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RESUMEN 

La navegación de vehículos autónomos en contextos competitivos y dinámicos, como las 

carreras de robots, requieren de adaptabilidad y decisiones en tiempo real. Los entornos de 

simulación actuales para competencias como F1-tenth, Formula SAE Driverless y AWS 

DeepRacer son útiles, pero a menudo son rígidos para probar técnicas novedosas. En este 

sentido, el proyecto actual supera estas limitaciones mediante el diseño y la evaluación de una 

simulación de carreras multi-robot en Gazebo. En particular, se examina el funcionamiento de 

agentes DRL, cuyo comportamiento es generado con el algoritmo SARL*, mientras que en 

paralelo se investigan agentes que emplean los algoritmos clásicos A* o Dijkstra combinados 

con Dynamic Window Approach (DWA). Este trabajo abarca el proceso de refinamiento, 

entrenamiento y prueba de los modelos DRL, junto con su aplicación en la plataforma robótica 

Turtlebot3, en el entorno de Gazebo utilizando ROS Melodic, como una fase introductoria para 

integrar sistemas más avanzados. En este sentido, se resalta la importancia del aprendizaje 

profundo por refuerzo (DRL) en relación con la navegación autónoma, haciendo énfasis en la 

capacidad de respuesta en un entorno cambiante. Además, el uso del algoritmo A* y Dijkstra 

con DWA proporcionan un baseline para la comparación con los enfoques basados en DRL. 

Las métricas de rendimiento incluyeron el tiempo de navegación, el número de colisiones y la 

calidad de la trayectoria. Además, para la fase de entrenamiento, se evalúan la tasa de éxito y 

la recompensa acumulada. Estas medidas ayudan a evaluar los modelos en situaciones donde 

se requiere competir. Los resultados muestran que los enfoques basados en DRL superan a los 

métodos tradicionales en términos de tiempo de navegación y adaptabilidad, dado un sólido 

proceso de entrenamiento que garantiza la capacidad de generalización del modelo. 

Palabras clave: Multirobot, Deep Reinforcement Learning (DRL), Competitivo, Carreras, 

SARL*, Gazebo  
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ABSTRACT 

Navigation of autonomous vehicles in competitive and dynamic contexts, such as robot racing, 

requires real-time decision-making and adaptability. Present simulation environments for 

competitions like the F1-tenth, Formula SAE Driverless, and AWS DeepRacer are useful but 

are often rigid to use for testing novel techniques. In this regard, the current project overcomes 

these setbacks by designing and assessing a multi-robot racing simulation in Gazebo, where 

the robots move on their own with DRL models or using traditional navigation approaches. In 

particular, the operation of DRL agents, whose behavior is generated with an adapted Socially 

Attentive Reinforcement Learning algorithm (SARL*) is examined, while agents employing 

the classical A* or Dijkstra algorithms combined with the Dynamic Window Approach (DWA) 

are investigated in parallel. This work encompasses the process of refining, training and testing 

the DRL models, along with their application on the Turtlebot3 robotic platform placed in the 

Gazebo environment using ROS Melodic, as an introductory phase for integrating more 

advanced systems. In this regard, this work emphasizes the significance of deep reinforcement 

learning (DRL) with respect to robotic navigation by  improving responsiveness in a changing 

environment. Furthermore, the use of the A* algorithm and Dijkstra with DWA provides a 

baseline for comparison against DRL approaches. Performance metrics included navigation 

time, the number of collisions, and trajectory quality. In addition, for the training phase, the 

success rate and accumulated reward are evaluated. These measures help to assess models in 

situations where they are required to compete. Results show that DRL-based approaches 

outperform traditional methods in terms of navigation time and adaptability, given a strong 

training process that ensures the model's generalization ability. 

Key words: Multirobot, Deep Reinforcement Learning (DRL), Competitive, Racing, SARL*, 

Gazebo  
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INTRODUCTION 

Motivation and Problem Definition 

The creation of mobile robotic systems has attracted considerable research interests in 

recent years. Applications such as delivery robots, automated guided vehicles for warehouses, 

service robots, and self-driving cars have become a reality and are shaping the future (Zhu & 

Tao, 2021). Furthermore, the emergence of autonomous racing competitions like the F1tenth 

require adaptable and efficient navigation techniques, making them ideal to test the latest 

algorithms for autonomous navigation. Among the latest advancements in autonomous vehicle 

research, deep reinforcement learning (DRL) approaches are promising because they are able 

automatically extract important features from the environment and learn appropriate navigation 

policies through trial and error (Li, 2023) (Li, et al., 2019). 

Multi-robot racing tasks provide a greater challenge than simple navigation tasks. In 

such environments the robots not only are to arrive at the goal, but they must also do this while 

interacting with competing agents that share the goal. In addition, the classic collision 

avoidance problem is extended to a multi-robot system, and the decision process is 

complicated, because agents must be capable of predicting and reacting to unanticipated agents 

(Zhu & Tao, 2021). Competitive environments provide the opportunity to evaluate the 

generalization ability of the most recent navigation techniques, which may lead to safer and 

more stable navigation. In addition, the type of competitive environments offers a powerful 

mechanism to improve and adjust current DRL algorithms. 

There is currently a lack of multi-robot simulation environments specifically for racing 

situations. This poses a significant learning curve for students and researchers who wish to race 

autonomous robots. By creating a flexible simulation platform, this work aims to make robotics 
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and autonomous racing more accessible. In addition, by completing the entire algorithm 

workflow within the simulation, it is possible to decrease the risk associated to real robots, 

obtain a high-fidelity simulation and increase the ease of transferring the validated models to 

real-world scenarios effortlessly.  
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STATE OF THE ART 

Reinforcement learning (RL) has recently gained considerable attention as a powerful 

branch of machine learning, particularly for tasks where an agent must learn to optimize its 

behavior through interactions with the environment. Unlike supervised or unsupervised 

learning, RL enables agents to discover optimal actions by trial and error without the need of 

large datasets or labelling, much like humans learn from experience. This approach allows the 

agent to progressively refine its actions based on feedback, maximizing a numerical reward to 

achieve a specific goal (Sutton, et al., 2018). The recent advancements in deep learning and the 

improvement in computational power have expanded the capabilities of RL to tackle more 

complex problems, giving rise to Deep Reinforcement Learning (DRL) models. The DRL 

agents, for instance, have been trained to play Atari 2600 games with the only input of image, 

even beating human performance in many scenarios (Mnih, 2013). 

Due to its ability to represent and experience learning, DRL possesses a potentially 

exciting future in fields such as mobile robotics. Autonomous navigation is a fundamental 

problem in mobile robotics, and includes several sub-problems including obstacle avoidance, 

path planning, localization, and mapping. One of the most frequent strategies to overcome the 

autonomous navigation task is to design systems composed of various algorithms as solutions 

for each subtask as pointed out in (Zhu & Tao, 2021). Yet, such approaches often rely on 

accurate sensor readings and every stage in the autonomous navigation pipeline will be 

contaminated with computational errors compounded over time to generate suboptimal and 

reactive navigation policies in a dynamic or uncertain environment (Feng, et al., 2021), (Zhu 

& Tao, 2021). By contrast, DRL based methods can learn superior policies that enhance the 

performance of agents, even in dense and adverse situations (Feng, et al., 2021). 
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While DRL-based approaches are promising solutions for autonomous driving, as 

pointed out by (Zhu & Tao, 2021), there are still challenges. These include the partial 

observation problem, where the agent has limited visibility of its environment, leading to the 

learning of suboptimal policies; the sparse reward problem, where reward functions may only 

be effective at the end of an episode, making the learning process inefficient; and poor 

generalization, as training typically occurs in simulated environments to address safety and 

time constraints, resulting in a simulation-to-reality gap (Bosello, et al., 2022). To address these 

issues, various solutions have been proposed, including techniques such as recurrent neural 

networks for better handling partial observability (Yuan, et al., 2019), reward shaping to tackle 

sparse rewards (Pico, et al., 2023), and domain randomization strategies to reduce the 

simulation-to-real gap (Balaji, et al., 2020). 

A separate strategy for overcoming the constraints of DRL-based approaches is to 

design hybrid solutions. Stand-alone DRL approaches have limitations including high training 

time, the absence of long-term memory, and strong propensity to fall into local optima (Wang, 

et al., 2023), (Cimurs, et al., 2022). From the other side, classical approaches such as A or 

Dijkstra's algorithm provide an asymptotically efficient and invariant solution for navigation 

in static environments, but they are not flexible enough for navigation in dynamic 

environments. To address these limitations, hybrid frameworks combining the reliability of 

traditional methods with the adaptability of DRL approaches have been proposed. 

An innovative autonomous robot navigation framework was proposed in (Wang, et al., 

2023). This consisted of a global and a local planner. The global planner employed a 

conventional navigation strategy, and generated an environment map, calculating a globally 

optimal route. Afterwards, several landmarks are found in the global path. They will finally be 

used for the DRL local planner to come to the goal. This approach demonstrated higher 
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efficiency, safety, and robustness than conventional approaches and full-end-to-end DRL 

approaches. 

Similarly, in (Li, et al., 2019) a hybrid approach called SARL* is introduced, integrating 

a dynamic local goal setting mechanism. This framework computes a global trajectory using 

Dijkstra's algorithm from an environment occupancy grid map. Waypoints are subsequently 

established along this trajectory and the dynamic local goal mechanism chooses the farthest 

waypoint within a determined radius from the agent. Achieving its goal is reached through 

following these waypoints. This mechanism enhances the generalization ability of the policy, 

decreasing its dependence on the individual distances learned in the process and enabling the 

agent to generalize to changing environments. 

With the advancement of DRL, the complexity of robot systems demands rises. There 

is growing interest in possible solution-oriented alternatives for cooperative navigation and 

communication among intelligent agents in applications such as indoor navigation, multi-robot 

navigation, and social navigation (Zhu & Tao, 2021). Doing the same in such complex 

environments, however, presents various issues that have led to sophisticated, advanced DRL 

techniques and frameworks (Balaji, et al., 2020) to enable robots to build and adapt as they go 

through the environment, while maintaining safe and efficient navigation. 

The distributed multi-robot collision avoidance approach based on the hybrid control 

scheme presented in (Fan, et al., 2020) is a new approach to distributed multi-robot collision 

avoidance in cluttered environments. In addition, policy-gradient algorithm, proximal policy 

optimization (PPO), can be applied to allow the robot to learn from and adapt its navigation 

policy autonomously, in real time without using intercommunication. Additionally, the 

centralized learning/decentralized execution framework is adopted, producing experiences 
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from all the robots that trained on the training set. The advantage of this method is that it does 

not require a central controller which is computationally infeasible for large-scale multi-robot 

systems and provides the robots a significant opportunity to cooperate efficiently and to not 

collide. Furthermore, the simulation-to-real error is shown to be reduced. 

An alternative approach, the Cooperative Deep RL (CDRL) framework, is presented in 

(Kim, 2024). CDRL introduces a policy switching mechanism to balance exploration and 

exploitation in unknown environments. This framework allows robots to dynamically switch 

from safe exploration of the unknown to idea-driven exploration and deployment in goal-

oriented navigation. Policy coupling increases the robot's capacity to navigate the complex, 

dynamic environment without the need for retraining and therefore leads to a flexible robot for 

varying environments. 

As regards autonomous exploration, authors in (Cimurs, et al., 2022) proposed an 

autonomous approach based on DRL with a Twin Delayed Deep Deterministic Policy Gradient 

(TD3) algorithm to achieve goal-driven exploration in arbitrary environments. This approach 

learns and dynamically selects way points for surveying around interesting points (POI) and 

can efficiently exploit to survey unknown environments. In addition, experimental results 

demonstrate that the proposed scheme achieves the combined effect of reactive local and global 

navigation strategies. 

Consistent with efforts to improve DRL-based autonomous navigation, the 

development and implementation of reward functions has generated considerable interest. In 

(Pico, et al., 2023), the performance of various reward functions for an obstacle avoidance 

model was evaluated. A new reward function was proposed, which compels the robot to stop 

in dangerous situations and highlights the importance of finding a balance between simplicity 
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and interpretability while designing the reward function. In a similar way, in (Zhou, et al., 

2023) a novel collision avoidance algorithm known as Context-Aware Safe Reinforcement 

Learning (CASRL) was presented. One of the main implications of this algorithm was the 

introduction of two task-related policy gradients, fundamentally breaking the safety 

mechanisms from the navigation mechanisms. This method relieves the problem of task 

interference frequently experienced in the design of reward function and yields more 

satisfactory and efficient learning in the reinforcement of complex scenarios. 

With the advancement of DRL approaches for autonomous navigation, their application 

in autonomous robot racing presents both unique challenges and opportunities. With the need 

for fast, real-time learning in very dynamic environments, the task of racing translates very 

well to a testing ground for state-of-the-art DRL algorithms. Autonomous racing requires not 

only precision in navigation but also the ability to adapt quickly to continuously changing 

scenarios, pushing DRL models to their limits. Notably, DRL approaches have been proposed 

for prestigious international racing events, such as the driverless category of Formula SAE 

(Salvaji, et al., 2022), the F1tenth competition (Bosello, et al., 2022), and the Amazon Web 

Services sponsored autonomous racing league with the DeepRacer platform (Balaji, et al., 

2020), demonstrating the potential of DRL in continuously changing, complex environments. 

Even though there have been large breakthroughs in the use of DRL in autonomous 

racing, current methods, such as those employed in the F1tenth Challenge (Bosello, et al., 

2022) and Formula SAE (Salvaji, et al., 2022), these mainly rely on single-robot navigation in 

a simulator. This limitation restricts the possibility of a complete validation of the collision 

avoidance features of DRL models in a larger multi-robot scenario, which may involve more 

agents, and in which their interactions among the agents are important. While the AWS 

DeepRacer platform (Balaji, et al., 2020) provides multi-robot simulation environments, it is 
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limited to the DeepRacer ecosystem, and it will not be extendible to other competitive 

platforms such as F1tenth or Formula SAE. Thus, although current work shows encouraging 

results, there is a lack of a comprehensive experimental effort to tap into the full insights that 

DRL can provide in multi-robot autonomous racing tasks in a general, and yet generalizable, 

simulation environment.  
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MATERIALS AND METHODS 

Simulation and Framework 

Gazebo Simulator 

Testing on physical hardware in robotics can be expensive, risky, and labor-intensive 

(Newans, 2024). Furthermore, from the viewpoint of hardware implementation, the related 

practical issues can hinder the development of fundamental algorithms, resulting in an 

inefficient process. 

To address these problems, Gazebo was created as an open-source, free simulation 

platform for robots. Similar to game engines, Gazebo provides physically realistic physics 

simulations of good accuracy and is capable of providing a wide range of virtual sensors, as 

well as programmable interfaces for both users and system (Open Source Robotics, 2024). 

Even though flexibility is a most prominent characteristic of Gazebo, there is another 

important part of the simulator that lies in its large collection of robot models, sensors, and 

prebuilt environments. This heterogeneity permits the researcher to filter out the specifics of 

simulated hardware in favor of the testing of robotic algorithms (Newans, 2024). 

We can build a realistic, high fidelity simulation environment in Gazebo, which allows 

us to model a robust environment in which each robot sensor can consistently monitor its 

environment and communicate with its environment data seamlessly to other simulation 
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entities. This integration simplifies the testing of algorithms, allowing us to focus directly on 

algorithm development without being constrained by hardware limitations. 

Robotic Operating System (ROS) 

Interaction with robotic systems was for a long time a very inefficient task because of 

the complex hardware integration needed. Infrastructure management and design were 

frequently dull and repetitive work, which made robotics out of the reach of people without 

much hardware experience (Tellez, 2022). 

The adoption of ROS (Robot Operating System) as an open-source platform greatly 

enhanced accessibility through easy to use and re-usable code for robotics applications by 

researchers (Canonical, 2024). ROS is based on a publisher-subscriber architecture using the 

ROS API for communication, which is structured by topics, services, action servers, and 

message formats to provide a standardized interface to hardware peripherals (Tellez, 2022). 

With this abstraction, developers are very much relieved of the low-level hardware details, thus 

it allows them to concentrate on the algorithm development more. 

In this study, we exploit the Turtlebot platform in the simulation space. Turtlebot is 

uniquely tailored for ROS with the clear goal of teaching developers how to test and develop 

applications in a simple way, so that developers can concentrate on algorithms rather than 

getting trapped into hardware details. 

Navigation and Control Algorithms 

The techniques explored in this study utilize the ROS navigation stack and its modified 

versions, focusing on hybrid navigation approaches. These methods integrate global planners, 

employing algorithms such as Dijkstra or A*, with local planners that utilize either Deep 
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Reinforcement Learning or the Dynamic Window Approach. An illustration of the workflow 

followed by hybrid planners based on the ROS navigation stack is shown in Figure 1 (Gill, 

2018). 

Global Planners: A* and Dijkstra 

The ROS navigation stack used in this work provides several algorithms for global path 

planning. In this sense, the move_base package links a global planner that uses either A* or 

Djikstra, along with a local planner to accomplish the navigation task (Marder, 2020). 

A* and Djikstra are both graph-based search algorithms that are designed for the 

discovery of shortest paths in a graph between two nodes. In the context of our problem, the 

graph is the cost map grid. A* is a directed, informed search, and nodes are judged by 

evaluating the sum of costs to move to a node by the sum of costs from that node to the goal 

(Russell & Norvig, 2010). Accordingly, the approach gives high weight to paths likely to speed 

one toward an objective expeditiously, consistently producing expeditious solutions. However, 

Djikstra's algorithm examines each of the possible paths, thus guaranteeing the shortest path 

cost even if it results in a less computationally efficient solution (Marder, 2020). 

Both algorithms have been chosen as the global planner for this project, because of their 

robustness and ROS compatibility. A* provides an optimal path finding solution by computing 

Figure 1: The ROS navigation stack 
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a heuristic, enabling the generation of a navigation plan in a relatively short time, which is 

useful for large environments. However, by progressively analyzing all nodes, Dijkstra 

guarantees the shortest possible path, which makes it suitable if an optimal solution is required. 

Collectively, these algorithms permit a flexible strategy that can be accommodated for the 

requirements of this work. 

Dynamic Window Approach 

The Dynamic Window Approach (DWA) is a local planner algorithm applied to robot 

navigation in real time. In contrast to global planners which find a global path from beginning 

to end, DWA seeks to find feasible, intermediate trajectories to safely guide the robot through 

way to the aim while circumventing obstacles. DWA is based on the assessment of the possible 

robot trajectories in a limited time window, considering both dynamic and kinematic 

limitations as maximum velocity, acceleration and thus a maximum braking limit. This 

naturally leads to a dynamic window, in which the robots constrains its action space, as 

illustrated in Figure 2. DWA generates an optimal trajectory by, respectively, predicting future 

positions of the robot in this window, as well as distance to obstacles and distance to the 

Figure 2: The Dynamic Window Approach Visualization 
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globally optimal trajectory, while constraining the trajectory to produce the final desired goal 

direction (Fox, et al., 1997). 

Besides the ROS integration provided by DWA, to address the requirements of both the 

dynamic environment and real-time obstacle evasion, this algorithm was selected for this work, 

as it performs well in dynamic environments, and allows real-time obstacle avoidance; 

characteristics that are critical for multi-robot scenarios. Due to the algorithm's capacity to 

continuously adjust to the environment's changes, the robot can take fast decisions, which is 

suitable for competitive applications. Additionally, DWA integrates easily with the global 

planners mentioned before, as it can efficiently follow the global path generated by these 

algorithms while adjusting to obstacles along the way. 

SARL* Algorithm 

This project features agents using Deep Reinforcement Learning techniques. For this 

purpose, the SARL* algorithm was chosen as the base algorithm for experimentation. The 

SARL* (Socially Attentive Reinforcement Leaning*) algorithm enhances the original SARL 

model, originally designed to safely navigate in crowded environments (Li, et al., 2019). 

SARL* solves its previous implementation problems by including features designed for long-

distance navigation and obstacle avoidance. Therefore, SARL* presents itself as an interesting 

alternative to experiment with dynamic environments. 

Key elements of SARL* are an adaptive, local goal setting mechanism and a map-based 

safe action space. In addition, SARL* possesses a hybrid planning mechanism based on 

applying Djikstra's algorithm, which plans globally and gives rise to dynamic goals as the path 

is being traversed by the robot (Li, et al., 2019). This paradigm allows for adaptability to 

changing circumstances while assuring a steady trajectory towards the goal. Furthermore, the 
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safe action space mechanism represents future positions, and prevents actions that will 

probably result in collision. 

Here, the algorithm SARL* is an interesting object of study because of its intrinsic 

capabilities. Its adaptive local goal setting mechanism and obstacle avoidance, enable SARL* 

to be used in the context of racing situations where robots need to be responsive and instantly 

take optimal decisions. Additionally, the studies around this algorithm have led to promising 

outcomes. For instance, as explained in (Pico, et al., 2023) various reward functions were 

explored, which resulted in superior performance for the same algorithm. 

With the comparison between SARL* and conventional navigation approaches, the 

purpose of this project is to study the robustness and performance of SARL* and DRL in the 

actual racing conditions. The findings of these experiments will be used to establish the utility 

of SARL*'s abilities in changing competitive environments and to inform and develop future 

versions for multi-robot autonomous navigation systems. 

Training Environment 

For training our DRL models, the work in (Li, et al., 2019) was extended to model 

competitive situations. This methodology combines the OpenAI Gym library to simplify the 

development of a value-based deep reinforcement learning framework. The use of the OpenAI 

Gym library eases the development process, since it provides an API that includes necessary 



24 
 

 

building blocks like action spaces, observations, reward functions, and key environment data 

(Sonawane, 2023). 

The training environment is designed to mostly represent the real-world scenarios the 

robot can encounter. Training scenarios for curve paths, straight paths, and intersections are 

implemented as shown in Figure 3. Also, the movement of other agents in the training 

environment is simulated with the ORCA algorithm because of its efficient path generation 

and simplicity. Each of the presented scenarios generates a model that will be further tested in 

the simulation phase. 

The simulation and robot parameters are shown in Table 1. 

Parameter Value 

Number of Agents 3-5 

Robot Radius 0.3 m 

Agent Radius 0.3 m 

Robot Velocity 1 m/s 

Agent Velocity 1 m/s 

Kinematics Unicycle 

Table 1: Simulation environment parameters for training 

Figure 3: Scenarios used in the OpenAI Gym training environment 



25 
 

 

As for the training parameters, these include variables that are essential for the robot 

learning process, including the agent's policy, discount factor, learning rate, number of 

episodes, and other important parameters as outlined in Table 2. 

Parameter Value 

Time Step 0.25 s 

Test Size 3000 

Agent’s Policy ORCA 

Discount Factor 0.9 

RL Learning Rate 0.001 

Train Episodes 6000 

Train Batches 100 

Table 2: Neural network training parameters 

Reward Function Design 

The reward function is designed to drive the learning process of the DRL agents. It is a 

critical component as it directly influences the behavior of agents and their ability to navigate 

effectively. The reward design is focused on key objectives including: 

- Encouraging the robot to reach the goal as quickly as possible. 

- Penalizing collisions with obstacles to promote safety. 

- Rewarding efficient path trajectories to minimize detours. 

- Penalizing unnecessary stops, promoting continuous motion. 

Considering the experiments regarding different reward functions investigated in (Pico, 

et al., 2023) a reward function using dense rewards was chosen. Therefore, the robot receives 
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a reward or penalization at each time step given a joint state 𝐽, and an action 𝑎, according to 

equation R1.  

𝑅1(𝐽, 𝑎) =  𝑅𝑑 + 𝑅𝑝𝑓 + 𝑅𝑔 + 𝑅𝑐 + 𝑅𝑘𝑚 + 𝑅𝑐𝑤 + 𝑅𝑤 + 𝑅𝑠 + 𝑅𝑡 

From the equation, 𝑅𝑑 refers to the robot's proximity to the surrounding obstacles and 

penalizes the robot if it comes too close to other robots. 𝑅𝑝𝑓 encourages the robot to come 

closer to the goal at each step, giving it a reward when the distance to the goal is reduced. 𝑅𝑔 

refers to the robot reaching the goal, and it's greater than other rewards, since it represents the 

final purpose of the navigation task. 𝑅𝑐 refers to collisions with other robots and penalizes the 

robot if a collision happens. 𝑅𝑘𝑚 in a similar fashion to 𝑅𝑝𝑓 encourages the robot to keep 

moving, but without considering any direction. 𝑅𝑐𝑤 and 𝑅𝑤 are related to the interaction with 

the limits of the track, penalizing the robot if it reaches a limit or if it comes too close to it. 𝑅𝑠 

is useful because it penalizes the robot if it stops, since the behavior of a competing agent is 

desired. Finally, 𝑅𝑡 is a penalty in case the robot doesn't reach the goal in a certain time interval, 

encouraging responsiveness. 

Also, to test the adaptability of the SARL* algorithm in simulation, the no-wall scenario 

shown in Figure 3 is trained using a conditional reward structure, instead of a sum of rewards 

as outlined in (Pico, et al., 2023). This approach results in better computational efficiency, as 
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only one reward is given per episode of training. In this case, the reward function is defined by 

equation R2. 

𝑅2(𝐽, 𝑎) =

{
 
 

 
 
𝑅𝑔                    𝑖𝑓 𝑅𝑒𝑎𝑐ℎ 𝑡ℎ𝑒 𝑔𝑜𝑎𝑙,

𝑅𝑡                              𝑒𝑙𝑖𝑓 𝑇𝑖𝑚𝑒𝑜𝑢𝑡,
𝑅𝑐                              𝑒𝑙𝑖𝑓 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛,
𝑅𝑢𝑑              𝑒𝑙𝑖𝑓 𝑈𝑛𝑐𝑜𝑚𝑓𝑜𝑟𝑡𝑎𝑏𝑙𝑒,
𝑅ℎ𝑔                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The new reward elements in this equation are 𝑅𝑢𝑑 that results in a penalty if the robot 

moves closer than 0.15𝑚 to an obstacle, and 𝑅ℎ𝑔 that refers to a reward when the robot reduces 

its initial distance to the goal. 

Evaluation Criteria 

To evaluate the simulation framework, we define distinct evaluation criteria for the two 

key stages of the workflow: the training phase and the simulation phase. 

Training Phase 

The evaluation is focused on success rate and accumulated reward during training. 

These metrics provide information about the learning process in terms of efficiency and 

performance.  

Simulation Phase 

The evaluation is conducted in the Gazebo environment, this stage evaluates the 

applicability and reliability of the trained models. The criteria include: 

- Trajectory Quality: Assessed based on the smoothness, safety and efficiency of 

generated paths. 
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- Trajectory Completion Times: Measured to determine the speed of the models 

across different path lengths. 

Experimental Setup and Hardware Configuration 

To evaluate agent performance on the environment proposed in this project, a Gazebo-

based environment was constructed, as described in Figure 4. This configuration simulates 

real-world racing track conditions, such as straight paths, acute turns, and roundabouts to 

validate the robustness and effectiveness of both DRL-based, and conventional navigation 

algorithms. However, due to interference between the AI planners and the traditional ROS 

navigation stack, separate tracks were used for AI-based agents and those using the ROS 

navigation stack. This approach prevents interference between planners and allows for a better 

experimentation process. 

In this environment agents are represented as TurtleBot 3 Burger robots due to their 

simplicity and ROS compatibility. The TurtleBot 3 platform provides necessary modules for 

Figure 4: Simulated racing circuit track within the Gazebo environment. 
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autonomous navigation, such as laser scanners to identify obstacles, and odometry sensors to 

provide real-time state information. 

Furthermore, individual parameters of the configuration were optimized to respond to 

the changing requirements of a competitive environment. Goal tolerance was defined to 0.2𝑚 

to ensure robots arrive at their targets, and global costmap inflation layer radius was defined to 

0.25𝑚 in order that the best trajectories can be planned while keeping a safe distance from 

obstacles. 

Additionally, the traditional ROS Navigation stack is implemented in the simulation to 

serve as a baseline for evaluating our DRL models. 
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RESULTS AND DISCUSSION 

In this section, we first evaluate the results of the training scenarios outlined in Figure 

3 using the metrics discussed in the previous section. We will then evaluate the performance 

of these models in a multi-robot context during the simulation phase. 

Training 

Three scenarios were trained using the OpenAI Gym library for reinforcement learning 

as shown in Figure 3. The first two of them use a sum of rewards given by 𝑅1, and the third is 

a simpler scenario with no walls using a conditional reward approach as explained in 𝑅2. Table 

3 provides an overview of the training results of these models.  

Scenario Success Rate Collision Rate Collision Wall Rate Timeout Rate 

Curve Path 0.98 0.00 0.01 0.01 

Cross Path 0.94 0.04 0.01 0.01 

No-wall 0.96 0.02 - 0.02 

Table 3: Comparison of training results across three environments. 
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Also, the training plots showing the showing the behavior of the models across training 

episodes in terms of success rate and accumulated reward are shown in Figure 5. 

The training results for the curve path scenario show a progression through different 

learning phases as shown in Figure 5. Initially, the model shows a rapid improvement, with a 

success rate that rises from 0.2 to 0.75 within the first 1000 training episodes. However, there 

is a decline in the success rate at around 2000 episodes, but the model ends up recovering and 

achieves a final success rate of around 0.95. The reward curve shows a steady climb without 

major drops, indicating a reliable positive reinforcement over the entire training. The final 

Figure 5: Success rate and reward across training episodes for different scenarios 
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reward value of around 4.0 indicates optimized behavior, highlighting the model's overall 

adaptability and effective learning process despite temporary setbacks. 

Similarly, in the cross-path scenario, a consistent learning trend is shown, as seen in 

Figure 5. Unlike the curve path scenario, the success rate shows a steady increase across all 

training episodes, reaching a stable value of around 0.9 at 4000 training episodes, and 

suggesting that the model adapts more smoothly to this scenario. The reward curve also shows 

a consistent rise, reaching a final value of around 4.0. The consistent behavior in both 

accumulated reward and success rate indicate that the model effectively learns to navigate in 

the cross-path scenario without encountering significant challenges during the training process. 

In the case of the no-wall scenario, the training results show the highest success rate 

and the steepest accumulated reward among all training scenarios. The success rate value 

rapidly rises to over 0.8 at around 1000 training episodes and stabilizes at a value of over 0.9 

at around 2000 training episodes. Also, the accumulated reward grows consistently through the 

training and achieves a final value of around 4.0. The behavior in both metrics is expected in 

this scenario, since it presents the simplest geometry for the robot. Also, these results highlight 

the simpler nature of the no-wall scenario, while the robot is still able to achieve its collision 

avoidance task as shown in Table 3. 

Comparing the three scenarios, the no-wall scenario presents the most efficient learning 

process, whereas the curve path scenario is one with a more intricate learning with some 
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setbacks during the process. The cross-path scenario shows a consistent trend, with no 

significant problems, showing the model's adaptability. 

Simulation 

The simulation evaluation considers environments with AI-controlled agents and 

traditional agents separately. To deal with hardware limitations, both environments are tested 

with only three agents running simultaneously. 

Due to their general properties, three specific situations are examined for both 

environments. The first consists of robots going in parallel along a straight path competing for 

reaching a goal line. The second consists of robots trying to take a curve successfully, 

potentially recurring to overtaking strategies. Finally, the third situation is a combination of the 

previous two mentioned before: the robots start in the same line, follow a straight path and take 

a curve to reach their goal. This setup allows us to precisely evaluate the behavior of the 

planners. 

Traditional Agents 

To test the behavior of agents in our multi-robot environment, we use the traditional 

ROS navigation stack. This approach uses Dijkstra/A* as the global planner, and Dynamic 

Window Approach as the local planner. In our setup, for comparison, we use two agents using 

Dijkstra and one agent using A* as the global planner. An overview of the results of the 



34 
 

 

experiments in the described environments is shown in Table 4. Also, the paths taken by the 

robots in the experiments are shown in Figure 6. 

For the straight-path experiment, the three robots arrived at the goal within a short 

amount of time, showing the predictable nature of this scenario. Robot 1 first arrived at the 

goal in 28.01s, then Robot 2 with a delay of 0.18s, and Robot 3 with a delay of 0.39s with 

respect to Robot 1. These minor differences indicate that the robots experienced minimal 

interference from each other, thus highlighting the low complexity of a linear path.  

In the curve-path experiment, differences between the planners start to show. As seen 

in Figure 6, the main differences come from the global planners. In the case of Robot 2, using 

A* algorithm, the path tends to be less predictable, and the robot's behavior is riskier. Also, 

there's a significant difference between the robot’s arrival times. Robot 1 arrives at the goal 

Figure 6: Experimental Results for Traditional Navigation Agents. Each subfigure displays 

the trajectory paths of three robots using traditional methods. Robot 1's path is shown in 

green, Robot 2's in purple, and Robot 3's in orange. 

Table 4: Navigation times, in seconds, for robots controlled by the ROS Navigation Stack in 

three different scenarios 
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first, in 23.39s, then Robot 2 arrives with a delay of 3.97s, finally Robot 3 arrives with a delay 

of 10.74s. Analyzing the behavior of the agents in the Figure, it's evident that Robot 2, 

controlled by A* generates riskier routes than the other planners. On the other hand, Robot 3 

spends more time re-planning, resulting in a longer navigation time. Overall, this environment 

showcases the natural behavior of planners and outlines clear differences between A* and 

Dijkstra. 

The complete-path experiment provides clear evidence of the performance trade-offs 

between the planners. In this case, Robot 1 arrived at the goal first at 52.12s, then Robot 3 at 

55.76s, and finally Robot 2 at 57.24s. 

As can be seen in Figure 6, the most interesting behavior arises from Robot 2 which 

employs the A* algorithm. This agent repeatedly tries to overtake other agents and maintains 

the shortest route from the race's start. It does, though, force a direct and hazardous collision, 

when the global planner devotes its attention to optimality rather than safety, when navigating 

a curve. 

Intelligent Agents 

To test the trained DRL models in simulation, a modified version of the traditional ROS 

Navigation stack is used, extending the work outlined in (Li, et al., 2019). Following this, 

Dijkstra is used as the global planner, while SARL* is used as the local planner.  

In this setup, three agents interact in the Gazebo simulation environment, each of them 

controlled by a specific trained model. Robot 1 is controlled by the curve path model, Robot 2 

is controlled by the no-wall model, and Robot 3 is controlled by the cross-path model. An 
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overview of the results of the experiments in the three environments described is shown in 

Table 5. Also, the paths taken by the robots in the experiments are shown in Figure 7. 

Robot Straight Path Curve Path Combined Path 

Robot Timeout 44.19 74.63 

Robot 22.26 26.29 61.52 

Robot 26.71 25.46 48.77 

Table 5: Navigation times, in seconds, for robots using SARL* as the local planner in three 

different scenarios 

 For the straight-path experiment, the performance of the DRL agents varies 

significantly, reflecting the differences between trained models. Robot 2, controlled by the no-

wall model, accomplishes the navigation task with an optimal behavior, arriving at the goal in 

just 22.26s. This shows this model's capability to navigate through straightforward, low 

complexity scenarios. Then, Robot 3, controlled by the cross-path model, reached the goal with 

a delay of 4.45s. On the other hand, Robot 1, controlled by the curve path model, failed to reach 

the goal, resulting in a timeout. This indicates a clear limitation of the curve path model, since 

Figure 7: Experimental Results for DRL Agents. Each subfigure illustrates the trajectory 

paths of three robots, with each path corresponding to a specific trained model. Robot 1's 

path is shown in green, Robot 2's in purple, and Robot 3's in orange. 
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it is not generalizing to accomplish the navigation task outside its domain knowledge, even in 

a relatively simple linear path.  

In the curve-path experiment, the results reveal interesting differences in how well each 

model adapts. Robot 3 reached the goal first, taking just 25.46s, which shows its impressive 

ability to handle a curve-path environment, even if this is not its specialty. Robot two arrived 

next, with a delay of 0.83s, showing that the no-wall model is able to tackle challenges different 

from what it was trained on. Finally, Robot 1 presents problems, arriving much later with a 

delay of 18.73s with respect to Robot 3, and with several collisions in its way. This suggests 

that, while the curve-path model is designed for this scenario, it might lack the generalization 

capability required to accomplish navigation tasks outside of its specific training environment.  

The most notable differences and insights about the trained models are highlighted in 

the combined-path experiment. Robot 3 outperformed the others, completing the experiment 

in just 48.77s, demonstrating its generalization capabilities, and the strength of its training in 

the cross-path training scenario. Robot 2 arrived next, with a delay of 12.75s, completing the 

circuit in 61.52s, also showing its ability to generalize, although in a less efficient manner 

compared to Robot 3. Again, Robot 1 took the longest time to complete the experiment, 

arriving at the goal in 74.63s, and with several collisions along its way. In general, this 
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experiment highlights Robot 3's strong performance in different scenarios, while proving the 

poor generalization capabilities of the curve-path model, shown by its long completion time. 

Comparative Analysis 

Experiments conducted using traditional navigation methods along with DRL-based 

approaches showed some fundamental differences between their performance, adaptiveness, 

and reliability in multi-robot contexts.  

In terms of performance, the conventional approaches to navigation exhibited a uniform 

and reliable behavior across all experiments. For example, in very simple scenarios, such as 

the straight-path experiment, all robots were able to accomplish the task, demonstrating very 

little variation in performance, showing how traditional methods would be optimal for 

environments of less complexity-needing predictable and safe paths. 

On the other hand, DRL-based agents showed a more variable performance between 

scenarios, depending on their training. For instance, while the no-wall model performed well 

in the straight path scenario, the curve-path model was not able to reach the goal. This shows 

the importance of training DRL agents in scenarios designed taking the final task into account, 

as well as potential performance degradations when acting in scenarios outside of the agent's 

specialty.  

When it comes to adaptability, traditional methods are notably less adaptable across 

scenarios, since the behavior of the global planner is closely followed. Therefore, in 

simulations, robots controlled by traditional methods fail to show competitive behavior, 
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presenting minimal differences between agents. Nonetheless, this conservative behavior is 

precisely what makes them able to avoid collisions and dangerous situations.  

DRL agents, on the other hand, display stronger adaptability between scenarios, 

depending on the trained model. For instance, the cross-path model outperformed both 

traditional and DRL-based methods in all scenarios, despite not being a specialist in any of 

them. This showed that DRL-based methods, when trained in diverse environments, can 

generalize to unseen situations. Nonetheless, the poor performance displayed by the curve-path 

model suggests that very specific training scenarios lead to non-optimal behaviors when a good 

level of generalization is needed.  

From the experiments, traditional navigation algorithms implemented by the traditional 

ROS navigation stack provide a reliable baseline for simple scenarios, presenting an optimal 

behavior and minimal differences in terms of speed and path quality. However, their 

performance is affected in more complex environments, where there is a need for adaptability 

and competitiveness. In contrast, DRL-based approaches show a superior behavior in terms of 

speed and adaptability in dynamic scenarios, as shown by the cross-path model driven agent 

across all the experiments. Nonetheless, the reliance of DRL-based methods on well-defined 

and generalizable training scenarios highlights the importance of a robust model design and 

validation.  

Ultimately, while traditional navigation methods show robustness for predictable 

scenarios, DRL-based methods show promise in competitive tasks, where adaptability and a 

faster response time are required. 
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CONCLUSIONS AND FUTURE WORK  

In this work, we present a multi-robot simulation environment designed to test 

traditional and DRL-based navigation methods in the context of robot racing. The SARL* 

algorithm was adapted to support competitive agents, and multiple training environments were 

developed in order to test each of the model’s behavior in simulation. Experimental results 

show that DRL-based approaches can outperform traditional navigation methods in complex 

scenarios, given an appropriate training process to achieve model generalization. Furthermore, 

the feasibility of testing multiple agents in simulation is proven, presenting a safe and reliable 

alternative to test model generalization and validation before deploying in real robots. 

Future work will include adapting the kinematics of real racing robots into the 

simulation. Additionally, a simulation environment where agents using traditional methods, 

and DRL-based agents interact is proposed to address the present compatibility problem 

between planners running in the same workspace. 
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