
UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Posgrados

Classification of Software Bugs Using Supervised Learning Models

Proyecto de Titulación

Jack Ricardo Narváez Salazar

Israel Pineda, Ph.D.

Director de Trabajo de Titulación

Trabajo de titulación de posgrado presentado como requisito para la obtención del título de Magíster
en Ciencia de Datos

Quito, 01 de diciembre de 2024

2

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ
COLEGIO DE POSGRADOS

HOJA DE APROBACIÓN DE TRABAJO DE TITULACIÓN
Classification of Software Bugs Using Supervised Learning Models

Jack Narváez

Nombre del Director del Programa: Felipe Grijalva
Título académico: Ph.D. en Ingeniería Eléctrica
Director del programa de: Ciencia de Datos

Nombre del Decano del colegio Académico: Eduardo Alba
Título académico: Doctor en Ciencias Matemáticas
Decano del Colegio: Ciencias e Ingenierías

Nombre del Decano del Colegio de Posgrados: Dario Niebieskikwiat
Título académico: Doctor en Física

Quito, diciembre 2024

3

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales de la
Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad Intelectual USFQ,
y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del presente
trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este trabajo
en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación Superior del
Ecuador.

Nombre del estudiante: Jack Ricardo Narváez Salazar

Código de estudiante: 00338780

C.I.: 1751370725

Lugar y fecha: Quito, 01 de diciembre de 2024.

4

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado
como una publicación, incluso a pesar de estar disponible sin restricciones a través de un repositorio
institucional. Esta declaración se alinea con las prácticas y recomendaciones presentadas por el
Committee on Publication Ethics COPE descritas por Barbour et al. (2017) Discussion document on
best practice for issues around theses publishing, disponible en http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following graduation project is available through Universidad San Francisco de Quito USFQ
institutional repository. Nonetheless, this project – in whole or in part – should not be considered a
publication. This statement follows the recommendations presented by the Committee on Publication
Ethics COPE described by Barbour et al. (2017) Discussion document on best practice for issues
around theses publishing available on http://bit.ly/COPETheses.

http://bit.ly/COPETheses
http://bit.ly/COPETheses

5

DEDICATORIA

"A Dios, por ser mi luz y guía en cada paso del camino, y a mi familia, por su amor incondicional,
paciencia y apoyo inquebrantable. Sin su fe en mí, este logro no habría sido posible."

6

RESUMEN

El presente trabajo aborda la problemática de la clasificación automática de errores en software
mediante el uso de técnicas avanzadas de aprendizaje supervisado. La motivación principal radica
en la necesidad de mejorar la detección y clasificación de errores para optimizar los procesos de
desarrollo y mantenimiento de software. Se utilizaron repositorios públicos de GitHub como fuente de
datos, analizando commits mediante herramientas como Radon y Flake8 para extraer características
clave del código, como la complejidad y el número de líneas. Se emplearon los modelos XGBoost y
RandomForestClassifier, con técnicas de balanceo de datos como SMOTE y undersampling para abordar
el desbalance de clases presente en los datos. El análisis comparativo entre ambos modelos mostró
que XGBoost logró un desempeño superior, destacando en precisión y recall, especialmente en clases
con mayor representación. Los resultados demuestran la efectividad de combinar preprocesamiento
exhaustivo, como imputación de valores faltantes y transformación logarítmica, con modelos robustos
y ajuste de hiperparámetros para mejorar la clasificación. Como conclusión, este enfoque proporciona
un marco reproducible y escalable para la detección de errores en software, con aplicaciones potenciales
en sistemas de desarrollo automatizado. Futuros trabajos pueden explorar la integración de técnicas
de aprendizaje profundo y ampliar el análisis a otros lenguajes de programación.

Palabras clave: clasificación de errores, aprendizaje supervisado, XGBoost, RandomForestClassifier,
balanceo de datos, GitHub, Radon, Flake8, detección de errores.

7

ABSTRACT

This work addresses the challenge of automatic bug classification in software using advanced
supervised learning techniques. The primary motivation lies in the need to improve error detection and
classification to optimize software development and maintenance processes. Public GitHub repositories
were used as data sources, analyzing commits with tools like Radon and Flake8 to extract key code
features, such as complexity and line count. The XGBoost and RandomForestClassifier models were
employed, utilizing data balancing techniques like SMOTE and undersampling to address the class
imbalance in the dataset.The comparative analysis between the two models showed that XGBoost
achieved superior performance, particularly excelling in precision and recall for classes with higher
representation. The results demonstrate the effectiveness of combining thorough preprocessing, such
as missing value imputation and logarithmic transformation, with robust models and hyperparameter
tuning to enhance classification. In conclusion, this approach provides a reproducible and scalable
framework for software bug detection, with potential applications in automated development systems.
Future work could explore the integration of deep learning techniques and expand the analysis to
other programming languages.

Key words: bug classification, supervised learning, XGBoost, RandomForestClassifier, data
balancing, GitHub, Radon, Flake8, bug detection.

8

TABLA DE CONTENIDO

I Introduction 10

II State of the Art 10

III Materials and Methodology 10
III-A Data Collection . 10
III-B Feature Extraction . 10
III-C Dataset Analysis . 11
III-D Outliers Processing . 13
III-E Logarithmic Transformation . 13
III-F Normalization . 15
III-G Model Training: XGBoost VS RandomForestClassifier 15

IV Results and Discussion 17
IV-A Confusion Matrix . 17
IV-B Classification Metrics (Precision, Recall, F1-Score) 17

V Future Works 18

VI Conclusiones 18

References 18

9

ÍNDICE DE FIGURAS

1 Correlation Matrix . 11
2 Relationship between complexity and num_lines . 12
3 Relationship between complexity and num_functions 12
4 Relationship between num_lines and num_functions 12
5 Relationship between complexity and mantainability_index 12
6 Relationship between num_functions and mantainability_index 12
7 Distribution of variables before and after outlier treatment 13
8 Variable distributions before logarithmic transformation 14
9 Variable distributions after logarithmic transformation 14
10 Distribution of Features Before and After Normalization 15
11 Distribution of Average Complexity by Error Type with Logarithmic Transformation . . 15
12 RandomForestClassifier confusion matrix . 17
13 XGBoost confusion matrix . 17
14 Precision, Recall, F1-Score RandomForestClassifier . 17
15 Precision, Recall, F1-Score XGBoost . 18

10

Classification of Software Bugs Using Supervised
Learning Models

Israel Pineda, Senior Member, IEEE, Jack Narváez, Member, IEEE,

Abstract—The automated classification of software bugs
plays a crucial role in improving software quality and
accelerating the debugging process. This study compares
the performance of two widely used supervised learning
algorithms, RandomForestClassifier and XGBoost, in
classifying software bugs extracted from open-source
repositories. By utilizing a structured dataset generated
from GitHub commits, including metrics such as code
complexity, maintainability index, and number of lines,
we systematically preprocess the data through outlier
imputation, logarithmic transformations, normalization,
and balancing techniques like SMOTE and under-
sampling. The results demonstrate the advantages of
XGBoost in handling imbalanced datasets and im-
proving precision in complex classifications, especially
in minority bug types. These findings highlight the
potential of supervised learning to streamline bug
classification, providing a foundation for future research
in software reliability engineering.

I. Introduction

SOFTWARE bugs are a significant challenge in software
development, impacting reliability, maintainability,

and user satisfaction. Traditional debugging relies on
manual classification and prioritization, which is time-
consuming and prone to errors. Leveraging machine learn-
ing, particularly supervised learning models, offers a data-
driven approach to automate bug classification based on
historical code data and commit messages.

"The most crucial phase of any software, which necessitates
intensive testing, is software defect detection. It also
occupies the most significant position in the software
development life cycle (SDLC). (Khalid, 2023)"

This research investigates the effectiveness of Random-
ForestClassifier and XGBoost for classifying software bugs,
utilizing features such as code complexity, maintainabil-
ity index, and code structure extracted from GitHub
repositories. By addressing challenges such as imbalanced
datasets and feature scaling, we aim to establish a robust
methodology for improving the accuracy and reliability of
bug classification models.

"With the recent widespread availability of open source
repositories, it has become possible to use data-driven
techniques to discover patterns of bug manifestation. (Harer
et al., 2018)."

I. Pineda and J. Narváez are with Universidad San Francisco de
Quito USFQ

II. State of the Art
The evolution of machine learning has significantly influ-
enced software engineering. Random forests and gradient
boosting algorithms like XGBoost have become prominent
due to their robustness and adaptability. Random forests
use ensemble techniques to combine decision trees, reducing
overfitting and variance. In contrast, XGBoost employs
sequential boosting, optimizing residual errors iteratively
for high accuracy.

"Transferring learning techniques can leverage knowledge
gained from previous bug classification problems to improve
the performance of bug classification in cloud computing
applications (Tabassum, 2023)."

Studies have demonstrated the superior performance of
XGBoost in handling complex data structures and im-
balanced datasets. However, its computational intensity
can be a limitation. RandomForestClassifier remains a
popular choice for rapid prototyping due to its simplicity
and efficiency. This study bridges the gap in literature by
comparing these algorithms specifically for software bug
classification, leveraging real-world datasets from GitHub.

"Classification is a major task of data analysis using
machine learning algorithms that allow the machine to
learn associations between instances and decision labels,
from which an algorithm builds a model to predict the
labels of new instances for a specific sample data (Khleel
& Nehéz, 2021)."

III. Materials and Methodology
A. Data Collection
We have a task called fetch_commits which uses the
GitHub API to extract commit metadata from repos-
itories such as python/cpython, pandas-dev/pandas,
django/django and scikit-learn/scikit-learn. The extracted
data included commit messages and associated file changes
by filtering out those libraries containing the keywords “fix”
and “bug”, and analyzed using tools such as radon for code
metrics and flake8 for static code analysis.

"One of the main challenges in the identification of bug
candidates is to check whether the reported warnings by
static detectors are corresponding with the issued bug class
or not (Shiri Harzevili et al., 2023)."

B. Feature Extraction
The process_commit task attempts to perform a detailed
analysis of the commit file content using the ast (Abstract

11

Syntax Tree) library and code analysis tools like radon and
flake8, with the goal of extracting metrics that describe the
quality and structure of the code. This function attempts to
parse the file content as an abstract syntax tree (ast.parse).
This is useful for exploring the structure of functions,
classes, and other elements of the code without executing
it.

"The activity of software defect prediction is necessary
in order to enhance the effectiveness of quality assurance
process. It can help to develop a qualitative product with
limited amount of resources in a limited time period.
(Iqbal1, 2019)"

The following key features were derived from each file:

• maintainability_index: Calculates a maintainability
index of the code, using mi_visit, that estimates the
maintainability of the code.

• complexity: Sum of the cyclomatic complexity of each
code block (function or class) in the file.

• Normalization: StandardScaler was used to scale fea-
tures for uniformity.

• num_lines: Total number of lines in the file.
• num_functions and num_classes: Number of functions

and classes in the file.
• avg_function_length: Average length of functions

(number of AST elements in each function).
• avg_num_parameters: Average number of parameters

per function.
• nesting_levels: Maximum nesting level in control

structures (if, for, while).
• num_comments: Number of comments in the file.
• duplicated_code_warnings: Detects duplicate code

fragments in the file.
• num_imports: Number of libraries imported into the

file.
• cyclic_dependencies: Variable to record cyclic depen-

dencies, although it is currently a "placeholder".

We then use the pylint library to perform a static analysis
of the code and look for certain common error patterns in
the code (pylint_output). If pylint detects specific errors,
the error type is classified into one of the following errors.

• "syntax-error" -> SyntaxError
• "undefined-variable" -> NameError
• "unused-import" -> ImportError
• "attribute-defined-outside-init" -> AttributeError

Finally, we obtain an error dataset with approximately
20 thousand records (4 thousand records for each type of
error) with which we can continue working.

C. Dataset Analysis

Figure 1. Correlation Matrix

Figure 1 shows the correlation of the numerical variables.

High Correlations:

• num_lines and num_functions have an extremely
high correlation (0.81), suggesting that as the number
of lines increases, the number of functions tends to
increase as well. This may be because larger and more
complex projects generally contain more functions.

• complexity and num_lines show a high correlation
(0.88), which is intuitive since longer code in terms of
lines is likely to be more complex.

• num_comments is positively correlated with com-
plexity (0.91), num_lines (0.84), and num_functions
(0.80). This suggests that as code complexity or size
increases, comments also tend to increase, possibly to
make it easier to understand.

Moderate Correlations:

• num_imports has a moderate correlation with
num_lines (0.78) and num_comments (0.69). This
could indicate that in larger projects, more dependen-
cies or libraries need to be imported, which is reflected
in a higher number of imports.

Low Correlations:

• avg_function_length has low correlations with almost
all variables, indicating that the average function
length does not directly depend on the number of
functions, classes, or overall code complexity.

• nesting_levels shows low correlations with most vari-
ables, suggesting that nesting depth does not vary
significantly as a function of other code metrics.

12

Figure 2. Relationship between complexity and num_lines

Figure 2 shows a scatter plot illustrating the relationship
between code complexity (on the x-axis) and the number of
lines of code (num_lines) (on the y-axis) for different bug
types.

Figure 3. Relationship between complexity and num_functions

Figure 3 shows a scatter plot illustrating the relationship
between code complexity (on the x-axis) and the number
of functions of code (num_functions) (on the y-axis) for
different bug types.

Figure 4. Relationship between num_lines and num_functions

Figure 4 shows a scatter plot illustrating the relationship
between code num_lines (on the x-axis) and the number
of functions of code (num_functions) (on the y-axis) for
different bug types.

Figure 5. Relationship between complexity and mantainability_index

Figure 5 shows a scatter plot illustrating the relationship
between code complexity (on the x-axis) and the mantain-
ability of code (mantainability_index) (on the y-axis) for
different bug types.

Figure 6. Relationship between num_functions and mantainabil-
ity_index

Figure 6 shows a scatter plot illustrating the relationship
between number of functions of code (on the x-axis) and
the mantainability of code (mantainability_index) (on the
y-axis) for different bug types.

Analysis:

1) Skewed distributions: Some features, such
as num_classes, duplicated_code_warnings,
cyclic_dependencies, and is_bug, have extremely
skewed distributions or take a dominant value.
This can affect the performance of certain machine
learning models. Log transformation might be
useful for those features with continuous values and
positive skew, but it would not be useful for binary
or categorical variables such as is_bug.

2) Log transformation: Consider applying log transfor-
mations on features that have a large value range and
positive skew, such as maintainability_index, com-
plexity, num_lines, num_functions, num_comments,
and num_imports. The transformation might make
these distributions more like a normal distribution
and facilitate convergence in linear models or models
sensitive to the data distribution.

13

3) Categorical variables: Features like bug_type and
is_bug seem to represent categories (discrete values).
In these cases, it is best not to apply logarithmic
transformations, but make sure they are properly
encoded for classification models.

4) High-frequency variables at zero: Some
features, such as cyclic_dependencies and
duplicated_code_warnings, show very dominant
values of zero. If these values are frequent and
represent a significant proportion, you might consider
treating these values specially, perhaps as a binary
indicator.

D. Outliers Processing

Outliers are data points that deviate significantly from
the rest of the data distribution. They can arise due to
measurement errors, data entry errors, or represent rare but
valid phenomena. Addressing outliers is crucial in machine
learning and statistical analysis. For this reason we are
going to impute the outliers.

Variables with Highly Skewed Distributions: Variables
with long tails at one end often have significant outliers.
These variables are likely to benefit from a logarithmic
transformation and outlier processing.

Variables with Wide Value Ranges and Frequency Spikes:
Some variables may have very high extreme values com-
pared to the majority of the data, suggesting that they have
outliers. Common examples are the number of lines of code
(num_lines) or the number of functions (num_functions).

We implemented a function that identifies and replaces
outliers in selected variables, using the interquartile range
(IQR).

The IQR is defined as the difference between the third
quartile (Q3) and the first quartile (Q1), and the thresholds
for detecting outliers are calculated as:

Lower limit = Q1 – 1.5 × IQR

Upper limit = Q3 + 1.5 × IQR

Any value below the lower bound or above the upper bound
is considered an outlier. The implemented function replaces
these outliers with the nearest bound (lower or upper).

Figure 7. Distribution of variables before and after outlier treatment

Figure 7 shows a comparison between the distributions of key
variables in the dataset before and after outlier treatment.

The plots show a clear comparison of the effect of outlier
imputation on each of the variables. This approach, rather
than removing outliers, helps to maintain the overall
information of the distribution without extreme values
skewing the data too much. The subsequent normalization
has also helped to bring the variables to a more uniform
scale, which can improve the performance of the models
to be trained.

This technique ensures that outliers are handled effectively,
preserving the consistency and integrity of the data for
subsequent analysis.

E. Logarithmic Transformation
If a variable has a long tail on the right side (skewed
distribution), log transformation can make the distribution
more symmetrical, making analysis and interpretation
easier.

Logarithmic transformation can reduce the influence of
outliers in the analysis because it compresses large values
more significantly than small values.

By applying the logarithmic transformation on the selected
variables, you have managed to reduce the skewness in their
distribution, and the histograms show better symmetry
compared to the original data. This is especially useful
when the data has a high skewness or extreme values, as
in this case.

14

Figure 8. Variable distributions before logarithmic transformation

Figure 8 shows the distribution of variables in the dataset
before applying any transformations.

Figure 9. Variable distributions after logarithmic transformation

Figure 9 shows the distribution of variables in the dataset
after applying any transformations.

The logarithmic transformation of the variables complexity,
num_lines and num_functions smoothed out the long tails
and made the distributions closer to normal, which is ideal.

15

After normalization, the distributions are centered around
zero, ready to be used in scale-sensitive models.

The variable maintainability_index: maintains its bimodal
shape even after transformation and normalization, which
is expected since it did not have such a pronounced
asymmetry as the other variables.

Normalization is still useful to keep this variable in the
same range as the others.

F. Normalization
Data normalization is an essential step to prepare a dataset
before training a machine learning model. In this work, we
implement a complete data processing pipeline including
null value imputation, categorical variable encoding, and
feature normalization.

To handle missing values in the predictor variables, the
mean-based imputation strategy was used. This ensures
that no information is lost due to null values, replacing
them with the average of the corresponding column.

The categorical variable bug_type was encoded into a
numeric format using LabelEncoder so that it can be
interpreted by machine learning models.

The predictor variables (X) and the target variable (y)
were separated to split the data into training and test sets.
The split was done in a ratio of 80%-20%.

To ensure that the numerical features are on the same scale,
standardization was applied using StandardScaler.

Figure 10. Distribution of Features Before and After Normalization

Figure 10 illustrates the distributions of selected features
before and after normalization. It compares the original
scales of the features (on the left) to their normalized
versions (on the right).

Figure 11. Distribution of Average Complexity by Error Type with
Logarithmic Transformation

Figure 11 is a boxplot showing the distribution of the
log-transformed complexity for different types of errors:
ImportError, IndexError, NameError, SyntaxError, and
TypeError.

G. Model Training: XGBoost VS RandomForestClassifier
Supervised learning means that these models are trained
with a dataset where each input includes features (inputs)
and a known target label or class (output). The goal of
the model is to learn the relationship between the features
and labels so that, once trained, it can correctly predict
the labels of new inputs.

"The supervised machine learning algorithms try to develop
an inferring function by concluding relationships and
dependencies between the known inputs and outputs of the
labeled training data, such that we can predict the output
values for new input data based on the derived inferring
function. (Hammouri, 2018)"

RandomForestClassifier:

It is a model based on an ensemble of decision trees (a
"forest"). It builds multiple independent decision trees
in parallel and combines their predictions (usually using
majority voting for classification) to arrive at a final
decision. It uses bagging (bootstrap aggregating) techniques
to improve accuracy and reduce overfitting.

"The random forest feature selection helps to reduce the
correlation between the trees. If we use every feature then
most of the trees will have the same decision nodes and
they will act very similar, which can increase the variance
(Thomas & Kaliraj, 2024)."

This model uses the bagging technique (Bootstrap Aggre-
gating) to improve accuracy and reduce overfitting.

• Training process:
1) The training set is divided into several samples

by sampling with replacement.
2) For each sample, an independent decision tree

is built, using only a random selection of the
available features.

16

3) Each tree is trained to make predictions, and the
final prediction is made by majority vote of all
the trees (in the case of classification).

• Key Features:
1) Each tree in the forest is trained on a random

sample of the dataset, which helps reduce the
variance of the model.

2) Trees in the forest do not depend on each other
and can be built in parallel, making the model
fast and efficient.

The important hyperparameters were:
– n_estimators: As in XGBoost, this controls the

number of trees in the forest. Values between 100
and 500 are explored here as well.

– max_depth: Maximum depth of trees. Values
like 10, 20, and 30 limit the depth and thus the
complexity of trees. It can also be left at None to
allow trees to grow until they become overfit.

– min_samples_split: Minimum number of sam-
ples needed to split a node. Higher values (e.g.
10) make the model more restrictive, while lower
values (e.g. 2) allow for more splitting and detail.

– min_samples_leaf: Minimum number of sam-
ples needed in a leaf. Increasing this value makes
the leaves have more data and reduces overfitting.

– bootstrap: Controls whether each tree is trained
with samples with replacement (True) or without
replacement (False). True is the default setting
and is effective in reducing overfitting.

XGBoost:

This is a boosting model that also uses decision trees,
but instead of building them in parallel, it builds them
sequentially.

Each new tree attempts to correct the mistakes made by the
previous trees, giving it a more adaptive learning approach.

It uses advanced boosting techniques (such as gradient
descent and optimization) to improve performance, being
very effective at capturing complex relationships in data.
Both models are widely used in classification and regression
tasks and can handle high-dimensional and complex data.

"In tree boosting algorithms, eXtreme or XGBoost are
used to aid in the exploitation of all hardware and
memory resources available, allowing for its deployment in
computing environments, tuning the model and enhancing
the algorithm (Aquil & Ishak, 2020)"

• Training process:
1) It starts with a tree that attempts to predict

the outcome. At the end of the tree, errors are
identified using a loss function (such as squared
error for regression or log-loss for classification).

2) Each new tree is trained on the residue of the
previous trees, trying to improve where the
previous ones failed.

3) The model continues adding trees until it reaches
a specified number of trees or until the error is
minimized.

• Key Features:
1) XGBoost employs advanced optimizations, such

as regularization and null value handling tech-
niques, that allow it to be extremely accurate in
prediction tasks.

2) Its implementation uses parallel processing, ef-
ficient memory management and tree pruning
techniques, making it one of the fastest tools for
boosting.

In XGBoost (XGBClassifier), the most relevant hyperpa-
rameters in this project are:

• n_estimators: Number of trees in the model. Values
between 100 and 500 are explored here.

• max_depth: Maximum depth of each tree, which
controls the level of detail in the model. Values like 3,
5, 10, and 20 help regulate complexity.

• learning_rate: Model learning rate. This hyperpa-
rameter controls how much each tree contributes to
updating predictions. Low values (e.g., 0.01) make the
model more accurate but require more trees; higher
values (e.g., 0.3) can make the model faster but less
accurate.

• subsample: Fraction of samples used in each tree to
avoid overfitting. A value of 0.5 indicates that each tree
uses 50 % of the data, while a value of 1.0 indicates
that all are used.

• colsample_bytree: Fraction of features that each
tree uses for training, similar to subsample but for
columns. A value of 0.5 indicates that each tree uses
only 50% of the features.

• scale_pos_weight: This parameter adjusts the
weight of the classes in imbalanced problems. Higher
values indicate greater weight for the minority class.

Using RandomizedSearchCV for Hyperparameter
Optimization:

Using RandomizedSearchCV for Hyperparameter Opti-
mization RandomizedSearchCV is a hyperparameter search
technique that allows you to randomly select combinations
of hyperparameters from a predefined range and test a
limited number of combinations. In both cases:

• param_distributions: Specifies the range of values
for each hyperparameter. Distributions and values are
defined for the hyperparameters of each model.

• n_iter=50: Controls the number of random combi-
nations to test. This choice limits the number of tests
to make the search time-efficient.

• cv=3: Divides the data into 3 partitions to perform
cross-validation and estimate the performance of the
model.

• random_state=42: Ensures reproducibility of the
results.

17

• n_jobs=-1: Uses all available CPU cores to speed
up the process.

• scoring=’accuracy’: The primary metric used to
select the best combination of hyperparameters based
on accuracy.

Training Process:

In both cases, after setting up RandomizedSearchCV,
the model is trained on the balanced dataset (using
fit_resample for oversampling and undersampling). The
difference is that:

• XGBoost performs sequential learning, where each
new tree improves the errors of the previous tree.
This makes XGBoost’s accuracy tend to be higher
on complex problems, but it can take longer.

• RandomForestClassifier trains all trees independently
and then takes a majority vote for the final prediction.
This approach is generally faster and more efficient on
less complex problems.

IV. Results and Discussion

A. Confusion Matrix

Figure 12. RandomForestClassifier confusion matrix

Figure 12 represents the confusion matrix of a classification
model (in this case, a RandomForestClassifier) for predicting
five categories of software errors: ImportError, IndexError,
NameError, SyntaxError, and TypeError.

Figure 13. XGBoost confusion matrix

Figure 13 represents the confusion matrix of a classification
model (in this case, XGBoost) for predicting five categories
of software errors: ImportError, IndexError, NameError,
SyntaxError, and TypeError.

• The confusion matrix of XGBoost and RandomForest-
Classifier show some differences in the amount of
misclassifications between classes.

• XGBoost appears to have slightly better accuracy for
some classes, which could be due to its ability to more
finely tune the complexities of the data.

B. Classification Metrics (Precision, Recall, F1-Score)

Figure 14. Precision, Recall, F1-Score RandomForestClassifier

Figure 14 shows the precision, recall, and F1-score for each
class in a classification model, specifically a RandomForest-
Classifier. It provides a detailed performance evaluation
across five error types: ImportError, IndexError, NameEr-
ror, SyntaxError, and TypeError, along with aggregate
metrics like overall accuracy and macro averages.

18

Figure 15. Precision, Recall, F1-Score XGBoost

Figure 15 shows the precision, recall, and F1-score for each
class in a classification model, specifically a XGBoost. It
provides a detailed performance evaluation across five error
types: ImportError, IndexError, NameError, SyntaxError,
and TypeError, along with aggregate metrics like overall
accuracy and macro averages.

• Both models show very competitive results in terms
of precision and recall for several classes.

• In particular, XGBoost could show better results in
cases where classes are unbalanced or when the model
needs more granularity in classification due to its
boosting technique, which allows targeting prediction
errors in successive iterations.
"Machine learning techniques help developers to re-
trieve useful information after the classification and
enable them to analyse data from different perspec-
tives. Machine learning techniques are proven to be
useful in terms of software bug prediction (Aleem,
Capretz, & Ahmed, 2015)."

The link to the github repository is as follows:https:
//github.com/jack-narv/Classif ication_Software
_Bugs.git

V. Future Works

• Increase the dataset: Getting more examples of mi-
nority errors (such as TypeError) could help improve
the model, especially in less represented classes.

• Use additional dimensionality reduction tech-
niques: Methods such as PCA (Principal Component
Analysis) could reduce the complexity of the model
and improve its interpretability.

• Explore other model architectures: Since this is
a multi-class classification problem, exploring more
complex neural network architectures or ensemble
models could lead to better performance compared to
decision tree-based models.

VI. Conclusiones

• With the XGBoost model tuned and the hyperpa-
rameters optimized, the overall performance shows an
accuracy of approximately 93%. This suggests that
the model is generally effective at classifying different
types of errors in the code.

• The logarithmic transformation and normalization of
variables contributed to improving the distribution of
the data, reducing the bias in some of the numerical
characteristics such as complexity and num_lines.

• Although the model is accurate overall, there are still
difficulties in classifying some classes accurately, such
as TypeError.

• This classification model can be a useful tool for
software development teams, since it allows antici-
pating and preventing errors in the code before its
deployment, improving software quality and reducing
debugging times.

References

[1] Hammouri A., Hammad M., Alnabhan M., Alsarayrah F.,
(2018). Software bug prediction using machine learning approach.
ResearchGate. Retrieved from https://www.researchgate.net/p
ublication/323536716_Software_Bug_Prediction_using_Mac
hine_Learning_Approach

[2] Harer, J. A., Kim, L. Y., Russell, R. L., Ozdemir, O., Kosta,
L. R., Rangamani, A., ... & Lazovich, T. (2018). Automated
software vulnerability detection with machine learning. Draper
and Boston University. Retrieved from https://arxiv.org/abs/18
03.04497.

[3] Khleel, N. A. A., & Nehéz, K. (2021). Comprehensive study on
machine learning techniques for software bug prediction. Interna-
tional Journal of Advanced Computer Science and Applications,
12(8), 1-10. Retrieved from https://www.researchgate.net/publi
cation/354330980_Comprehensive_Study_on_Machine_Lear
ning_Techniques_for_Software_Bug_Prediction

[4] Harzevili, N. S., Shin, J., Wang, J., Wang, S., & Nagappan,
N. (2023). Automatic static bug detection for machine learning
libraries: Are we there yet? arXiv preprint. Retrieved from https:
//arxiv.org/abs/2307.04080.

[5] Aleem, S., Capretz, L. F., & Ahmed, F. (2015). Benchmark-
ing machine learning techniques for software defect detection.
International Journal of Software Engineering & Applications
(IJSEA), 6(3), 1–13. Retrieved from https://doi.org/10.5121/ij
sea.2015.6302

[6] Thomas, N. S., & Kaliraj, S. (2024). An improved and optimized
random forest-based approach to predict software faults. SN
Computer Science, 5(530). https://doi.org/10.1007/s42979-024-
02764-x

[7] Tabassum N., Namoun A., Alyas T., Tufail A., Taqi M. & Kim K.
(2023). Bug Classification and Prioritization in Cloud Computing
Systems. Applied Sciences, 13(2880), 1-24. https://doi.org/10.3
390/app13052880

[8] Khalid, A., Badshah, G., Ayub, N., Shiraz, M., & Ghouse,
M. (2023). Software Defect Prediction Analysis Using Machine
Learning Techniques. Sustainability, 15(6), 5517. https://doi.or
g/10.3390/su15065517

[9] Aquil, M. A. I., & Ishak, W. H. W. (2020). Predicting software
defects using machine learning techniques. International Journal
of Advanced Trends in Computer Science and Engineering, 9(4),
6609–6616. https://doi.org/10.30534/ijatcse/2020/352942020

https://github.com/jack-narv/Classification_Software_Bugs.git
https://github.com/jack-narv/Classification_Software_Bugs.git
https://github.com/jack-narv/Classification_Software_Bugs.git
https://www.researchgate.net/publication/323536716_Software_Bug_Prediction_using_Machine_Learning_Approach
https://www.researchgate.net/publication/323536716_Software_Bug_Prediction_using_Machine_Learning_Approach
https://www.researchgate.net/publication/323536716_Software_Bug_Prediction_using_Machine_Learning_Approach
https://arxiv.org/abs/1803.04497
https://arxiv.org/abs/1803.04497
https://www.researchgate.net/publication/354330980_Comprehensive_Study_on_Machine_Learning_Techniques_for_Software_Bug_Prediction
https://www.researchgate.net/publication/354330980_Comprehensive_Study_on_Machine_Learning_Techniques_for_Software_Bug_Prediction
https://www.researchgate.net/publication/354330980_Comprehensive_Study_on_Machine_Learning_Techniques_for_Software_Bug_Prediction
https://arxiv.org/abs/2307.04080
https://arxiv.org/abs/2307.04080
https://doi.org/10.5121/ijsea.2015.6302
https://doi.org/10.5121/ijsea.2015.6302
https://doi.org/10.1007/s42979-024-02764-x
https://doi.org/10.1007/s42979-024-02764-x
https://doi.org/10.3390/app13052880
https://doi.org/10.3390/app13052880
https://doi.org/10.3390/su15065517
https://doi.org/10.3390/su15065517
https://doi.org/10.30534/ijatcse/2020/352942020

19

[10] Iqbal, A., Aftab, S., Ali, U., Nawaz, Z., Sana, L., Ahmad,
M., & Husen, A. (2019). Performance analysis of machine
learning techniques on software defect prediction using NASA
datasets. International Journal of Advanced Computer Science
and Applications, 10(5), 300–308. https://doi.org/10.14569/IJA
CSA.2019.0100538

https://doi.org/10.14569/IJACSA.2019.0100538
https://doi.org/10.14569/IJACSA.2019.0100538

	Introduction
	State of the Art
	Materials and Methodology
	Data Collection
	Feature Extraction
	Dataset Analysis
	Outliers Processing
	Logarithmic Transformation
	Normalization
	Model Training: XGBoost VS RandomForestClassifier

	Results and Discussion
	Confusion Matrix
	Classification Metrics (Precision, Recall, F1-Score)

	Future Works
	Conclusiones
	References

