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RESUMEN 

En los últimos años, los avances en inteligencia artificial han impulsado el desarrollo de 

modelos de procesamiento del lenguaje natural y reconocimiento automático del habla (ASR) 

para idiomas mayoritarios, generando preocupaciones sobre la marginación de lenguas 

ancestrales y subrepresentadas. Este trabajo propone el ajuste fino del modelo Wav2Vec 2.0, 

desarrollado por Meta AI, para ASR en Kichwa, un idioma hablado en los Andes ecuatorianos. 

Se utilizaron dos conjuntos de datos, que suman 8 horas de grabaciones de audio segmentadas 

en fragmentos de 1.5 a 5 segundos con transcripciones detalladas utilizando el software ELAN, 

para el entrenamiento. El proceso de ajuste fino empleó el algoritmo CTC. Después de varios 

experimentos, realizamos una prueba de Wilcoxon de dos colas que indicó que no hubo una 

mejora significativa con SpecAugment. El mejor modelo, entrenado sin aumentación de datos, 

logró resultados prometedores en el conjunto de prueba, con una Tasa de Error de Palabra 

(WER) de 0.262, una Tasa de Error de Caracteres (CER) de 0.120 y una Tasa de Error de 

Coincidencia (MER) de 0.401. Estos resultados destacan el potencial de los modelos ASR 

ajustados para generalizar de manera efectiva en contextos de bajos recursos, incluso con 

disponibilidad limitada de datos, ofreciendo un camino hacia una mayor inclusividad 

lingüística en inteligencia artificial. 

Palabras clave: Kichwa, Reconocimiento Automático del Habla, Ajuste Fino, Clasificación 

Temporal Conexionista, Aprendizaje Profundo, Audio. 
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ABSTRACT 

In recent years, advancements in artificial intelligence have driven the development of natural 

language processing and automatic speech recognition (ASR) models for majority languages, 

raising concerns about the marginalization of ancestral and underrepresented languages. This 

work proposes the fine-tuning of the Wav2Vec 2.0 model, developed by Meta AI, for ASR in 

Kichwa, a language spoken in the Ecuadorian Andes. Two datasets, totaling 8 hours of audio 

recordings segmented into 1.5 to 5-second clips with detailed transcriptions using the ELAN 

software, were used for training. The fine-tuning process employed the CTC algorithm. After 

several experiments, we performed a two-tailed Wilcoxon test that indicated no significant 

improvement with SpecAugment. The best model, trained without data augmentation, achieved 

promising results on the test set, with a Word Error Rate (WER) of 0.262, a Character Error 

Rate (CER) of 0.120, and a Match Error Rate (MER) of 0.401. These results highlight the 

potential of fine-tuned ASR models to effectively generalize in low-resource settings, even 

with limited data availability, offering a pathway toward greater linguistic inclusivity in 

artificial intelligence. 

Key words: Kichwa, Automatic Speech Recognition, Fine-Tuning, Connectionist Temporal 

Classification, Deep Learning, Audio. 
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INTRODUCTION 

While major languages such as English, Mandarin, and Spanish have benefited from 

vast datasets, resources, and advances in large languages models, many low-resource languages 

remain underrepresented. Those often lack the extensive corpus of transcriptions, audio 

recordings, and linguistic tools necessary to effectively train state-of-the-art models. This 

disparity places minority languages, such as Kichwa, at risk of further marginalization and 

eventual extinction. 

 

In Ecuador, the situation of language shift has become increasingly evident over the 

past several decades. Kichwa, spoken by indigenous communities in the Ecuadorian Andes, 

has gradually lost its prominence due to various socio-political, economic, and cultural factors. 

The expansion of Spanish in public education, media, and administrative domains has led to a 

decline in Kichwa use, particularly among younger generations. According to data from the 

National Institute of Statistics and Census of Ecuador (INEC), the percentage of Ecuadorians 

who speak Kichwa as their main language was only 5% in 2010 [1]. This decline reflects a 

broader trend of Indigenous tongues being displaced by dominant national ones, a phenomenon 

exacerbated by migration to urban areas where Spanish serves as the primary means of 

communication. 

 

This problematic is not merely a linguistic concern, but also a cultural one, as Kichwa 

embodies centuries of tradition, oral history, and identity for its speakers. The weakening of 

generational language transmission has further accelerated this decline. In many indigenous 

households, Spanish has become the preferred language due to its perceived economic and 

social advantages, leaving Kichwa relegated to ceremonial or informal uses. The lack of digital 
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tools, linguistic technologies, and educational resources in Kichwa further contributes to its 

marginalization, limiting opportunities for the language to adapt and thrive in modern contexts. 

 

Addressing this pressing issue requires innovative solutions to bridge the technological 

and data gaps faced by low-resource languages. Automatic Speech Recognition (ASR), which 

has advanced considerably in recent years, offers a potential tool to revitalize Kichwa by 

creating opportunities for its integration into modern technologies. ASR systems, which 

convert speech into text, have evolved significantly since their early reliance on Hidden 

Markov Models (HMM) and Gaussian Mixture Models (GMM) [2][3]. These traditional 

approaches, while effective, required complex design processes and large volumes of labeled 

data to model acoustic, pronunciation, and language components. However, the emergence of 

end-to-end models has simplified this process by integrating all these components into a single 

architecture optimized jointly. These models have demonstrated superior performance, 

particularly for major languages where labeled data is abundant. 

 

Fortunately, advancements in deep neural networks (DNNs) and, more recently, 

transformers have provided more flexible and accurate ways to model the acoustic features of 

speech. The self-attention mechanisms introduced in Vaswani et al.'s Attention Is All You 

Need [4] allow models to assign relevance to different parts of an input sequence, enabling 

them to learn patterns more robustly and dynamically. This has led to models that approach 

speech learning in ways that resemble human intuition. 

 

In particular, the Wav2Vec 2.0 model, proposed by Baevski et al. [5], introduces a self-

supervised pre-training approach using Contrastive Predictive Coding (CPC) to learn speech 

representations from unlabeled audio. The model’s two-stage process begins with extracting 
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acoustic features using a convolutional network, followed by a transformer trained to predict 

masked segments of the discrete representations. This contrastive loss enables the model to 

capture temporal relationships and general linguistic patterns, which can then be fine-tuned for 

downstream tasks with limited labeled data. 

 

Wav2Vec 2.0 has demonstrated its effectiveness in drastically reducing the need for 

labeled data. For instance, with only 10 minutes of transcriptions, it achieved a Word Error 

Rate (WER) of 5.7/10.1 on the noisy/clean Librispeech test sets [6]. This makes Wav2Vec 2.0 

an ideal candidate for addressing the challenges of low-resource languages like Kichwa. By 

leveraging self-supervised learning, it becomes possible to develop speech recognition tools 

that do not rely on large annotated datasets, thus offering a practical solution for languages at 

risk of marginalization. 

 

This work focuses on adapting Wav2Vec 2.0 for the ASR task in Kichwa, using 

approximately 4 hours of audio recordings segmented into short clips of 1.5 to 5 seconds, and 

1 hour for validation. The fine-tuning process employs Connectionist Temporal Classification 

(CTC) [7], a loss function well-suited for sequential problems like speech recognition. By 

demonstrating the effectiveness of Wav2Vec 2.0 in a low-resource setting, this study not only 

contributes to the technological development of Kichwa ASR systems but also supports the 

broader efforts to preserve and revitalize low resource languages. 

 

The following section will present works with similar objectives.   
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RELATED WORKS 

The use of pretrained models has proven to be an effective strategy for improving ASR 

performance in low-resource languages. In the study Transfer Ability of Monolingual 

Wav2vec2.0 for Low-resource Speech Recognition [8], the model's ability to efficiently 

transfer learning from a single language to various low-resource languages is evaluated. This 

work highlights the importance of considering linguistic variability within a multilingual 

context, revealing that the model can adapt well in such scenarios. However, it is noted that the 

effectiveness of this transfer largely depends on the linguistic proximity between the languages 

involved, suggesting that the multilingual approach has certain limitations when working with 

highly divergent languages. 

 

On the other hand, in Applying Wav2Vec2.0 to Speech Recognition in Various Low-

resource Languages [9], a different approach is taken by evaluating Wav2Vec in several 

languages independently. Through experiments with databases of 15 hours each in Mandarin, 

English, Arabic, Japanese, German, and Spanish, the study reaffirms the robustness and 

effectiveness of the model when faced with data scarcity. Additionally, this article introduces 

a comparison between two fine-tuning techniques: CTC (Connectionist Temporal 

Classification) and the LM-decoder approach, concluding that the latter offers better 

performance due to the support of a language model; nevertheless, CTC stands out for 

achieving comparable results at a lower computational cost. 

 

Finally, [10] analyzes the applicability of the proposed model to Bengali speech 

recognition, a language that, although having a considerable number of speakers, has not been 

widely considered for ASR tasks. Using the "Bengali Common Voice Speech" dataset, the 
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study demonstrated a WER of 0.2524 for this non-Western language with significant dialectal 

variation. Additionally, this work emphasizes that, although Wav2Vec 2.0's self-supervised 

pre-training reduces data barriers, the fine-tuning process remains crucial for achieving optimal 

results.   
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METHODOLOGY 

MODEL SELECTION 

For this ASR task, facebook/wav2vec2-xls-r-300m was selected, a pretrained model 

from Facebook AI's XLS-R series. XLS-R (Cross-Lingual Speech Representations) is a large-

scale multilingual model built for speech representation learning, and it is particularly suited 

for low-resource languages due to its extensive pretraining across a vast array of languages. 

The model is based on the Wav2Vec 2.0 architecture, which is optimized to extract robust 

features from raw audio using unlabeled data. This makes it an ideal choice for fine-tuning on 

tasks like Automatic Speech Recognition (ASR), especially in scenarios with limited labeled 

data. 

 

The architecture of Wav2Vec 2.0 consists of a convolutional feature extractor that 

processes raw audio signals, generating latent representations, Z, which are then passed 

through a Transformer model. By masking parts of the input sequence during training and using 

Contrastive Predictive Coding (CPC), the model learns to predict the missing segments based 

on the surrounding context. This approach forces the model to learn highly contextualized 

representations that generalize well across unseen data, which is particularly beneficial in 

speech recognition tasks where labeled data is scarce. The block diagram is at Fig. 1 
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Fig 1. Block Diagram of Wav2Vec2.0 model architecture based on [5] 

One of the key reasons for choosing the facebook/wav2vec2-xls-r-300m model is its 

multilingual pretraining on 436,000 hours of publicly available speech data in 128 languages. 

This extensive pretraining equips the model with the ability to capture diverse acoustic and 

linguistic patterns across a wide range of languages, making it highly effective for low-resource 

languages like Kichwa. This multilingual knowledge helps the model extract meaningful audio 

features even from languages it wasn't explicitly trained on, thereby improving its 

generalization capabilities. 

 

In addition to its multilingual pretraining, the model’s 300 million parameters give it 

the capacity to retain a wealth of information about speech patterns, phonetics, and temporal 

relationships in audio. This makes it particularly well-suited for fine-tuning with Connectionist 

Temporal Classification (CTC), where it can handle the variability in speech length and pauses 

efficiently.  

 

Moreover, XLS-R has been shown to achieve state-of-the-art performance across a 

wide range of speech processing tasks, including automatic speech recognition, speech 

translation, and language identification. In particular, XLS-R lowers word error rates (WER) 
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by 20-33% on multilingual benchmarks like BABEL and CommonVoice, and sets new 

standards in language identification on VoxLingua107 [11] This strong track record, combined 

with its ability to work well with low-resource languages, makes facebook/wav2vec2-xls-r-

300m a powerful choice for Kichwa ASR fine-tuning, even with a relatively small labeled 

dataset. 

 

  



18 
 

 

DATASETS 

For this experiment, two datasets from different sources were used: one for training and 

validation, and the other for testing. The primary data for the first dataset was obtained from 

the KILLKAN repository [12], from which around 5 hours of master audio recordings and their 

transcriptions were extracted. On the other hand, the test dataset was created with the help of a 

paid volunteer who read excerpts from two Kichwa texts: Ecuador Watapak Mamakamachiy 

(Constitution of Ecuador 2008, official translation into Kichwa) and Taruka: La Venada 

(stories from Kichwa oral tradition). In total, approximately 3 hours of audio were collected, 

along with their corresponding master transcriptions. This process resulted in the raw datasets. 

 

With those, the next step was to join the audio files with their transcriptions using the 

ELAN software, developed by the Max Planck Institute for Psycholinguistics. This step was 

only necessary for the dataset we created, as KILLKAN had already labeled their data using 

the same software. Once both datasets were prepared, the audio was divided into shorter 

fragments, ranging from 1.5 to 5 seconds, to accommodate the available computational 

resources and the model’s capabilities. 

 

In this way, we obtained a database ready for use. The full diagram is at Fig. 2. 
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Fig 2. Block diagram of data flow  
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DATA AUGMENTATION 

Given that the database is relatively small, with only 4 hours of labeled data for training, 

the use of Spec Augment was considered—a data augmentation technique recognized for its 

effectiveness in ASR tasks [13] To implement it, an augmentation policy is applied that focuses 

on three key aspects: time warping, time masking, and frequency masking. 

 

Time warping involves stretching or compressing the spectrogram along the time axis 

to simulate natural variations in speaking speed. By distorting the time axis around a randomly 

selected point, variations in speech tempo are generated, helping the model better generalize 

to different speaking styles without altering the frequency content. 

 

Time masking covers random sections of the time axis in the spectrogram, effectively 

silencing parts of the input. By randomly masking consecutive time steps, the model is forced 

to rely on the broader context of the input rather than specific time slices. This technique 

simulates missing or occluded audio, making the model more resilient to temporal noise or 

dropouts in the signal. 

 

Finally, frequency masking targets the frequency axis by masking random frequency 

bands. This simulates the loss of certain frequency components, such as pitch variations 

between speakers or noise affecting certain frequencies. By covering random frequency ranges, 

the model learns to generalize across different vocal ranges and background noise, focusing 

more on patterns that span across multiple frequencies rather than overfitting to specific 

frequency information.   
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EXPERIMENTAL SETUP 

For the implementation, PyTorch, Lightning and Hugging Faces Transformers libraries were 

primarily used for model management, data handling, and the integration of data augmentation 

technique. 

 

The hyper-parameters selected to fine-tune the Wav2Vec2 model are as follows: For feature 

extraction, the model uses 7 convolutional layers, each with 512 filters. The strides are set to 

[5, 2, 2, 2, 2, 2, 2], meaning the first layer applies a larger stride to quickly reduce the input's 

temporal resolution, while subsequent layers apply smaller strides for more refined feature 

extraction. The kernel sizes are [10, 3, 3, 3, 3, 2, 2], allowing the first layer to capture broad, 

general audio patterns, while the smaller kernels in later layers progressively focus on finer, 

more detailed features. In the Transformer model, the architecture consists of 768-dimensional 

hidden states, with 12 hidden layers and 12 attention heads, giving the model robust capacity 

to learn complex patterns and capture long-range dependencies in speech. Regularization is 

achieved through hidden dropout, attention dropout, and activation dropout, all with 

probabilities set to 0.1, as well as a layer drop of 0.1, which randomly drops entire layers during 

training to prevent overfitting and improve generalization. The learning rate is set at 1e-4, a 

standard value for fine-tuning large models, ensuring stable weight updates, and a batch size 

of 4 is chosen to balance computational efficiency and model performance. When 

SpecAugment is applied we use a 0.05 probability of masking out 10 time steps, simulating 

temporal distortions and further boosting the model's ability to generalize.   
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EVALUATION METRICS 

The evaluation metrics used to assess the performance of the Wav2Vec2 model fine-

tuned for Kichwa Automatic Speech Recognition (ASR) are critical for measuring the quality 

of the model's transcriptions. The primary metrics are Word Error Rate (WER), Character Error 

Rate (CER), and  Match Error Rate (MER). These metrics quantify how well the model predicts 

words, characters, and overall matches between predicted transcriptions and ground truth. In 

this section, we provide an explanation and formula for each metric. 

 

Word Error Rate (WER) 

 

The Word Error Rate (WER) is a common metric for evaluating the performance of 

speech recognition systems. It measures the percentage of incorrectly predicted words by 

comparing the predicted transcription to the ground truth. The WER is calculated as: 

 

\begin{equation} 

    \text{WER} = \frac{S + D + I}{N} = \frac{S + D + I}{S + D + C} 

\end{equation} 

 

Where: 

\begin{itemize} 

    \item \(S\) is the number of substitutions (incorrect words), 

    \item \(D\) is the number of deletions (missing words), 

    \item \(I\) is the number of insertions (extra words), 

    \item \(N\) is the total number of words in the ground truth transcription, 
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    \item \(C\) is the number of correct words. 

\end{itemize} 

 

WER ranges from 0 to 1, where a lower WER indicates better transcription accuracy. 

 

\Character Error Rate (CER) 

 

The Character Error Rate (CER) is similar to WER but operates at the character level; 

it measures the percentage of incorrectly predicted characters and is computed as: 

 

\begin{equation} 

    \text{CER} = \frac{S + D + I}{N} = \frac{S + D + I}{S + D + C} 

\end{equation} 

 

Where: 

\begin{itemize} 

    \item \(S\) is the number of character substitutions, 

    \item \(D\) is the number of character deletions, 

    \item \(I\) is the number of character insertions, 

    \item \(N\) is the total number of characters in the ground truth transcription, 

    \item \(C\) is the number of correct characters. 

\end{itemize} 

 

As with WER, lower CER values indicate more accurate character-level transcription. 
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Match Error Rate (MER) 

 

The Match Error Rate (MER) evaluates the transcription quality by measuring how well 

the predicted and ground truth transcriptions match in a more holistic way. Unlike WER and 

CER, which focus on substitutions, deletions, and insertions, MER is often computed by 

examining exact matches or mismatches in the sequence, and it is typically expressed as a 

percentage. 

 

The formula for MER is: 

 

\begin{equation} 

    \text{MER} = \frac{S + D + I}{N + I} = \frac{S + D + I}{S + D + C + I} 

\end{equation} 

 

Where: 

\begin{itemize} 

    \item \(S\) is the number of substitutions, 

    \item \(D\) is the number of deletions, 

    \item \(I\) is the number of insertions, 

    \item \(N\) is the number of words in the reference, 

    \item \(C\) is the number of correct words. 

\end{itemize} 

 

A lower MER reflects better agreement between the predicted and actual sequences, 

indicating a more accurate model. 
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These metrics collectively provide a comprehensive assessment of the Wav2Vec2 

model's ability to recognize both individual characters and entire words, as well as its overall 

accuracy in matching predictions to ground truth transcriptions.   
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EXPERIMENTS AND RESULTS 

TABLE 1. COMPARISON OF MODEL PERFORMANCE METRICS WITH AND WITHOUT DATA 

AUGMENTATION USING SPECAUGMENT 

Technique LOSS WER CER MER 

Data-augmentation 0.0884 0.1184 0.0591 0.2554 

No data-augmentation 0.0896 0.1224 0.0595 0.2510 

 

To evaluate the impact of the data augmentation technique on the model’s training 

performance, multiple comparative experiments were conducted, applying the technique or 

not, while keeping the hyperparameters and other configurations constant. The results were 

analyzed using the two-tailed Wilcoxon statistical test with a 95% confidence level, applied to 

each metric and the loss function. The p-values obtained were 0.922, 0.770, 0.888, and 0.695 

for LOSS, WER, CER, and MER, respectively. These values indicate that there is no sufficient 

statistical evidence to claim that the data augmentation technique used, in this case, 

SpecAugment, significantly improved the model's performance during training. Table 1 

summarizes the averages obtained in the experiments, differentiating between those conducted 

with and without data augmentation. 
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Among all the experiments, the model with the lowest WER value was selected as the 

best-trained model.  Fig. 3  shows its loss and WER curves achieved in the validation dataset. 

Finally, when evaluating its performance on the test set, the following metrics were obtained: 

CER = 0.120, MER = 0.401, and WER = 0.262.  

Fig 3. Validation loss function and WER curves of best fine-tuned model. 
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CONCLUSIONS 

This work presents an effective approach for fine-tuning the pre-trained Wav2Vec2.0 

model for ASR tasks in Kichwa, a language that, due to advancements in globalization and 

technology, has been pushed to the background, putting its preservation at risk. The model's 

ability to generalize and extract features from audio is impressive, as with only 5 hours of 

transcribed recordings, outstanding metrics were achieved, such as a WER of 0.262. This result 

demonstrates the potential of deep learning models to make technology more inclusive from a 

linguistic perspective, without requiring large amounts of data. In this way, new opportunities 

arise for creating more accessible and useful tools for a greater number of languages and 

communities. 

 

As a future direction, it would be ideal to work with a higher-quality dataset, including 

recordings of everyday conversations on more common topics, such as daily life or social 

issues, rather than focusing solely on stories or political speeches. Additionally, having more 

speakers (participants) in the recordings would contribute to a better model generalization. This 

approach would also help improve transcription accuracy, particularly by avoiding “stumbles” 

in the speech of volunteers. In this case, stumbles occurred when the volunteer used filler words 

during the reading, which were captured in the audio but not in the transcriptions, potentially 

distorting the metrics slightly by not considering them. A better dataset and a greater variety 

of situations would help minimize these effects and achieve even more accurate results.   
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