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 RESUMEN 

La detección rápida y temprana de eventos sísmicos volcánicos es fundamental para la 

respuesta rápida y la mitigación de desastres naturales. Los sistemas de clasificación de señales 

de acción rápida permiten que los mecanismos de alerta en áreas amenazadas por volcanes 

proporcionen advertencias tempranas, minimizando así los daños materiales y la pérdida de 

vidas. Este estudio propone un método de clasificación de eventos sísmicos volcánicos de dos 

pasos basado en la combinación de métodos metaheurísticos para encontrar el subconjunto más 

relevante de características y modelos de aprendizaje automático para maximizar la 

clasificación de eventos sísmicos. El método propuesto fue entrenado y validado en el conjunto 

de datos SeisBenchV1 utilizando una estrategia de división de datos de 75%´25%. El esquema 

de clasificación formado por el algoritmo genético con la función estadística x-cuadrado y la 

red neuronal de propagación hacia adelante-hacia atrás superó a los esquemas restantes, 

alcanzando un puntaje de área bajo la curva característica del receptor de 0,979. Este resultado 

destacó el desempeño exitoso de la clasificación del método propuesto y su aplicación práctica 

en sistemas de monitoreo sísmico volcánico.  

Palabras clave: Metaheurísticas, Clasificación sísmica, Eventos volcánicos, Selección de 

características, Funciones de fitness, Redes neuronales, Algoritmo genético, Optimización.
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ABSTRACT 

The quick and early detection of volcanic seismic events is critical for the rapid response and 

mitigation of natural disasters. Fast-acting signal classification systems enable alert 

mechanisms in volcanic-threatened areas to provide early warnings, thereby minimizing 

material damage and loss of life. This study proposes a two-step volcano seismic event 

classification method based on the combination of metaheuristic methods for finding the most 

relevant subset of features and machine learning models for maximizing the seismic event 

classification. The proposed method was trained and validated on the SeisBenchV1 dataset 

using a data split strategy of 75%/25%. The classification scheme formed by the genetic 

algorithm with the x-squared statistical function and the feedforward-backpropagation neural 

network outperformed the remaining schemes, reaching an area under the receiver 

characteristic curve score of 0.979. This result highlighted the successful classification 

performance of the proposed method and its practical application in volcanic seismic 

monitoring systems. 

Keywords: Metaheuristics, Seismic classification, Volcanic events, Feature selection, Fitness 

functions, Neural networks, Genetic algorithm, Optimization. 
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INTRODUCTION 

Early detection of volcanic activity is crucial to mitigate natural disasters and save lives, 

particularly in regions threatened by active volcanoes, such as Cotopaxi in Ecuador. Cotopaxi 

poses a significant risk due to its proximity to densely populated areas and its history of large-

scale eruptions. Early warning systems are essential to provide time for evacuations and 

protective measures. Recent research has focused on automatic recognition of seismic events, 

such as long-period events, which are key indicators of volcanic unrest.As shown by Lara-

Cueva et al. [1], the automatic classification of these events in Cotopaxi has greatly improved 

volcanic monitoring through advanced signal processing techniques. This underscores the need 

for continuous improvements in these systems to ensure life-saving applications. 

Beyond signal processing, feature selection is another critical element in optimizing machine 

learning models for seismic event classification. As Venegas et al. [2] have highlighted, high-

dimensional data gathered from volcanoes like Cotopaxi can make real-time processing 

computationally expensive. Reducing the feature space helps improve model performance 

while ensuring that real-time systems are efficient. These improvements are vital in enabling 

faster decision-making in crises, where time is of the essence. 

Seismic event classification is crucial in understanding tectonic and volcanic activity and is 

essential for improving early warning systems. Given the exponential increase in data from 

advanced acquisition technologies, manual seismic data analysis is no longer feasible, 

necessitating the use of automated systems [3]. While advancements have been made, 

significant challenges remain, particularly in the automatic and accurate classification of 

seismic events. Seismic events classification using metaheuristic techniques is a promising area 

of research for optimizing classification models, which could improve the current monitoring 

systems, ensuring faster data processing. Thus, we propose a two-step volcano seismic event 
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classification method based on the combination of metaheuristic methods for finding the most 

relevant subset of features and machine learning models for maximizing the seismic event 

classification.. 

STATE OF THE ART 

Cotopaxi Volcano’s eruption potential is particularly concerning due to its history and the 

possible scale of future events. Anzieta Reyes and Ortiz Erazo explored the 2015 Cotopaxi 

eruption, identifying potential precursors using unsupervised machine learning techniques. 

Their work highlighted the importance of these tools in early detection systems, particularly 

through applying K-means clustering to classify spectral density and dynamic time warping. 

They were able to identify low-frequency events that may signal the initiation of volcanic 

activity [4]. 

Various machine learning methodologies have been applied to classify seismic events, yielding 

promising results across different datasets. Support Vector Machines (SVM) [5], Random 

Forests [3], K-means [4], and Convolutional Neural Networks (CFFBPs) [6] have been 

implemented to analyze seismic data from various volcanoes and monitoring networks. For 

example, SVM applied to seismic data from Finland achieved a remarkable 97% accuracy in 

classifying events [5]. Similarly, in classifying volcanic earthquakes at the Ubinas volcano in 

Peru, both Random Forests and SVMs achieved over 90% accuracy, even when utilizing 112 

features—an unusually high number compared to other studies [3]. However, K-means, when 

applied to classify waveforms emitted by Cotopaxi Volcano, achieved only 23% accuracy in 

identifying events with high correlation, indicating the challenges of applying certain 

techniques in complex volcanic settings [4]. CFFBPs, used on data from Nevado del Ruiz and 

Laima volcanoes, yielded approximately 50% accuracy. Comparisons between active learning 

and random learning, in this case, showed a slight advantage for active learning [6]. Given the 
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variety of datasets and classification methods, it is essential to consider each study’s objectives 

and potential applications carefully. 

Volcano monitoring is one of the most critical applications of seismic event classification due 

to the potentially devastating consequences of eruptions. In countries like Ecuador, monitoring 

active volcanoes such as Cotopaxi is crucial to mitigating material, human, and economic 

losses. Anzieta et al. [4] demonstrated using K-means clustering on frequency measurements 

from Cotopaxi to identify patterns preceding an eruption. This analysis lays the foundation for 

early warning systems, offering greater efficiency and speed than more complex models. 

Currently, many studies rely on datasets with a limited number of features, often selected 

manually based on predefined characteristics. Malfante et al. [3] categorized their 112 features 

into three groups: statistical, entropic, and descriptive. However, a more scientific approach to 

feature selection, such as using metaheuristic methods, has not yet been fully explored in the 

field of seismic event classification. Given the growing volume of seismic data, it is 

increasingly important to identify the most suitable methodologies for real-time monitoring. 

Methods such as Bayesian dynamic networks [7] have been proposed but require careful 

consideration of time and feature selection constraints. It is crucial to identify the smallest 

number of relevant features to develop effective early warning systems while maximizing the 

performance of the model. This balance is essential to ensure that such systems respond quickly 

and accurately to potential volcanic activity. 

MATERIALS AND METHODS 

A. Experimental dataset 

 

We used the publicly available seismic benchmark SeisBenchV1 dataset, which provides a 

set of feature vectors obtained from the original microseism signal and its corresponding 
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class label, which could be long-period or volcano-tectonic seismic events. Each vector of 

features contains a total of 84 descriptors from the time (13 features), frequency (21 features), 

and scale domains (50 features), which were computed from each microseism signal recorded 

between January and March 2009. The frequency features were calculated using the fast 

Fourier transform, while the scale features were extracted from the application of the 

Wavelets transform. Time features, on the other hand, belong to the statistical calculation of 

the signal. Complete information about their calculation can be found in reference [1]. The 

SeisBenchV1 dataset contains 1044 and 101 samples of long-period and volcano-tectonic 

event classes, respectively. 

B. Metaheuristic Models 

 

Metaheuristic algorithms are generic framework algorithms that can be used in optimization 

problems with adequate adapting. The strategies aim to find acceptable solutions within a 

reasonable timeframe rather than seeking guaranteed optimal results. The fundamental 

principle behind these algorithms is to navigate the search space effectively by balancing 

exploration, which aims to discover diverse regions of potential solutions, and exploitation, 

which refines promising solutions for improved outcomes [8]. 

Metaheuristic algorithms are classified into taxonomies of diverse criteria that can be 

categorized in various ways. Some classifications focus on the search strategy, distinguishing 

between local search methods, which iteratively improve a single solution, and population-

based methods, which simultaneously evolve a set of solutions. Others differentiate based on 

inspiration, dividing metaheuristics into nature-inspired, physics-inspired, and miscellaneous 

algorithms. Nonetheless, metaheuristic algorithms focus on balancing computational effort 
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between exploration and exploitation. This balance is key to their success in solving diverse 

optimization problems across all research domains [9]. 

C. Fitness Functions 
 

A fitness function is a mathematical expression used to evaluate how well a selected solution 

meets a given problem’s objective. The function’s problem-specific design is a measure to 

compare different solutions, helping the algorithm prioritize better-performing candidates 

[10]. 

D. Machine Learning Classifiers 
 

Machine learning classifiers (MLCs) are computational algorithms designed to identify 

patterns in data and make predictions or decisions without human intervention [11]. These 

models are widely used for tasks such as classification, regression, and clustering, making 

them essential tools in data-driven research. Their effectiveness lies in their ability to 

generalize from training data to unseen data, enabling prediction in diverse fields such as 

healthcare, finance, engineering, etc. They are broadly categorized into three main types: 

supervised learning, where the model learns from labeled data; unsupervised learning, where 

the model identifies patterns in unlabeled data; and reinforcement learning, where the model 

learns by interacting with an environment to maximize cumulative rewards. [11] 
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E. Proposed Method 

 

Figure 1: Proposed Method 

We proposed a two-step volcano seismic event classification method based on the 

combination of metaheuristic methods for finding the most relevant subset of features and a 

set of three MLCs for maximizing the seismic event classification, as shown in Fig. 1. 

The feature selection stage combined two metaheuristic methods: the genetic algorithm (GA) 

and the Cuckoo search model for exploring the whole feature space in conjunction with three 

different fitness functions, such as the average of mutual information (aMI), Relieff, and chi-

squared (aChi2), to measure the merit (quality) of each provided feature subset as shown in 

Fig. 1, step 2.1. The selected search algorithms and fitness functions were based on different 

taxonomies to assess the relevance of features from different perspectives, enabling a more 

comprehensive exploration of the feature space. A brief description of the selected methods in 

this stage is next: 

• Genetic Algorithm (GA): An evolutionary algorithm inspired by the process of natural 

selection [12]. Operates by iteratively generating and refining populations of candidate 
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solutions through operations such as selection, crossover, and mutation. Known for its 

ability to explore diverse regions of the solution space effectively, making it suitable 

for complex optimization problems. 

• Cuckoo Search (CS): A swarm intelligence algorithm inspired by the brood parasitism 

behavior of cuckoo birds [13]. Combines local search mechanisms with global 

randomization based on Lévy flights to explore the solution space efficiently. 

Particularly effective for identifying global optima in high-dimensional and non-linear 

problems. 

• Mutual Information (MI): It measures the dependency between features and the target 

variable, quantifying how much information a feature provides about the output class 

[14]. Features with higher mutual information scores are more likely to contribute to 

improving classification accuracy. 

• Chi-Square: is a statistical test used to evaluate the independence of features and the 

target class. Higher Chi-square scores indicate stronger associations between features 

and the output, making them more relevant for classification tasks [2]. 

• ReliefF: is an algorithm that evaluates feature importance by considering how well 

features differentiate between instances of different classes [15]. It is particularly 

effective in handling interactions between features, making it a robust choice for feature 

selection. 

It should be noted that each fitness metric computes the merit of a single feature against the 

output class, and the search algorithms provide a set of features per candidate solution. Thus, 

we modified each metric by introducing the average function to estimate the relevance of a 

feature subset instead of a singular feature. 
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On the other hand, the classification stage considered three multi-label classifiers (MLCs): 

random forest (RF), naive Bayes (NB), and feedforward-backpropagation (FFBP) neural 

network to analyze each feature subset provided by the previous stage and maximize the 

seismic event classification, as shown in Fig. 1, step 2.2. These classifiers belong to different 

shallow learning branches to gather classification results from diverse viewpoints. An 

overview of the employed MLCs is next: 

• NB is a probabilistic classifier based on Bayes’ theorem, assuming conditional 

independence between features [16]. It is computationally efficient and provides a 

baseline for evaluating more complex classifiers. This study used the Gaussian Naive 

Bayes model from the scikit-learn library. 

• RF is an ensemble learning method that constructs multiple decision trees during 

training and outputs the majority class as the final prediction [16]. Each tree is a 

hierarchical model that makes predictions by recursively splitting the data based on 

feature values. At each split, the model selects the feature and threshold that best 

separates the data into distinct classes. By aggregating the predictions of multiple trees, 

the forest can capture more complex patterns in the data while maintaining robustness 

to noise and outliers. 

• FFBP is an artificial neural network designed to capture non-linear patterns in data by 

iteratively learning from errors [16]. In this model, data flows through layers of neurons 

in a forward direction—from the input layer to the output layer. Each neuron applies a 

mathematical function to its inputs and passes the result to the next layer. It later 

calculates the error (difference between predicted and actual output) and propagates it 

backward through the network to adjust the weights in the neurons. 
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EXPERIMENTAL SETUP 

This section describes the experimental setup used to implement and evaluate the proposed 

method. The process is divided into distinct phases: data processing, dataset partitioning, model 

configuration, and performance assessment, as detailed in the following subsections. 

A. Data Processing 

All feature vectors were normalized using the Min-Max scaler method, which scales each 

feature to a range between 0 and 1. This normalization process avoids critical data dispersion 

while enhancing the MLCs’ performance. 

B. Training and Test Sets 

The dataset was divided into training and testing subsets using a 75%-25% split, following 

the methodology proposed by Vanegas et al. [2] for a similar dataset. This partitioning 

ensured that a significant portion of the data was reserved for model training while 

maintaining a separate set for unbiased performance evaluation. 

C. Metaheuristic Optimization 

An optimization process was conducted for each metaheuristic to determine the best-

performing metaheuristic model and its optimal parameters. The goal was to identify 

parameter configurations that maximized the average fitness across three distinct fitness 

functions: Mutual Information (MI), Chi-Square (Chi2), and ReliefF. For each metaheuristic, 

the parameters were tuned systematically, and the configurations yielding the highest average 

fitness per fitness function were selected. 

The parameters of the Cuckoo Search algorithm were optimized to enhance its performance 

during feature selection. The following parameters were adjusted based on previous work: the 
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number of generations was tested between 100 and 500 in steps of 50, while the number of 

features (dim) was fixed at 84, matching the total number of features in the dataset. The 

discovery rate (pa) was set at 0.25 following standard conventions, and Lévy flight parameters 

used a flight scale of 1.5 and a step size of 1, adhering to common implementation practices. 

The number of nests was fixed at 50 to ensure sufficient diversity in the search space. The 

optimization results indicated that the best performance for aMI and aReliefF was achieved 

with 500 generations, while for aChi2, 400 generations provided the best results. 

The Genetic Algorithm was similarly optimized by varying its generation parameter while 

keeping other parameters fixed based on established conventions. The number of generations 

was tested between 500 and 1000 in steps of 50. The mutation rate was fixed at 0.1, and the 

crossover rate was set at 0.9. The population size was set to 42, representing half the number 

of features (dim/2), and the number of parents was fixed at 28, half the population size, 

following conventional practices. The optimization process revealed that the best results for 

aMI were obtained with 950 generations, while 800 generations were optimal for both aChi2 

and aReliefF. 

D. Model Configuration 

The proposed method evaluated the feature subsets generated by the metaheuristic algorithms 

using three classifiers: Naive Bayes, Random Forest, and a Feedforward Neural Network 

(FFBP). The Gaussian Naive Bayes model was employed, assuming that features are 

conditionally independent and follow a Gaussian (normal) distribution. This classifier was 

implemented with the default settings provided by the scikit-learn library, serving as a 

baseline for comparison. The Random Forest classifier, constructed using the Classification 

and Regression Trees (CART) algorithm, was configured with 100 decision trees. The 

parameter max_features="sqrt" was utilized, allowing each tree to consider a random subset 
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of features at each split, thereby ensuring diversity among the trees and improving 

generalization. The Feedforward Neural Network (FFBP) consisted of an input layer, two 

hidden layers, and an output layer. The input layer size corresponded to the number of 

features selected by the metaheuristic algorithms. The first hidden layer contained 64 

neurons, and the second contained 32 neurons, both using the ReLU (Rectified Linear Unit) 

activation function to model non-linear relationships. The output layer was configured with a 

single neuron and a sigmoid activation function for binary classification. The network was 

trained using the Adam optimizer with the default learning rate of 0.001 and binary cross-

entropy as the loss function. The training process consisted of 100 epochs and a batch size of 

32, with no additional regularization techniques such as dropout applied. 

E. Assessment Metrics 

The performance of the classification models was evaluated using five metrics to provide a 

comprehensive analysis of their predictive capabilities [17]. Accuracy (ACC) measures the 

overall proportion of correctly classified instances, offering a general performance overview. 

Precision (PRE) assesses the classifier’s ability to minimize false positives, which is critical 

in applications where false alarms are costly. Recall (REC) evaluates the proportion of true 

positive instances correctly identified, making it essential in scenarios where missing positive 

cases is highly undesirable. The F1-score provides a balanced evaluation by combining 

precision and recall, making it particularly valuable when both false positives and false 

negatives carry significant implications. Lastly, the area under the ROC curve (AUC) 

measures the model’s ability to distinguish between classes across various decision 

thresholds, offering robust performance insights. By utilizing these metrics, we ensure a 
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thorough assessment of the models’ strengths and weaknesses across different aspects of 

classification performance. 

F. Selection Criteria 

The selection of the optimal metaheuristic model was based on finding the model achieving 

the highest Average Fitness across all the fitness functions during the optimization process. 

Using results from the optimization phase with parameters validated in prior studies, the 

chosen metaheuristic model ensured both high performance and adherence to established best 

practices [18], [19]. 

The selection and evaluation of the best models were primarily based on the AUC (Area Under 

the ROC Curve) metric, chosen as the main performance indicator due to its ability to assess 

the overall classification effectiveness across varying decision thresholds [20]. Additional 

metrics, such as accuracy, precision, recall, and F1-score, were used as supporting evidence to 

provide a comprehensive evaluation. The selection criteria focused on identifying the highest 

AUC score across all combinations of metaheuristics and fitness functions. For each classifier 

algorithm, a single combination of metaheuristic and fitness function was selected, ensuring a 

broad analysis of the results. This approach was designed to facilitate drawing conclusions that 

enhance the generalization of the experiment by considering diverse configurations and their 

respective performances. 

G. Platform Implementation 

To ensure reproducibility, all experiments were conducted using fixed random seeds for data 

splitting and algorithm initialization. The pandas library was used for data manipulation, 

while scikit-learn was employed for classifier implementation and for computing the Mutual 

Information and Chi-square fitness functions. The ReliefF fitness function was implemented 
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using a nearest-neighbor approach default to the skrebate library, and the Keras library was 

utilized to build and train the neural network classifier. All metaheuristic algorithms, 

including the feature selection process, were manually implemented. The full codebase, 

including the scripts and configurations used in this study, is available in the following 

repository: [https://github.com/RandallMencias/Tesis]. 

RESULTS AND DISCUSSION 

A. Performance evaluation of the proposed method 

In evaluating the performance of the proposed method, we compared the fitness functions 

calculated using the full feature set without any feature selection to those obtained through 

metaheuristic optimization. As shown in Table II, all configurations demonstrated notable 

improvements with feature selection. Specifically, the average Mutual Information (aMI) 

values achieved with the Genetic Algorithm (GA) and Cuckoo Search (CS) algorithms were 

2.656 and 2.901, respectively, significantly surpassing the baseline value of 0.039 obtained 

without optimization. Even the smallest gain, a 0.1 improvement with the CS algorithm using 

the aReliefF fitness function, underscores the positive contribution of the metaheuristic 

approach. This indicates that metaheuristic-driven feature selection effectively enhances the 

evaluation metrics, validating the effectiveness of the proposed method. 

A key objective of metaheuristic algorithms is to select the most relevant features for the 

classification task. Each fitness function across both metaheuristics yielded similar 

cardinalities, with aMI resulting in 55 features for both GA and CS. In contrast, aChi2 yielded 

30 and 24 features for GA and CS, respectively, and aReliefF resulted in 29 and 23 features 

for GA and CS, respectively. The minimal difference of six features between the metaheuristics 

https://github.com/RandallMencias/Tesis
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suggests a stable selection process. While aMI was less effective at identifying relevant features 

compared to aChi2 and aReliefF, the latter two fitness functions demonstrated similar 

performance, indicating their reliability in feature selection for seismic event classification. 

The primary evaluation metric, AUC, revealed that the proposed method achieved a highest 

value of approximately 97%, marking a significant improvement over baseline results as 

presented in Table I. Additionally, the accuracy metric closely approached 96%, further 

corroborating the model’s robust classification performance. However, a more detailed 

analysis of other metrics, such as Recall, which did not exceed 0.78, suggests that further 

refinement may be necessary to achieve a more balanced performance across all evaluation 

criteria. This highlights the need for optimizing the model to enhance sensitivity in identifying 

true positive cases while maintaining high precision. 

Among the evaluated configurations, two combinations exhibited the highest AUC values, 

identifying them as the best-performing models—one for each metaheuristic. The GA + aChi2 

+ FFBP combination achieved an AUC of 0.979 and an accuracy of 0.968, with a precision of 

0.81 and recall of 0.684. In contrast, the CS + aReliefF + FFBP combination demonstrated a 

precision of 0.70 and a higher recall of 0.736, along with an AUC of 0.972 and accuracy of 

0.96. These combinations effectively maximized their respective metrics while maintaining 

values close to the baseline and optimizing their fitness functions. Notably, the Feedforward 

Neural Network (FFBP) classifier consistently outperformed other classifiers in this study, 

likely due to its ability to model complex non-linear relationships inherent in seismic data. The 

slight disparities between precision and recall metrics suggest areas for further model 

optimization to enhance the consistency of identifying true positive cases while minimizing 

false positives. 
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B. Feature Relevance 

The subset cardinality was reduced to approximately one-third of the original feature space of 

84 features, with the GA + aChi configuration utilizing 30 features and the CS + aReliefF 

configuration employing 23 features. Despite utilizing significantly fewer features, the 

classifiers achieved similar or superior performance compared to those using the full feature 

set. This reduction in dimensionality is particularly beneficial in real-world applications, 

where computational resources and processing time are often constrained. 

Analyzing the distribution of selected features across different domains revealed that features 

from the time domain consistently had the lowest number selected, followed by the frequency 

domain, with the majority of selected features belonging to the scale domain. Specifically, 

the GA combination selected 4 features from the time domain, 7 from the frequency domain, 

and 19 from the scale domain. In contrast, the CS combination selected 5 features from the 

time domain, 6 from the frequency domain, and 12 from the scale domain. Both 

metaheuristics selected features fairly evenly across domains, with a slight preference for the 

scale domain, suggesting its greater relevance to seismic events and eruptions in volcanic 

studies. 

Additionally, certain features—f13 Time Domain Density of Peaks above RMS, f19 

Frequency Domain Variance, and f59 Scale Domain Percentage of Energy D3—were 

consistently selected regardless of the metaheuristic used, highlighting their critical role in 

classification. f13 Time Domain Density of Peaks above RMS, a time domain feature, tends 

to exhibit higher values in VT events due to their sharp and energetic bursts, which result in 

numerous high-amplitude peaks, whereas LP events display lower values reflecting their 

more prolonged and sustained energy releases [21]. f19 Frequency Domain Variance, a 
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frequency domain feature, shows greater variance in VT events, capturing the concentrated 

high-frequency energy typical of tectonic origins, compared to the more uniform frequency 

distribution observed in LP events. Lastly, f59 Scale Domain Percentage of Energy D3, a 

scale domain feature, records higher energy distribution across multiple temporal scales in LP 

events, indicative of their sustained and complex energy patterns, while VT events 

demonstrate more limited scale energy distribution. These distinctions in feature values 

between VT and LP events enhance the classification model's ability to accurately 

differentiate between the two types of seismic activities, thereby improving the overall 

performance and applicability of the proposed methodology in real-world seismic monitoring 

and analysis. 

B. State of art based comparison 

Establishing direct comparisons between experiments is inherently challenging due to 

variations in methodologies, datasets, and evaluation metrics. However, by analyzing specific 

components and metrics in isolation, it is possible to draw meaningful conclusions. 

When comparing the results with those reported by [21], the proposed method demonstrates 

an improvement in outcomes for the features and metrics evaluated in common. While 

methodological differences exist, the classification results were sufficiently similar to permit 

a meaningful comparison, validating the effectiveness of the proposed approach. 

In contrast, comparisons with neural network-based methods reveal that the results obtained 

were less favorable compared to [20]. Although the differences in methodology complicate 

direct comparisons, analyzing specific metrics such as the AUC allows some conclusions to 

be drawn. For instance, aspects like classification accuracy and feature importance suggest 
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potential areas where the proposed method could be refined to achieve results closer to those 

of neural networks. 
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CONCLUSIONS AND FUTURE WORK 

This study successfully proposed and evaluated a two-step method that integrates 

metaheuristic algorithms with supervised classification to enhance the accuracy and 

efficiency of seismic event classification. By optimizing feature subsets using Genetic 

Algorithm (GA) and Cuckoo Search (CS) metaheuristics, guided by fitness functions such as 

aMI, aChi2, and aReliefF, the methodology effectively reduced the feature space while 

maintaining or improving classification performance. Key findings include the GA + aChi2 + 

FFBP combination achieving an AUC of 0.979 and an accuracy of 0.968, and the CS + 

aReliefF + FFBP combination achieving an AUC of 0.972 and an accuracy of 0.96. These 

configurations not only maximized their respective metrics but also reduced the feature 

subset to approximately one-third of the original space, from 84 to 30 features in the GA + 

aChi2 configuration. The Feedforward Neural Network (FFBP) consistently outperformed 

other classifiers, demonstrating its capability to model complex non-linear relationships in 

seismic data. Additionally, the selected features predominantly belonged to the scale domain, 

highlighting their significance in seismic event classification. 

For future work, it is proposed to expand the use of metaheuristic algorithms and fitness 

functions to verify whether the optimal feature subsets obtained remain consistent across 

various search mechanisms. This will involve incorporating additional metaheuristic 

algorithms and developing new fitness functions that capture different aspects of the features. 

Furthermore, this expansion will enhance the analysis of feature consistency and provide a 

deeper understanding of their contributions to classification accuracy. By refining and 

broadening this methodology, its applicability and effectiveness in the fields of volcanology 

and seismic event classification can be further solidified. 
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