
UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ
Colegio de Ciencias e Ingenierías

Decidability and Semigroups
Undecidability of the Word Problem for Semigroups

Adrian Camilo Vásconez Núñez
Matemáticas

Trabajo de fin de carrera presentado como requisito para la obtención del título de

Matemático

Quito, 16 de diciembre de 2024

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingenierías

HOJA DE CALIFICACIÓN DE TRABAJO DE FIN DE CARRERA

Decidability and Semigroups
Undecidability of the Word Problem for Semigroups

Adrian Camilo Vásconez Núñez

Nombre del profesor: John R. Skukalek

Título académico: Ph. D.

Quito, 16 de diciembre de 2024

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales de

la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad Intelectual

USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del

presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este trabajo

en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación Superior

del Ecuador.

Nombres y apellidos: Adrian Camilo Vásconez Núñez

Código: 00208899

Cédula de identidad: 1720543279

Lugar y fecha: Quito, 16 de diciembre de 2024

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado como

una publicación, incluso a pesar de estar disponible sin restricciones a través de un repositorio

institucional. Esta declaración se alinea con las prácticas y recomendaciones presentadas por

el Committee on Publication Ethics COPE descritas por Barbour et al. (2017) Discussion

document on best practice for issues around theses publishing, disponible en http://bit.ly/

COPETheses.

UNPUBLISHED DOCUMENT

Note: The following capstone project is available through the Universidad San Francisco de

Quito USFQ institutional repository. Nonetheless, this project—in whole or in part—should

not be considered a publication. This statement follows the recommendations presented by

the Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion

document on best practice for issues around theses publishing, available on http://bit.ly/

COPETheses.

http://bit.ly/COPETheses
http://bit.ly/COPETheses
http://bit.ly/COPETheses
http://bit.ly/COPETheses

1

Free prophecies from a black cat.

—Clean Bandit

2

Resumen

En este trabajo presentamos un tratamiento accesible de la teoría de la computabilidad y de

su aplicación al problema de la palabra en semigrupos. Desarrollamos los fundamentos de las

máquinas de Turing y la computabilidad, culminando en la no decidibilidad del problema de

la parada. Utilizando este marco teórico, demostramos la no decidibilidad del problema de la

palabra en semigrupos, proporcionando un puente natural entre la teoría de la computabilidad y

el álgebra abstracta. El trabajo concluye con algunas implementaciones concretas de operaciones

aritméticas básicas utilizando máquinas de Turing modificadas.

Palabras clave: computabilidad, máquinas de Turing, problema de la parada, semigrupos,

problema de la palabra, decidibilidad.

3

Abstract

In this work, we present an accessible treatment of computability theory and its application

to the word problem for semigroups. We develop the fundamentals of Turing machines and

computability, culminating in the undecidability of the halting problem. Using this framework,

we demonstrate the undecidability of the word problem for semigroups, thus building a natural

bridge between computability theory and abstract algebra. The work concludes with some

concrete implementations of basic arithmetic operations using modified Turing machines.

Keywords: computability, Turing machines, halting problem, semigroups, word problem, unde-

cidability.

4

Agradecimientos

Quiero agradecer a mi madre y a mi padre por su apoyo incondicional para que pueda estudiar.

A mi hermana, por siempre saber empujarme para ser mejor. A José Palacios, por estar siempre

conmigo, y ser el primer interlocutor para mis ideas.

A John, mi tutor, por su guía durante el proceso de escritura de este trabajo. A mis amigos,

Pablo Mendieta y Pablo Padilla por escucharme. A Josué Chávez y Estefanía Coronel, por

acompañarme en la pandemia, y a Milena Mora, por siempre estar dispuesta a acompañarme

mientras desvarío.

5

Contents

Introduction 7

1 Turing machines 9

1.1 Machinery . 9

1.1.1 Informal description . 9

1.1.2 Formal definition . 10

1.1.3 Some consequences . 13

1.2 Computability . 14

1.3 Undecidable problems . 16

1.3.1 Arithmetization of Turing machines 16

1.3.2 Semicomputable predicates . 22

1.3.3 The halting problem . 26

2 Semigroups 28

2.1 Semigroup theory . 28

2.1.1 Homomorphisms and congruences . 29

2.1.2 Free semigroups . 33

2.1.3 Presentation of a semigroup . 34

2.1.4 Semi-Thue and Thue systems . 36

2.2 The word problem for semigroups . 40

2.2.1 Statement . 40

2.2.2 Method . 40

2.2.3 Simulating Turing machines . 40

CONTENTS 6

3 Some computable functions 47

3.1 An adding machine . 47

3.1.1 An example computation . 49

3.2 A multiplier . 50

3.2.1 An example computation . 50

Final Remarks 52

Bibliography 53

A Multiplier quadruples 57

7

Introduction

Very few results in mathematics are as thought-provoking as Gödel’s Incompleteness Theorems.

Their discovery in the twentieth century effectively cut short Hilbert’s program of formalizing

all of mathematics into a complete and decidable axiomatic system, whose most important

achievements were Russell and Whitehead’s Principia Mathematica and Zermelo–Fraenkel set

theory [32].

In very few words, Gödel’s Incompleteness Theorems state, respectively:

1. No axiomatizable, consistent theory that is “strong enough”1 is complete. That is, there is

some sentence 𝐴 in its language for which it cannot prove 𝐴 nor ¬𝐴.

2. Consistent axiomatizable theories that are “strong enough” do not prove their own consis-

tency statements.

Gödel [10] initially proved only that the formal system of the Principia Mathematica was

incomplete. To get the full Incompleteness Theorems, a suitable development of the notion of

computability was necessary. At the time, several candidates for this notion were advanced:

𝜆-definability by Church [8], general recursiveness by Herbrand–Gödel–Kleene [11, 17, 18],

computability by Turing [30], 1-definability by Post [20], and binormality by Post [21, 23]. Today,

we know that all of these are equivalent in the sense that the sets of computable functions they

define are the same [9], but that was anything but clear when they were formulated.

All of these concepts attempt to formalize the intuitive idea of an algorithm or of an effectively

calculable function. It is worth mentioning that prominent logicians like Gödel did not initially

believe that such an idea could be formalized [27]. At its core, the idea is philosophical in nature,
1This ends up amounting to it being able to represent all computable functions and relations, which, it turns out,

is achieved by most interesting theories.

INTRODUCTION 8

and deals with the question of how to outline human capacity to solve problems in a systematic

way.

The statement that every effectively calculable function is a computable function is called

Church’s thesis, and was first stated by Church regarding 𝜆-definability and general recursiveness.

This did not convince many logicians, and was only widely accepted when Turing published his

work on Turing machines, which defines his own notion of computability.

Although Gödel’s Incompleteness Theorems are widely known, the underlying theory of

computability remains less well appreciated by many undergraduate mathematicians. Paradoxi-

cally, this likely stems from its traditional presentation within the framework of formal logic. In

this work, I present some of the fundamental ideas in the theory of computability, and apply them

to a problem in abstract algebra. In this way, I hope to provide a more down-to-earth avenue into

this subject.

The problem in question is the undecidability of the word problem for semigroups. The word

problem for semigroups, first stated by Thue in 1914 [24], was proven undecidable by Post [22]

in 1947. This problem is the first link in a chain that connects formal logic with group theory

and topology [27]. In 1950, Turing [31] demonstrated the undecidability of the word problem for

cancellation semigroups. Building on this work, Novikov proved the undecidability of the word

problem for groups in 1955 [7], while Boone [1–6] independently reached the same conclusion

between 1954 and 1957. In 1960, Markov used these results to show the undecidability of the

homeomorphism problem for compact manifolds [25], and, in 1961, Higman [14] completed this

line of research by showing that computability and finite generation are equivalent for groups.

In this work, I follow Davis’s [9] presentation of the subject. However, I draw significantly

from Miller’s [19] more recent treatment, and Grillet’s [13] exposition of semigroups. In Chapter

1, I present the fundamentals of Turing machines and the theory of computability, concluding

with the undecidability of the halting problem. In Chapter 2, I introduce semigroups and their

word problem, and show how we can use Turing machines to demonstrate that the word problem

for semigroups is undecidable. Finally, in Chapter 3, I give a short informal “verification” of

Church’s thesis regarding Turing machines by providing a few illustrative examples.

9

Chapter 1

Turing machines

1.1 Machinery

1.1.1 Informal description

We can imagine that a Turing machine consists of an infinite tape of adjacent squares, which

may be blank or marked with a symbol, together with a machine capable of reading the square

on the tape where it is located, and of doing an action based on the mark it reads on the square

and on its own internal state. The machine has a finite number of internal states, and the mark

read from the square and the current internal state of the Turing machine uniquely determine its

behavior. The machine will either do nothing (halt) or:

• Move to the square to the right.

• Move to the square to the left.

• Replace the mark on the current square with a symbol (also) uniquely determined by the

mark read and the machine’s current internal state.

After doing any one of these three actions, the machine will change its internal state to another one

(also) uniquely determined by the mark originally read and its current internal state. Afterward,

the process is repeated, with the machine reading the square at its current position.

Also, we shall say that there is one symbol which will be processed in the same way as if the

square were blank, as to allow for the machine to “erase” a value on the tape.

1.1. MACHINERY 10

This informal description of Turing machines will hopefully be helpful for understanding the

following formal definition. We note that this is not the original construction of Turing machines

by their namesake [30]. Our construction proposes a Turing machine with a finite but extensible

tape, in the sense that whenever the machine reaches one end of the tape, it can “paste” a new

square onto the tape. In this way, we avoid having to work with an infinite tape.1

1.1.2 Formal definition

Definition 1.1.1 A Turing machine 𝑍 consists of:

1. A finite set of symbols {𝑆0, 𝑆1, … , 𝑆𝑚} called the alphabet of 𝑍, where 𝑆0 is a special

symbol we will call blank.

2. A finite set of symbols {𝑞1, 𝑞2, … , 𝑞𝑛}, which we will call internal states, where 𝑞1 is a

special state we will refer to as the starting state.

3. A nonempty set of quadruples, which are sequences of 4 symbols from the alphabet, from

the internal states, or from the set {𝑅, 𝐿}, of one of the following forms:2

• 𝑞𝑖 𝑆𝑗 𝑆𝑘 𝑞𝑙,

• 𝑞𝑖 𝑆𝑗 𝑅 𝑞𝑙,

• 𝑞𝑖 𝑆𝑗 𝐿 𝑞𝑙.

This set shall be such that no two quadruples in the set have the same combination of the

first two symbols.

If 𝑍 is a Turing machine, we may sometimes write 𝑍 for the set of quadruples of 𝑍.

Definition 1.1.2 An instantaneous description is a finite sequence containing (exclusively) a

single symbol 𝑞𝑖, for some 𝑖 = 1, 2, 3, … , and symbols from the set {𝑆0, 𝑆1, 𝑆2, … }, such that

the 𝑞𝑖 is not the last element of the sequence.

Definition 1.1.3 If 𝑍 is a Turing machine and 𝛼 is an instantaneous description, we say that 𝛼 is

an instantaneous description of 𝑍 if the 𝑞𝑖 in 𝛼 is an internal state of 𝑍.
1This construction was first suggested by Post [22].
2We may sometimes omit the commas and parentheses when writing sequences (𝑥1, 𝑥2, … , 𝑥𝑛).

1.1. MACHINERY 11

We interpret an instantaneous description of a Turing machine as describing a tape marked

with the alphabet symbols of the sequence in order, where the machine’s current internal state is

𝑞𝑖, and where the machine is located at the square associated with the symbol to the right of the

𝑞𝑖.

Definition 1.1.4 A tape expression is a sequence consisting entirely of symbols from the set

{𝑆0, 𝑆1, 𝑆2, … }.

Definition 1.1.5 If 𝑍 is a Turing machine, and 𝛼 and 𝛽 are two instantaneous descriptions of 𝑍,

then we write the basic move

𝛼 → 𝛽 (𝑍),

or simply 𝛼 → 𝛽 when there is no ambiguity, to mean that one of the following holds:

1. There exist (possibly empty) tape expressions 𝑃 and 𝑄 such that3

𝛼 = 𝑃𝑞𝑖𝑆𝑗𝑄,

𝛽 = 𝑃𝑞𝑙𝑆𝑘𝑄,

where 𝑍 contains the quadruple

𝑞𝑖 𝑆𝑗 𝑆𝑘 𝑞𝑙.

2. There exist (possibly empty) tape expressions 𝑃 and 𝑄 such that

𝛼 = 𝑃𝑞𝑖𝑆𝑗𝑆𝑘𝑄,

𝛽 = 𝑃𝑆𝑗𝑞𝑙𝑆𝑘𝑄,

where 𝑍 contains the quadruple

𝑞𝑖 𝑆𝑗 𝑅 𝑞𝑙.
3Here, we write 𝑃𝑞𝑖𝑆𝑗𝑄 for the concatenation of the sequences 𝑃, (𝑞𝑖), (𝑆𝑗), and 𝑄 (and similarly for the other

cases). We will properly define concatenation in Chapter 2.

1.1. MACHINERY 12

3. There exists a (possibly empty) tape expression 𝑃 such that

𝛼 = 𝑃𝑞𝑖𝑆𝑗,

𝛽 = 𝑃𝑆𝑗𝑞𝑙𝑆0,

where 𝑍 contains the quadruple

𝑞𝑖 𝑆𝑗 𝑅 𝑞𝑙.

4. There exist (possibly empty) tape expressions 𝑃 and 𝑄 such that

𝛼 = 𝑃𝑆𝑘𝑞𝑖𝑆𝑗𝑄,

𝛽 = 𝑃𝑞𝑙𝑆𝑘𝑆𝑗𝑄,

where 𝑍 contains the quadruple

𝑞𝑖 𝑆𝑗 𝐿 𝑞𝑙.

5. There exists a (possibly empty) tape expression 𝑄 such that

𝛼 = 𝑞𝑖𝑆𝑗𝑄,

𝛽 = 𝑞𝑙𝑆0𝑆𝑗𝑄,

where 𝑍 contains the quadruple

𝑞𝑖 𝑆𝑗 𝐿 𝑞𝑙.

Here, case 1 corresponds to the case where the machine changes the symbol on the tape,

cases 2 and 3 to it moving to the right, and cases 4 and 5 to it moving to the left. In this way, the

quadruples correspond to the instructions or programming of the machine. We need two cases

for when the machine moves to account for the possibility that the machine is at the current end

of the tape, where it has to “paste” a new square onto the tape.

1.1. MACHINERY 13

1.1.3 Some consequences

From our definition of a basic move, and our requirement that all the quadruples of a Turing

machine have different combinations of the first two symbols, we immediately get

Theorem 1.1.1 Let 𝑍 be a Turing machine. For any instantaneous description 𝛼 of 𝑍, there is

at most one instantaneous description 𝛽 of 𝑍 such that there is a basic move 𝛼 → 𝛽.

Theorem 1.1.2 If

𝛼 → 𝛽 (𝑍) and 𝛼 → 𝛾 (𝑍),

then 𝛽 = 𝛾.

Thus, we say that Turing machines are deterministic.

Theorem 1.1.3 If 𝑍 and 𝑍′ are Turing machines such that 𝑍 ⊂ 𝑍′, then

𝛼 → 𝛽 (𝑍) ⟹ 𝛼 → 𝛽 (𝑍′).

Definition 1.1.6 Let 𝑍 be a Turing machine. We say that an instantaneous description 𝛼 of 𝑍 is

terminal with respect to 𝑍 if there is no instantaneous description 𝛽 of 𝑍 such that

𝛼 → 𝛽 (𝑍).

This corresponds to when a Turing machine halts.

Definition 1.1.7 Let 𝑍 be a Turing machine. A finite sequence (𝛼1, 𝛼2, … , 𝛼𝑟) of instantaneous

descriptions of 𝑍 is called a computation of 𝑍 if

𝛼𝑖 → 𝛼𝑖+1 (𝑍)

for all integers 𝑖, 1 ≤ 𝑖 < 𝑟, where 𝛼𝑟 is terminal with respect to Z. Whenever that is the case, we

will write

𝛼𝑟 = Res𝑍(𝛼1),

and call 𝛼𝑟 the resultant of 𝛼1 with respect to 𝑍.

1.2. COMPUTABILITY 14

We have now defined all of the “machinery” of a Turing machine. We now turn to how we

can use this machinery to define computability.

1.2 Computability

We will be working a lot with the set of nonnegative integers, so we adopt the following notation.

Definition 1.2.1 We write Ω to mean the set of nonnegative integers.

We expect to use Turing machines as computers. But for that, we need to be able to give

them inputs and interpret their outputs.

Definition 1.2.2 We write 𝑆𝑛
𝑖 to mean the tape expression

𝑆𝑖𝑆𝑖 ⋯ 𝑆𝑖⏟⏟⏟⏟⏟
𝑛 times

.

Furthermore, we shall write 1 for the alphabet symbol 𝑆1, and 0 for the alphabet symbol 𝑆0.

Definition 1.2.3 Let 𝑥 be in Ω. We write

𝑥 = 1𝑥+1 = 11 ⋯ 1⏟
𝑥+1 times

.

Furthermore, if (𝑥1, 𝑥2, … , 𝑥𝑛) is in Ω𝑛, we write

(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑥10𝑥20 ⋯ 0𝑥𝑛.

Definition 1.2.4 Let 𝛼 be any instantaneous description. Then, we write ⟨𝛼⟩ for the number of

occurrences of the symbol 1 in 𝛼.

Notice that ⟨𝑥 − 1⟩ = 𝑥 for any positive integer 𝑥.

Definition 1.2.5 Let 𝑍 be a Turing machine. For each positive integer 𝑛, we define the function

Ψ(𝑛)
𝑍 ∶ 𝐷 → Ω, 𝐷 ⊂ Ω𝑛, as follows. For (𝑥1, 𝑥2, … , 𝑥𝑛) in Ω𝑛, let 𝛼1 = 𝑞1(𝑥1, 𝑥2, … , 𝑥𝑛). We

have two cases:

1.2. COMPUTABILITY 15

• If there exists a computation (𝛼1, 𝛼2, … , 𝛼𝑝) of 𝑍, then we define

Ψ(𝑛)
𝑍 (𝑥1, 𝑥2, … , 𝑥𝑛) = ⟨𝛼𝑝⟩ = ⟨Res𝑍 (𝛼1)⟩.

• If there exists no such computation, i.e., Res𝑍 (𝛼1) is undefined, we leave

Ψ(𝑛)
𝑍 (𝑥1, 𝑥2, … , 𝑥𝑛)

undefined as well.

Finally, we write Ψ𝑍(𝑥) for Ψ(1)
𝑍 (𝑥).

In this way, we can use Turing machines to define functions whose domain is a subset of

Ω𝑛 (it should be clear that, if it exists, the output of a Turing machine is unique). We defer the

discussion of how to translate concrete functions, like

𝑓 (𝑥, 𝑦) = 𝑥 + 𝑦 and 𝑔(𝑥, 𝑦) = (𝑥 + 1)(𝑦 + 1),

into the appropriate Turing machines to Chapter 3.

We may now define computability.

Definition 1.2.6 A function 𝑓 ∶ 𝐷 → Ω, 𝐷 ⊂ Ω𝑛, is called partially computable if there exists

a Turing machine 𝑍 such that, for every (𝑥1, 𝑥2, … , 𝑥𝑛) in 𝐷,

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = Ψ(𝑛)
𝑍 (𝑥1, 𝑥2, … , 𝑥𝑛).

We say that 𝑓 is computable if 𝐷 = Ω𝑛.

We have only defined computability for a very narrow class of functions. However, the

conventional constructions of the negative integers, and rational, real, and complex numbers

from the set of nonnegative integers (see, for example, Spivak [26]) should convince the reader

that the concept of computability can be extended relatively easily to a very big class of functions.

In fact, if we are to accept Church’s thesis, our definition of computability should be extensible to

1.3. UNDECIDABLE PROBLEMS 16

any effectively calculable function—any function whose values can be determined in a systematic

way.

We also define computable sets and predicates as follows.

Definition 1.2.7 Let 𝐴 be a set. We define the characteristic function of 𝐴 as

𝐶𝐴(𝑥) =

⎧{{
⎨{{⎩

0, for 𝑥 not in 𝐴,

1, for 𝑥 in 𝐴.

Definition 1.2.8 A set 𝐴 ⊂ Ω𝑛 is computable if its characteristic function 𝐶𝐴 is computable.

Definition 1.2.9 Let (𝑥1, 𝑥2, … , 𝑥𝑛) be in Ω𝑛. A predicate 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛) is computable if

the set

{(𝑥1, 𝑥2, … , 𝑥𝑛) ∣ 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛)}

is computable.

1.3 Undecidable problems

In this section, we develop more the theory of computability. We will use this theory to show

that there exist undecidable problems.

1.3.1 Arithmetization of Turing machines

An important part of the theory of Turing machines is that we can use the natural numbers a kind

of cypher for them. We will use the technique of Gödel numbers to create this cypher.

Definition 1.3.1 We define the set

U = {𝑅, 𝐿} ∪ {𝑆0, 𝑆1, 𝑆2, … } ∪ {𝑞1, 𝑞2, 𝑞3, … }.

Then, U is the set of basic symbols we used to define the machinery of Turing machines.

Now, to each symbol in U we assign an odd integer greater than or equal to 3 as follows.

1.3. UNDECIDABLE PROBLEMS 17

Definition 1.3.2 We define the function 𝑐 ∶ U → Ω such that

𝑅 ↦ 3,

𝐿 ↦ 5,

and, for 𝑖 = 0, 1, 2, … ,

𝑆𝑖 ↦ 4𝑖 + 7,

𝑞𝑖+1 ↦ 4𝑖 + 9.

Notice that 𝑐 is clearly a one-to-one function.

Definition 1.3.3 For 𝑗 = 1, 2, 3, … , we define 𝑝𝑗 as the 𝑗-th prime number4 in increasing order

of magnitude.

For example, 𝑝1 = 2, 𝑝2 = 3, and 𝑝10 = 29. Now, we may define the Gödel number of a

sequence of symbols as follows.

Definition 1.3.4 Let 𝑀 = (𝛾1, 𝛾2, … , 𝛾𝑛) be a finite sequence of symbols in U. Let 𝑐𝑗 = 𝑐(𝛾𝑗)

for 𝑗 = 1, 2, … , 𝑛. We define the Gödel number of 𝑀 as the integer

gn(𝑀) =
𝑛

∏
𝑗=1

𝑝𝑐𝑗
𝑗 .

If 𝑀 is an empty sequence, we define gn(𝑀) = 1.

The Fundamental Theorem of Arithmetic immediately yields

Theorem 1.3.1 Let 𝑀 and 𝑁 be finite sequences of symbols in U. If gn(𝑀) = gn(𝑁), then

𝑀 = 𝑁.

We may also define the Gödel number of a sequence of sequences of symbols, like for a

sequence of quadruples or for a computation, as follows.
4See Tattersall [29] for a definition of a prime number, properties, and the Fundamental Theorem of Arithmetic.

1.3. UNDECIDABLE PROBLEMS 18

Definition 1.3.5 Let ℳ = (𝑀1, 𝑀2, … , 𝑀𝑛) be a finite sequence of finite sequences of symbols

in U. We define the Gödel number of ℳ as the integer

𝑛
∏
𝑗=1

𝑝gn(𝑀𝑗)
𝑗 .

Again, from the Fundamental Theorem of Arithmetic, we get

Theorem 1.3.2 Let ℳ and 𝒩 be finite sequences of finite sequences of symbols in U. If their

Gödel numbers are the same, then ℳ = 𝒩.

Theorem 1.3.3 If 𝑀 is a finite sequence of symbols, and ℳ is a finite sequence of finite sequences

of symbols, then their Gödel numbers are different.

Proof: If 𝑀 is a finite sequence of symbols, then we can write

gn(𝑀) = 2𝑛𝑚,

where 𝑛 and 𝑚 are odd integers. If ℳ is a finite sequence of finite sequences of symbols, then

its Gödel number has the form

2𝑛′𝑚′,

where 𝑛′ is an even integer (because it itself is the Gödel number of a finite sequence of symbols),

and 𝑚′ is an odd integer. By the Fundamental Theorem of Arithmetic, the Gödel numbers of 𝑀

and ℳ are different. ∎

For example, the Gödel number of the sequence of quadruples

(𝑞1 1 0 𝑞2, 𝑞2 0 𝑅 𝑞2)

is 2293115771332133753713 or

2686 543 901 062 753 160 000 0003216 981 776 138 351 616 000,

which is a rather big number. However, the usefulness of Gödel numbers does not come from

1.3. UNDECIDABLE PROBLEMS 19

direct operations with them. Instead, we use them because they allow us to enumerate certain

interesting sets, as we will see later on.

We may also define Gödel numbers of Turing machines as follows.

Definition 1.3.6 Let 𝑍 be a Turing machine. Let (𝑀1, 𝑀2, … , 𝑀𝑛) be any ordering without rep-

etitions of the set of quadruples of 𝑍. Then, the Gödel number of the sequence (𝑀1, 𝑀2, … , 𝑀𝑛)

is a Gödel number of 𝑍.

Thus, a Turing machine 𝑍 with 𝑛 unique quadruples has 𝑛! distinct Gödel numbers.

Definition 1.3.7 Let (𝑧, 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦) be in Ω𝑛+2, and 𝑛 be a positive integer. We define the

predicate

𝑇𝑛(𝑧, 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦)

to mean that there exists a Turing machine 𝑍 such that:

• 𝑧 is a Gödel number of 𝑍.

• 𝑦 is the Gödel number of a computation (𝛼1, 𝛼2, … , 𝛼𝑝) with respect to 𝑍.

• 𝛼1 is the instantaneous description

𝑞1(𝑥1, 𝑥2, … , 𝑥𝑛).

We state the following theorem without proof. See Davis [9] for a proof using recursive

functions.

Theorem 1.3.4 Let (𝑧, 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦) be in Ω𝑛+2. Then, the predicate 𝑇𝑛(𝑧, 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦)

is computable.

Definition 1.3.8 Let (𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛) be in Ω𝑛+1. The operation of minimalization associates

with each predicate 𝑃(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛) a function ℎ∶ 𝐷 → Ω, 𝐷 ⊂ Ω𝑛, such that:

• If there exists 𝑦 such that 𝑃(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛) is true, then ℎ(𝑥1, 𝑥2, … , 𝑥𝑛) is the least such

𝑦.

1.3. UNDECIDABLE PROBLEMS 20

• If not, then ℎ(𝑥1, 𝑥2, … , 𝑥𝑛) is left undefined.

We write

ℎ(𝑥1, 𝑥2, … , 𝑥𝑛) = min𝑦 [𝑃(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛)].

Theorem 1.3.5 Let (𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛) be in Ω𝑛+1. If the predicate 𝑃(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛) is com-

putable, then the function

ℎ(𝑥1, 𝑥2, … , 𝑥𝑛) = min𝑦 [𝑃(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛)].

is partially computable. Furthermore, if the domain of ℎ is Ω𝑛, then ℎ is computable.

We will only provide a sketch of the proof of this theorem. For a full proof, see Davis [9]. In

essence, we want to construct a Turing machine 𝐸 that implements a linear search starting from

𝑦 = 0, and incrementing 𝑦 by 1, until we find the first 𝑦 that makes 𝑃(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛) true.

If 𝑃 is computable, then there is some Turing machine 𝑍𝑃 such that, for any (𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛)

in Ω𝑛+1,

Ψ(𝑛+1)
𝑍𝑃

(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛) =

⎧{{
⎨{{⎩

0, for 𝑃(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛) false,

1, for 𝑃(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛) true.

Now, we may construct a Turing machine 𝐴 which converts an input 𝑞1(𝑥1, 𝑥2, … , 𝑥𝑛) into

𝑞3(0, 𝑥1, 𝑥2, … , 𝑥𝑛). Also, we may edit 𝑍𝑃 to get a Turing machine 𝑍′
𝑃 such that it takes inputs

of the form 𝑞3(𝑘, 𝑥1, 𝑥2, … , 𝑥𝑛), and transforms them into

𝑞𝑚(Ψ(𝑛+1)
𝑍𝑃

(𝑘, 𝑥1, 𝑥2, … , 𝑥𝑛), 𝑘, 𝑥1, 𝑥2, … , 𝑥𝑛). (1.1)

We see at once that it is only a matter of constructing a machine 𝐵 such that it takes an input

of the form (1.1), and then:

• If Ψ(𝑛+1)
𝑍𝑃

(𝑘, 𝑥1, 𝑥2, … , 𝑥𝑛) = 1, then 𝐵 transforms the input into 𝑞𝑟(𝑘 − 1), and halts.

• If not, then 𝐵 transforms the input into 𝑞3(𝑘 + 1, 𝑥1, 𝑥2, … , 𝑥𝑛).

1.3. UNDECIDABLE PROBLEMS 21

We may now hook 𝐴, 𝐵, and 𝑍′
𝑃 together, and we get a Turing machine 𝐸 such that

ℎ(𝑥1, 𝑥2, … , 𝑥𝑛) = Ψ(𝑛)
𝐸 (𝑥1, 𝑥2, … , 𝑥𝑛).

The second part of the theorem follows by definition. This completes our sketch.

Definition 1.3.9 Let (𝑀1, 𝑀2, … , 𝑀𝑛) be a finite sequence of finite sequences of symbols. If 𝑦

is its Gödel number, then we define

𝑈(𝑦) = ⟨𝑀𝑛⟩.

We state the following theorem without proof. For a detailed proof, see Davis [9].

Theorem 1.3.6 Let 𝑍0 be a Turing machine, and let 𝑧0 be a Gödel number of 𝑍0. Then:

• The domain of the function

Ψ(𝑛)
𝑍0

(𝑥1, 𝑥2, … , 𝑥𝑛)

is the same as the domain of

min𝑦 [𝑇𝑛(𝑧0, 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦)].

• We have

Ψ(𝑛)
𝑍0

(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑈(min𝑦 [𝑇𝑛(𝑧0, 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦)]).

• If 𝑇𝑛(𝑧0, 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦0) is true for some fixed (𝑥1, 𝑥2, … , 𝑥𝑛) in Ω𝑛, then

𝑦0 = min𝑦 [𝑇𝑛(𝑧0, 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦)].

This theorem effectively characterizes certain enumeration properties of Turing machines.

1.3. UNDECIDABLE PROBLEMS 22

1.3.2 Semicomputable predicates

To better understand the concept of computability and its relationship with the arithmetization of

Turing machines, we need to understand the concept of semicomputability.

In this subsection, we shall assume that addition, (proper) subtraction, and composition of

computable functions are computable. We will explicitly show this in Chapter 3 for addition, but

proofs in terms of Turing machines can be found in Davis [9].

Definition 1.3.10 Let (𝑥1, 𝑥2, … , 𝑥𝑛) be in Ω𝑛. We say that the predicate 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛) is

semicomputable if there exists a partially computable function whose domain is the set

{(𝑥1, 𝑥2, … , 𝑥𝑛) ∣ 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛)}.

Theorem 1.3.7 Let (𝑥1, 𝑥2, … , 𝑥𝑛) be in Ω𝑛. If the predicate 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛) is computable,

then it is semicomputable.

Proof: Let the function 𝐶′
𝑃 ∶ Ω𝑛 → Ω be defined such that

𝐶′
𝑃(𝑥1, 𝑥2, … , 𝑥𝑛) = 1 − 𝐶𝑃(𝑥1, 𝑥2, … , 𝑥𝑛).

If 𝑃 is computable, then so is 𝐶′
𝑃. Therefore, the function

min𝑦 [𝐶′
𝑃 + 𝑦 = 0]

is computable, and its domain is

{(𝑥1, 𝑥2, … , 𝑥𝑛) ∣ 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛)}. ∎

It turns out that semicomputable predicates are precisely those obtained by prefixing an

existential quantifier to a computable predicate. We have

Theorem 1.3.8 Let (𝑥1, 𝑥2, … , 𝑥𝑛) be in Ω𝑛. Consider the predicate 𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) such that

𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) ⟺ (∃𝑦 ∈ Ω) (𝑃(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛)) ,

1.3. UNDECIDABLE PROBLEMS 23

where 𝑃(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛) is a computable predicate. Then, 𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) is semicomputable.

Proof: The set

{(𝑥1, 𝑥2, … , 𝑥𝑛) ∣ 𝑅(𝑥1, 𝑥2, … , 𝑥𝑛)}

is the domain of the computable function

min𝑦 [𝐶′
𝑅(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛) = 0], (1.2)

where 𝐶′
𝑅 was defined in the proof of Theorem 1.3.7. ∎

Theorem 1.3.9 Let (𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛) be in Ω𝑛+1. Let 𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) be a semicomputable

predicate. Then, there exists some computable predicate 𝑃(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛) such that

𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) ⟺ (∃𝑦 ∈ Ω) (𝑃(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛)) .

Proof: By definition, there exists a computable function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) whose domain is the

set

{(𝑥1, 𝑥2, … , 𝑥𝑛) ∣ 𝑅(𝑥1, 𝑥2, … , 𝑥𝑛)}.

Now, by Theorem 1.3.6, there is some 𝑧0 in Ω such that

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑈(min𝑦 [𝑇𝑛(𝑧0, 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦)]),

and, therefore, the domain of 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) is the set

{(𝑥1, 𝑥2, … , 𝑥𝑛) ∣ (∃𝑦 ∈ Ω)(𝑇𝑛(𝑧0, 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦))}.

We conclude that

𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) ⟺ (∃𝑦 ∈ Ω)(𝑇𝑛(𝑧0, 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦)).

Take 𝑃(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑇𝑛(𝑧0, 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦). The result follows from Theorem 1.3.4. ∎

1.3. UNDECIDABLE PROBLEMS 24

We may now establish the relationship between computability and semicomputability more

clearly.

Theorem 1.3.10 Let (𝑥1, 𝑥2, … , 𝑥𝑛) be in Ω𝑛. Then, the predicate 𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) is com-

putable if and only if 𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) and ¬𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) are semicomputable.

Proof: If 𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) is computable, then so is ¬𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) by considering their

characteristic functions. Therefore, both

𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) and ¬𝑅(𝑥1, 𝑥2, … , 𝑥𝑛)

are semicomputable by Theorem 1.3.7.

Now, suppose that

𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) and ¬𝑅(𝑥1, 𝑥2, … , 𝑥𝑛)

are semicomputable. Then, for 𝑦 in Ω, there exist computable predicates

𝑃(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑄(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛)

such that

𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) ⟺ (∃𝑦 ∈ Ω) (𝑃(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛)) ,

¬𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) ⟺ (∃𝑦 ∈ Ω) (𝑄(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛)) .

For any given (𝑥1, 𝑥2, … , 𝑥𝑛), either

𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) or ¬𝑅(𝑥1, 𝑥2, … , 𝑥𝑛)

must be true. Therefore, the domain of the function

ℎ(𝑥1, 𝑥2, … , 𝑥𝑛) = min𝑦 [𝑃(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛) ∨ 𝑄(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛)]

1.3. UNDECIDABLE PROBLEMS 25

is Ω𝑛. As the predicate

𝑃(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛) ∨ 𝑄(𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛)

is computable by considering its characteristic function, we conclude that

ℎ(𝑥1, 𝑥2, … , 𝑥𝑛)

is computable as well by Theorem 1.3.5.

Now, notice that

𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) ⟺ 𝑃(ℎ(𝑥1, 𝑥2, … , 𝑥𝑛), 𝑥1, 𝑥2, … , 𝑥𝑛).

Therefore, 𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) is computable. ∎

We will now find a semicomputable predicate that is not computable.

Theorem 1.3.11 Let 𝑥 be in Ω. The predicate

𝔇(𝑥) ⟺ (∃𝑦 ∈ Ω)(𝑇(𝑥, 𝑥, 𝑦))

is semicomputable, but not computable.

Proof: 𝔇(𝑥) is semicomputable by Theorems 1.3.4 and 1.3.8. Let us suppose that ¬𝔇(𝑥) is

semicomputable. Then, there exists some 𝑧0 in Ω such that

¬(∃𝑦 ∈ Ω)(𝑇(𝑥, 𝑥, 𝑦)) ⟺ (∃𝑦 ∈ Ω)(𝑇(𝑧0, 𝑥, 𝑦)).

Let 𝑥 = 𝑧0. We get

¬(∃𝑦 ∈ Ω)(𝑇(𝑧0, 𝑧0, 𝑦)) ⟺ (∃𝑦 ∈ Ω)(𝑇(𝑧0, 𝑧0, 𝑦)).

This is a contradiction. We conclude that ¬𝔇(𝑥) is not semicomputable, so that 𝔇(𝑥) is not

computable. ∎

1.3. UNDECIDABLE PROBLEMS 26

The reader will notice that this proof employed a variation of Cantor’s diagonal argument.

1.3.3 The halting problem

We may now show that there exist undecidable problems.

Definition 1.3.11 Let (𝑥1, 𝑥2, … , 𝑥𝑛) be in Ω𝑛. The decision problem associated with the

predicate 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛) is the problem of determining whether 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛) is true.

Definition 1.3.12 We say that a decision problem is undecidable if the associated predicate is

not computable.

Using this language, we say that the decision problem for the predicate 𝔇(𝑥) is undecidable.

We will use this result to show that the halting problem is undecidable.

Definition 1.3.13 Let 𝑍 be a Turing machine. The halting problem for 𝑍 is the decision problem

of determining, for a given instantaneous description 𝛼1 of 𝑍, whether there exists a computation

(𝛼1, 𝛼2, … , 𝛼𝑛) of 𝑍. We write the associated predicate ℌ𝑍(𝑥) to mean that 𝑥 is the Gödel

number of such an 𝛼1.

Theorem 1.3.12 There exists a Turing machine whose halting problem is undecidable.

Proof: Let 𝑍0 be a Turing machine such that

Ψ𝑍0
(𝑥) = min𝑦 [𝑇(𝑥, 𝑥, 𝑦)].

Then, 𝑥 belongs to the domain of Ψ𝑍0
(𝑥) if and only if

(∃𝑦 ∈ Ω)(𝑇(𝑥, 𝑥, 𝑦)). (1.3)

However, we also have that 𝑥 belongs to the domain of Ψ𝑍0
(𝑥) if and only if

ℌ𝑍0
(gn (𝑞1𝑥)).

1.3. UNDECIDABLE PROBLEMS 27

Now, the function gn is computable,5 so that if ℌ𝑍0
(𝑥) were computable, so would be (1.3).

However, this is not the case by Theorem 1.3.11, so that ℌ𝑍0
(𝑥) must be not computable. ∎

The undecidability of the halting problem is an important result for computer scientists and

programmers. It implies that there cannot be a general algorithm to determine if a computer

program will do what it is supposed to do.

We now turn to the theory of semigroups.

5See Davis [9].

28

Chapter 2

Semigroups

2.1 Semigroup theory

Semigroups are very simple to describe, and are sometimes considered a generalization of groups

[12, 15]. However, they are so numerous when compared to groups that it is often better to think

of them as completely independent algebraic objects [13].

Definition 2.1.1 We say that (𝑆, 𝜇) is a semigroup if 𝑆 is a set on which an associative binary

operation 𝜇 is defined.

That is, we have a function 𝜇∶ 𝑆 × 𝑆 → 𝑆 such that, for all 𝑥, 𝑦, and 𝑧 in 𝑆, we have

𝜇(𝑥, 𝜇(𝑦, 𝑧)) = 𝜇(𝜇(𝑥, 𝑦), 𝑧).

Whenever no confusion with arithmetic multiplication may arise, we shall write 𝑥 ⋅ 𝑦 or 𝑥𝑦 for

𝜇(𝑥, 𝑦), and speak in terms of products. Also, we may write 𝑆 to refer to the semigroup (𝑆, 𝜇) if

the associated binary operation is clear.

Definition 2.1.2 Let 𝑆 be a semigroup. If 𝑆 contains an identity element, we define 𝑆1 = 𝑆. If 𝑆

does not contain such an element, we define 𝑆1 = 𝑆 ∪ {1}, where 1 is not in 𝑆, and 1 acts as the

identity element, i.e., for any 𝑥 and 𝑦 in 𝑆,

1𝑥 = 𝑥1 = 𝑥,

2.1. SEMIGROUP THEORY 29

and 𝑥𝑦 is the same in 𝑆1 as in 𝑆.

Clearly, if 𝑆 is a semigroup, then 𝑆1 is a semigroup with identity, which is also known as a

monoid. Thus every semigroup can be extended to a monoid in a natural way.

2.1.1 Homomorphisms and congruences

Definition 2.1.3 Let 𝑆 and 𝑇 be semigroups. We say a function 𝜑∶ 𝑆 → 𝑇 is a (semigroup)

homomorphism if

𝜑(𝑥𝑦) = 𝜑(𝑥)𝜑(𝑦)

for all 𝑥 and 𝑦 in 𝑆.

Semigroup homomorphisms share a number of properties with homomorphisms of groups.

Analogously to subgroups, we define subsemigroups.

Definition 2.1.4 Let 𝑇 be a semigroup and 𝑆 be a subset of 𝑇 as a set. Then, we call 𝑆 a

subsemigroup of 𝑇 if 𝑆 is closed under the semigroup operation, i.e., if 𝑥 and 𝑦 are elements of

𝑆, then so is 𝑥𝑦.

Clearly, we have

Theorem 2.1.1 Let 𝑇 be a semigroup. Let 𝑆 and 𝑉 be subsemigroups of 𝑇. Then, 𝑆 ∩ 𝑉 is also a

subsemigroup of 𝑇.

If we are given a semigroup, we may ask which is its smallest subsemigroup such that it

contains a given set. Thus, we define the subsemigroup generated by a set as follows.

Definition 2.1.5 Let 𝑆 be a semigroup and 𝑋 be a set such that 𝑋 ⊂ 𝑆. Then, we define the

subsemigroup 𝑋∗ generated by 𝑋 as the intersection of all subsemigroups of 𝑆 that contain 𝑋.

Theorem 2.1.2 Let 𝑆 be a semigroup and 𝑋 be a set such that 𝑋 ⊂ 𝑆. Then, 𝑋∗ is the set of all

products of one or more elements of 𝑋.

2.1. SEMIGROUP THEORY 30

Proof: Let 𝑉 be the set of all products of one or more elements of 𝑋. Then, 𝑉 is clearly closed

under the semigroup operation, so that 𝑉 is a subsemigroup of 𝑆 which contains 𝑋. Therefore,

we have 𝑋∗ ⊂ 𝑉.

Now, let 𝑇 be any subsemigroup of 𝑆 containing 𝑋. By definition, 𝑇 is closed under the

semigroup operation, so that by induction 𝑇 must contain all products of one or more elements

of 𝑋. Therefore, we have that 𝑇 ⊃ 𝑉, and this implies that 𝑋∗ ⊃ 𝑉.

We conclude that 𝑋∗ = 𝑉. ∎

Definition 2.1.6 Let 𝑆 be a semigroup and 𝑋 be a set such that 𝑋 ⊂ 𝑆. If 𝑋∗ = 𝑆, we say that 𝑋

generates 𝑆 and call the elements of 𝑋 the generators of 𝑆.

We will be working with equivalence relations and equivalence classes1 within semigroups.

We introduce the following notation.

Definition 2.1.7 Let 𝒞 be an equivalence relation on a set 𝑋. We define the quotient set of 𝑋

by 𝒞 as the set of all equivalence classes of elements of 𝑋 with respect to 𝒞. We write this set as

𝑋/𝒞.

For a given 𝑥 in 𝑋, we write

[𝑥]𝒞,

or simply [𝑥] when there is no ambiguity, for the equivalence class of 𝑥 with respect to 𝒞.

The following theorem is taken from Grillet [13], and we state it without proof.

Theorem 2.1.3 Let 𝒞 be an equivalence relation2 on a semigroup 𝑆. Then, the following are

equivalent:

1. There is a semigroup operation on 𝑆/𝒞 such that the projection map 𝑝∶ 𝑆 → 𝑆/𝒞 defined

by 𝑝(𝑠) = [𝑠]𝒞 is a homomorphism.

2. 𝒞 is compatible with the semigroup operation, i.e., if 𝑎 𝒞 𝑏 and 𝑐 𝒞 𝑑, then 𝑎𝑐 𝒞 𝑏𝑑 for

any 𝑎, 𝑏, 𝑐, and 𝑑 in 𝑆.
1See Judson [16] for the definitions.
2Here we are thinking of 𝒞 as defined on 𝑆 as a set.

2.1. SEMIGROUP THEORY 31

3. 𝒞 admits “multiplication from the left,” i.e.,

𝑎 𝒞 𝑏 ⟹ 𝑥𝑎 𝒞 𝑥𝑏,

and “multiplication from the right,” i.e.,

𝑎 𝒞 𝑏 ⟹ 𝑎𝑥 𝒞 𝑏𝑥,

for any 𝑎, 𝑏, and 𝑥 in 𝑆.

In 1, the operation on 𝑆/𝒞 is unique, and we have that [𝑎][𝑏] = [𝑎𝑏] for any 𝑎 and 𝑏 in 𝑆.

Furthermore, [𝑎𝑏] is the only class in 𝑆/𝒞 such that it contains the product of the classes [𝑎]

and [𝑏] as subsets of 𝑆.

Definition 2.1.8 Let 𝒞 be an equivalence relation on a semigroup 𝑆. We say that 𝒞 is a

congruence in 𝑆 if it satisfies any of the equivalent conditions in Theorem 2.1.3. We call the

resulting semigroup 𝑆/𝒞 the quotient (semigroup) of 𝑆 by 𝒞.

Now, clearly we have that

Theorem 2.1.4 The intersection of two congruences in 𝑆 is also a congruence in 𝑆.

We may wonder whether we can extend any binary relation to a congruence, and which is

the smallest such congruence. We have

Definition 2.1.9 Let 𝑆 be a semigroup. Let 𝒜 be any subset of 𝑆 × 𝑆, i.e., a binary relation on

𝑆. We define the congruence generated by 𝒜 as the intersection 𝒯 of all the congruences in 𝑆

that contain 𝒜.

We can construct 𝒯 in Definition 2.1.9 explicitly: we first extend 𝒜 to a symmetric relation

ℬ such that it admits the semigroup operation, and then we construct its transitive closure.

Definition 2.1.10 Let ℬ be a binary relation on a set 𝑋. The transitive closure of ℬ is the

binary relation 𝒯 defined such that, for any 𝑎 and 𝑏 in 𝑋,

𝑎 𝒯 𝑏

2.1. SEMIGROUP THEORY 32

if and only if there exists a sequence (𝑥1, 𝑥2, … , 𝑥𝑟) ∈ 𝑋𝑟 such that 𝑟 > 0, 𝑎 = 𝑥1, 𝑏 = 𝑥𝑟, and

𝑥𝑖 ℬ 𝑥𝑖+1

for all integers 𝑖, 1 ≤ 𝑖 < 𝑟.

Theorem 2.1.5 Let 𝑆 be a semigroup and 𝒜 be any binary relation on 𝑆. The congruence 𝒯

generated by 𝒜 is the transitive closure of the binary relation ℬ defined such that, for any 𝑎

and 𝑏 in 𝑆,

𝑎 ℬ 𝑏

if and only if

𝑎 = 𝑢𝑥𝑣 and 𝑏 = 𝑢𝑦𝑣,

where 𝑢 and 𝑣 are in 𝑆1, 𝑥 and 𝑦 are in 𝑆, and

𝑥 𝒜 𝑦 or 𝑦 𝒜 𝑥.

Proof: First, notice that ℬ contains 𝒜 by letting 𝑢 = 𝑣 = 1. Second, notice that ℬ is symmetric,

and admits both multiplication on the left and on the right. Therefore, 𝒯 inherits symmetry and

also admits multiplication on the left and on the right.

Now, letting 𝑟 = 2, we get that 𝒯 contains ℬ, and letting 𝑟 = 1, we get that 𝒯 is reflexive.

Also, 𝒯 is clearly transitive, so we conclude that 𝒯 is a congruence which contains 𝒜.

Conversely, let 𝒞 be any congruence that contains 𝒜. Let 𝑥 and 𝑦 be in 𝑆. If

𝑥 𝒜 𝑦 or 𝑦 𝒜 𝑥,

then 𝑥 𝒞 𝑦, and, for any 𝑢 and 𝑣 in 𝑆1, we have

𝑢𝑥𝑣 𝒞 𝑢𝑦𝑣.

This shows 𝒞 contains ℬ. Now, since 𝒞 is reflexive and transitive, it contains 𝒯, and, therefore,

2.1. SEMIGROUP THEORY 33

𝒯 is the smallest congruence that contains 𝒜. ∎

2.1.2 Free semigroups

We now introduce the concept of a free semigroup which will be essential to our statement of the

word problem for semigroups.

Let 𝑋 be any set. Then, we may construct a semigroup 𝐹𝑋 such that 𝑋 ⊂ 𝐹𝑋, and where any

element of 𝐹𝑋 can be written uniquely as a product of elements of 𝑋. All elements of 𝐹𝑋 are

finite sequences (𝑥1, 𝑥2, … , 𝑥𝑛) of elements of 𝑋, and the binary operation associated to 𝐹𝑋 is

concatenation.

Definition 2.1.11 Let (𝑥1, 𝑥2, … , 𝑥𝑛) and (𝑦1, 𝑦2, … , 𝑦𝑚) be two finite sequences. The binary

operation of concatenation of (𝑥1, 𝑥2, … , 𝑥𝑛) and (𝑦1, 𝑦2, … , 𝑦𝑚) is defined such that

(𝑥1, 𝑥2, … , 𝑥𝑛)(𝑦1, 𝑦2, … , 𝑦𝑚) = (𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦1, 𝑦2, … , 𝑦𝑚).

Clearly, concatenation is associative. Furthermore, notice that the empty sequence () is the

identity element for the operation of concatenation.

Now, every sequence can be written uniquely as a concatenation of one-element sequences:

(𝑥1, 𝑥2, … , 𝑥𝑛) = (𝑥1)(𝑥2) ⋯ (𝑥𝑛).

We identify every element 𝑥 in 𝑋 with the one-element sequence (𝑥), so that 𝑋 ⊂ 𝐹𝑋 and every

element of 𝐹𝑋 can be written uniquely as a concatenation of elements of 𝑋. We will usually

write sequences in 𝐹𝑋 as words or strings, like 𝑥1𝑥2 ⋯ 𝑥𝑛 for the sequence (𝑥1, 𝑥2, … , 𝑥𝑛). Then,

we will call 𝑋 the alphabet of those words.

Definition 2.1.12 The free semigroup 𝐹𝑋 on the set 𝑋 is the semigroup of all finite nonempty

sequences of elements of 𝑋 together with the operation of concatenation, as above.

We also define

Definition 2.1.13 The free monoid 𝐹1
𝑋 on the set 𝑋 is the semigroup of all finite (possibly

empty) sequences of elements of 𝑋 together with the operation of concatenation, as above.

2.1. SEMIGROUP THEORY 34

This is compatible with our notation above.

Theorem 2.1.6 Let 𝑋 be any set and 𝑆 be a semigroup. Then, any function 𝑓 ∶ 𝑋 → 𝑆 extends

uniquely to a homomorphism 𝜑∶ 𝐹𝑋 → 𝑆. Furthermore, the image of 𝜑 is the subsemigroup of 𝑆

generated by

𝑓 (𝑋) = {𝑓 (𝑥) ∣ 𝑥 ∈ 𝑋}.

If 𝑆 is generated by 𝑓 (𝑋), then 𝜑 is onto.

Proof: Notice that if 𝜑∶ 𝐹𝑋 → 𝑆 is a homomorphism that extends 𝑓, then we necessarily have

that

𝜑(𝑥1𝑥2 ⋯ 𝑥𝑛) = 𝜑(𝑥1)𝜑(𝑥2) ⋯ 𝜑(𝑥𝑛) = 𝑓(𝑥1)𝑓(𝑥2) ⋯ 𝑓(𝑥𝑛),

for any 𝑥1𝑥2 ⋯ 𝑥𝑛 in 𝐹𝑋. Conversely, the function 𝜑∶ 𝐹𝑋 → 𝑆 such that

𝜑(𝑥1𝑥2 ⋯ 𝑥𝑛) = 𝑓(𝑥1)𝑓(𝑥2) ⋯ 𝑓(𝑥𝑛)

for any 𝑥1𝑥2 ⋯ 𝑥𝑛 in 𝐹𝑋 is a semigroup homomorphism that extends 𝑓.

Finally, by Theorem 2.1.2, the image of 𝜑 is the semigroup of 𝑆 generated by 𝑓 (𝑋). ∎

This shows

Theorem 2.1.7 Every semigroup 𝑆 is the image of a homomorphism 𝜑∶ 𝐹𝑋 → 𝑆 for some set 𝑋.

Theorem 2.1.7 above is called the universal mapping property of free semigroups.

2.1.3 Presentation of a semigroup

Congruences and free semigroups allow us to describe semigroups in terms of presentations as

follows.

Definition 2.1.14 Let 𝑋 be any set. We define a relation between the elements of 𝑋 (or simply,

a relation) as an ordered pair of elements of 𝐹𝑋. We will usually write a relation (𝑢, 𝑣) as 𝑢 ≐ 𝑣.

Definition 2.1.15 Let 𝑋 be any set and 𝑆 be a semigroup. Consider a function 𝑓 ∶ 𝑋 → 𝑆. Let

the function 𝜑∶ 𝐹𝑋 → 𝑆 be the unique homomorphism that extends 𝑓. We say that 𝑢 ≐ 𝑣 holds

in 𝑆 (via 𝑓) if 𝜑(𝑢) = 𝜑(𝑣) is true in 𝑆.

2.1. SEMIGROUP THEORY 35

If 𝑋 is a subset of a semigroup 𝑆, and 𝑓 is the inclusion mapping defined by 𝑓 (𝑥) = 𝑥, then

𝜑 in Definition 2.1.15 takes a sequence of elements of 𝑋 from 𝐹𝑋 to the product of those same

elements in 𝑆. Therefore, a relation 𝑢 ≐ 𝑣 holds in 𝑆 if and only if the corresponding products of

elements of 𝑋 are equal in 𝑆.

Definition 2.1.16 Let 𝑋 be a set and 𝑅 be a set of relations between the elements of 𝑋, i.e., 𝑅 is

a binary relation on 𝐹𝑋. We write

⟨𝑋 | 𝑅⟩

to mean the quotient semigroup 𝐹𝑋/𝒞, where 𝒞 is the congruence generated by 𝑅. We say that

⟨𝑋 | 𝑅⟩ is the semigroup generated by 𝑋 subject to 𝑅, and call the elements of 𝑅 the defining

relations of ⟨𝑋 | 𝑅⟩.

For any ⟨𝑋 | 𝑅⟩ as in Definition 2.1.16, we can define a function 𝜄 ∶ 𝑋 → ⟨𝑋 | 𝑅⟩ such that3

𝜄(𝑥) = [(𝑥)]𝒞. The homomorphism this function extends to is precisely the projection map

𝑝∶ 𝐹𝑋 → ⟨𝑋 | 𝑅⟩ such that

𝑝(𝑥1, 𝑥2, … , 𝑥𝑛) = [(𝑥1, 𝑥2, … , 𝑥𝑛)]𝒞

= [(𝑥1)]𝒞[(𝑥2)]𝒞 ⋯ [(𝑥𝑛)]𝒞

= 𝜄(𝑥1)𝜄(𝑥2) ⋯ 𝜄(𝑥𝑛).

This shows

Theorem 2.1.8 Let 𝑋 be a set and 𝑅 be a set of relations between the elements of 𝑋. Then,

⟨𝑋 | 𝑅⟩ is generated by

𝜄(𝑋) = {𝜄(𝑥) | 𝑥 ∈ 𝑋},

where 𝜄 is as above, and every relation 𝑢 ≐ 𝑣 in 𝑅 holds in ⟨𝑋 | 𝑅⟩ via 𝜄.

It should be noted that 𝑋 need not be a subset of ⟨𝑋 | 𝑅⟩ as 𝜄 need not be one-to-one. Fur-

thermore, ⟨𝑋 | 𝑅⟩ is not the only semigroup generated by 𝜄(𝑋) where every relation in 𝑅 holds.

However, it can be shown that there is a sense in which ⟨𝑋 | 𝑅⟩ is the largest such semigroup.4

3Here, we write (𝑥) to refer explicitly to 𝑥 as an element of 𝐹𝑋.
4See Grillet [13].

2.1. SEMIGROUP THEORY 36

Definition 2.1.17 Let 𝑆 be a semigroup. A presentation of 𝑆 consists of a set 𝑋, a set 𝑅 of

relations between the elements of 𝑋, and bijective homomorphism (or isomorphism) between

𝑆 and ⟨𝑋 | 𝑅⟩. If 𝑋 is finite, we say that 𝑆 is finitely generated. If 𝑅 is finite, we say that 𝑆 is

finitely related. If both 𝑋 and 𝑅 are finite, we say that 𝑆 is finitely presented.

Now, by Theorem 2.1.7, every semigroup 𝑆 has a presentation, in which 𝑋 can be any subset

of 𝑆 which generates 𝑆, and 𝑅 be any binary relation such that it generates the congruence

induced5 by 𝜑∶ 𝐹𝑋 → 𝑆.

2.1.4 Semi-Thue and Thue systems

We may also describe finitely presented semigroups in terms of string rewriting.

Consider the finite sets

𝑋 = {𝑎1, 𝑎2, … , 𝑎𝑛},

and

𝑅 = {(𝑢𝑖, 𝑣𝑖) ∣ 𝑖 = 1, 2, … , 𝑚},

where 𝑅 is a set of relations between the elements of 𝑋. We may think of the elements of 𝑅 as

rewrite rules as follows.

Definition 2.1.18 A rewrite rule is any element (𝑢, 𝑣) of 𝐹𝑋 × 𝐹𝑋 such that it can be applied to

words on 𝑋 of the form 𝑧1𝑢𝑧2, where 𝑧1 and 𝑧2 are in 𝐹1
𝑋. The result of applying the rule (𝑢, 𝑣) to

𝑧1𝑢𝑧2

is

𝑧1𝑣𝑧2,

and we write

𝑧1𝑢𝑧2 → 𝑧1𝑣𝑧2.
5See Grillet [13].

2.1. SEMIGROUP THEORY 37

Here, we repurpose our notation for basic moves from Definition 1.1.5. This is not a

coincidence, as we will see later.

Definition 2.1.19 A system 𝑆, consisting of 𝐹𝑋 together with a finite set of rewrite rules 𝑅 as

above, is called a semi-Thue system. If the rewrite rules are symmetric, we call it a Thue

system.

Definition 2.1.20 A string rewrite of the form

𝑧1𝑢𝑖𝑧2 → 𝑧1𝑣𝑖𝑧2,

where 𝑧1 and 𝑧2 are in 𝐹1
𝑋, is called a forward application of the rewrite rule (𝑢𝑖, 𝑣𝑖) in 𝑅.

Similarly, a string rewrite of the form

𝑧1𝑣𝑖𝑧2 → 𝑧1𝑢𝑖𝑧2,

is called a backward application of the rewrite rule (𝑢𝑖, 𝑣𝑖) in 𝑅.

Definition 2.1.21 Let 𝑆 be a semi-Thue system associated with the sets 𝐹𝑋 and 𝑅, as above. We

define a proof in 𝑆 as a sequence of string rewrites of the form

𝑤1 → 𝑤2 → ⋯ → 𝑤𝑟,

where each string rewrite is a single (backward or forward) application of a rewrite rule in 𝑅. A

proof is said to be reversal-free or without reversals if it does not contain two successive string

rewrites of the forms

𝑧1𝑢𝑖𝑧2 → 𝑧1𝑣𝑖𝑧2 → 𝑧1𝑢𝑖𝑧2 or 𝑧1𝑣𝑖𝑧2 → 𝑧1𝑢𝑖𝑧2 → 𝑧1𝑣𝑖𝑧2,

the second of which undoes the first, where 𝑧1 and 𝑧2 are in 𝐹1
𝑋, and (𝑢𝑖, 𝑣𝑖) is in 𝑅.

We define two words to be congruent in a Thue system 𝑆 if and only if there exists a proof

in 𝑆 beginning with one and ending with the other. Then, we may identify 𝑆, consisting of 𝐹𝑋

2.1. SEMIGROUP THEORY 38

and 𝑅 as above, with the semigroup ⟨𝑋 | 𝑅⟩. To do this, consider the congruence ≈ generated by

𝑅. Recall that ≈ is first of all an equivalence relation. In the proof of Theorem 2.1.5, we used

Theorem 2.1.3 to show that ≈ was a congruence in addition to being an equivalence relation. We

now prove directly that ≈ is compatible with concatenation, and thus explicitly construct ⟨𝑋 | 𝑅⟩.

Definition 2.1.22 Let 𝐴 and 𝐵 be words on 𝑋, i.e., elements of 𝐹𝑋. Then, we write 𝐴 ∼ 𝐵 if

there exists a rewrite rule in 𝑅 such that 𝐴 → 𝐵 or 𝐵 → 𝐴.

Here, ∼ takes the role of ℬ in Theorem 2.1.5. That is, ≈ is the transitive closure of ∼.

Furthermore, notice that ≈ is identical to congruence in terms of proofs.

Theorem 2.1.9 Let 𝐴, 𝐵, 𝐶, and 𝐷 be words on 𝑋. If 𝐴 ∼ 𝐵 and 𝐶 ∼ 𝐷, then 𝐴𝐶 ≈ 𝐵𝐷.

Proof: Suppose (𝑢𝑖, 𝑣𝑖) and (𝑢𝑗, 𝑣𝑗) are in 𝑅. Without loss of generality, we can write

𝐴 = 𝑧1𝑢𝑖𝑧2,

𝐵 = 𝑧1𝑣𝑖𝑧2,

𝐶 = 𝑧3𝑢𝑗𝑧4,

and 𝐷 = 𝑧3𝑣𝑗𝑧4,

for some 𝑧1, 𝑧2, 𝑧3, and 𝑧4 on 𝐹1
𝑋. Now, we have 𝐴𝐶 ∼ 𝐴𝐷 ∼ 𝐵𝐷. ∎

Theorem 2.1.10 Let 𝐴, 𝐵, 𝐶, and 𝐷 be words on 𝑋. If 𝐴 ≈ 𝐵 and 𝐶 ∼ 𝐷, then 𝐴𝐶 ≈ 𝐵𝐷.

Proof: Let 𝐴 = 𝐴1 ∼ 𝐴2 ∼ ⋯ ∼ 𝐴𝑟 = 𝐵. Then, by Theorem 2.1.9,

𝐴𝐶 = 𝐴1𝐶 ≈ 𝐴2𝐷 ∼ 𝐴3𝐷 ∼ ⋯ ∼ 𝐴𝑟𝐷 = 𝐵𝐷,

so that 𝐴𝐶 ≈ 𝐵𝐷. ∎

Theorem 2.1.11 Let 𝐴, 𝐵, 𝐶, and 𝐷 be words on 𝑋. If 𝐴 ≈ 𝐵 and 𝐶 ≈ 𝐷, then 𝐴𝐶 ≈ 𝐵𝐷.

Proof: Let 𝐶 = 𝐶1 ∼ 𝐶2 ∼ ⋯ ∼ 𝐶𝑠 = 𝐷. Then, by Theorem 2.1.10,

𝐴𝐶 = 𝐴𝐶1 ≈ 𝐵𝐶2 ∼ 𝐵𝐶3 ∼ ⋯ ∼ 𝐵𝐶𝑠 = 𝐵𝐷,

2.1. SEMIGROUP THEORY 39

so that 𝐴𝐶 ≈ 𝐵𝐷. ∎

Definition 2.1.23 Let 𝐴 and 𝐵 be words on 𝑋. Then, we shall write [𝐴][𝐵] for the class [𝐴𝐵]

(with respect to the equivalence relation ≈), and speak of multiplication on equivalence classes.

Theorem 2.1.12 Multiplication on equivalence classes is a well-defined binary operation.

Proof: This follows at once from Theorem 2.1.11. We have that if [𝐴] = [𝐵] and [𝐶] = [𝐷],

then [𝐴𝐶] = [𝐵𝐷]. ∎

This shows that ≈ is compatible with concatenation, and, therefore, that it is a congruence.

Furthermore, we have

Theorem 2.1.13 Multiplication on equivalence classes is an associative binary operation.

Proof: We have

[𝐴]([𝐵][𝐶]) = [𝐴][𝐵𝐶]

= [𝐴(𝐵𝐶)]

= [(𝐴𝐵)𝐶]

= [𝐴𝐵][𝐶]

= ([𝐴][𝐵])[𝐶]. ∎

Thus, we have explicitly described the semigroup

⟨𝑋 | 𝑅⟩ = 𝐹𝑋/≈,

whose elements are the equivalence classes [𝐴]≈ for 𝐴 in 𝐹𝑋, and whose semigroup operation is

multiplication on equivalence classes.

From this point onward, we will use both defining relations and rewrite rules interchangeably

when discussing finitely generated semigroups.

It is important to understand that even when given the sets 𝑋 and 𝑅, we may still be none

the wiser about the structure of the semigroup ⟨𝑋 | 𝑅⟩, or even whether it has a finite or infinite

number of elements.

2.2. THE WORD PROBLEM FOR SEMIGROUPS 40

2.2 The word problem for semigroups

2.2.1 Statement

Now, we may finally pose the word problem for semigroups.

Definition 2.2.1 If we are given finite sets 𝑋 and 𝑅, where 𝑅 is a set of relations on 𝑋, then the

word problem for the (finitely presented) semigroup ⟨𝑋 | 𝑅⟩ is to determine, of two words 𝐴

and 𝐵 on 𝐹𝑋, whether or not 𝐴 ≈ 𝐵, where ≈ is the congruence generated by 𝑅.

2.2.2 Method

The following discussion is based on Tarski [28].

Two general methods have emerged for proving that decision problems are undecidable since

the discovery of Gödel’s Incompleteness Theorems.

The first method, which follows Gödel’s approach (outlined in Chapter 1), requires extensive

work to develop a sufficient number-theoretical framework within the theory being studied.

The second method is indirect, proving undecidability by reducing known undecidable

problems to our target problem. This reduction can be accomplished in two ways. First, we can

show that our target theory can be obtained by removing finitely many axioms from a known

undecidable theory. Second, we can show that a known undecidable theory can be interpreted

within our target theory.

We will use the interpretation technique to prove the word problem for semigroups is un-

decidable by showing that Turing machines can be “simulated” within the theory of finitely

presented semigroups. In this way, we will find that the word problem can be reduced to the

halting problem.

2.2.3 Simulating Turing machines

Definition 2.2.2 Let 𝑍 be a Turing machine with alphabet

{𝑆0, 𝑆1, … , 𝑆𝑚}

2.2. THE WORD PROBLEM FOR SEMIGROUPS 41

and internal states

{𝑞1, 𝑞2, … , 𝑞𝑛}.

We define the finitely presented semigroup

𝜌(𝑍) = ⟨{ℎ, 𝑞, 𝑞0} ∪ {𝑆0, 𝑆1, … , 𝑆𝑚} ∪ {𝑞1, 𝑞2, … , 𝑞𝑛} ∣ 𝑅𝑍⟩,

such that:

1. For each quadruple of 𝑍 of the form

𝑞𝑖 𝑆𝑗 𝑆𝑘 𝑞𝑙,

𝑅𝑍 contains

𝑞𝑖𝑆𝑗 ≐ 𝑞𝑙𝑆𝑘.

2. For each quadruple of 𝑍 of the form

𝑞𝑖 𝑆𝑗 𝑅 𝑞𝑙,

and each 𝑆𝑘 in the alphabet of 𝑍, 𝑅𝑍 contains

𝑞𝑖𝑆𝑗𝑆𝑘 ≐ 𝑆𝑗𝑞𝑙𝑆𝑘 and 𝑞𝑖𝑆𝑗ℎ ≐ 𝑆𝑗𝑞𝑙𝑆0ℎ.

3. For each quadruple of 𝑍 of the form

𝑞𝑖 𝑆𝑗 𝐿 𝑞𝑙,

and each 𝑆𝑘 in the alphabet of 𝑍, 𝑅𝑍 contains

𝑆𝑘𝑞𝑖𝑆𝑗 ≐ 𝑞𝑙𝑆𝑘𝑆𝑗 and ℎ𝑞𝑖𝑆𝑗 ≐ ℎ𝑞𝑙𝑆0𝑆𝑗.

4. For each internal configuration 𝑞𝑖 of 𝑍, and each 𝑆𝑗 in the alphabet of 𝑍 for which no

2.2. THE WORD PROBLEM FOR SEMIGROUPS 42

quadruple of 𝑍 begins with the combination

𝑞𝑖 𝑆𝑗,

𝑅𝑍 contains

𝑞𝑖𝑆𝑗 ≐ 𝑞0𝑆𝑗.

5. For each 𝑆𝑖 in the alphabet, 𝑅𝑍 contains

𝑞0𝑆𝑖 ≐ 𝑞0,

𝑆𝑖𝑞0ℎ ≐ 𝑞0ℎ,

and ℎ𝑞0ℎ ≐ 𝑞.

Finally, we write ≈ for the congruence generated by 𝑅𝑍.

We have introduced new symbols in addition to those used to describe Turing machines in

Chapter 1.

The first one is the symbol ℎ. Intuitively, this symbol marks the ends of the extendable tape

of the Turing machine and allows us to translate the “pasting” of a new square onto the tape to

the language of defining relations. With this consideration, 1, 2, and 3 above correspond to the

normal functioning of the Turing machine 𝑍.

The second symbol is 𝑞0, which we will call the halting state. Recall that a Turing machine

𝑍 halts whenever no more basic moves are possible. This is equivalent to saying that an instanta-

neous description 𝛼 is terminal with respect to 𝑍 if and only if there exists no quadruple in 𝑍

such that it begins with 𝑞𝑖 𝑆𝑗, where 𝑞𝑖 is the internal state in 𝛼, and 𝑆𝑗 is the symbol to its right

in 𝛼. Then, 4 above corresponds to adding new quadruples

𝑞𝑖 𝑆𝑗 𝑆𝑗 𝑞0

to 𝑍 for all the possible “missing” quadruples. This new machine 𝑍′ has the property that the

2.2. THE WORD PROBLEM FOR SEMIGROUPS 43

functions

Ψ(𝑛)
𝑍 (𝑥1, 𝑥2, … , 𝑥𝑛) and Ψ(𝑛)

𝑍′ (𝑥1, 𝑥2, … , 𝑥𝑛)

have the same domain. That is, for any (𝑥1, 𝑥2, … , 𝑥𝑛) in Ω𝑛, there is a computation in 𝑍 starting

with 𝑞1(𝑥1, 𝑥2, … , 𝑥𝑛) if and only if there is a computation in 𝑍′ starting with 𝑞1(𝑥1, 𝑥2, … , 𝑥𝑛).

The last symbol is 𝑞. In terms of rewrite rules, forward applications of the defining relations

in 5 correspond to taking words of the form ℎ𝑢𝑞0𝑣ℎ, where 𝑢 and 𝑣 are words on the alphabet of

𝑍, and transforming them in the following way:

• First, we delete all symbols in the alphabet of 𝑍 to the right of 𝑞0, obtaining ℎ𝑢𝑞0ℎ.

• Second, we delete all symbols in the alphabet of 𝑍 to the left of 𝑞0, obtaining ℎ𝑞0ℎ.

• Third, we replace ℎ𝑞0ℎ with 𝑞.

Notice that, whenever

Res𝑍′ (𝑞1(𝑥1, 𝑥2, … , 𝑥𝑛))

is defined for (𝑥1, 𝑥2, … , 𝑥𝑛) in Ω𝑛, it is of the form ℎ𝑢𝑞0𝑣ℎ. In this sense, 5 intuitively corre-

sponds to “clearing” the tape of 𝑍′ at the end of a successful computation.

We summarize this discussion in the following theorem.

Theorem 2.2.1 Let 𝑍 be a Turing machine. If there is a computation in 𝑍 starting with

𝑞1(𝑥1, 𝑥2, … , 𝑥𝑛),

then there exists a proof in 𝜌(𝑍) of the form

ℎ𝑞1(𝑥1, 𝑥2, … , 𝑥𝑛)ℎ → ⋯ → ℎ𝑞0ℎ → 𝑞,

where each step is a forward application of a defining relation. Thus, in 𝜌(𝑍),

ℎ𝑞1(𝑥1, 𝑥2, … , 𝑥𝑛)ℎ ≈ 𝑞.

2.2. THE WORD PROBLEM FOR SEMIGROUPS 44

To show the word problem for semigroups is reducible to the halting problem, we must show

the converse of Theorem 2.2.1.

Definition 2.2.3 Let 𝑍 be a Turing machine. We say a word6 of 𝜌(𝑍) is ℎ-special if it has the

form

ℎ𝑢𝑞′𝑣ℎ,

where 𝑢 and 𝑣 are (possibly empty) words on the alphabet of 𝑍 and

𝑞′ ∈ {𝑞} ∪ {𝑞0, 𝑞1, … , 𝑞𝑛}.

Theorem 2.2.2 Let 𝑤1 and 𝑤2 be words of 𝜌(𝑍) such that neither of them is the word 𝑞. If

𝑤1 → 𝑤2

is an application of a relation in 𝑅𝑍, then 𝑤1 is ℎ-special if and only if 𝑤2 is ℎ-special.

Proof: Notice that only applications of the relation ℎ𝑞0ℎ ≐ 𝑞 create or destroy ℎ. The result

follows. ∎

Theorem 2.2.3 Let

𝑤 = ℎ𝑢𝑞′𝑣ℎ

be an ℎ-special word of 𝜌(𝑍) as in Definition 2.2.3. Then, at most one of the relations of 𝑅𝑍 has

a forward application to 𝑤.

Proof: First, if 𝑞′ = 𝑞, then clearly there is no relation in 𝑅𝑍 such that it has a forward application

to 𝑤. Second, if 𝑞′ ≠ 𝑞 and 𝑞′ ≠ 𝑞0, then the result follows from Theorem 1.1.1 applied to 𝑍′.

Finally, suppose that 𝑞′ = 𝑞0. We have:

• If 𝑢 and 𝑣 are empty, then clearly the only relation in 𝑅𝑍 that has a forward application to

𝑤 is ℎ𝑞0ℎ ≐ 𝑞.
6That is, an element of an equivalence class in the quotient semigroup 𝜌(𝑍).

2.2. THE WORD PROBLEM FOR SEMIGROUPS 45

• If 𝑢 is nonempty and 𝑣 is empty, then only one of the relations 𝑆𝑖𝑞0ℎ ≐ 𝑞0ℎ in 𝑅𝑍 has a

forward application to 𝑤.

• If 𝑣 is nonempty, then only one of the relations 𝑞0𝑆𝑖 ≐ 𝑞0 in 𝑅𝑍 has a forward application

to 𝑤.

This completes the proof. ∎

Theorem 2.2.4 Let

𝑤 = ℎ𝑢𝑞′𝑣ℎ

be an ℎ-special word of 𝜌(𝑍) as in Definition 2.2.3. If there exists a proof

𝑤 = 𝑤1 → 𝑤2 → ⋯ → 𝑤𝑛 = 𝑞

in 𝜌(𝑍), then either this proof is not reversal-free or all the applications of relations in the proof

are forward. In particular, the shortest such proof consists entirely of forward applications.

Proof: First, notice that 𝑤𝑛−1 → 𝑤𝑛 = 𝑞 must be a forward application of ℎ𝑞0ℎ ≐ 𝑞, so that

𝑤𝑛−1 = ℎ𝑞0ℎ.

Let us suppose that not all of the applications of relations in the proof are forward. Then, let

𝑤𝑗−1 → 𝑤𝑗

be the last backward application. Notice that 𝑗 ≠ 𝑛. We have that

𝑤𝑗 → 𝑤𝑗+1 → ⋯ → 𝑤𝑛

consists entirely of forward applications of relations.

Now, we have that 𝑤𝑛−1 = ℎ𝑞0ℎ is ℎ-special and that none of the 𝑤𝑗, 𝑤𝑗+1, … , 𝑤𝑛−1 can

be 𝑞, as only a backward application applies to 𝑞. Therefore, by Theorem 2.2.2, all of the

𝑤𝑗, 𝑤𝑗+1, … , 𝑤𝑛−1 are ℎ-special as well.

2.2. THE WORD PROBLEM FOR SEMIGROUPS 46

Consider

𝑤𝑗−1 → 𝑤𝑗 → 𝑤𝑗+1. (2.1)

We have that if 𝑤𝑗−1 → 𝑤𝑗 is a backward application, then 𝑤𝑗 → 𝑤𝑗−1 is a forward application.

Therefore,

𝑤𝑗 → 𝑤𝑗−1 and 𝑤𝑗 → 𝑤𝑗+1

are both forward applications of a relation. By Theorem 2.2.3,

𝑤𝑗−1 = 𝑤𝑗+1,

and (2.1) is a reversal, so that the proof

𝑤 = 𝑤1 → 𝑤2 → ⋯ → 𝑤𝑛 = 𝑞

is not reversal-free.

As we can always reduce the length of a proof by removing reversals, the shortest such proof

must be reversal-free. This completes the proof. ∎

Now, since forward applications of relations in 𝜌(𝑍) correspond exactly to the basic moves

of 𝑍′ or to tape-clearing moves at the end, we conclude the following.

Theorem 2.2.5 Let 𝑍 be a Turing machine. There is a computation of 𝑍 starting with

𝑞1(𝑥1, 𝑥2, … , 𝑥𝑛)

if and only if

ℎ𝑞1(𝑥1, 𝑥2, … , 𝑥𝑛)ℎ ≈ 𝑞

in 𝜌(𝑍).

Finally, by Theorem 1.3.12, we obtain

Theorem 2.2.6 There exists a finitely presented semigroup whose word problem is undecidable.

47

Chapter 3

Some computable functions

In Chapter 2, we assumed that basic operations like addition, subtraction, and function composi-

tion are computable. Under Church’s thesis, this assumption is natural since we can describe

algorithms for these operations. Even without Church’s thesis, we can prove their computability

by constructing the appropriate Turing machines; explicit constructions for these operations can

be found in Davis [9]. Indeed, for Church’s thesis to be plausible, we should be able to construct

Turing machines for all common mathematical operations, like division, taking square roots,

exponentiation, etc.

However, constructing these machines would not constitute a proof of Church’s thesis, which

would necessarily lie outside the domain of mathematics. In this section, we have a simpler goal:

representing two basic functions using Turing machines.

We have implemented a Python program1 to simulate the behavior of Turing machines as

defined in Chapter 1. This program was used to create the computations found in this chapter.

3.1 An adding machine

Let the function 𝑓 ∶ Ω2 → Ω be defined such that

𝑓 (𝑥, 𝑦) = 𝑥 + 𝑦.
1See the code at https://github.com/adricamilo/Turing.git.

https://github.com/adricamilo/Turing.git

3.1. AN ADDING MACHINE 48

We build a Turing machine 𝑍1 such that

Ψ(2)
𝑍1

(𝑥, 𝑦) = 𝑓(𝑥, 𝑦)

for all (𝑥, 𝑦) ∈ Ω2.

Let 𝑍1 consist of the following quadruples:

𝑞1 1 0 𝑞1,

𝑞1 0 𝑅 𝑞2,

𝑞2 1 𝑅 𝑞2,

𝑞2 0 𝑅 𝑞3,

𝑞3 1 0 𝑞3.

The purpose of 𝑍1 is to delete two symbols 1 from the tape. Consider an instantaneous description

𝛼1 = 𝑞1(𝑥, 𝑦) = 𝑞1𝑥0𝑦. With respect to 𝑍1, we have

𝛼1 = 𝑞111𝑥011𝑦

→ 𝑞101𝑥011𝑦

→ 0𝑞21𝑥011𝑦

→ ⋯

→ 01𝑥𝑞2011𝑦

→ 01𝑥0𝑞311𝑦

→ 01𝑥0𝑞301𝑦,

which is terminal. Therefore, for (𝑥, 𝑦) in Ω2,

Ψ(2)
𝑍1

(𝑥, 𝑦) = Res𝑍1
(𝑞1(𝑥, 𝑦))

= ⟨01𝑥0𝑞301𝑦⟩

= 𝑥 + 𝑦.

3.1. AN ADDING MACHINE 49

We have proved

Theorem 3.1.1 The function 𝑓 ∶ Ω2 → Ω such that

𝑓 (𝑥, 𝑦) = 𝑥 + 𝑦

is computable.

3.1.1 An example computation

We initialized an object adding_machine of the class TuringMachine with the quadruples

above to produce the following computations.

>>> adding_machine.compute([4,5])

[(q₁111110111111, None),

(q₁011110111111, [q₁ 1 0 q₁]),

(0q₂11110111111, [q₁ 0 R q₂]),

(01q₂1110111111, [q₂ 1 R q₂]),

(011q₂110111111, [q₂ 1 R q₂]),

(0111q₂10111111, [q₂ 1 R q₂]),

(01111q₂0111111, [q₂ 1 R q₂]),

(011110q₃111111, [q₂ 0 R q₃]),

(011110q₃011111, [q₃ 1 0 q₃])]

On the left-hand side, we find the successive instantaneous descriptions of 𝑍1, starting with

𝑞1(4, 5). On the right-hand side, we find the quadruples used in each step. The last row contains

the resultant of the computation.

>>> adding_machine.resultant([4,5])

011110q₃011111

>>> adding_machine.resultant([4,5]).count_ones()

9

As we see, this agrees with our results above.

3.2. A MULTIPLIER 50

3.2 A multiplier

Let the function 𝑔∶ Ω2 → Ω be defined such that

𝑔(𝑥, 𝑦) = (𝑥 + 1)(𝑦 + 1).

Notice that, for (𝑥, 𝑦) in Ω2, we have

(𝑥 + 1)(𝑦 + 1) = (𝑥 + 1) + (𝑥 + 1) + ⋯ + (𝑥 + 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑦+1 times

.

We construct a machine that generates 𝑦 + 1 copies of the tape expression 1𝑥+1.

Let 𝑍2 consist of the quadruples in Appendix A. 𝑆2 and 𝑆3 work in an analogous way to

counters in a conventional computer program. We claim that

Ψ(2)
𝑍2

(𝑥, 𝑦) = 𝑔(𝑥, 𝑦)

for all (𝑥, 𝑦) ∈ Ω2. See Davis [9] for a proof. We have

Theorem 3.2.1 The function 𝑔∶ Ω2 → Ω such that

𝑔(𝑥, 𝑦) = (𝑥 + 1)(𝑦 + 1)

is computable.

3.2.1 An example computation

We initialized an object multiplier of the class TuringMachine with the quadruples of 𝑍2

to produce the following computation.

>>> multiplier.compute([1,1])

[(q₁11011, None),

(q₁01011, [q₁ 1 0 q₁]),

(0q₂1011, [q₁ 0 R q₂]),

(0q₃S₂011, [q₂ 1 S₂ q₃]),

(0S₂q₃011, [q₃ S₂ R q₃]),

(0S₂0q₄11, [q₃ 0 R q₄]),

(0S₂01q₃1, [q₄ 1 R q₃]),

3.2. A MULTIPLIER 51

(0S₂011q₃0, [q₃ 1 R q₃]),

(0S₂0110q₄0, [q₃ 0 R q₄]),

(0S₂011q₅00, [q₄ 0 L q₅]),

(0S₂01q₆100, [q₅ 0 L q₆]),

(0S₂01q₆S₃00, [q₆ 1 S₃ q₆]),

(0S₂01S₃q₇00, [q₆ S₃ R q₇]),

(0S₂01S₃0q₈0, [q₇ 0 R q₈]),

(0S₂01S₃0q₉1, [q₈ 0 1 q₉]),

(0S₂01S₃q₉01, [q₉ 1 L q₉]),

(0S₂01q₉S₃01, [q₉ 0 L q₉]),

(0S₂01q₅101, [q₉ S₃ 1 q₅]),

(0S₂0q₆1101, [q₅ 1 L q₆]),

(0S₂0q₆S₃101, [q₆ 1 S₃ q₆]),

(0S₂0S₃q₇101, [q₆ S₃ R q₇]),

(0S₂0S₃1q₇01, [q₇ 1 R q₇]),

(0S₂0S₃10q₈1, [q₇ 0 R q₈]),

(0S₂0S₃101q₈0, [q₈ 1 R q₈]),

(0S₂0S₃101q₉1, [q₈ 0 1 q₉]),

(0S₂0S₃10q₉11, [q₉ 1 L q₉]),

(0S₂0S₃1q₉011, [q₉ 1 L q₉]),

(0S₂0S₃q₉1011, [q₉ 0 L q₉]),

(0S₂0q₉S₃1011, [q₉ 1 L q₉]),

(0S₂0q₅11011, [q₉ S₃ 1 q₅]),

(0S₂q₆011011, [q₅ 1 L q₆]),

(0S₂q₁₀011011, [q₆ 0 0 q₁₀]),

(0q₁₀S₂011011, [q₁₀ 0 L q₁₀]),

(0q₁0011011, [q₁₀ S₂ 0 q₁]),

(00q₂011011, [q₁ 0 R q₂])]

>>> multiplier.resultant([1,1]).count_ones()

4

As we can see, the computations with respect to 𝑍2 are much longer than those with respect

to 𝑍1. However, we do obtain (1 + 1)(1 + 1) = 4, which is the expected result.

52

Final Remarks

The theory of computability cuts deep into the philosophical underpinnings of mathematics itself.

While this work has focused on a specific application—the word problem for semigroups—the

broader implications deserve careful consideration.

Gödel’s Incompleteness Theorems and Church’s thesis should be viewed neither in isolation

from other mathematical domains nor as philosophical “escape hatches” to conclude that math-

ematical pursuit is futile. Similarly, while the current trend toward formalism offers valuable

tools and frames of reference, we should also resist the temptation of reducing mathematics to a

mere manipulation of symbols.

Mathematicians have a duty to champion analytical thought. However, we must also recognize

the intrinsic boundaries of our theoretical frameworks, which must be continually tested and

problematized. This is particularly important in a moment in history dominated by conversations

about artificial intelligence and its role in society.

The relationship between computability theory and other mathematical disciplines points

toward a more nuanced epistemological—and indeed ontological—approach to the foundations

of mathematics and science. This approach should combine technical rigor with philosophical

insight, fostering a perspective that acknowledges both the power and limitations of mathematical

thinking in advancing human knowledge.

53

Bibliography

[1] William W. Boone. “Certain Simple, Unsolvable Problems of Group Theory. I.” In:

Indagationes Mathematicae (Proceedings) 57 (1954), pp. 231–237. issn: 1385-7258. doi:

10.1016/s1385-7258(54)50033-8.

[2] William W. Boone. “Certain Simple, Unsolvable Problems of Group Theory. II.” In:

Indagationes Mathematicae (Proceedings) 57 (1954), pp. 492–497. issn: 1385-7258. doi:

10.1016/s1385-7258(54)50061-2.

[3] William W. Boone. “Certain Simple, Unsolvable Problems of Group Theory. III.” In:

Indagationes Mathematicae (Proceedings) 58 (1955), pp. 252–256. issn: 1385-7258. doi:

10.1016/S1385-7258(55)50032-1.

[4] William W. Boone. “Certain Simple, Unsolvable Problems of Group Theory. IV.” In:

Indagationes Mathematicae (Proceedings) 58 (1955), pp. 571–577. issn: 1385-7258. doi:

10.1016/S1385-7258(55)50079-5.

[5] William W. Boone. “Certain Simple, Unsolvable Problems of Group Theory. V.” In:

Indagationes Mathematicae (Proceedings) 60 (1957), pp. 22–27. issn: 1385-7258. doi:

10.1016/S1385-7258(57)50003-6.

[6] William W. Boone. “Certain Simple, Unsolvable Problems of Group Theory. VI.” In:

Indagationes Mathematicae (Proceedings) 60 (1957), pp. 227–232. issn: 1385-7258. doi:

10.1016/S1385-7258(57)50030-9.

[7] John L. Britton. “P. S. Novikov. Ob algoritmičéskoj nérazréšimosti problémy toždéstva

slov v téorii grupp (Algorithmic Unsolvability of the Word Problem in Group Theory).”

https://doi.org/10.1016/s1385-7258(54)50033-8
https://doi.org/10.1016/s1385-7258(54)50061-2
https://doi.org/10.1016/S1385-7258(55)50032-1
https://doi.org/10.1016/S1385-7258(55)50079-5
https://doi.org/10.1016/S1385-7258(57)50003-6
https://doi.org/10.1016/S1385-7258(57)50030-9

BIBLIOGRAPHY 54

In: Journal of Symbolic Logic 23.1 (Mar. 1958), pp. 50–52. issn: 00224812. doi: 10.

2307/2964487. url: https://www.jstor.org/stable/2964487.

[8] Alonzo Church. “An Unsolvable Problem of Elementary Number Theory.” In: The Unde-

cidable. Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable

Functions. Ed. by Martin Davis. Orig. publ.: Hewlett, NY, Raven Press Books, Ltd., 1965.

Mineola, NY: Dover Publications, Inc., 2004, pp. 89–107. isbn: 9780486432281.

[9] Martin Davis. Computability & Unsolvability. Orig. publ.: New York, McGraw-Hill, 1958.

New York, NY: Dover Publications, Inc., 1982. 248 pp. isbn: 9780486614717.

[10] Kurt Gödel. “On Formally Undecidable Propositions of Principia Mathematica and Related

Systems. I.” In: The Undecidable. Basic Papers on Undecidable Propositions, Unsolvable

Problems and Computable Functions. Ed. by Martin Davis. Orig. publ.: Hewlett, NY,

Raven Press Books, Ltd., 1965. Mineola, NY: Dover Publications, Inc., 2004, pp. 4–38.

isbn: 9780486432281.

[11] Kurt Gödel. “On Undecidable Propositions of Formal Mathematical Systems.” In: The

Undecidable. Basic Papers on Undecidable Propositions, Unsolvable Problems and

Computable Functions. Ed. by Martin Davis. Orig. publ.: Hewlett, NY, Raven Press Books,

Ltd., 1965. Mineola, NY: Dover Publications, Inc., 2004, pp. 39–74. isbn: 9780486432281.

[12] Pierre A. Grillet. Abstract Algebra. 2nd ed. Graduate Texts in Mathematics. New York, NY:

Springer, 2007. 686 pp. isbn: 9780387715674. doi: 10.1007/978-0-387-71568-1.

[13] Pierre A. Grillet. Semigroups. An Introduction to the Structure Theory. Monographs and

Textbooks in Pure and Applied Mathematics 193. New York, NY: Marcel Dekker, Inc.,

1995. 398 pp. isbn: 0824796624.

[14] Graham Higman. “Subgroups of Finitely Presented Groups.” In: Proceedings of the

Royal Society of London. Series A. Mathematical and Physical Sciences 262.1311 (1961),

pp. 455–475. doi: 10.1098/rspa.1961.0132.

[15] John M. Howie. An Introduction to Semigroup Theory. Ed. by P. M. Cohn and G. E. H.

Reuter. L.M.S. Monographs 7. London, UK: Academic Press Inc., 1976. 272 pp. isbn:

9780123569509.

https://doi.org/10.2307/2964487
https://doi.org/10.2307/2964487
https://www.jstor.org/stable/2964487
https://doi.org/10.1007/978-0-387-71568-1
https://doi.org/10.1098/rspa.1961.0132

BIBLIOGRAPHY 55

[16] Thomas W. Judson. Abstract Algebra. Theory and Applications. July 28, 2022. url:

http://abstract.pugetsound.edu (visited on 2024-11-12).

[17] Stephen C. Kleene. “General Recursive Functions of Natural Numbers.” In: The Undecid-

able. Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable

Functions. Ed. by Martin Davis. Orig. publ.: Hewlett, NY, Raven Press Books, Ltd., 1965.

Mineola, NY: Dover Publications, Inc., 2004, pp. 236–253. isbn: 9780486432281.

[18] Stephen C. Kleene. “Recursive Predicates and Quantifiers.” In: The Undecidable. Basic

Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions.

Ed. by Martin Davis. Orig. publ.: Hewlett, NY, Raven Press Books, Ltd., 1965. Mineola,

NY: Dover Publications, Inc., 2004, pp. 254–287. isbn: 9780486432281.

[19] Charles F. Miller III. “Turing Machines to Word Problems.” In: Turing’s Legacy. Develop-

ments from Turing’s Ideas in Logic. Cambridge University Press, May 2014, pp. 329–385.

doi: 10.1017/CBO9781107338579.010.

[20] Emil L. Post. “Finite Combinatory Processes. Formulation 1.” In: Journal of Symbolic

Logic 1.3 (1936), pp. 103–105. issn: 00224812. doi: 10.2307/2269031. url: https:

//www.jstor.org/stable/2269031.

[21] Emil L. Post. “Formal Reductions of the General Combinatorial Decision Problem.” In:

American Journal of Mathematics 65.2 (Apr. 1943), pp. 197–215. issn: 0002-9327. doi:

10.2307/2371809. url: https://www.jstor.org/stable/2371809.

[22] Emil L. Post. “Recursive Unsolvability of a Problem of Thue.” In: Journal of Symbolic

Logic 12.1 (Mar. 1947), pp. 1–11. issn: 00224812. doi: 10.2307/2267170. url:

https://www.jstor.org/stable/2267170.

[23] Emil L. Post. “Recursively Enumerable Sets of Positive Integers and Their Decision

Problems.” In: Bulletin of the American Mathematical Society 50.5 (1944), pp. 284–316.

[24] James F. Power. Thue’s 1914 Paper: A Translation. 2013. arXiv: 1308.5858 [cs.FL].

url: https://arxiv.org/abs/1308.5858.

http://abstract.pugetsound.edu
https://doi.org/10.1017/CBO9781107338579.010
https://doi.org/10.2307/2269031
https://www.jstor.org/stable/2269031
https://www.jstor.org/stable/2269031
https://doi.org/10.2307/2371809
https://www.jstor.org/stable/2371809
https://doi.org/10.2307/2267170
https://www.jstor.org/stable/2267170
https://arxiv.org/abs/1308.5858
https://arxiv.org/abs/1308.5858

BIBLIOGRAPHY 56

[25] Dana S. Scott. “A. A. Markov. Nérazréšimosť problémy goméomorfii (Insolubility of

the Problem of Homeomorphy).” In: Journal of Symbolic Logic 27.1 (Mar. 1962), p. 99.

issn: 00224812. doi: 10.2307/2963718. url: https://www.jstor.org/stable/

2963718.

[26] Michael Spivak. Calculus. 4th ed. Houston, Texas: Publish or Perish, Inc., 2008. 680 pp.

isbn: 9780914098911.

[27] John Stillwell. “Emil Post and his Anticipation of Gödel and Turing.” In: Mathematics

Magazine 77.1 (Feb. 2004), pp. 3–14. issn: 0025-570X. doi: 10.2307/3219226.

[28] Alfred Tarski. “A General Method in Proofs of Undecidability.” In: Alfred Tarski, Andrzej

Mostowski, and Raphael M. Robinson. Undecidable Theories. Studies in Logic and the

Foundation of Mathematics. Orig. publ.: Amsterdam, North-Holland Publishing Co., 1953.

Garden City, NY: Dover Publications, Inc., 2010, pp. 1–35. isbn: 9780486477039.

[29] James J. Tattersall. Elementary Number Theory in Nine Chapters. 2nd ed. Cambridge,

UK: Cambridge University Press, 2005. 430 pp. isbn: 9780521615242.

[30] Alan M. Turing. “On Computable Numbers, with an Application to the Entscheidungsprob-

lem.” In: Proceedings of the London Mathematical Society s2-42.1 (1937), pp. 230–265.

issn: 0024-6115. doi: 10.1112/plms/s2-42.1.230.

[31] Alan M. Turing. “The Word Problem in Semi-Groups with Cancellation.” In: Annals of

Mathematics 52.2 (Sept. 1950), pp. 491–505. issn: 0003-486X. doi: 10.2307/1969481.

[32] Richard Zach. Incompleteness and Computability. An Open Introduction to Gödel’s

Theorems. 2021. isbn: 9781077323391. url: https://ic.openlogicproject.org

(visited on 2024-10-31).

https://doi.org/10.2307/2963718
https://www.jstor.org/stable/2963718
https://www.jstor.org/stable/2963718
https://doi.org/10.2307/3219226
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.2307/1969481
https://ic.openlogicproject.org

57

Appendix A

Multiplier quadruples

The quadruples of 𝑍2 in Chapter 3 are:

𝑞1 1 0 𝑞1,

𝑞1 0 𝑅 𝑞2,

𝑞2 1 𝑆2 𝑞3,

𝑞3 𝑆2 𝑅 𝑞3,

𝑞3 1 𝑅 𝑞3,

𝑞3 0 𝑅 𝑞4,

𝑞4 1 𝑅 𝑞3,

𝑞4 0 𝐿 𝑞5,

𝑞5 1 𝐿 𝑞6,

𝑞5 0 𝐿 𝑞6,

𝑞6 1 𝑆3 𝑞6,

𝑞6 𝑆3 𝑅 𝑞7,

𝑞6 0 0 𝑞10,

𝑞7 1 𝑅 𝑞7,

𝑞7 0 𝑅 𝑞8,

𝑞8 1 𝑅 𝑞8,

𝑞8 0 1 𝑞9,

𝑞9 1 𝐿 𝑞9,

𝑞9 0 𝐿 𝑞9,

𝑞9 𝑆3 1 𝑞5,

𝑞10 1 𝐿 𝑞10,

𝑞10 0 𝐿 𝑞10,

𝑞10 𝑆2 0 𝑞1.

	Introduction
	Turing machines
	Machinery
	Informal description
	Formal definition
	Some consequences

	Computability
	Undecidable problems
	Arithmetization of Turing machines
	Semicomputable predicates
	The halting problem

	Semigroups
	Semigroup theory
	Homomorphisms and congruences
	Free semigroups
	Presentation of a semigroup
	Semi-Thue and Thue systems

	The word problem for semigroups
	Statement
	Method
	Simulating Turing machines

	Some computable functions
	An adding machine
	An example computation

	A multiplier
	An example computation

	Final Remarks
	Bibliography
	Multiplier quadruples

