)

1 only contains elements in the z direction. As a conse-

quence, the only spin matrix element involved is sz. This simplifies the calculation

of the complete analytic term as shown:

hso =
2
√
3a2sz
3

sin
(κxa

2

)[
cos

(√
3κya

2

)
− cos

(κxa
2

)]
. (1.42)

When hso is expanded in series as shown in Equation (1.43), the intrinsic SOC

term is evident as the first term independent of k. The SOC Hamiltonian then
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can be written in its most simple form as (1.44).

hso = a2sz
(
3

2
− 3

8
a2
[
k2x + k2y

]
+ · · ·

)
(1.43)

Hso(κ) =
3

2
λsoa

2sz +O(a2k2) (1.44)

The final expression of the Hamiltonian using the TB model is of the form

(1.45). Notice it is a function of the Pauli matrices σj, up to third order on the

wave vector components, which were recognized from equations (5.1) and only the

first term of the expansion (1.44).

H(k) = ϵ2p1+
3

4
a2t21(k

2
x + k2y) +

√
3

8
a3t21kx

[
−k2x + 3k2y

]
+

3

2
λsoa

2sz

+ a

(
−
√
3t1
2

+
√
3t3

)
[σxkx + σyky]

− a2
(
t1
8
+
t3
2

)[
σx
(
−k2x + k2y

)
+ σy2kxky

]
+ a3

(√
3t1
48

−
√
3t3
6

)[
σxkx

(
k2x + k2y

)
+ σyky

(
k2x + k2y

)]
. (1.45)

1.5 Adding new physics systematically

It is possible to keep adding terms to the Hamiltonian by considering more physical

fields and new perturbation Hamiltonians. One example is the SOC Hamiltonian
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HR(κ) under an external electric E field, which is defined as:

HR(κ) =

 0 hR

h∗R 0

 , where hR = λR S · E ×
∑
j

iτ
(j)
1 eiκ·τ

(j)
1 . (1.46)

The drawback with this approach is the lack of a systematic method and criteria

to add relevant physical terms to the systems. Usually, after expanding Hamilto-

nian (1.46), Rashba spin-orbit coupling type of contributions are often ignored3.

In systems with low molecular weight atoms like carbon, this is no problem, but in

larger systems, ignoring these kinds of terms might result in an incomplete model.

One solution is to use group theory methods to consider all possible operators

that describe a molecular lattice according to its symmetries. The work of Bir &

Pikus12 on invariant expansion allows the construction of Hamiltonians using basis

functions that obey the symmetry operations that leave the crystal invariant. This

approach exploits the symmetries of the lattice and introduces criteria to describe

the physics, without having to guess or do long and error-prone approximations.
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Chapter 2

Methods

The procedure to generate a Hamiltonian for graphene’s π electrons consists of

five steps. First, the molecule has to be analyzed to identify its point group G. In

this case, it is necessary to only consider the geometry of the sublattices A and B.

Second, a proper basis set needs to be used to diagonalize the Hamiltonian. This

basis transforms according to an irreducible representation Γκ of G. Third, a re-

ducible representation that describes the Hamiltonian is chosen and then reduced.

Fourth, the physics that describes the system is identified to pick appropriate basis

functions that describe the system. It is valid to pick different physical fields or

tensor operators like momentum k, electric field E , magnetic field B, spin vector

operator s, strain tensor ϵij, and many more. Lastly, the Hamiltonian is expanded

as a series of basis functions and physical constants to the desired order. The main

concepts will be explained thoroughly, and many examples will be introduced.
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2.1 Principles of theory of invariants

The symmetry of a crystal is characterized by a set of transformations that leave

it invariant; that is, with every site of the crystal unchanged. This set and its

operations are called a group9,12. Formally, a group is a set G together with a

binary operation G × G → G, which satisfy four properties:

1. Closure: For all a, b ∈ G the product ab is also in G.

2. Associativity: For all a, b, c ∈ G, the equation (ab)c = a(bc) holds.

3. Identity element: There exists e ∈ G such that ea = ae ∀a ∈ G.

4. Inverse element: There exists a−1 ∈ G such that a−1a = aa−1 = e ∀a ∈ G.

An element g ∈ G is called a symmetry operation. There are many spatial

groups of interest in condensed matter physics; however, the one of our concern

is called a point group, which is the group of all rotations R, proper or improper,

that leave the crystal invariant. A proper rotation is a simple rotation about

a coordinate axis. An improper rotation, or rotoreflection, is a rotation plus a

reflection in a plane perpendicular to the rotation axis9,12.

Initially, symmetry operations g of a point group are abstract objects, which

need a particular form to be used. Let ψν be a set of n single-valued linearly

independent functions of a point x(x1, x2, x3) in the xyz coordinate system. Let

x(x′1, x
′
2, x

′
3) be the same point, in the new coordinate system x′y′z′, which is
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obtained from xyz by the transformation g. The coordinates of x(x′, y′, z′) in the

new system are the coordinates of the vector g−1x in the initial system:

x′ν =
(
g−1x

)
ν
=
∑
µ

Rνµ(g
−1)xµ =

∑
µ

Rµν(g)xµ, (2.1)

since the same rotation of both the coordinate system and the vector leaves its

coordinates unchanged12. Now, let D(g) : ψν → ψs, such that:

D(g)ψν(x) = ψν

(
g−1x

)
=
∑
µ

Dµν(g)ψµ (gx) = ψs(x) (2.2)

Notice that both operators R(g) and D(g) are different, because they act on

different sets of vectors. The only case where R(g) = D(g) holds, is when ψν = xν

∀ν = 1, 2, . . . , n. Generally, R(g) ̸= D(g)12. Anyways, the set of all D(g) ∀g ∈ G

is called a representation Γ. The form of D(g) will depend on the choice of the ψν

functions. Matrices R(g) also form a representation, which describes rotations of

space, and not of functions of space.

There are several properties of representations Γ that are of interest. The

dimensionality m of a representation is equal to the dimension of each of its ma-

trices. Importantly, these are not unique, since there is always a unitary similarity

(or equivalence) transformation U which generates a new set of matrices by the

product UD(g)U−1, which form a valid representation9.

These can also be combined as block matrices to form new representations. Let

g ∈ G have two representations Γ and Γ′, each being in matrix form: ℓ-dimensional
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D(g) and ℓ′-dimensional D ′(g), respectively. The new combined representation Γ′′

has the block form for all g ∈ G:

Γ′′ = Γ⊕ Γ′ =⇒ D ′′(g) =

D(g) O

O D ′(g)

 , (2.3)

where O is an ℓ × ℓ′ dimensional null matrix. It can be concluded that Γ′′ repre-

sentation is ℓ+ ℓ′ dimensional.

An important property of Γ′′ is that it is a reducible representation, because

D ′′(g) has the same block form for all elements in the group. If D ′′(g) was not in

block form, then there exists a unitary similarity transformation U that operates

such that Γ′′ : UD ′′(g)U−1 is in block form. If by the contrary, a representation

Γ′′ : D ′′(g) is such that no similarity transformation makes all matrices in Γ′′

acquire the same block form, then Γ′′ is an irreducible representation; irrep, for

short. Now, consider that representations Γ and Γ′ are irreps, then the direct sum

in Equation (2.3) is known as the reduction of Γ′′ into its irreducible constituents.

Finally, an important aspect of the theory of invariants is invariance. A Hamil-

tonian H is invariant under a transformation g in the group G, such that it satisfies

the condition (2.4)12. Notice the transformation happens on the tensor K, and also

on the matrix H, using the matrix representation D(g).

H′(K′) = D(g)H
(
g−1K

)
D−1(g) = H(K) , ∀g ∈ G. (2.4)



33

2.2 Symmetry operations in D3h

The honeycomb lattice in Figure1.1a shows that each atom in a sublattice A or B

satisfies the symmetry operations of aD3h point group. This group is characterized

by six (k = 1, . . . , 6) classes of rotations: one idenity operation E, one horizontal

reflection σh, two in-plane 120◦ rotation 2C3 about the principal axis, two in-plane

120◦ improper rotations 2S3, three vertical mirror plane rotation 90◦ rotations 3C ′
2,

and three vertical reflections 3σv. For consitency, atoms on each sub-lattice are

named according to Figure 2.14.

x

y

z

B1

B2

B3

A3

A1

A2

Figure 2.1: Standard axis and atom labeling convention for pristine graphene.

The rotation axes and planes of reflection are shown in Figure 2.2. The in-plane

rotation C3 happens around the orientation z, which comes out of the plane, as

shown in Figure 2.1. The improper rotations S3 are C3 rotations followed by the

vertical reflection σh, inverting the perpendicular direction −z.

There are six classes in D3h, and there is one matrix for each element in the

class. Annex D contains every matrix representation of symmetry elements in D3h

generated using vector κ, according to the reference frame in Figure 1.1b. All
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C3

C ′
2,1

C ′
2,2

C ′
2,3

(a) (b)

Figure 2.2: Symmetry operations of graphene sub-lattices: (a) axes of proper
rotation, and (b) planes of reflection. The shaded plane is one of the three vertical
reflection planes σv, while the graphene plane is the horizontal reflection σh.

operations on the honeycomb lattice are shown in Figure 2.3.

2.3 Symmetry elements acting on the operator K

Applying a symmetry operation g from the group D3h to the tensor operator K,

we transform it as K → gK. This allows us to reexpress the Hamiltonian H′ in

new coordinates. Consider a Hamiltonian like (1.45), which depends entirely on

the components of the momentum vector. To transform these components, we

use the matrix representation of the symmetry element, denoted by R(g). The

transformation of the momentum vector is given by k′ = R(g)k. Consequently,

the tensor elements after this transformation are given by the equation:

gK(κ,λ)
l = f(k′) = f(k′x, k

′
y, k

′
z). (2.5)
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x

y

z

z
B1

B2

B3

A3

A1

A2

(a) E

x

y

z

−z
b

B1

B2

B3

A3

A1

A2

(b) σh

x

y

z

z
B3

B1

B2

A2

A3

A1

(c) C3

x

y

z

z
B2

B3

B1

A1

A2

A3

(d) C−1
3

x

y

z

−z
b

B3

B1

B2

A2

A3

A1

(e) S3

x

y

z

−z
b

B2

B3

B1

A1

A2

A3

(f) S−1
3

x

y

z

−z
b

B2

B1

B3

A3

A2

A1

(g) C ′
2,1

x

y

z

−z
b

B1

B3

B2

A2

A1

A3

(h) C ′
2,2

x

y

z

−z
b

B3

B2

B1

A1

A3

A2

(i) C ′
2,3

x

y

z

z
B2

B1

B3

A3

A2

A1

(j) σv,1

x

y

z

z
B1

B3

B2

A2

A1

A3

(k) σv,2

x

y

z

z
B3

B2

B1

A1

A3

A2

(l) σv,3

Figure 2.3: D3h symmetry operations on graphene. The figures show atoms in the
B sublattice switching positions with respect to the identity element E. The vector
z is green when the operation switches the direction of the plane. The original
system of reference in blue is left for reference.

Lets take as an example the basis functions for the irrep Γ6 of the invariant

expansion for the block Hamiltonian in the right Dirac point (3.3). The tensor

components for this irrep are closed under transformations R(Γ6)(g) for all g ∈

D3h
9. This means two things in group theory. First, there exists a partner set

βn which contains elements of the tensor operator of n−th order. Second, each
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transformed tensor element gK(κ,λ)
l is a linear combination of the elements in βn.

The union of all the partner sets form the basis functions for the irrep Γ6.

Lets define M ≡ R(Γ6)(C3) as the matrix representation of C3 for this irrep.

According to the invariance equation (2.4), first we need to transform the ternsor

using g−1. Each transformed element is of the form k′i = M−1
ij kj, and for the two

components kx and ky associated with Γ6 on the graphene plane we have

C−1
3 kx ≡ k′x =M−1

11 kx +M−1
12 ky = −1

2
kx +

√
3

2
ky,

C−1
3 ky ≡ k′y =M−1

21 kx +M−1
22 ky = −

√
3

2
kx −

1

2
ky.

(2.6)

Both kx and ky form a partner set β1 = {kx, ky}9. In the case of greater powers

n of the the transformed tensor elements, there are different basis βn that need to

satisfy the same criteria. For second order polynomials we have to take the power

of each transformed element (2.6):

C−1
3 k2x = (k′x)

2 =

(
−1

2
kx +

√
3

2
ky

)2

=

(
k2x
4

−
√
3

2
kxky +

3

4
k2y

)
, (2.7)

C−1
3 k2y = (k′y)

2 =

(√
3

2
kx +

1

2
ky

)2

=

(
3

4
k2x +

√
3

2
kxky +

k2y
4

)
. (2.8)

Notice that we cannot propose k2x and k2y as a partner set of Γ6, because their

transformed counterparts are functions of k2x, k2y and kxky. The latter is outside of

the proposed partner set. Now, consider the partner set β2 = {−k2x + k2y, 2kxky},
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and the transformations of each element in β2:

C−1
3

(
−k2x + k2y

)
= −1

2

(
−k2x + k2y

)
+

√
3

2
(2kxky) , (2.9)

C−1
3 (2kxky) = −

√
3

2

(
−k2x + k2y

)
− 1

2
(2kxky) . (2.10)

Both expressions are a linear combination of the elements in β2. The same

way happens for tensor elements of the third power, which form the partner set

β3 = {kx
(
k2x + k2y

)
, ky

(
k2x + k2y

)
}, which transform accordingly:

C3

[
kx
(
k2x + k2y

)]
= −1

2

[
kx
(
k2x + k2y

)]
+

√
3

2

[
ky
(
k2x + k2y

)]
, (2.11)

C3

[
ky
(
k2x + k2y

)]
= −

√
3

2

[
kx
(
k2x + k2y

)]
− 1

2

[
ky
(
k2x + k2y

)]
. (2.12)

An important observation is that for all basis functions, the C−1
3 representation

is recovered after each partner set was transformed, and has the form (2.13).

Notably, the set of all partner sets β represents the basis functions of irrep Γ6, and

can be expanded up to an arbitrary order of the polynomials β ≡ {β1, β2, β3 . . .}.

R(C−1
3 ) =

 −1
2

√
3
2

−
√
3
2

−1
2

 (2.13)
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2.4 Character tables

The Character Table 2.1 for D3h shows both Mulliken and Schoenflies notation

for symmetry elements and irreps, respectively. Notice this table gives valuable

information. For example, the sum of the number of elements in the group yields

the order, or more formally, the cardinality h ≡ |G| of the group. In the case of

D3h, the order is h = 2 · (1 + 2 + 3) = 12.

Table 2.1: Character Table for D3h point group and D3h(M)2 double group1

D3h(M)2
E E∗ (123) (123)∗ (23) (23)∗ R R(123) R(123)∗

1 1 2 2 3[6] 3[6] 1 2 2
D3h E σh 2C3 2S3 3C ′

2 3σv − − −
Equiv. rot. R0 Rπ

z R
2π/3
z R

−π/3
z Rπ

0 Rπ
π/2 R2π R

8π/3
z R

5π/3
z

Γ1 (A1’) 1 1 1 1 1 1 1 1 1
Γ2 (A2’) 1 1 1 1 −1 −1 1 1 1
Γ3 (A1”) 1 −1 1 −1 1 −1 1 1 −1
Γ4 (A2”) 1 −1 1 −1 −1 1 1 1 1
Γ5 (E”) 2 −2 −1 1 0 0 2 −1 1
Γ6 (E’) 2 2 −1 −1 0 0 2 −1 −1

Γ7 (E1/2) 2 0 1
√
3 0 0 −2 −1 −

√
3

Γ8 (E3/2) 2 0 −2 0 0 0 −2 2 0

Γ9 (E5/2) 2 0 1 −
√
3 0 0 −2 −1

√
3

Table 2.1 has an extension, when compared to conventional character tables,

which includes the elements of the double group. Formally, the double group is

defined as Gd = G ⊕ ĒG, where Ē is a rotation by 2π around an arbitrary axis3,

which doubles the order of the group. Irreps Γ1 through Γ6 comprise point group

D3h. Irreps Γ1 through Γ9 make the double group, often referred to as D3h(M)2 1.
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The rotations for discrete groups are finite and can be defined as generalized

unitary rotations Û(ϕ)13. These groups consider the spin degree of freedom in

fermionic systems. Generally, a (2s + 1) spinor changes sign under a 2π rotation

for fermions. In the case of electrons s = 1/2, the unitary direction n = z and

spin operator T̂ = S, which yields the rotation

Û(ϕ = 2π) = e−i2πn·T̂/ℏ = e−iπσz = −1. (2.14)

This represents the fact that spinors change sign under a 2π rotation. However, it

is possible to pick a basis that does not change under this rotation. For the D3h

point group, this basis transforms according to the irrep Γ5
3.

The character χ(g) of a symmetry element g ∈ G is defined as the trace of the

matrix representation D(g)9. Both belong to a particular representation Γj:

χ(Γj)(g) = trD (Γj)(g) =

ℓj∑
µ=1

D (Γj)(g)µµ, (2.15)

where ℓj is the dimensionality of Γj, which will possess h characters, one for each

symmetry element. These are invariant under similarity transformations U , there-

fore providing a systematic way of characterizing point groups, since representa-

tions of symmetry elements are not unique.

An important theorem in group theory states that the sum of squares of the

dimensions ℓj of all irreps Γj of a finite group G equals the order of the group:

∑
j

ℓ2j = |G| = h. (2.16)
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This relation comes in handy when one is trying to find all the irreps of a point

group. If there are any missing irreps, Equation (2.16) will not hold. From Table

2.1, the dimension of each representation in D3h is obtained from the identity

element column E, since χ(E) equals the dimension of the matrix. Clearly, this

theorem holds, since 4 · 12 + 2 · 22 = 12.

One way of obtaining a reducible representation of a point group is using direct

products of irreps of the same group. The characters of these representations are

enough to characterize them. Let Γj and Γℓ be two irreps of G. The character of

the reducible representation Γj ⊗ Γℓ, for each element g ∈ G, is given by:

χ(Γj⊗Γℓ)(g) = χ(Γj)(g)χ(Γℓ)(g). (2.17)

2.5 Reducible Representations and Hamiltonians

It is possible to express the reduced form of a reducible representation Γ as a linear

combination, in direct sum form, of the m irreps Γm of G, as shown in equation

(2.18). Additionally, the characters χ (g) of a reducible representation Γ can also

be expanded as a linear combination of the characters of irreps χ(Γi)(g) ∀g ∈ G

with the same aj coefficients found in the reduction (2.19):

Γ = a1Γ1 ⊕ a2Γ2 ⊕ · · · ⊕ amΓm (2.18)

χ (g) =
∑
Γj

ajχ
(Γj) (g) = a1χ

(Γ1) (g) + · · ·+ amχ
(Γm) (g) . (2.19)
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The coefficients aj are defined according to Equation (2.20), a sum over the k

classes of D3h, where Nk represents the number of elements of each class. Each

coefficient is obtained for one irrep Γj. These coefficients also allow us to express

a reducible representation as a direct sum of irreps Γj.

aj =
1

h

∑
k

Nk

[
χ(Γj) (g)

]∗
χ (g) (2.20)

The Hamiltonian matrix is diagonalized by a basis set Φµ that transforms

according to a representation Γ of the point group G to which the crystal belongs.

A general Hamiltonian H can be decomposed into blocks Hαβ
12, where α and β

represent the spaces of the basis functions with a degeneracy nα and nβ:

Hαβ(K) =
∑
κ,λ

aαβκλ

Lκ∑
l=1

X
(κ)
l K(κ,λ)∗

l , (2.21)

and which transforms according to irreps Γα and Γβ of the group G. Notice this

expansion is written in terms of a complete set of linearly independent nα × nβ

matrices X(κ) which transform according to the irreps that make up the reducible

representation Γα ⊗ Γ∗
β

3, which can be reduced according to Equation (2.20).

If a block Hamiltonian of the form (2.21) is used, then by the transformation

(2.4) we get the rotated Hamiltonian (2.22). Since the expansion is a multiple

sum, the matrix products happen for every term in the summation. The tensor

elements K(κ,λ)∗
l are scalar functions, so they can skip the matrix product with

D−1(g). Only the symmetrized matrices X(κ)
l are mapped to X ′(κ)

l , as shown.
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H′
αβ(K′) = D(g)

{∑
κ,λ

aαβκλ

Lκ∑
l=1

X
(κ)
l

[
g−1K(κ,λ)∗

l

]}
D−1(g) ,

H′
αβ(K′) =

∑
κ,λ

aαβκλ

Lκ∑
l=1

{
D(g)X

(κ)
l D−1(g)

}
K′(κ,λ)∗

l ,

H′
αβ(K′) =

∑
κ,λ

aαβκλ

Lκ∑
l=1

X ′(κ)
l K′(κ,λ)∗

l .

(2.22)

The π electrons on each Dirac valley ±K of graphene may be represented by a

wave function ΨKλ which has been projected onto D3h point group, and transforms

according to the Γ5 irrep3, since the tight binding hamiltonian ignores the spin

degree of freedom, and this basis will not change sign under a rotation. This

allows to define the block Hamiltonian of the form H55(K), which corresponds to

the reducible representation Γ5 ⊗ Γ∗
5. Some reducible representations of D3h are

shown in Table 2.2.

Table 2.2: Reducible Direct Products for D3h

D3h E σh 2C3 2S3 3C ′
2 3σv Reduction

Γ5 ⊗ Γ∗
5 4 4 1 1 0 0 Γ1 ⊕ Γ2 ⊕ Γ6

Γ5 ⊗ Γ∗
6 4 −4 1 −1 0 0 Γ3 ⊕ Γ4 ⊕ Γ5

Γ6 ⊗ Γ∗
6 4 4 1 1 0 0 Γ1 ⊕ Γ2 ⊕ Γ6

The expansion of a reducible representation into its irreducible constituents

is unique9. Therefore, when the characters of two different representations are

reduced to the same combination of irreps, such as Γ5 ⊗ Γ∗
5 and Γ6 ⊗ Γ∗

6, the

reducible representations are the same, as shown in Table 2.2. We then pick

Γ5 ⊗ Γ∗
5 as the non-trivial reducible representation.

To work out the aj coefficients for Γ5 ⊗ Γ∗
5 in Table 2.1, it is necessary to
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pick an irrep Γj. Let’s pick Γ6. Then, characters for the irrep are obtained using

Table 2.1, and the characters of the reducible representation are obtained using

Equation (2.17), as shown in Table 2.2. To see an example of the reduction of the

reducible representation, see Annex E. Finally, according to definition (2.3), the

representation consists of 4-dimensional matrices in block form

D(Γ5⊗Γ∗
5)(g) =


D (Γ1)(g) 0 O

0 D (Γ2)(g) O

O O D (Γ6)(g)

 . (2.23)

The last detail about the block Hamiltonian (2.21) is that general tensor oper-

ators Kl may depend on the momentum vector k and external vector fields such

as the electric and magnetic fields E and B, or spin s of electrons. It is possible to

find tables with tensor elements for each irrep of a point group in polynomial form,

to several orders. To obtain them to a desired order, the matrix representations

of D3h are used on a coordinate system such as the one shown in Figure 1.1b.
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Chapter 3

Results

3.1 Invariant expansion at A and B sublattices

The wave function for π electrons in graphene transforms according to the irrep Γ5

in the D3h point group3, and as a consequence, the Hamiltonian matrix operator

is made of basis functions that transform according to the direct product Γ5 ⊗Γ∗
5.

Going back to Equation 2.21, the indices for graphene are α = β = 5, such

that the Hamiltonian matrix HK
55 spans over irreps κ = 1, 2, 6. Notice that the

dimension of each irreducible representations are L1 = L2 = 1, and L6 = 2. The

symmetrized matrices X(κ)
l for each irrep are Γ1 : 1, Γ2 : σz, and Γ6 : (σx, σy)

3,12.

The irreducible tensor operators K(κ,λ)∗
l are dependent on the basis functions to

be chosen for the Hamiltonian. The constants then will change accordingly. Table

3.1 summarizes all parameters needed for the expansion.
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Table 3.1: Expansion parameters for momentum k and spin s

Irrep Γκ Dim. Lκ Matrices X(κ)
l Order λ Tensors K(κ,λ)

l
3

Γ1 1 1 0, 1, 2 1 ; k2x + k2y ;
(
3k2y − k2x

)
kx

Γ2 1 σz 1 sz
Γ6 2 σx, σy 1, 2, 3 kx, ky ; k2y − k2x, 2kxky ;(

k2x + k2y
)
kx,
(
k2x + k2y

)
ky

An expansion of the HK
55 Hamiltonian matrix, for the A sublattice, on all basis

functions λ for any given order is possible using the definition in Equation 3.1.

The series is expanded from inside out. A detailed explanation of how the indices

work is shown in Annex F.

HK
55(K) =

∑
κ,λ

a55κλ

Lκ∑
l=1

X
(κ)
l K(κ,λ)∗

l for κ = 1, 2, 6

HK
55(K) =

∑
λ

{
a551λX

(1)
1 K(1,λ)∗

1 + a552λX
(2)
1 K(2,λ)∗

1 + a556λ

(
X

(6)
1 K(6,λ)∗

1 +X
(6)
2 K(6,λ)∗

2

)}
HK

55(K) =
∑
λ

{
a551λ1K(1,λ)∗

1 + a552λσzK(2,λ)∗
1 + a556λ

(
σxK(6,λ)∗

1 + σyK(6,λ)∗
2

)}
(3.1)

Notice that Table 3.1 contains only tensor operators with components of the

momentum vector k and the spin sz operator. These were considered to match the

perturbed TB Hamiltonian in equation (1.45). However, it is possible to extend the

physical description with other tensors in relevant situations, such as the electric

field E , magnetic field B, and strain tensor ϵij. The irreducible tensor operators

that transform according to irreps Γ1, Γ2, and Γ6 are shown in Annex E.

To find the Hamiltonian for the wave vector centered at K′, it is necessary to

use (2.4) and recognize the symmetry operation g−1 that suits best. Notice that
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K′ = −K, so it is just a reflection over the horizontal axis. Using the system

of reference in Figure 1.1b, the matrix representation of this operation is the

rotation around the y axis, R(g−1) = Ry, such that R−1
y (kx, ky) = (−kx, ky). Also,

notice that this rotation preserves both sub-lattices A and B, so the representation

D(g) = 13. This leaves the transformation as

HK′

55 (k) = HK
55

(
R−1

y k
)
. (3.2)

However, it is possible to express a Hamiltonian equation for both Dirac valleys,

using the parameter τK = ±K. The parametrization leads to

Hτ
55(k) = a55101+ a5561 (σxτkx + σyky) + a5521σzsz + a55111

(
k2x + k2y

)
+ a55121τkx

(
−k2x + 3k2y

)
+ a5562

(
σx
(
−k2x + k2y

)
+ 2σyτkxky

)
+ a5563

(
σxτkx

(
k2x + k2y

)
+ σyky

(
k2x + k2y

))
.

(3.3)

Notice that, in contrast to the tight-binding expansion of the Hamiltonian

(1.45), the invariant expansion (3.3) contains the extra term a5521σzsz related to

an intrinsic spin degree of freedom, which is often ignored in the tight-binding

models from the start, since the transfer matrices do not explicitly consider the

spin degree of freedom. One has to initially write down a Hamiltonian operator

using a very well-informed criterion, and often these cases are handled case by case.

Although this is the standard procedure, it can be cumbersome, and inexperienced

condensed matter physicists might be prone to ignore important details. Group

theory allows us to infer the physics of electrons using only the symmetry properties

of the crystal and the basis functions which transform accordingly, proving to be
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very useful, even to the experienced physicist.

An interesting detail about Hamiltonian (3.3) is its connection to very well

known physics. Consider the valley τ = 1. The term depending linearly on mo-

mentum can be stated as a5561 (σxkx + σyky) ≡ ℏvσ ·k, where v is the Fermi velocity,

and represents the electrons near the Dirac points move as if they are massless par-

ticles. The term a5521σzsz acts like a mass because it modfies the eigenvalues of the

Hamiltonian, making the gap ∆ evident, analogous to the energy gap created by

a mass term in the Dirac equation. The appoximation leads to (3.4) and (3.5).

Hτ
55(k) ≈ ϵ2p1+ ℏvσ · k+∆σzsz (3.4)

E(k) = ϵ2p ±
√
ℏ2v2k2 +∆2 (3.5)

Other terms can be analyzed in a similar manner. For example, the term k2x+k
2
y

gives electrons an effective mass m∗, in the form ℏ2k2(2m∗)−1. Also higher order

terms have common names in literature. For example, cubic terms are known

for trigonal warping, which brakes the conical symmetry around the Dirac points

and the energy surface starts becoming like a trigonal pyramid14. Using the TB

constants in Annex C, the Hamiltonian including up to trigonal warping is:

HK
55(k) ≈ ϵ2p1+ ℏvσ · k+ λsoσzsz +

ℏ2k2

2m∗ + a55121kx
(
−k2x + 3k2y

)
. (3.6)

The main disadvantage of this expansion is the lack of knowledge it provides

regarding the physical constants aαβκλ for each term of the Hamiltonian (2.21). This
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approach then borrows physical criteria from the tight-binding methods to deter-

mine the value of each constant while being consistent with the terms considered

in the Hamiltonian. Annex C contains information about all these coefficients.

3.2 No-go SOC matrix elements

Pristine graphene naturally belongs to the D6h point group. The subdivision of

graphene into two sub-lattices implies a reduction of the symmetry elements to

that of D3h, a subgroup of D6h, and as a result both share several symmetry

operations. Some of these operations inhibit matrix elements that contribute to

the SOC Hamiltonian, according to Kochan’s no-go rules4.

To see these rules, consider the atom notation in Figure 2.1. Also consider a

π-orbital state |Xmσ⟩ on an m site with a spin degree of freedom σ = {↑, ↓} ≡

{+1,−1}, in direct space4. The first no-go rule states that the horizontal reflection

σh operation inhibits all spin-flip SOC terms4, meaning that any matrix element

attempting to connect any two sites with spins of different orientations is zero:

⟨Xmσ| Ĥso |Xn(−σ)⟩ σh−→ −⟨Xmσ| Ĥso |Xn(−σ)⟩ , (3.7)

which applies to any pair of m and n sites on the lattice, as shown in Figure 3.1a.

The second no-go rule states that the combination of spatial inversion I, lattice

translation Ta, and temporal inversion T inhibits spin-flip SOC terms between first-

nearest neighbors, that is, between neighboring atoms of different sublattices4. The
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(a) First rule (b) Second and third rules

(c) Allowed terms on both orientations

Figure 3.1: Diagrams for no-go rules. Notice that the first rule at (a) applies for
any pair of sites on the lattice. The second and third rules (b) only consider the
first-nearest neighbors.

matrix elements as in Figure 3.1b are:

⟨A2σ| Ĥso |B3(−σ)⟩ I−→ ⟨B2σ| Ĥso |A3(−σ)⟩ ,

⟨B2σ| Ĥso |A3(−σ)⟩ Ta−→ ⟨B3σ| Ĥso |A2(−σ)⟩ ,

⟨B3σ| Ĥso |A2(−σ)⟩ T−→ −⟨A2σ| Ĥso |B3(−σ)⟩ .

(3.8)

The third no-go rule states that the combination of lattice translation Ta and

vertical reflection 3C2 inhibits spin-conserving SOC terms between the first-nearest
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neighbors4. The matrix elements also follow the interaction shown in Figure 3.1b:

⟨A2σ| Ĥso |B3σ⟩ Ta−→ ⟨A3σ| Ĥso |B2σ⟩ ,

⟨A3σ| Ĥso |B2σ⟩ 3C2−−→ −⟨A2σ| Ĥso |B3σ⟩ .
(3.9)

The only allowed matrix elements by all operations in D3h are given by:

⟨Xmσ| Ĥso |Xnσ⟩ = vm,n [ŝz]σσ
iλI

3
√
3
, for [ŝz]±± = ±1. (3.10)

where λI is the SOC hopping constant found also in the block Hamiltonian (3.3) in

the term a5521σzsz. These allow spin-conserving interactions between second neigh-

bors. This does two things for our model. First, it confirms that it is consistent

with the symmetries of the D3h point group. Second, it connects the invariant

expansion to matrix elements, as shown in equation (3.11), which as shown in

Figure 3.1c, has a dependence on orientation of the hopping, which is negative for

clockwise direction and positive for anti-clockwise direction.

iλ1

3
√
3
= ⟨A3 ↑| Ĥso |A2 ↑⟩ = ⟨B2 ↓| Ĥso |B3 ↓⟩ = −⟨B2 ↑| Ĥso |B3 ↑⟩ (3.11)

3.3 Software Development

A Python self-contained software that automates the generation of block Hamil-

tonians of the form (2.21) was created. This software uses the Numpy15 numeric

module and Sympy16 symbolic computation module to operate. A flowchart that
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describes the use of the software is illustrated in Figure 3.2.

Figure 3.2: Flow chart for the use of the software to generate an invariant expansion
of a Hamiltonian operator, using group theory.

The user provides information about a point group, one reducible representa-

tion (the block indices), and an appropriate set of tensor operators which describe

the physics of the problem. These are passed to an instance of the BlockHamilto-

nian object. This object utilizes the PointGroup class for group theory operations,

such as obtaining the reducible representation Γα,β in terms of irreps, using (2.20).

The expand method of the BlockHamiltonian class allows the Hamiltonian Hαβ

to be written down to the desired order. The Hamiltonian Hαβ can be expanded

directly or by using transformed basis functions gK according to a symmetry op-

eration of the group related to the reducible representation. In Annex G, UML

diagrams of the classes and the code have been included for reference.
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Chapter 4

Conclusions

In this thesis, we developed software using group theory to study quantum oper-

ators in materials like graphene. This software handles complex calculations and

uses the invariant expansion method to systematically generate Hamiltonians to

a desired order by using crystal symmetries, avoiding the exclusion of relevant

terms and improving on traditional tight-binding models. The software offers a

user-friendly interface for calculating properties of point groups, such as reducible

representations and relevant tensor operators. The software outputs the expanded

Hamiltonian to the desired order, streamlining the research process.

We demonstrated that group theory ensures all relevant physical terms are

considered, based on the crystal’s symmetry properties. The invariant expansion

method systematically includes all possible physical interactions dictated by crystal

symmetries, providing a more accurate description of materials. Using invariant

expansion, we identified appropriate basis functions that transform according to
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the irreps of the point group D3h, allowing us to expand the Hamiltonian to the

desired order while maintaining consistency with crystal symmetries.

For spin-orbit coupling (SOC), the invariant expansion method identified SOC

terms consistent with D3h symmetries, including spin-conserving interactions be-

tween second neighbors. These terms were validated against Kochan’s no-go rules,

confirming their consistency with known physical constraints.

While this work focused on graphene, the developed methods are generaliz-

able to other two-dimensional materials, opening possibilities for studying other

symmetry properties. Future research should develop methods to generate tensor

operators for any system and order, enhancing the invariant expansion method’s

applicability to a broader range of materials and physical systems. This work

provides a strong foundation for future studies, offering a systematic and compre-

hensive approach to modeling and understanding complex material systems.
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Chapter 5

Annexes

Annex A: Nearest neighbors on graphene

The nearest-neighbors in the basis x̂, ŷ; where obtained graphically from Figure

1.2. When a B atom is used as the reference, the first three τ (j)
1 nearest-neighbors

are A atoms, so involve inter-lattice hopping of electrons. These vectors are:

τ
(1)
1 =

 −a
2

−
√
3a
6

 , τ
(2)
1 =

 a
2

−
√
3a
6

 , τ
(3)
1 =

 0
√
3a
3

 .

There are six second, or next-nearest neighbors τ (j)
2 . These describe intra-
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lattice movement of electrons B-B. The first three next nearest-neighbors are:

τ
(1)
2 =

 a
2

√
3a
2

 , τ
(2)
2 =

 −a
2

√
3a
2

 , τ
(3)
2 =

 −a

0

 .

The remaining vectors satisfy the following relations: τ (4)
2 = −τ (1)

2 , τ (5)
2 = −τ (2)

2 ,

and τ (6)
2 = −τ (3)

2 . These can be verified in Figure 1.2b. Finally, the third or next

next-nearest neighbors τ (j)
3 are again, inter-lattice electron mobility B-A, and are

the following, as seen in Figure 1.2c:

τ
(1)
3 =

 a
√
3a
3

 , τ
(2)
3 =

 −a
√
3a
3

 , τ
(3)
3 =

 0

−2
√
3a
3

 .

It is possible to find more k-nearest neighbors to any arbitrary number k,

however it would depend on each case, since usually beyond the seond nearest

neighbors, calculations do not add much more precission.
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Annex B: Eigenvectors for Graphene

The eigenvectors ψ+ =
(
ψ

(1)
+ , ψ

(2)
+

)
and ψ− =

(
ψ

(1)
− , ψ

(2)
−

)
. Since there is always

one free vairable, I pick a value that normalizes the wavefunction.

n = +1 :

− t1 |f | t1f 0

t1f
∗ − t1 |f | 0

 ∼

− ff ∗ f |f | 0

f ∗ |f | − ff ∗ 0


∼

− ff ∗f ∗ ff ∗ |f | 0

ff ∗f ∗ − ff ∗ |f | 0

 ∼

− ff ∗f ∗ ff ∗ |f | 0

0 (f − f ∗)f ∗ |f | 0


∼

− f̂ ∗ 1 0

0 0 0

 =⇒ ψ
(2)
+ = f̂ ∗ψ

(1)
+

n = −1 :

t1 |f | t1f 0

t1f
∗ t1 |f | 0

 ∼

 ff ∗ f |f | 0

f ∗ |f | ff ∗ 0


∼

ff ∗ |f | fff ∗ 0

ff ∗ |f | fff ∗ 0

 ∼

 ff ∗ |f | ff ∗f ∗ 0

(f − f)f ∗ |f | 0 0


∼

1 f̂ 0

0 0 0

 =⇒ ψ
(1)
− = −f̂ψ(2)

−
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Annex C: Physical constants for TB and SOC block

Hamiltonian

The series expansion of the TB Hamiltonian matrix elements around the Dirac

point K contains several coefficients has the form:

Hλλ = ϵ2p +
3

4
a2t2

(
k2x + k2y

)
+

√
3

8
a3t2kx

[
−k2x + 3k2y

]
,

HAB = a

(
−
√
3t1
2

+
√
3t3

)
[kx + iky]

+ a2
(
t1
8
+
t3
2

)[(
k2x − k2y

)
− 2ikxky

]
+ a3

(√
3t1
48

−
√
3t3
6

)[
kx
(
k2x + k2y

)
+ iky

(
k2x + k2y

)]
.

(5.1)

where there are imaginary components, that when factores out from the complete

matrix form, transform into Pauli matrices. Refer to equations (1.45) and (3.3) to

compare both Hamiltonians using these constants and verify both are the same.

a5510 = ϵ2p (5.2a)

a5511 =
3

4
a2t2 (5.2b)

a5512 =

√
3

8
a3t2 (5.2c)

a5521 =
3

2
λsoa

2 (5.2d)

a5561 = a

(
−
√
3t1
2

+
√
3t3

)
(5.2e)

a5562 = a2
(
t1
8
+
t3
2

)
(5.2f)

a5563 = a3

(√
3t1
48

−
√
3t3
6

)
(5.2g)
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Annex D: Matrix representations for symmetry el-

ements in D3h

Table 5.1: Matrix representations for elements in D3h

Class k Element g Matrix representations D(g) on orthonormal vector basis

1 E

1 0 0
0 1 0
0 0 1


2 σh

1 0 0
0 1 0
0 0 −1



3 C3

C−1
3

 −1
2

√
3
2

0

−
√
3
2

−1
2

0
0 0 1

 ,

−1
2

−
√
3
2

0√
3
2

−1
2

0
0 0 1



4 S3

S−1
3

 −1
2

√
3
2

0

−
√
3
2

−1
2

0
0 0 −1

 ,

−1
2

−
√
3
2

0√
3
2

−1
2

0
0 0 −1



5
C ′

2,1

C ′
2,2

C ′
2,3

 −1
2

−
√
3
2

0

−
√
3
2

1
2

0
0 0 −1

 ,

−1 0 0
0 1 0
0 0 −1

 ,

−1
2

√
3
2

0√
3
2

1
2

0
0 0 −1



6
σv,1
σv,2
σv,3

 −1
2

−
√
3
2

0

−
√
3
2

1
2

0
0 0 1

 ,

−1 0 0
0 1 0
0 0 1

 ,

−1
2

√
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Annex E: Reduction of Γ5 ⊗ Γ∗
5

Let classes E, σh, 2C3, 2S3, 3C ′
2 and 3σv be numbered k = 1, . . . , 6, respectively.

Let the a6 coefficient be the scalar on the reduction related to irrep Γ6. This

coefficient is obtained using equation (2.20) as shown:

a6 =
1

12

6∑
k=1

Nk

[
χ(Γ6) (g)

]∗
χ (g) ,

a6 =
1

12
[1 · 2 · 4 + 1 · 2 · 4 + 2 · (−1) · 1 + 2 · (−1) · 1 + 3 · 0 · 0 + 3 · 0 · 0] ,

a6 =
8 + 8− 2− 2

12
=

12

12
= 1.

The remaining coefficients are obtained similarly, and are a1 = a2 = 1, and

a3 = a4 = a5 = 0, resulting in the reduction Γ5⊗Γ∗
5 = Γ1⊕Γ2⊕Γ6. The complete

set of characters for all representations involved in the reduction are in Table 5.2.

Table 5.2: Reducción de representación Γ5 ⊗ Γ∗
5

D3h E σh 2C3 2S3 3C ′
2 3σv

Γ1 (A1’) 1 1 1 1 1 1
Γ2 (A2’) 1 1 1 1 −1 −1
Γ6 (E’) 2 2 −1 −1 0 0

Γ5 (E”) 2 −2 −1 1 0 0

Γ5 ⊗ Γ∗
5 4 4 1 1 0 0
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Annex F: Invariant expansion details

Equation (3.1) describes the expansion of the block Hamiltonian H55. To visualize

how the indices are used, the following scheme was crafted. Notice that unidimen-

sional irreps Γ1 and Γ2 show onlye one function on each constant a55κλ. The irrep

Γ6 is two-dimensional, therefore each constant a55κλ is followed by a combination of

two tensor operators. These are partner functions.

When using only functions in Table 3.1, the expansión of the Hamiltonian takes

the following form, where the order index λ is expanded from the smallest order

for each irrep Γκ:
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If there is any other physical scenario, many other basis functions can be chosen,

such as the electric field E , magnetic field B, and strain tensor ϵij. These basis

functions for the Γ5 ⊗ Γ∗
5 is shown in Equation (5.3)3.

Γ1 : 1; k2x + k2y;
(
3k2y − k2x

)
kx; kxEx + kyEy; ϵxx + ϵyy;

(ϵyy − ϵxx) kx + 2ϵxyky; (ϵyy − ϵxx) Ex + 2ϵxyEy;

sxBx + syBy; szBz; (sxky − sykx) Ez; sz (kxEy − kyEx)

Γ2 :
(
3k2x − k2y

)
ky; Bz; kxEy − kyEx; (ϵxx − ϵyy) ky + 2ϵxyky;

(ϵxx + ϵyy)Bz; (ϵxx − ϵyy) Ey + 2ϵxyEx; sz;

sxBy − syBx; (sxkx + syky) Ez; sz (ϵxx + ϵyy)

Γ6 : kx, ky; k2y − k2x, 2kxky;
(
k2x + k2y

)
kx,
(
k2x + k2y

)
ky;

Bzky,−Bzkx; Ex, Ey; kyEy − kxEx, kxEy + kyEx;

EyBz,−ExBz; EzBy,−EzBx

ϵyy − ϵxx, 2ϵxy; (ϵxx + ϵyy) (kx, ky) ;

(ϵxx − ϵyy) kx + 2ϵxyky, (ϵyy − ϵxx) ky + 2ϵxykx;

2ϵxyBz, (ϵxx − ϵyy)Bz;

(ϵxx − ϵyy) Ex + ϵxyEy, (ϵyy − ϵxx) Ey + ϵxyEx;

(ϵxx + ϵyy) (Ex, Ey) ; szky,−szkx;

syBy − sxBx, sxBy + syBx; szEy,−szEx;

syEz,−sxEz; sz (kxEy + kyEx) , sz (kxEx − kyEy) ;

(sxky + sykx) Ez, (sxkx − syky) Ez; 2szϵxy, sz (ϵxx − ϵyy) ;

(5.3)
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Annex G: Code for analytic calculations

Both UML diagrams were created using RedDress-PlantUML templates.

Figure 5.1: UML diagram for BlockHamiltonian and PointGroup classes.



66

Figure 5.2: UML diagram for SymmetryOperation and MathTools classes.
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