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RESUMEN
Las fallas eléctricas en los sistemas de transmisión de energía pueden afectar significativamente la
confiabilidad de la red y la seguridad operativa del sistema. Este estudio aborda la necesidad de una
detección y clasificación de fallas precisa mediante un enfoque novedoso de aprendizaje automático
que utiliza redes neuronales convolucionales recurrentes (CRNN). Se ha construido un dataset a partir
de registros oscilográficos de eventos de falla reales en el formato COMTRADE (Common Format
for Transients Data Exchange) recopilados de la red eléctrica del Ecuador. Estudios anteriores se
han basado en datos simulados, mientras que esta investigación proporciona una representación más
realista del comportamiento de sistemas eléctricos utilizando datos de fallas reales. La metodología
propuesta implica el procesamiento de datos aplicando remuestreo, detección de un punto trigger,
recorte de ventanas de señal y representación de señales de corriente y voltaje como espectrogramas,
las cuales son entradas para una arquitectura CRNN. Se aplicó una técnica de sobremuestreo para
garantizar un tamaño representativo entre distintos tipos de fallas para el entrenamiento. El modelo
desarrollado demostró un desempeño alto con un accuracy de 96.3% al clasificar eventos de falla en
tres clases: falla monofásica, bifásica y trifásica. Este método también proporciona información sobre
las características espectrales de las fallas eléctricas.

Palabras clave: Fallas eléctricas, Espectrograma, LSTM, CRNN, Sistemas de Potencia, Clasificación
de fallas.
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ABSTRACT
Electrical faults in power transmission systems can significantly affect grid reliability and operational
safety. This study addresses the need for an accurate fault detection and classification by developing a
novel machine learning approach using Convolutional Recurrent Neural Networks (CRNN). A dataset
is built from real fault events oscillography recordings in the COMTRADE format (Common Format
for Transients Data Exchange) collected from Ecuador’s Power Grid. Previous studies have relied
on simulated data, while this research provides a more realistic representation of the behavior of
electrical systems using actual fault event data. The proposed methodology involves data processing
applying resampling, trigger point detection, signal window cutting, and current and voltage signal
representation as spectrograms, which are input for a CRNN architecture. An oversampling technique
was applied to ensure representative training between different fault types. The developed model
demonstrated high performance, 96.3% accuracy in classifying fault events into three classes: single-
phase, double-phase and three-phase fault. This method also provides insight into the spectral
characteristics of electrical faults.

Key words: Electrical fault, Spectrogram, LSTM, CRNN, Power Systems, Fault Classification.
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Detection and Classification of Short-Circuit Faults in
Power Systems Using Convolutional Recurrent Neural

Networks (CRNN)
Felipe Grijalva, Senior Member, IEEE, Fausto Yugcha, Member, IEEE

Abstract—Electrical faults in power transmission sys-
tems can significantly affect grid reliability and oper-
ational safety. This study addresses the need for an
accurate fault detection and classification by developing
a novel machine learning approach using Convolutional
Recurrent Neural Networks (CRNN). A dataset is built
from real fault events oscillography recordings in the
COMTRADE format (Common Format for Transients
Data Exchange) collected from Ecuador’s Power Grid.
Previous studies have relied on simulated data, while
this research provides a more realistic representation
of the behavior of electrical systems using actual fault
event data. The proposed methodology involves data
processing applying resampling, trigger point detection,
signal window cutting, and current and voltage signal
representation as spectrograms, which are input for a
CRNN architecture. An oversampling technique was
applied to ensure representative training between dif-
ferent fault types. The developed model demonstrated
high performance, 96.3% accuracy in classifying fault
events into three classes: single-phase, double-phase and
three-phase fault. This method also provides insight into
the spectral characteristics of electrical faults.

Index Terms—Electrical fault, Spectrogram, LSTM,
CRNN, Power Systems, Fault Classification.

I. Introduction

THE power transmission grid is exposed to external
factors that can cause electrical faults. A faulted

transmission line can break into many issues in power
systems so in order to improve power system reliability a
rapid fault detection is needed, to clear affected zones as
fast as possible.

A bay in an electrical substation is a key functional unit
where transformers, power lines, generation units or loads
are connected. A bay allows for the control, protection and
isolation of electrical power equipment, facilitating a safe
and efficient operation of the power system. In figure 1
there is a one line diagram of an electric bay. For each bay
there is a current transformer and a voltage transformer.
They provide current and voltage signal to a protection
relay which in case of detecting a fault will trip the circuit
breaker.

In figure 2 there is a description of the stages in an electrical
fault event. First, there is the normal operation state, a
steady state. Balanced current flows on each phase of the
power line. Ideally this should be the permanent state,

Figure 1. Bay one line diagram.

however, due to external factors electrical faults occur.
When a fault occurs there is a increase of current in the
faulted phase. Faults can be classified accordingly to the
phases involved. In figure 2 we have a single phase event.
During fault stage a relay will operate in order to clear the
fault. A protection relay receives signals from a current
transformer and a voltage transformer. A short circuit is
identified by a relay which sends a trip signal to a circuit
breaker in order to clear the fault. Ideally this happens
as fast as possible, a 100 ms is a reference length of fault
duration, although, based on experience, usually a fault
lasts for 60 ms. Once circuit breakers have opened there
is not any short circuit current so fault has been cleared.
Protection relays create events based on a trip to a circuit
breaker event which are recorded by in COMTRADE
format, sometimes a fault event is also recorded by an
automatic disturbance recorder. COMTRADE is a file
format for storing oscillography and status data related to
transient power system disturbances.

Protective relays can detect that a problem is developing by
identifying slight deviations in current, voltage or resistance.
According to the protection relay function it will work with
a different algorithm to detect a fault that will require to
measure instant current or a window with size of quarter
or half a cycle and compare to a threshold to identify a
fault.
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Figure 2. Electrical fault stages.

There is great potential for AI in power systems. AI
techniques can further automate and increase the perfor-
mance of power systems because their ability to compute
large amounts of data at a faster speed than numerical
optimization methods. [12]

II. Prior works
Article [19] talks about a software implemented called DFR
Assistant, that analyzes data files coming from digital
fault recorders (DFR) located in substations. The software
facilitates the analysis of DFR recordings by automatically
classifying all records into groups based on selected criteria,
which otherwise could have been a burden to protection
engineers to manually examine all DFR Records, identify
most important for a given case and then analyze them. The
role of the neural net in this solution is to process current
signals and identify the one with the largest disturbance.
It will try to classify disturbance according to the fault
type.

A work done in [13] was based on wavelet transform method
to detect and classify faults. It calculated RMS values of
the wavelet coefficients of electrical current signals over
a varying window. Coefficients were compared with the
benchmark values to detect and classify faults.

Study in [14] considered the use of artificial neural network
in transmission lines to detect and classify electrical faults.
The results realized that the method is efficient in detecting
and classifying faults in transmission lines. Faults are
simulated by changing fault resistance and fault distance.
Results shown in paper are for line to ground fault only
and suggest to develop other ANNs for the rest of faults.
Likewise, [15] results indicated that ANN can be used for
detection, classification and location of faults. Study found
that single line to ground faults can be detected and located
with the smallest number of neurons in hidden layer, that
being 5, while two phase and two phase to ground faults
need to have minimum 10 neuron in hidden layer and that
three phase fault needs 30 to 35 neuron in hidden layer.
Work in [21] suggested to create a separate ANN to identify
the affected phase for each fault type.

On [16] a database is created based on Automatic Meter
Reading on an electrical secondary distribution network
focused on voltage violations. RNNs performance was found
to be the best for fault detection and classification so RNN
models are compared.

Most of the studies reviewed use simulated data for training
and analysis instead of using real events obtained from fault
recorders. Some of the studies already use a neural network
and identify it as an appropriate tool for fault classification
but since there is a wide range of possible architectures
different approaches can be tried. In this work, none of the
faults used are simulated but they come from real events
and an architecture CRNN is used to classify fault events.

III. Materials and Methods
A. Dataset
Power transmission grid operation department collects
information related to daily function of the transmission
grid. This include information related to short circuit events.
Information is stored in NEVT, which is a client-server
web application that accesses a relational MySQL database.
In this study, data from three years has been used. A
fault event is analyzed by reviewing an oscillography of
related currents and voltages. Not every event has an
oscillography while some have more than one oscillography.
This is due to available equipment. Some substations
have electromechanical protection relays which function
properly detecting and clearing a fault but do not keep
track of their operation while some substations have digital
relays but lack a dedicated computer that would allow the
substation operator to connect to the relay and download
oscillographies. Because of redundancy, there is a principal
and backup protection relay on each bay. Principal relay
will receive current transformer signal and line voltage
transformer signal while backup relay will receive current
transformer signal and bus voltage signal. See figure 1 for
reference. Because of this some events have more than one
oscillography. Also, when a fault in a power line happens,
there is a record from each end of the line.

An event related oscillography is in a COMTRADE format.
In this work, a database has been build by extracting fault
related currents and voltages and saving them as numpy
arrays. PQDiffractor, a comtrade file viewer utility, has
been used to extract a csv file for every short circuit event
available due to its ease and reliability compared with
software like SIGRA or WaveEv. There is a example on
Appendix A.

It has been noticed that the order of the csv file obtained
from PQDiffractor changes, sometimes the first columns
are currents while some other times the first columns are
voltages. This information has been recorded on column
’order’ of table I so it can be corrected during processing.
Not necessarily every event is related to a short circuit
event. Some are disconnections due to a systemic protection
operated in order to keep balance between generation and
load. Some events don’t come from a steady-state but it was
a grid element that was disconnected and it was energized
into a fault. Some other are transformer energization events.
1) Labeling: Every event available as an oscillography has
been reviewed in order to identify which phase is involved
in the electrical fault. An ID number has been given based
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Table I
Samples of event labeling table.

ID order Label _1 Label_2 Label_3 Obs.
21001 iv cg More
21133 Invalid
22187 vi bc More
22195 N exist
23533 iv ag ag, bg ag, bg, cg Fault
23535 Disc
23598 iv bg ag, bg More

on the report number on NEVT and the year of occurrence.
That way, the first two digits are the year and the three
last digits the report number. Some electrical faults begin
as a single phase event and later have more phases involved
before the circuit breaker clears the fault, so more label
columns have been added as shown in table I.

ag

bg

cg

ag - bg

bg - cg

ag - cg

a - b

b - c

a - c

a - b - c - g

Faults

Single phase

Unbalanced Balanced

Double phase Three phase

Figure 3. Fault classification.

Faults could be balanced (symmetrical) or unbalanced
(unsymmetrical) in an electrical system. A balanced fault
will involve all 3 phases, while an unbalanced fault may
include a line to ground, a line to line or a double line to
ground.

Figure 3 shows the classification used in this study and
table I the labels assigned to example events. Label in
column ’Label_1’ on table I was given a reference label
according to figure 3 and also a encoded label as ’0’ for
single phase, ’1’ for double phase and ’2’ for triple phase.
The classification treated here uses discrete labeling of
classes.

Figure 4. Data sample rate distribution.

B. Preprocessing
Oscillography is obtained from relays or automatic record-
ing of disturbances instruments. They come from different
brands and settings, so it is necessary to standardize all
data, starting from sample rate which would the most basic
feature of the equipment.
1) Resampling: Highest sample rate on the study base is
16000 samples per second. In figure 4 shows a histogram
for sampling rate. In this study a sample rate of 1200 has
been chosen since it is the most frequent.

C. Finding a trigger
Protective relays monitor current and voltages to protect an
electrical system from abnormalities. Some relays require
to monitor a window of half a cycle in the current and
voltage signals to calculate a phasor and define if there
is an issue on the protected element. Phasor addition of
phase A, B and C currents is zero in steady state when
all currents are balanced. When there is a fault unbalance
occurs.

As a means of detecting a change in the wave shape, a
couple methods where considered.
1) RMS: the rms value of a set of values is the square root
of the arithmetic mean of the squares of the values, or the
square of the function that defines the continuous waveform.
To calculate it signal was squared, a rectangular window for
averaging with defined length was created, moving average
of the squared signal was computed with np.convolve,
which performs convolution between the squared signal
and the normalized window. ’Valid’ mode was used so it
only returns elements that don’t require zero-padding, and
finally square root of the result was calculated. So, RMS
of the signal over a sliding window of defined length was
calculated. A length of 20 samples was used in this study
which is a cycle of 16.66 ms.
2) Hilbert: Hilbert function is available in scipy library.
The envelope of a signal using the Hilbert transform was
calculated. The Hilbert transform converts a real signal
into an analytic signal. In signal processing this is useful for
finding the instantaneous amplitude and phase. Absolute
value (magnitude) of the complex analytic signal from
Hilbert function is calculated to obtain the envelope of the
original signal.

In this study, RMS is applied for each current signal and
the maximum of these values is chosen as a reference. The
purpose of this is to find a trigger point.

Figure 5. RMS Current representation
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D. Cutting samples
The purpose of finding a trigger point is to have a reference
point in order to have same length on every signal array.
From this reference there will be a fault part to the right
and a steady state to the left.

Figure 6. Signal array size distribution.

As shown in figure 6, array size is wide. Minimum of trigger
encountered is 44 and the minimum distance from trigger to
total length is 137 for just one event. Also, a data analysis
to find a fault window length has been made. Dataset was
filtered based on a clearly defined fault window obtaining
762 elements. As shown in figure 7 most faults have a length
of 50 to 100 samples which would be 41.66 ms to 83.33 ms,
which coincides with a length of 60 ms mentioned before.

Figure 7. Fault window length distribution.

So, based on this analysis a steady state of length 43 and
a 137 samples length for fault state was chosen to have a
180 length array for current and voltage signals.

E. Dataset filters
1) Format filtering: Some csv files obtained from PQDi-
ffractor have twelve columns, they have a time column
for each signal of current and voltage, while most csv files
have seven columns, one corresponding to time and six
for voltage and current signals. Because of this a script is
run to identify csv files with twelve columns which would
require and additional processing to standardize to seven
columns.
2) Event filtering: As mentioned before, not all events
are similar and this information was recorded in column
’Observations’ of table I. ’More’ means there are more
oscillographies available for that event, ’Invalid’ means
oscillography is not relevant to a fault. It may be noise,
slight overload, transformer energization among others.
’Not exists’ means there is not any oscillography for

Initial 

893 samples

Format Filter 

884 samples

Event Filter

866 samples

Fault stage Filter

781 samples

Trigger Filter

780 samples

Figure 8. Applied Filter flow.

that event, ’Fault’ is a normal fault event, ’Energization
Fault’ means an element energization from a disconnected
state to a fault and ’Disconnect’ means a recording of a
disconnection where there was not any fault. A filter was
applied to remove ’Energization Fault’ events because they
didn’t follow a wave shape coming from a flow of current
different than zero.
3) Fault stage filtering: As it can be seen on table I
there are three columns for label. They contain the phases
involved in a fault, for example ’cg’ means a fault between
phase C and ground while ’bc’ means a fault between phase
B and phase C. For event 23598 of table I, the fault initially
involved phase B and ground, but later phase A joined in
a second stage of the fault named as Label_2. A filter was
applied to only work with events of Label_1.

F. Spectrogram
A spectrogram is a tool used to analyze and visualize
a signal’s frequency content as it varies over time. By
transforming time-domain data into frequency-domain
data new information about the signal can be found. An
electric fault comes from a 60 Hz frequency wave, but
due to increase on magnitude frequency content variation
should be expected. A signal can be represented in two
dimensions using a spectrogram, in which the color or
intensity indicates the signal’s magnitude at each frequency
and time, which are the graph axis. Signal is divided into
smaller frames that have some overlap with each other,
a window function and Fourier Transform is applied and
each of the frames resulting in a series of spectra that can
be placed next to one another to create a spectrogram.
1) Windowing the signal: Entire signal is divided into
overlapping windows. A window function is employed to
reduce the impacts at the beginning and end of the sampled
signal because Fourier Transform assumes that the signal is
periodic and extends infinitely. Hann window from numpy
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Figure 9. Single-phase fault current Spectrogram sample.

library is used to smooth discontinuities at the beginning
and end of the sampled signal. In this work a sample
frequency of 1200 samples per second is used, so each cycle
is composed by 20 samples. A window of 60 samples is
chosen with an overlap of 50. Overlapping is necessary to
preserve edge information. To convert each window into
the frequency domain Fourier transform is applied.
2) Power spectrum: After applying Fourier transform there
is a complex number as a result, the magnitude of these
numbers is calculated to get the power of the signal at
different frequencies. By using np.fft.fft the final element
of the output is the complex conjugate of the second
element for real input, in function np.fft.rfft this symmetry
is exploited to compute only the non-negative frequency
terms which makes it faster.

Spectrogram is plotted as a heat-map where x-axis rep-
resents time and y-axis represents frequency, and the
color represents the signal power. In figure 9 there is the
spectrogram for each current of figure 2. In this case there
was a fault on phase A, as we can see on the highlighted
square of figure 9, there is a weaker power spectral density
on the faulted phase spectrogram compared to the other
phases.

G. Data Balance
On table II we can see the proportion of fault types,
as expected most faults involve only one phase. Balance
is important to prevent bias since unbalanced classes
can cause the neural network to become biased towards
the majority class. To evaluate minority classes a poor
performance can be expected because of bias.

Table II
Fault type proportion.

Label Count Unbalanced Count Balanced
Three phase 17 629
Two phase 140 630
One phase 623 623

A simple replication of existing examples is used as
oversampling technique. The dataset is rebalanced to reflect
more equal misclassification costs across all outcomes by
oversampling the minority class cases. Considering that
false negatives, or failing to discover the minority class,

are far more expensive than false positives, or incorrectly
classifying a sample as belonging to the minority class,
it is important to accurately detect the minority classes
when working with imbalanced datasets. Column Count
Balanced on table II reflects the new proportion of events.

H. Neural Networks
A spectrogram is easy to process and represents the signal
characteristics and it will be the input to a neural network.
The input to the neural network will be 150 ms or 180
elements array. In this study a recurrent neural network
is used. RNNs have a memory that will influence future
predictions. LSTM network is a type of recurrent neural
network (RNN) appropriate for the study of sequences
in series data of time. The LSTM layer consists of gates
that control the flow of information and memory cells, in
this way processes sequential data and captures temporary
dependencies, so LSTM network can learn long term
dependencies between time steps of a sequence. CNN
potential to learn various spectro-temporal patterns has
made them perfectly suited for classification while LSTM
has shown efficiency in time dependency learning. [20]

I. Modules
1) Dataset Module: On Dataset Class, we have ’initializa-
tion’ that reads an imported dataframe previously prepared
from which will read a label and apply spectrogram function
to each signal of current and voltage for later stack them
on an iterative manner for all items in dataframe.

From dataloader we can see a dimension of first layers of
neural network. We have 6 channels, 31 bins and 12 frames.
2) Data Lightning Module: We deliver dataset to be trained.
We define batchsize and num_workers. A division of 80
for training, 10 for validation and 10 for testing is applied
so there is a dataset for each subset. Dataset is passed to
dataloader
3) Architecture: CRNN is an architecture that combines
CNNs and RNNs. Convolutional are useful to analyze image
patterns. Feature extraction is the way CNNs recognize
key patterns of an image in order to classify it. With
spectrogram reduces dimension from 180 to 12. First layer
receives 6 channels, 16 out channels since there is 16
filters and a kernel 3x3 with a padding of 1. Takes input
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Figure 10. Experimental pipeline.

applies 16 filters, analysis input and feature map same
size as input. Receives spectrogram and label, calls first
convolution layer uses reLu as activation function and
applies Maxpooling that extracts from each 2x2 patch the
maximum value. ReLu has several benefits compared with
conventional units such as effective gradient propagation
and quicker computation rather than sigmoid units [20].
Second convolution layer receives 16 channels and output is
32 channels. Same kernel and padding as before is applied
to keep dimensionality. Because of previous pooling the
feature map is divided by 2. LSTM receives a one dimension
sequence so a reshape is applied. Two LSTM layer are used
with bidirectional. Output layer has activation function
softmax because of multiclass classification consisting of 3
nodes. Last step of sequence has more information because
gets information from previous steps.
4) Architecture Lightning Module: Metrics for Accuracy,
precision, recall, f1 and Confusion Matrix are defined.
Adam, Adaptive Moment Estimation, is used as optimizer
because it performs better with RNNs like LSTM than
gradient descent with momentum (SGDM). [1]
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Figure 11. Applied Neural Network

A batch size of 16 is used, a learning rate of 0.0001, num
workers of 2 and it is executed for 70 epochs taking into ac-
count an early stopping. Early stopping is a regularization
technique that stops training if it detects overfitting or if
there has been no significant progress in several consecutive
epochs. The model was executed on Google Colab with T4
GPU hardware accelerator.

Project files have been uploaded to:
https://github.com/faustoyg/Fault_classifier

IV. Experimental setup
On figure 10 there is a flow of the applied process.
COMTRADE files are represented as arrays and joined
to a labeled set through a common ID name to form a
dataframe. The dataframe items are processed, and some

filters are applied. Two experiments were performed, one
by augmenting data by replicating samples and another by
reducing samples of the class with the highest number
of samples available. Each signal is represented as a
spectrogram and will run through a CRNN to be identified
as a single-phase, double-phase or three-phase event.

V. Results and Discussion
The evaluation metrics used to assess the model’s perfor-
mance included Accuracy, Precision, Recall and F1 score.
Accuracy represents the number of correct predictions
divided by the total number of predictions made by the
algorithm. Accuracy treats all classes as equally important.
A value of 0.96 was obtained for this metric. Precision
measures how often a model’s positive predictions are
correct. It is calculated as the number of true positives
divided by the number of true positives plus the number
of false positives. F-score is calculated from the precision
and recall of the test. Recall, is computed as the ratio of
correctly predicted outcomes to all predictions.

Table III
Metrics of best model on test.

Label Augmented Reduced
Accuracy 0.96296 0.88095
Precision 0.96609 0.89815

Recall 0.96474 0.88888
F1 score 0.96538 0.88776

Figure 12 indicates that both training and validation
accuracy increase over time and converge to high levels,
suggesting the model is learning effectively on training data
and generalizing well to the validation data. Also, both
the training and validation loss decrease over time, with
validation loss converging to a low level, suggesting the
model’s strong performance on the validation data.

The confusion matrix evaluates the performance of the clas-
sification model by comparing its predicted classifications
against the true classifications. It has been encoded as 0
for single phase, 1 for double phase and 2 for three phase
fault.

Confusion matrix in figure 14 show model is making
relatively few mistakes with the majority of predictions
falling along the diagonal. Per-class precision and recall
metrics are quite high suggesting the model is performing
well across different classes.
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Figure 12. Accuracy vs epoch for augmented dataset

Figure 13. Loss vs epoch for augmented dataset

A simple replication oversampling consists of duplicating
minority class examples that already exist rather than
creating new ones, so the new samples may only increase
noise in the training data rather than offering more
insightful information about underrepresented classes. In
this case the minority is a three phase fault which is a
balanced fault. Because of this it is considered in this
study that there is not a wide range of variation for this
type of fault. Other data augmentation techniques could be
implemented as masking spectrogram to evaluate results
variation.

The model was executed again for a reduced dataset. Single
phase elements were reduced to same size as double phase
elements, having 140 for each class. This because of applied
replication that could potentially have same elements on
training set as well as in testing set. Resulting confusion
matrix is shown in figure 16.

VI. Conclusion
In this work a dataset has been built and an artificial neural
network has been applied for the detection and classification
of faults on a three phase power transmission line system.
Good information coverage with low redundancy can be
obtained with a dataset with sufficient and good quality
training data. Using real data compared to simulated

Figure 14. Confusion Matrix in augmented dataset - Test.

Figure 15. Per-class Precision & Recall - Test.

data allows to replicate reality on a more accurate way.
For example, fault duration was intuitively known, by
examining the dataset fault duration now has a quantitative
value and proportion compared to other fault lengths.
This could avoid generalizing values or making wrong
assumptions. Fault classification method used required a
neural network that determines it from the patterns of pre
fault and post fault voltages and currents and working
with arrays facilitated this task because of flexibility
to change size. Resizing by cutting the waveforms not
only standardized the data but also reduced training
computation time.

Oversampling is used to avoid the classification bias that
occurs because of most faults being single phase, however, a
proper technique must be implemented to avoid replicating
too many samples.

Training a model using feature extraction has good classi-
fication performance. The representation of the spectrum
of a signal in the frequency domain can help to better
understand its content than with a representation in the
time domain and also is a good representation of the
characteristics.
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Figure 16. Confusion Matrix in reduced dataset - Test.

Figure 17. Accuracy vs epoch for reduced Dataset

Early stopping saves computational resources and training
time and avoids overfitting by focusing on epochs that truly
benefit the model.

Python has many libraries which increase their application
capabilities. One identified library that may be helpful
is pyComtrade, which could make simpler the method to
review oscillographies.

A more accurate way to identify fault duration can help
analyze based on data the current relay performance. This
is possible by having a dataset with arrays that can be
handled and processed.
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Appendix A
Exported Waveform

Figure 18 shows exported waveforms resulting from an
oscillograph using different software. PQDiffractor is more
stable compared to other software. As it can be seen Sigra
added a DC component and scaled current and voltage
signals for a single phase fault. For a double phase fault
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Sigra and WaveEv give a different scale to faulted phase
currents. PQDiffractor was found to export waveforms
better.

Figure 18. Exported Waveforms

Appendix B
Array length and spectrogram parameters

Different array lengths and the parameters window size and
overlap were tested on same single phase fault waveform
in order to compare and define which parameter describes
better waveform characteristics. In this case phase A is the
faulted phase and it can be seen in figure 19 the differences
on spectrogram representation compared to healthy phases.

Appendix C
Fault waveform characteristics

Figure 2 was simulated on ATPDraw, a graphical pre-
processor to Electromagnetic Transients Program used
to create and edit circuit files, in order to compare
spectrograms changing fault parameters like duration and
fault impedance. Results are shown in figure 20.



20

Figure 19. Spectrogram for different sample sizes and window parameters.

Figure 20. Spectrogram for different fault parameters.
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