

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingeniería

Desarrollo y evaluación de un entorno de simulación multi-robot

para carreras utilizando técnicas de Deep Reinforcement

Learning y métodos tradicionales
.

Mateo Nicolás Pozo Ruiz

Ingeniería en Ciencias de la Computación

Trabajo de fin de carrera presentado como requisito

para la obtención del título de

Ingeniero en Ciencias de la Computación

Quito, 19 de diciembre de 2024

2

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Ciencias e Ingeniería

HOJA DE CALIFICACIÓN

 DE TRABAJO DE FIN DE CARRERA

Desarrollo y evaluación de un entorno de simulación multi-robot para

carreras utilizando técnicas de Deep Reinforcement Learning y métodos

tradicionales

Mateo Nicolás Pozo Ruiz

Daniel Riofrío, Ph.D.

Quito, 19 de diciembre de 2024

3

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales

de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad

Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad

intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este

trabajo en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación

Superior del Ecuador.

Nombres y apellidos: Mateo Nicolás Pozo Ruiz

Código: 00320780

Cédula de identidad: 0450083670

Lugar y fecha: Quito, 19 de diciembre de 2024

4

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado

como una publicación, incluso a pesar de estar disponible sin restricciones a través de un

repositorio institucional. Esta declaración se alinea con las prácticas y recomendaciones

presentadas por el Committee on Publication Ethics COPE descritas por Barbour et al. (2017)

Discussion document on best practice for issues around theses publishing, disponible en

http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following capstone project is available through Universidad San Francisco de Quito

USFQ institutional repository. Nonetheless, this project – in whole or in part – should not be

considered a publication. This statement follows the recommendations presented by the

Committee on Publication Ethics COPE described by Barbour et al. (2017) Discussion

document on best practice for issues around theses publishing available on

http://bit.ly/COPETheses.

http://bit.ly/COPETheses
http://bit.ly/COPETheses

5

RESUMEN

La navegación de vehículos autónomos en contextos competitivos y dinámicos, como las

carreras de robots, requieren de adaptabilidad y decisiones en tiempo real. Los entornos de

simulación actuales para competencias como F1-tenth, Formula SAE Driverless y AWS

DeepRacer son útiles, pero a menudo son rígidos para probar técnicas novedosas. En este

sentido, el proyecto actual supera estas limitaciones mediante el diseño y la evaluación de una

simulación de carreras multi-robot en Gazebo. En particular, se examina el funcionamiento de

agentes DRL, cuyo comportamiento es generado con el algoritmo SARL*, mientras que en

paralelo se investigan agentes que emplean los algoritmos clásicos A* o Dijkstra combinados

con Dynamic Window Approach (DWA). Este trabajo abarca el proceso de refinamiento,

entrenamiento y prueba de los modelos DRL, junto con su aplicación en la plataforma robótica

Turtlebot3, en el entorno de Gazebo utilizando ROS Melodic, como una fase introductoria para

integrar sistemas más avanzados. En este sentido, se resalta la importancia del aprendizaje

profundo por refuerzo (DRL) en relación con la navegación autónoma, haciendo énfasis en la

capacidad de respuesta en un entorno cambiante. Además, el uso del algoritmo A* y Dijkstra

con DWA proporcionan un baseline para la comparación con los enfoques basados en DRL.

Las métricas de rendimiento incluyeron el tiempo de navegación, el número de colisiones y la

calidad de la trayectoria. Además, para la fase de entrenamiento, se evalúan la tasa de éxito y

la recompensa acumulada. Estas medidas ayudan a evaluar los modelos en situaciones donde

se requiere competir. Los resultados muestran que los enfoques basados en DRL superan a los

métodos tradicionales en términos de tiempo de navegación y adaptabilidad, dado un sólido

proceso de entrenamiento que garantiza la capacidad de generalización del modelo.

Palabras clave: Multirobot, Deep Reinforcement Learning (DRL), Competitivo, Carreras,

SARL*, Gazebo

6

ABSTRACT

Navigation of autonomous vehicles in competitive and dynamic contexts, such as robot racing,

requires real-time decision-making and adaptability. Present simulation environments for

competitions like the F1-tenth, Formula SAE Driverless, and AWS DeepRacer are useful but

are often rigid to use for testing novel techniques. In this regard, the current project overcomes

these setbacks by designing and assessing a multi-robot racing simulation in Gazebo, where

the robots move on their own with DRL models or using traditional navigation approaches. In

particular, the operation of DRL agents, whose behavior is generated with an adapted Socially

Attentive Reinforcement Learning algorithm (SARL*) is examined, while agents employing

the classical A* or Dijkstra algorithms combined with the Dynamic Window Approach (DWA)

are investigated in parallel. This work encompasses the process of refining, training and testing

the DRL models, along with their application on the Turtlebot3 robotic platform placed in the

Gazebo environment using ROS Melodic, as an introductory phase for integrating more

advanced systems. In this regard, this work emphasizes the significance of deep reinforcement

learning (DRL) with respect to robotic navigation by improving responsiveness in a changing

environment. Furthermore, the use of the A* algorithm and Dijkstra with DWA provides a

baseline for comparison against DRL approaches. Performance metrics included navigation

time, the number of collisions, and trajectory quality. In addition, for the training phase, the

success rate and accumulated reward are evaluated. These measures help to assess models in

situations where they are required to compete. Results show that DRL-based approaches

outperform traditional methods in terms of navigation time and adaptability, given a strong

training process that ensures the model's generalization ability.

Key words: Multirobot, Deep Reinforcement Learning (DRL), Competitive, Racing, SARL*,

Gazebo

7

TABLE OF CONTENTS

Introduction .. 10

Motivation and Problem Definition ... 10

State of the Art ... 12

Materials and Methods ... 18

Simulation and Framework .. 18

Gazebo Simulator ... 18

Robotic Operating System (ROS) .. 19

Navigation and Control Algorithms... 19

Global Planners: A* and Dijkstra .. 20

Dynamic Window Approach ... 21

SARL* Algorithm .. 22

Training Environment .. 23

Reward Function Design .. 25

Evaluation Criteria ... 27

Training Phase ... 27

Simulation Phase .. 27

Experimental Setup and Hardware Configuration ... 28

Results and Discussion .. 30

Training .. 30

Simulation .. 33

Traditional Agents ... 33

Intelligent Agents ... 35

Comparative Analysis .. 38

Conclusions and Future Work ... 40

Aknowledment ... 41

Bibliography .. 42

8

TABLE INDEX

Table 1: Simulation environment parameters for training ... 24

Table 2: Neural network training parameters .. 25

Table 3: Comparison of training results across three environments. 30

Table 4: Navigation times for robots using traditional methods .. 34

Table 5: Navigation times for SARL* controlled robots ... 36

9

FIGURE INDEX

Figure 1: The ROS navigation stack .. 20

Figure 2: The Dynamic Window Approach Visualization .. 21

Figure 3: Scenarios used in the OpenAI Gym training environment 24

Figure 4: Simulated racing circuit track within the Gazebo environment. 28

Figure 5: Success rate and reward across training episodes for different scenarios 31

Figure 6: Experimental Results for Traditional Navigation Agents .. 34

Figure 7: Experimental Results for DRL Agents ... 36

10

INTRODUCTION

Motivation and Problem Definition

The creation of mobile robotic systems has attracted considerable research interests in

recent years. Applications such as delivery robots, automated guided vehicles for warehouses,

service robots, and self-driving cars have become a reality and are shaping the future (Zhu &

Tao, 2021). Furthermore, the emergence of autonomous racing competitions like the F1tenth

require adaptable and efficient navigation techniques, making them ideal to test the latest

algorithms for autonomous navigation. Among the latest advancements in autonomous vehicle

research, deep reinforcement learning (DRL) approaches are promising because they are able

automatically extract important features from the environment and learn appropriate navigation

policies through trial and error (Li, 2023) (Li, et al., 2019).

Multi-robot racing tasks provide a greater challenge than simple navigation tasks. In

such environments the robots not only are to arrive at the goal, but they must also do this while

interacting with competing agents that share the goal. In addition, the classic collision

avoidance problem is extended to a multi-robot system, and the decision process is

complicated, because agents must be capable of predicting and reacting to unanticipated agents

(Zhu & Tao, 2021). Competitive environments provide the opportunity to evaluate the

generalization ability of the most recent navigation techniques, which may lead to safer and

more stable navigation. In addition, the type of competitive environments offers a powerful

mechanism to improve and adjust current DRL algorithms.

There is currently a lack of multi-robot simulation environments specifically for racing

situations. This poses a significant learning curve for students and researchers who wish to race

autonomous robots. By creating a flexible simulation platform, this work aims to make robotics

11

and autonomous racing more accessible. In addition, by completing the entire algorithm

workflow within the simulation, it is possible to decrease the risk associated to real robots,

obtain a high-fidelity simulation and increase the ease of transferring the validated models to

real-world scenarios effortlessly.

12

STATE OF THE ART

Reinforcement learning (RL) has recently gained considerable attention as a powerful

branch of machine learning, particularly for tasks where an agent must learn to optimize its

behavior through interactions with the environment. Unlike supervised or unsupervised

learning, RL enables agents to discover optimal actions by trial and error without the need of

large datasets or labelling, much like humans learn from experience. This approach allows the

agent to progressively refine its actions based on feedback, maximizing a numerical reward to

achieve a specific goal (Sutton, et al., 2018). The recent advancements in deep learning and the

improvement in computational power have expanded the capabilities of RL to tackle more

complex problems, giving rise to Deep Reinforcement Learning (DRL) models. The DRL

agents, for instance, have been trained to play Atari 2600 games with the only input of image,

even beating human performance in many scenarios (Mnih, 2013).

Due to its ability to represent and experience learning, DRL possesses a potentially

exciting future in fields such as mobile robotics. Autonomous navigation is a fundamental

problem in mobile robotics, and includes several sub-problems including obstacle avoidance,

path planning, localization, and mapping. One of the most frequent strategies to overcome the

autonomous navigation task is to design systems composed of various algorithms as solutions

for each subtask as pointed out in (Zhu & Tao, 2021). Yet, such approaches often rely on

accurate sensor readings and every stage in the autonomous navigation pipeline will be

contaminated with computational errors compounded over time to generate suboptimal and

reactive navigation policies in a dynamic or uncertain environment (Feng, et al., 2021), (Zhu

& Tao, 2021). By contrast, DRL based methods can learn superior policies that enhance the

performance of agents, even in dense and adverse situations (Feng, et al., 2021).

13

While DRL-based approaches are promising solutions for autonomous driving, as

pointed out by (Zhu & Tao, 2021), there are still challenges. These include the partial

observation problem, where the agent has limited visibility of its environment, leading to the

learning of suboptimal policies; the sparse reward problem, where reward functions may only

be effective at the end of an episode, making the learning process inefficient; and poor

generalization, as training typically occurs in simulated environments to address safety and

time constraints, resulting in a simulation-to-reality gap (Bosello, et al., 2022). To address these

issues, various solutions have been proposed, including techniques such as recurrent neural

networks for better handling partial observability (Yuan, et al., 2019), reward shaping to tackle

sparse rewards (Pico, et al., 2023), and domain randomization strategies to reduce the

simulation-to-real gap (Balaji, et al., 2020).

A separate strategy for overcoming the constraints of DRL-based approaches is to

design hybrid solutions. Stand-alone DRL approaches have limitations including high training

time, the absence of long-term memory, and strong propensity to fall into local optima (Wang,

et al., 2023), (Cimurs, et al., 2022). From the other side, classical approaches such as A or

Dijkstra's algorithm provide an asymptotically efficient and invariant solution for navigation

in static environments, but they are not flexible enough for navigation in dynamic

environments. To address these limitations, hybrid frameworks combining the reliability of

traditional methods with the adaptability of DRL approaches have been proposed.

An innovative autonomous robot navigation framework was proposed in (Wang, et al.,

2023). This consisted of a global and a local planner. The global planner employed a

conventional navigation strategy, and generated an environment map, calculating a globally

optimal route. Afterwards, several landmarks are found in the global path. They will finally be

used for the DRL local planner to come to the goal. This approach demonstrated higher

14

efficiency, safety, and robustness than conventional approaches and full-end-to-end DRL

approaches.

Similarly, in (Li, et al., 2019) a hybrid approach called SARL* is introduced, integrating

a dynamic local goal setting mechanism. This framework computes a global trajectory using

Dijkstra's algorithm from an environment occupancy grid map. Waypoints are subsequently

established along this trajectory and the dynamic local goal mechanism chooses the farthest

waypoint within a determined radius from the agent. Achieving its goal is reached through

following these waypoints. This mechanism enhances the generalization ability of the policy,

decreasing its dependence on the individual distances learned in the process and enabling the

agent to generalize to changing environments.

With the advancement of DRL, the complexity of robot systems demands rises. There

is growing interest in possible solution-oriented alternatives for cooperative navigation and

communication among intelligent agents in applications such as indoor navigation, multi-robot

navigation, and social navigation (Zhu & Tao, 2021). Doing the same in such complex

environments, however, presents various issues that have led to sophisticated, advanced DRL

techniques and frameworks (Balaji, et al., 2020) to enable robots to build and adapt as they go

through the environment, while maintaining safe and efficient navigation.

The distributed multi-robot collision avoidance approach based on the hybrid control

scheme presented in (Fan, et al., 2020) is a new approach to distributed multi-robot collision

avoidance in cluttered environments. In addition, policy-gradient algorithm, proximal policy

optimization (PPO), can be applied to allow the robot to learn from and adapt its navigation

policy autonomously, in real time without using intercommunication. Additionally, the

centralized learning/decentralized execution framework is adopted, producing experiences

15

from all the robots that trained on the training set. The advantage of this method is that it does

not require a central controller which is computationally infeasible for large-scale multi-robot

systems and provides the robots a significant opportunity to cooperate efficiently and to not

collide. Furthermore, the simulation-to-real error is shown to be reduced.

An alternative approach, the Cooperative Deep RL (CDRL) framework, is presented in

(Kim, 2024). CDRL introduces a policy switching mechanism to balance exploration and

exploitation in unknown environments. This framework allows robots to dynamically switch

from safe exploration of the unknown to idea-driven exploration and deployment in goal-

oriented navigation. Policy coupling increases the robot's capacity to navigate the complex,

dynamic environment without the need for retraining and therefore leads to a flexible robot for

varying environments.

As regards autonomous exploration, authors in (Cimurs, et al., 2022) proposed an

autonomous approach based on DRL with a Twin Delayed Deep Deterministic Policy Gradient

(TD3) algorithm to achieve goal-driven exploration in arbitrary environments. This approach

learns and dynamically selects way points for surveying around interesting points (POI) and

can efficiently exploit to survey unknown environments. In addition, experimental results

demonstrate that the proposed scheme achieves the combined effect of reactive local and global

navigation strategies.

Consistent with efforts to improve DRL-based autonomous navigation, the

development and implementation of reward functions has generated considerable interest. In

(Pico, et al., 2023), the performance of various reward functions for an obstacle avoidance

model was evaluated. A new reward function was proposed, which compels the robot to stop

in dangerous situations and highlights the importance of finding a balance between simplicity

16

and interpretability while designing the reward function. In a similar way, in (Zhou, et al.,

2023) a novel collision avoidance algorithm known as Context-Aware Safe Reinforcement

Learning (CASRL) was presented. One of the main implications of this algorithm was the

introduction of two task-related policy gradients, fundamentally breaking the safety

mechanisms from the navigation mechanisms. This method relieves the problem of task

interference frequently experienced in the design of reward function and yields more

satisfactory and efficient learning in the reinforcement of complex scenarios.

With the advancement of DRL approaches for autonomous navigation, their application

in autonomous robot racing presents both unique challenges and opportunities. With the need

for fast, real-time learning in very dynamic environments, the task of racing translates very

well to a testing ground for state-of-the-art DRL algorithms. Autonomous racing requires not

only precision in navigation but also the ability to adapt quickly to continuously changing

scenarios, pushing DRL models to their limits. Notably, DRL approaches have been proposed

for prestigious international racing events, such as the driverless category of Formula SAE

(Salvaji, et al., 2022), the F1tenth competition (Bosello, et al., 2022), and the Amazon Web

Services sponsored autonomous racing league with the DeepRacer platform (Balaji, et al.,

2020), demonstrating the potential of DRL in continuously changing, complex environments.

Even though there have been large breakthroughs in the use of DRL in autonomous

racing, current methods, such as those employed in the F1tenth Challenge (Bosello, et al.,

2022) and Formula SAE (Salvaji, et al., 2022), these mainly rely on single-robot navigation in

a simulator. This limitation restricts the possibility of a complete validation of the collision

avoidance features of DRL models in a larger multi-robot scenario, which may involve more

agents, and in which their interactions among the agents are important. While the AWS

DeepRacer platform (Balaji, et al., 2020) provides multi-robot simulation environments, it is

17

limited to the DeepRacer ecosystem, and it will not be extendible to other competitive

platforms such as F1tenth or Formula SAE. Thus, although current work shows encouraging

results, there is a lack of a comprehensive experimental effort to tap into the full insights that

DRL can provide in multi-robot autonomous racing tasks in a general, and yet generalizable,

simulation environment.

18

MATERIALS AND METHODS

Simulation and Framework

Gazebo Simulator

Testing on physical hardware in robotics can be expensive, risky, and labor-intensive

(Newans, 2024). Furthermore, from the viewpoint of hardware implementation, the related

practical issues can hinder the development of fundamental algorithms, resulting in an

inefficient process.

To address these problems, Gazebo was created as an open-source, free simulation

platform for robots. Similar to game engines, Gazebo provides physically realistic physics

simulations of good accuracy and is capable of providing a wide range of virtual sensors, as

well as programmable interfaces for both users and system (Open Source Robotics, 2024).

Even though flexibility is a most prominent characteristic of Gazebo, there is another

important part of the simulator that lies in its large collection of robot models, sensors, and

prebuilt environments. This heterogeneity permits the researcher to filter out the specifics of

simulated hardware in favor of the testing of robotic algorithms (Newans, 2024).

We can build a realistic, high fidelity simulation environment in Gazebo, which allows

us to model a robust environment in which each robot sensor can consistently monitor its

environment and communicate with its environment data seamlessly to other simulation

19

entities. This integration simplifies the testing of algorithms, allowing us to focus directly on

algorithm development without being constrained by hardware limitations.

Robotic Operating System (ROS)

Interaction with robotic systems was for a long time a very inefficient task because of

the complex hardware integration needed. Infrastructure management and design were

frequently dull and repetitive work, which made robotics out of the reach of people without

much hardware experience (Tellez, 2022).

The adoption of ROS (Robot Operating System) as an open-source platform greatly

enhanced accessibility through easy to use and re-usable code for robotics applications by

researchers (Canonical, 2024). ROS is based on a publisher-subscriber architecture using the

ROS API for communication, which is structured by topics, services, action servers, and

message formats to provide a standardized interface to hardware peripherals (Tellez, 2022).

With this abstraction, developers are very much relieved of the low-level hardware details, thus

it allows them to concentrate on the algorithm development more.

In this study, we exploit the Turtlebot platform in the simulation space. Turtlebot is

uniquely tailored for ROS with the clear goal of teaching developers how to test and develop

applications in a simple way, so that developers can concentrate on algorithms rather than

getting trapped into hardware details.

Navigation and Control Algorithms

The techniques explored in this study utilize the ROS navigation stack and its modified

versions, focusing on hybrid navigation approaches. These methods integrate global planners,

employing algorithms such as Dijkstra or A*, with local planners that utilize either Deep

20

Reinforcement Learning or the Dynamic Window Approach. An illustration of the workflow

followed by hybrid planners based on the ROS navigation stack is shown in Figure 1 (Gill,

2018).

Global Planners: A* and Dijkstra

The ROS navigation stack used in this work provides several algorithms for global path

planning. In this sense, the move_base package links a global planner that uses either A* or

Djikstra, along with a local planner to accomplish the navigation task (Marder, 2020).

A* and Djikstra are both graph-based search algorithms that are designed for the

discovery of shortest paths in a graph between two nodes. In the context of our problem, the

graph is the cost map grid. A* is a directed, informed search, and nodes are judged by

evaluating the sum of costs to move to a node by the sum of costs from that node to the goal

(Russell & Norvig, 2010). Accordingly, the approach gives high weight to paths likely to speed

one toward an objective expeditiously, consistently producing expeditious solutions. However,

Djikstra's algorithm examines each of the possible paths, thus guaranteeing the shortest path

cost even if it results in a less computationally efficient solution (Marder, 2020).

Both algorithms have been chosen as the global planner for this project, because of their

robustness and ROS compatibility. A* provides an optimal path finding solution by computing

Figure 1: The ROS navigation stack

21

a heuristic, enabling the generation of a navigation plan in a relatively short time, which is

useful for large environments. However, by progressively analyzing all nodes, Dijkstra

guarantees the shortest possible path, which makes it suitable if an optimal solution is required.

Collectively, these algorithms permit a flexible strategy that can be accommodated for the

requirements of this work.

Dynamic Window Approach

The Dynamic Window Approach (DWA) is a local planner algorithm applied to robot

navigation in real time. In contrast to global planners which find a global path from beginning

to end, DWA seeks to find feasible, intermediate trajectories to safely guide the robot through

way to the aim while circumventing obstacles. DWA is based on the assessment of the possible

robot trajectories in a limited time window, considering both dynamic and kinematic

limitations as maximum velocity, acceleration and thus a maximum braking limit. This

naturally leads to a dynamic window, in which the robots constrains its action space, as

illustrated in Figure 2. DWA generates an optimal trajectory by, respectively, predicting future

positions of the robot in this window, as well as distance to obstacles and distance to the

Figure 2: The Dynamic Window Approach Visualization

22

globally optimal trajectory, while constraining the trajectory to produce the final desired goal

direction (Fox, et al., 1997).

Besides the ROS integration provided by DWA, to address the requirements of both the

dynamic environment and real-time obstacle evasion, this algorithm was selected for this work,

as it performs well in dynamic environments, and allows real-time obstacle avoidance;

characteristics that are critical for multi-robot scenarios. Due to the algorithm's capacity to

continuously adjust to the environment's changes, the robot can take fast decisions, which is

suitable for competitive applications. Additionally, DWA integrates easily with the global

planners mentioned before, as it can efficiently follow the global path generated by these

algorithms while adjusting to obstacles along the way.

SARL* Algorithm

This project features agents using Deep Reinforcement Learning techniques. For this

purpose, the SARL* algorithm was chosen as the base algorithm for experimentation. The

SARL* (Socially Attentive Reinforcement Leaning*) algorithm enhances the original SARL

model, originally designed to safely navigate in crowded environments (Li, et al., 2019).

SARL* solves its previous implementation problems by including features designed for long-

distance navigation and obstacle avoidance. Therefore, SARL* presents itself as an interesting

alternative to experiment with dynamic environments.

Key elements of SARL* are an adaptive, local goal setting mechanism and a map-based

safe action space. In addition, SARL* possesses a hybrid planning mechanism based on

applying Djikstra's algorithm, which plans globally and gives rise to dynamic goals as the path

is being traversed by the robot (Li, et al., 2019). This paradigm allows for adaptability to

changing circumstances while assuring a steady trajectory towards the goal. Furthermore, the

23

safe action space mechanism represents future positions, and prevents actions that will

probably result in collision.

Here, the algorithm SARL* is an interesting object of study because of its intrinsic

capabilities. Its adaptive local goal setting mechanism and obstacle avoidance, enable SARL*

to be used in the context of racing situations where robots need to be responsive and instantly

take optimal decisions. Additionally, the studies around this algorithm have led to promising

outcomes. For instance, as explained in (Pico, et al., 2023) various reward functions were

explored, which resulted in superior performance for the same algorithm.

With the comparison between SARL* and conventional navigation approaches, the

purpose of this project is to study the robustness and performance of SARL* and DRL in the

actual racing conditions. The findings of these experiments will be used to establish the utility

of SARL*'s abilities in changing competitive environments and to inform and develop future

versions for multi-robot autonomous navigation systems.

Training Environment

For training our DRL models, the work in (Li, et al., 2019) was extended to model

competitive situations. This methodology combines the OpenAI Gym library to simplify the

development of a value-based deep reinforcement learning framework. The use of the OpenAI

Gym library eases the development process, since it provides an API that includes necessary

24

building blocks like action spaces, observations, reward functions, and key environment data

(Sonawane, 2023).

The training environment is designed to mostly represent the real-world scenarios the

robot can encounter. Training scenarios for curve paths, straight paths, and intersections are

implemented as shown in Figure 3. Also, the movement of other agents in the training

environment is simulated with the ORCA algorithm because of its efficient path generation

and simplicity. Each of the presented scenarios generates a model that will be further tested in

the simulation phase.

The simulation and robot parameters are shown in Table 1.

Parameter Value

Number of Agents 3-5

Robot Radius 0.3 m

Agent Radius 0.3 m

Robot Velocity 1 m/s

Agent Velocity 1 m/s

Kinematics Unicycle

Table 1: Simulation environment parameters for training

Figure 3: Scenarios used in the OpenAI Gym training environment

25

As for the training parameters, these include variables that are essential for the robot

learning process, including the agent's policy, discount factor, learning rate, number of

episodes, and other important parameters as outlined in Table 2.

Parameter Value

Time Step 0.25 s

Test Size 3000

Agent’s Policy ORCA

Discount Factor 0.9

RL Learning Rate 0.001

Train Episodes 6000

Train Batches 100

Table 2: Neural network training parameters

Reward Function Design

The reward function is designed to drive the learning process of the DRL agents. It is a

critical component as it directly influences the behavior of agents and their ability to navigate

effectively. The reward design is focused on key objectives including:

- Encouraging the robot to reach the goal as quickly as possible.

- Penalizing collisions with obstacles to promote safety.

- Rewarding efficient path trajectories to minimize detours.

- Penalizing unnecessary stops, promoting continuous motion.

Considering the experiments regarding different reward functions investigated in (Pico,

et al., 2023) a reward function using dense rewards was chosen. Therefore, the robot receives

26

a reward or penalization at each time step given a joint state 𝐽, and an action 𝑎, according to

equation R1.

𝑅1(𝐽, 𝑎) = 𝑅𝑑 + 𝑅𝑝𝑓 + 𝑅𝑔 + 𝑅𝑐 + 𝑅𝑘𝑚 + 𝑅𝑐𝑤 + 𝑅𝑤 + 𝑅𝑠 + 𝑅𝑡

From the equation, 𝑅𝑑 refers to the robot's proximity to the surrounding obstacles and

penalizes the robot if it comes too close to other robots. 𝑅𝑝𝑓 encourages the robot to come

closer to the goal at each step, giving it a reward when the distance to the goal is reduced. 𝑅𝑔

refers to the robot reaching the goal, and it's greater than other rewards, since it represents the

final purpose of the navigation task. 𝑅𝑐 refers to collisions with other robots and penalizes the

robot if a collision happens. 𝑅𝑘𝑚 in a similar fashion to 𝑅𝑝𝑓 encourages the robot to keep

moving, but without considering any direction. 𝑅𝑐𝑤 and 𝑅𝑤 are related to the interaction with

the limits of the track, penalizing the robot if it reaches a limit or if it comes too close to it. 𝑅𝑠

is useful because it penalizes the robot if it stops, since the behavior of a competing agent is

desired. Finally, 𝑅𝑡 is a penalty in case the robot doesn't reach the goal in a certain time interval,

encouraging responsiveness.

Also, to test the adaptability of the SARL* algorithm in simulation, the no-wall scenario

shown in Figure 3 is trained using a conditional reward structure, instead of a sum of rewards

as outlined in (Pico, et al., 2023). This approach results in better computational efficiency, as

27

only one reward is given per episode of training. In this case, the reward function is defined by

equation R2.

𝑅2(𝐽, 𝑎) =

{

𝑅𝑔 𝑖𝑓 𝑅𝑒𝑎𝑐ℎ 𝑡ℎ𝑒 𝑔𝑜𝑎𝑙,

𝑅𝑡 𝑒𝑙𝑖𝑓 𝑇𝑖𝑚𝑒𝑜𝑢𝑡,
𝑅𝑐 𝑒𝑙𝑖𝑓 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛,
𝑅𝑢𝑑 𝑒𝑙𝑖𝑓 𝑈𝑛𝑐𝑜𝑚𝑓𝑜𝑟𝑡𝑎𝑏𝑙𝑒,
𝑅ℎ𝑔 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The new reward elements in this equation are 𝑅𝑢𝑑 that results in a penalty if the robot

moves closer than 0.15𝑚 to an obstacle, and 𝑅ℎ𝑔 that refers to a reward when the robot reduces

its initial distance to the goal.

Evaluation Criteria

To evaluate the simulation framework, we define distinct evaluation criteria for the two

key stages of the workflow: the training phase and the simulation phase.

Training Phase

The evaluation is focused on success rate and accumulated reward during training.

These metrics provide information about the learning process in terms of efficiency and

performance.

Simulation Phase

The evaluation is conducted in the Gazebo environment, this stage evaluates the

applicability and reliability of the trained models. The criteria include:

- Trajectory Quality: Assessed based on the smoothness, safety and efficiency of

generated paths.

28

- Trajectory Completion Times: Measured to determine the speed of the models

across different path lengths.

Experimental Setup and Hardware Configuration

To evaluate agent performance on the environment proposed in this project, a Gazebo-

based environment was constructed, as described in Figure 4. This configuration simulates

real-world racing track conditions, such as straight paths, acute turns, and roundabouts to

validate the robustness and effectiveness of both DRL-based, and conventional navigation

algorithms. However, due to interference between the AI planners and the traditional ROS

navigation stack, separate tracks were used for AI-based agents and those using the ROS

navigation stack. This approach prevents interference between planners and allows for a better

experimentation process.

In this environment agents are represented as TurtleBot 3 Burger robots due to their

simplicity and ROS compatibility. The TurtleBot 3 platform provides necessary modules for

Figure 4: Simulated racing circuit track within the Gazebo environment.

29

autonomous navigation, such as laser scanners to identify obstacles, and odometry sensors to

provide real-time state information.

Furthermore, individual parameters of the configuration were optimized to respond to

the changing requirements of a competitive environment. Goal tolerance was defined to 0.2𝑚

to ensure robots arrive at their targets, and global costmap inflation layer radius was defined to

0.25𝑚 in order that the best trajectories can be planned while keeping a safe distance from

obstacles.

Additionally, the traditional ROS Navigation stack is implemented in the simulation to

serve as a baseline for evaluating our DRL models.

30

RESULTS AND DISCUSSION

In this section, we first evaluate the results of the training scenarios outlined in Figure

3 using the metrics discussed in the previous section. We will then evaluate the performance

of these models in a multi-robot context during the simulation phase.

Training

Three scenarios were trained using the OpenAI Gym library for reinforcement learning

as shown in Figure 3. The first two of them use a sum of rewards given by 𝑅1, and the third is

a simpler scenario with no walls using a conditional reward approach as explained in 𝑅2. Table

3 provides an overview of the training results of these models.

Scenario Success Rate Collision Rate Collision Wall Rate Timeout Rate

Curve Path 0.98 0.00 0.01 0.01

Cross Path 0.94 0.04 0.01 0.01

No-wall 0.96 0.02 - 0.02

Table 3: Comparison of training results across three environments.

31

Also, the training plots showing the showing the behavior of the models across training

episodes in terms of success rate and accumulated reward are shown in Figure 5.

The training results for the curve path scenario show a progression through different

learning phases as shown in Figure 5. Initially, the model shows a rapid improvement, with a

success rate that rises from 0.2 to 0.75 within the first 1000 training episodes. However, there

is a decline in the success rate at around 2000 episodes, but the model ends up recovering and

achieves a final success rate of around 0.95. The reward curve shows a steady climb without

major drops, indicating a reliable positive reinforcement over the entire training. The final

Figure 5: Success rate and reward across training episodes for different scenarios

32

reward value of around 4.0 indicates optimized behavior, highlighting the model's overall

adaptability and effective learning process despite temporary setbacks.

Similarly, in the cross-path scenario, a consistent learning trend is shown, as seen in

Figure 5. Unlike the curve path scenario, the success rate shows a steady increase across all

training episodes, reaching a stable value of around 0.9 at 4000 training episodes, and

suggesting that the model adapts more smoothly to this scenario. The reward curve also shows

a consistent rise, reaching a final value of around 4.0. The consistent behavior in both

accumulated reward and success rate indicate that the model effectively learns to navigate in

the cross-path scenario without encountering significant challenges during the training process.

In the case of the no-wall scenario, the training results show the highest success rate

and the steepest accumulated reward among all training scenarios. The success rate value

rapidly rises to over 0.8 at around 1000 training episodes and stabilizes at a value of over 0.9

at around 2000 training episodes. Also, the accumulated reward grows consistently through the

training and achieves a final value of around 4.0. The behavior in both metrics is expected in

this scenario, since it presents the simplest geometry for the robot. Also, these results highlight

the simpler nature of the no-wall scenario, while the robot is still able to achieve its collision

avoidance task as shown in Table 3.

Comparing the three scenarios, the no-wall scenario presents the most efficient learning

process, whereas the curve path scenario is one with a more intricate learning with some

33

setbacks during the process. The cross-path scenario shows a consistent trend, with no

significant problems, showing the model's adaptability.

Simulation

The simulation evaluation considers environments with AI-controlled agents and

traditional agents separately. To deal with hardware limitations, both environments are tested

with only three agents running simultaneously.

Due to their general properties, three specific situations are examined for both

environments. The first consists of robots going in parallel along a straight path competing for

reaching a goal line. The second consists of robots trying to take a curve successfully,

potentially recurring to overtaking strategies. Finally, the third situation is a combination of the

previous two mentioned before: the robots start in the same line, follow a straight path and take

a curve to reach their goal. This setup allows us to precisely evaluate the behavior of the

planners.

Traditional Agents

To test the behavior of agents in our multi-robot environment, we use the traditional

ROS navigation stack. This approach uses Dijkstra/A* as the global planner, and Dynamic

Window Approach as the local planner. In our setup, for comparison, we use two agents using

Dijkstra and one agent using A* as the global planner. An overview of the results of the

34

experiments in the described environments is shown in Table 4. Also, the paths taken by the

robots in the experiments are shown in Figure 6.

For the straight-path experiment, the three robots arrived at the goal within a short

amount of time, showing the predictable nature of this scenario. Robot 1 first arrived at the

goal in 28.01s, then Robot 2 with a delay of 0.18s, and Robot 3 with a delay of 0.39s with

respect to Robot 1. These minor differences indicate that the robots experienced minimal

interference from each other, thus highlighting the low complexity of a linear path.

In the curve-path experiment, differences between the planners start to show. As seen

in Figure 6, the main differences come from the global planners. In the case of Robot 2, using

A* algorithm, the path tends to be less predictable, and the robot's behavior is riskier. Also,

there's a significant difference between the robot’s arrival times. Robot 1 arrives at the goal

Figure 6: Experimental Results for Traditional Navigation Agents. Each subfigure displays

the trajectory paths of three robots using traditional methods. Robot 1's path is shown in

green, Robot 2's in purple, and Robot 3's in orange.

Table 4: Navigation times, in seconds, for robots controlled by the ROS Navigation Stack in

three different scenarios

35

first, in 23.39s, then Robot 2 arrives with a delay of 3.97s, finally Robot 3 arrives with a delay

of 10.74s. Analyzing the behavior of the agents in the Figure, it's evident that Robot 2,

controlled by A* generates riskier routes than the other planners. On the other hand, Robot 3

spends more time re-planning, resulting in a longer navigation time. Overall, this environment

showcases the natural behavior of planners and outlines clear differences between A* and

Dijkstra.

The complete-path experiment provides clear evidence of the performance trade-offs

between the planners. In this case, Robot 1 arrived at the goal first at 52.12s, then Robot 3 at

55.76s, and finally Robot 2 at 57.24s.

As can be seen in Figure 6, the most interesting behavior arises from Robot 2 which

employs the A* algorithm. This agent repeatedly tries to overtake other agents and maintains

the shortest route from the race's start. It does, though, force a direct and hazardous collision,

when the global planner devotes its attention to optimality rather than safety, when navigating

a curve.

Intelligent Agents

To test the trained DRL models in simulation, a modified version of the traditional ROS

Navigation stack is used, extending the work outlined in (Li, et al., 2019). Following this,

Dijkstra is used as the global planner, while SARL* is used as the local planner.

In this setup, three agents interact in the Gazebo simulation environment, each of them

controlled by a specific trained model. Robot 1 is controlled by the curve path model, Robot 2

is controlled by the no-wall model, and Robot 3 is controlled by the cross-path model. An

36

overview of the results of the experiments in the three environments described is shown in

Table 5. Also, the paths taken by the robots in the experiments are shown in Figure 7.

Robot Straight Path Curve Path Combined Path

Robot Timeout 44.19 74.63

Robot 22.26 26.29 61.52

Robot 26.71 25.46 48.77

Table 5: Navigation times, in seconds, for robots using SARL* as the local planner in three

different scenarios

 For the straight-path experiment, the performance of the DRL agents varies

significantly, reflecting the differences between trained models. Robot 2, controlled by the no-

wall model, accomplishes the navigation task with an optimal behavior, arriving at the goal in

just 22.26s. This shows this model's capability to navigate through straightforward, low

complexity scenarios. Then, Robot 3, controlled by the cross-path model, reached the goal with

a delay of 4.45s. On the other hand, Robot 1, controlled by the curve path model, failed to reach

the goal, resulting in a timeout. This indicates a clear limitation of the curve path model, since

Figure 7: Experimental Results for DRL Agents. Each subfigure illustrates the trajectory

paths of three robots, with each path corresponding to a specific trained model. Robot 1's

path is shown in green, Robot 2's in purple, and Robot 3's in orange.

37

it is not generalizing to accomplish the navigation task outside its domain knowledge, even in

a relatively simple linear path.

In the curve-path experiment, the results reveal interesting differences in how well each

model adapts. Robot 3 reached the goal first, taking just 25.46s, which shows its impressive

ability to handle a curve-path environment, even if this is not its specialty. Robot two arrived

next, with a delay of 0.83s, showing that the no-wall model is able to tackle challenges different

from what it was trained on. Finally, Robot 1 presents problems, arriving much later with a

delay of 18.73s with respect to Robot 3, and with several collisions in its way. This suggests

that, while the curve-path model is designed for this scenario, it might lack the generalization

capability required to accomplish navigation tasks outside of its specific training environment.

The most notable differences and insights about the trained models are highlighted in

the combined-path experiment. Robot 3 outperformed the others, completing the experiment

in just 48.77s, demonstrating its generalization capabilities, and the strength of its training in

the cross-path training scenario. Robot 2 arrived next, with a delay of 12.75s, completing the

circuit in 61.52s, also showing its ability to generalize, although in a less efficient manner

compared to Robot 3. Again, Robot 1 took the longest time to complete the experiment,

arriving at the goal in 74.63s, and with several collisions along its way. In general, this

38

experiment highlights Robot 3's strong performance in different scenarios, while proving the

poor generalization capabilities of the curve-path model, shown by its long completion time.

Comparative Analysis

Experiments conducted using traditional navigation methods along with DRL-based

approaches showed some fundamental differences between their performance, adaptiveness,

and reliability in multi-robot contexts.

In terms of performance, the conventional approaches to navigation exhibited a uniform

and reliable behavior across all experiments. For example, in very simple scenarios, such as

the straight-path experiment, all robots were able to accomplish the task, demonstrating very

little variation in performance, showing how traditional methods would be optimal for

environments of less complexity-needing predictable and safe paths.

On the other hand, DRL-based agents showed a more variable performance between

scenarios, depending on their training. For instance, while the no-wall model performed well

in the straight path scenario, the curve-path model was not able to reach the goal. This shows

the importance of training DRL agents in scenarios designed taking the final task into account,

as well as potential performance degradations when acting in scenarios outside of the agent's

specialty.

When it comes to adaptability, traditional methods are notably less adaptable across

scenarios, since the behavior of the global planner is closely followed. Therefore, in

simulations, robots controlled by traditional methods fail to show competitive behavior,

39

presenting minimal differences between agents. Nonetheless, this conservative behavior is

precisely what makes them able to avoid collisions and dangerous situations.

DRL agents, on the other hand, display stronger adaptability between scenarios,

depending on the trained model. For instance, the cross-path model outperformed both

traditional and DRL-based methods in all scenarios, despite not being a specialist in any of

them. This showed that DRL-based methods, when trained in diverse environments, can

generalize to unseen situations. Nonetheless, the poor performance displayed by the curve-path

model suggests that very specific training scenarios lead to non-optimal behaviors when a good

level of generalization is needed.

From the experiments, traditional navigation algorithms implemented by the traditional

ROS navigation stack provide a reliable baseline for simple scenarios, presenting an optimal

behavior and minimal differences in terms of speed and path quality. However, their

performance is affected in more complex environments, where there is a need for adaptability

and competitiveness. In contrast, DRL-based approaches show a superior behavior in terms of

speed and adaptability in dynamic scenarios, as shown by the cross-path model driven agent

across all the experiments. Nonetheless, the reliance of DRL-based methods on well-defined

and generalizable training scenarios highlights the importance of a robust model design and

validation.

Ultimately, while traditional navigation methods show robustness for predictable

scenarios, DRL-based methods show promise in competitive tasks, where adaptability and a

faster response time are required.

40

CONCLUSIONS AND FUTURE WORK

In this work, we present a multi-robot simulation environment designed to test

traditional and DRL-based navigation methods in the context of robot racing. The SARL*

algorithm was adapted to support competitive agents, and multiple training environments were

developed in order to test each of the model’s behavior in simulation. Experimental results

show that DRL-based approaches can outperform traditional navigation methods in complex

scenarios, given an appropriate training process to achieve model generalization. Furthermore,

the feasibility of testing multiple agents in simulation is proven, presenting a safe and reliable

alternative to test model generalization and validation before deploying in real robots.

Future work will include adapting the kinematics of real racing robots into the

simulation. Additionally, a simulation environment where agents using traditional methods,

and DRL-based agents interact is proposed to address the present compatibility problem

between planners running in the same workspace.

41

AKNOWLEDMENT

The cooperation of Dr. Nabih Pico, and the SKKU RISE Lab in the development of

algorithms and the ROS implementation along this project is appreciated.

42

BIBLIOGRAPHY

Balaji, B., Mallya, S., Genc, S., Gupta, S., Dirac, L., Khare, V., Roy, G., Sun, T., Tao, Y.,

Townsend, B., Calleja, E., Muralidhara, S. & Karuppasamy, D. (2020). Deepracer:

Autonomous racing platform for experimentation with sim2real reinforcement

learning. In 2020 IEEE international conference on robotics and automation

(ICRA) (pp. 2746-2754). IEEE.

Bosello, M., Tse, R., & Pau, G. (2022). Train in austria, race in montecarlo: Generalized rl

for cross-track f1 tenth lidar-based races. In 2022 IEEE 19th Annual Consumer

Communications & Networking Conference (CCNC) (pp. 290-298). IEEE.

Canonical. (2024). What is ROS?. https://ubuntu.com/robotics/what-is-ros

Cimurs, R., Suh, I. H., & Lee, J. H. (2021). Goal-driven autonomous exploration through

deep reinforcement learning. IEEE Robotics and Automation Letters, 7(2), 730-737.

Fan, T., Long, P., Liu, W., & Pan, J. (2020). Distributed multi-robot collision avoidance via

deep reinforcement learning for navigation in complex scenarios. The International

Journal of Robotics Research, 39(7), 856-892.

Feng, S., Sebastian, B., & Ben-Tzvi, P. (2021). A collision avoidance method based on deep

reinforcement learning. Robotics, 10(2), 73.

Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision

avoidance. IEEE Robotics & Automation Magazine, 4(1), 23-33.

Gill, J. (2018). Setup and configuration of the navigation stack on a robot. ROS.org.

https://wiki.ros.org/navigation/Tutorials/RobotSetup

https://ubuntu.com/robotics/what-is-ros
https://wiki.ros.org/navigation/Tutorials/RobotSetup

43

Kim, G. W. (2024). Cooperative deep reinforcement learning policies for autonomous

navigation in complex environments. IEEE Access.

 Li, H. (2023). Mobile robot navigation based on Deep Reinforcement Learning: A brief

review. In Journal of Physics: Conference Series (Vol. 2649, No. 1, p. 012027). IOP

Publishing.

Li, K., Xu, Y., Wang, J., & Meng, M. Q. H. (2019). SARL: Deep reinforcement learning

based human-aware navigation for mobile robot in indoor environments. In 2019

IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 688-694).

IEEE.

Marder, E. (2020). Move_base. ROS.org. https://wiki.ros.org/move_base?distro=noetic

Mnih, V. (2013). Playing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602.

Newans, J. (2024). Simulating with gazebo: Articulated robotics. Articulated Robotics.

https://articulatedrobotics.xyz/tutorials/ready-for-ros/gazebo/

Open Source Robotics. (2014). What is Gazebo?.

https://classic.gazebosim.org/tutorials?tut=guided_b1

Pico, N., Lee, J., Montero, E., Auh, E., Tadese, M., Jeon, J., ... & Moon, H. (2023).

Enhancing Autonomous Robot Navigation based on Deep Reinforcement Learning:

Comparative Analysis of Reward Functions in Diverse Environments. In 2023 23rd

International Conference on Control, Automation and Systems (ICCAS) (pp. 1415-

1420). IEEE.

https://wiki.ros.org/move_base?distro=noetic
https://articulatedrobotics.xyz/tutorials/ready-for-ros/gazebo/
https://classic.gazebosim.org/tutorials?tut=guided_b1

44

Russell, S. & Norvig, P. (2010). Artificial Intelligence: A Modern Approach 3rd ed. Prentice

Hall.

Salvaji, A., Taylor, H., Valencia, D., Gee, T., & Williams, H. (2023). Racing Towards

Reinforcement Learning based control of an Autonomous Formula SAE Car. arXiv

preprint arXiv:2308.13088.

Sonawane, B. (2023). Getting started with OpenAI Gym. BuiltIn.

https://builtin.com/software-engineering-perspectives/openai-gym

Sutton, R. S., Bach, F., & Barto, A.G. (2018). Reinforcement learning: An introduction. MIT

Press Ltd.

Tellez, R. (2022). The beginners guide to ROS. The Construct.

https://www.theconstruct.ai/about-ros-robot-operating-system/

Wang, X., Sun, Y., Xie, Y., Bin, J., & Xiao, J. (2023). Deep reinforcement learning-aided

autonomous navigation with landmark generators. Frontiers in Neurorobotics, 17,

1200214.

Yuan, J., Wang, H., Lin, C., Liu, D., & Yu, D. (2019). A novel GRU-RNN network model

for dynamic path planning of mobile robot. IEEE Access, 7, 15140-15151.

Zhou, Z., Ren, J., Zeng, Z., Xiao, J., Zhang, X., Guo, X., Zhou, Z. & Lu, H. (2023). A safe

reinforcement learning approach for autonomous navigation of mobile robots in

dynamic environments. CAAI Transactions on Intelligence Technology.

Zhu, K., & Zhang, T. (2021). Deep reinforcement learning based mobile robot navigation: A

review. Tsinghua Science and Technology, 26(5), 674-691.

https://builtin.com/software-engineering-perspectives/openai-gym
https://www.theconstruct.ai/about-ros-robot-operating-system/

