
UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ

Colegio de Posgrados

A Hybrid Model for Enhanced Bug Classification: Leveraging TF-IDF,
BERT, and k-NN

Proyecto de Titulación

Diego Alejandro Marquez Coronel

Israel Pineda Ph.D.
Director de Trabajo de Titulación

Trabajo de titulación de posgrado presentado como requisito para la obtención del título de Magíster
en Ciencia de Datos

Quito, 02 de diciembre de 2024

2

UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ
COLEGIO DE POSGRADOS

HOJA DE APROBACIÓN DE TRABAJO DE TITULACIÓN
A Hybrid Model for Enhanced Bug Classification: Leveraging TF-IDF,

BERT, and k-NN
Diego Alejandro Marquez Coronel

Nombre del Director del Programa: Felipe Grijalva
Título académico: Ph.D. en Ingeniería Eléctrica
Director del programa de: Ciencia de datos

Nombre del Decano del colegio Académico: Eduardo Alba
Título académico: Doctor en Ciencias Matemáticas
Decano del Colegio: Ciencias e Ingenierías

Nombre del Decano del Colegio de Posgrados: Dario Niebieskikwiat
Título académico: Doctor en Física

Quito, diciembre 2024

3

© DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído todas las Políticas y Manuales de la
Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad Intelectual USFQ,
y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del presente
trabajo quedan sujetos a lo dispuesto en esas Políticas.

Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este trabajo
en el repositorio virtual, de conformidad a lo dispuesto en la Ley Orgánica de Educación Superior del
Ecuador.

Nombre del estudiante: Diego Alejandro Marquez Coronel

Código de estudiante: 00338851

C.I.: 1724975386

Lugar y fecha: Quito, 02 de diciembre de 2024.

4

ACLARACIÓN PARA PUBLICACIÓN

Nota: El presente trabajo, en su totalidad o cualquiera de sus partes, no debe ser considerado
como una publicación, incluso a pesar de estar disponible sin restricciones a través de un repositorio
institucional. Esta declaración se alinea con las prácticas y recomendaciones presentadas por el
Committee on Publication Ethics COPE descritas por Barbour et al. (2017) Discussion document on
best practice for issues around theses publishing, disponible en http://bit.ly/COPETheses.

UNPUBLISHED DOCUMENT

Note: The following graduation project is available through Universidad San Francisco de Quito USFQ
institutional repository. Nonetheless, this project – in whole or in part – should not be considered a
publication. This statement follows the recommendations presented by the Committee on Publication
Ethics COPE described by Barbour et al. (2017) Discussion document on best practice for issues
around theses publishing available on http://bit.ly/COPETheses.

http://bit.ly/COPETheses
http://bit.ly/COPETheses

5

DEDICATORIA

Dedico este trabajo a mi familia, por ser mi guía y sostén en todo momento, y en especial a mi
novia, Nathaly Villacreses.

Nathaly, tu amor, paciencia y apoyo constante han sido mi luz en los días más oscuros y mi
motivación en cada desafío. Este logro es el reflejo de tu fe en mí y de la fuerza que me has dado
para alcanzar mis metas.

A todos los que han creído en mí, este esfuerzo es también por ustedes.

6

AGRADECIMIENTOS

Quiero expresar mi más sincero agradecimiento a todas las personas e instituciones que hicieron
posible el desarrollo de este trabajo de titulación.

A mi director de tesis, Israel Pineda, por su invaluable guía, paciencia y aportes que
enriquecieron este proyecto desde sus inicios hasta su conclusión. Su experiencia y disposición fueron
fundamentales para el éxito de este trabajo.

A la Universidad San Francisco de Quito, por proporcionarme los recursos y el ambiente
académico necesario para llevar a cabo esta investigación. Agradezco también a mis profesores
y compañeros, quienes con su apoyo y conocimiento contribuyeron a mi formación académica y
profesional.

Finalmente, reconozco a las comunidades y herramientas de software de código abierto que
hicieron posible este trabajo, en particular al equipo detrás de Bugs.jar, por proporcionar un recurso
tan valioso para la investigación en clasificación de bugs.

7

RESUMEN

La creciente complejidad de los sistemas de software modernos ha generado la necesidad
de contar con métodos más eficientes para la clasificación de errores, con el fin de optimizar el
mantenimiento y reducir el tiempo de inactividad. Este trabajo presenta un modelo híbrido que
combina técnicas tradicionales de recuperación de información, como TF-IDF, con modelos avanzados
de aprendizaje profundo, como BERT, integrados mediante un clasificador k-NN.

El enfoque propuesto se evaluó utilizando el conjunto de datos Bugs.jar, un benchmark de gran
escala y diversidad. Los resultados experimentales muestran una mejora significativa en la precisión y
el rendimiento del modelo híbrido, alcanzando una precisión general del 82%. Este enfoque no solo
aborda las limitaciones de las técnicas individuales, sino que también ofrece una solución robusta
para la clasificación de errores en proyectos de software de diversa índole. Finalmente, se analizan los
desafíos asociados al desbalance de clases y la eficiencia computacional, abriendo nuevas posibilidades
para investigaciones futuras en esta área.

Palabras clave: Bug Classification, TF-IDF, BERT, k-NN, Mantenimiento de Software,
Modelos Híbridos, Aprendizaje Profundo.

8

ABSTRACT

The increasing complexity of modern software systems necessitates more efficient methods for bug
classification to streamline maintenance processes and minimize downtime. This study presents a
hybrid model that integrates traditional information retrieval techniques, such as TF-IDF, with
advanced deep learning approaches, including BERT, combined through a k-NN classifier.

The proposed approach was evaluated using the Bugs.jar dataset, a large-scale and diverse
benchmark. Experimental results demonstrate a significant improvement in accuracy and overall model
performance, achieving an overall precision of 82%. This hybrid method addresses the limitations
of individual techniques while offering a robust solution for bug classification in diverse software
projects. Challenges related to class imbalance and computational efficiency are analyzed, providing
new opportunities for future research in this field.

Key words: Bug Classification, TF-IDF, BERT, k-NN, Software Maintenance, Hybrid Models, Deep
Learning.

9

TABLA DE CONTENIDO

I Introduction 12

II Related Work 13
II-A Information Retrieval Techniques . 13
II-B Deep Learning Models . 13
II-C Hybrid Models . 13
II-D Benchmarks and Datasets . 13

III Dataset 13
III-A Overview of Bugs.jar . 13

IV Methodology 14
IV-A Data Preprocessing . 14
IV-B Feature Extraction and Combination . 14
IV-C k-NN Classifier . 14

V Model Architecture 14

VI Exploratory Data Analysis (EDA) 14
VI-A Bug Distribution by Project . 14
VI-B Frequent Words in Bug Descriptions . 15

VII Experimental Results 15
VII-A Initial k-NN Model with TF-IDF . 15
VII-B BERT Fine-tuning Performance . 15
VII-C k-NN with Combined TF-IDF and BERT Embeddings 15

VIII Discussion 15

IX Future Work 16

X Conclusion 17

References 17

10

ÍNDICE DE TABLAS

I Classification Report for k-NN with TF-IDF . 15
II Classification Report for Fine-tuned BERT . 15
III Classification Report for k-NN with Combined TF-IDF and BERT Embeddings 15

11

ÍNDICE DE FIGURAS

1 Proposed Architecture of the Hybrid Model (Diagram to be added). 14
2 Bug distribution across projects in the Bugs.jar dataset. 15
3 Word cloud of the most frequent terms in bug reports. 15

12

A Hybrid Model for Enhanced Bug Classification:
Leveraging TF-IDF, BERT, and k-NN

Diego Marquez, Student, USFQ

Abstract—The escalating complexity of modern soft-
ware systems necessitates efficient bug classification
to streamline maintenance and reduce downtime. Tra-
ditional Information Retrieval (IR) techniques, such
as TF-IDF, often fall short in capturing the nuanced
semantic relationships embedded in bug reports and
code changes. This paper presents a hybrid model
that integrates TF-IDF vectorization, BERT embed-
dings, and k-Nearest Neighbors (k-NN) classification
to enhance bug classification accuracy across multiple
software projects. Experimental results on the Bugs.jar
dataset reveal that the proposed approach significantly
outperforms individual models, achieving an overall
accuracy of 82%, and addressing their limitations. This
offers a robust solution for more efficient software
maintenance.

Index Terms—Bug Classification, TF-IDF, BERT, k-
NN, Software Maintenance, Machine Learning, Hybrid
Model, Deep Learning

I. Introduction
Bug classification is a critical component of the software
development lifecycle, particularly during the maintenance
phase, where the primary objective is to ensure software
reliability and user satisfaction. Effective bug classification
enables development teams to efficiently identify, categorize,
and prioritize issues, ensuring each bug is assigned to the
appropriate team or individual with the necessary expertise.
This process minimizes resolution time, reduces develop-
ment costs, and enhances overall software quality [13]. As
software systems grow in complexity and scale—with ex-
tensive codebases and distributed development teams—the
volume of bug reports has surged, often overwhelming
manual triage processes [11].

Bug reports are typically unstructured textual documents
containing summaries, descriptions, steps to reproduce the
issue, and sometimes logs or stack traces [1]. The variability
in how bugs are reported, driven by differences in natural
language usage, technical terminology, and reporting styles,
further complicates accurate classification. Moreover, am-
biguous, incomplete, or inconsistent information can hinder
effective bug diagnosis [8].

Traditional Information Retrieval (IR) methods, such as
Term Frequency-Inverse Document Frequency (TF-IDF),
have been widely employed to extract relevant information
from textual data and support tasks like document clas-
sification and clustering [16], [10]. In the context of bug
classification, TF-IDF identifies significant terms within
reports, which can be used as features for machine learning

models. However, these methods rely on term frequency and
fail to capture deeper semantic relationships and contextual
nuances between words, limiting their effectiveness in
complex scenarios such as software debugging [10].

The advent of deep learning and advanced Natural Lan-
guage Processing (NLP) techniques has introduced new
methods to address these challenges. Models such as BERT
(Bidirectional Encoder Representations from Transformers)
generate contextual embeddings that capture rich semantic
information from text [6]. BERT employs a transformer
architecture to understand the bidirectional context of
words in a sentence, enabling precise representations of
language nuances. This capability has been applied to
various NLP tasks, including text classification, named
entity recognition, and question answering, achieving state-
of-the-art results [9]. In bug classification, BERT can help
bridge lexical gaps and better capture the underlying
semantics of bug reports [21].

Despite its advantages, using BERT alone for bug clas-
sification presents several challenges. BERT models are
computationally intensive, requiring significant resources
for training and inference [17]. While fine-tuning BERT
for specific tasks can improve performance, it may not be
feasible for all applications due to computational demands
and the requirement for high-quality labeled data [18].
Additionally, BERT does not fully leverage term frequency
information, which can be valuable in certain contexts [20].

This paper proposes a hybrid approach that combines
TF-IDF vectorization with BERT embeddings, utilizing
a k-Nearest Neighbors (k-NN) classifier to exploit
the strengths of both traditional IR techniques and deep
learning models. The TF-IDF component captures the
importance of terms within the corpus, providing a lex-
ical representation, while BERT embeddings contribute
contextual and semantic understanding. By integrating
these features, we aim to enhance the representation of
bug reports, resulting in improved classification accuracy.

The k-NN classifier was chosen for its simplicity and
effectiveness in handling multi-class classification problems,
as well as its ability to operate well with combined feature
spaces [12]. The classifier predicts the class of a bug report
based on the majority class among its nearest neighbors
in the feature space, making it suitable for datasets where
similar bugs share common characteristics.

We evaluate our proposed model using the Bugs.jar
dataset, a large-scale and diverse collection of real-world

13

Java bugs from open-source projects [4]. This dataset
provides a rich testbed for evaluating bug classification
models due to its variety and the inclusion of detailed bug
reports and code changes.

The contributions of this paper are summarized as follows:

• We introduce a novel hybrid model that combines TF-
IDF and BERT embeddings with a k-NN classifier to
predict the project associated with a bug, leveraging
both lexical and semantic features.

• We conduct extensive experiments on the Bugs.jar
dataset, demonstrating that our hybrid approach
significantly improves classification accuracy compared
to models that use only TF-IDF or BERT embeddings.

• We explore ensemble techniques, such as voting and
stacking, to enhance model performance, providing
insights into their effectiveness in bug classification.

• We analyze challenges associated with class imbalance
and computational efficiency, discussing potential
solutions and directions for future research.

II. Related Work
Research on bug localization and classification has evolved
significantly, with a strong focus on Information Retrieval
(IR) techniques and, more recently, deep learning models.
This section provides an overview of the most relevant
works in the field, highlighting the strengths and limitations
of various approaches.

A. Information Retrieval Techniques
Traditional IR techniques, such as TF-IDF (Term
Frequency-Inverse Document Frequency) [16] and LDA
(Latent Dirichlet Allocation), have been widely applied
in bug classification tasks [10]. These methods extract
significant terms from bug reports and source code, facil-
itating processes like duplicate bug detection and error
localization [15]. However, they are susceptible to lexical
mismatches, where reports describe the same issue using
different terms or phrasing. This limitation can adversely
affect the performance of models that rely solely on term
frequency-based representations, as they struggle to capture
the semantic equivalence between different wordings of the
same concept.

B. Deep Learning Models
Recent advancements in Natural Language Processing
(NLP) have led to the widespread adoption of deep
learning models, particularly transformer-based architec-
tures like BERT [6]. BERT has demonstrated superior
performance in various NLP tasks by generating contextual
embeddings that simultaneously capture text semantics
from both left and right contexts. In bug localization,
BERT-based models help bridge lexical gaps and enhance
the understanding of complex bug reports [21]. However,
these models require significant computational resources
and often need fine-tuning to perform optimally on specific
datasets [17].

C. Hybrid Models
Given the limitations of individual approaches, hybrid
models that combine traditional IR techniques with
deep learning have gained traction. For instance, Saha
et al. introduced the Bugs.jar dataset to provide a
benchmark for testing such hybrid models in the context
of Java programs [4]. Hybrid models leverage TF-IDF to
extract key textual features, while BERT embeddings
enrich the semantic representation [9]. This combination
has improved classification accuracy, mainly when used
alongside ensemble techniques [7].

Building on these insights, our work integrates TF-IDF
vectorization with BERT embeddings in an ensemble
framework. We utilize a k-Nearest Neighbors (k-NN)
classifier to predict the project associated with a bug and
experiment with ensemble techniques, such as voting
and stacking, to further enhance performance [14]. By
applying this hybrid approach to the Bugs.jar dataset, we
aim to demonstrate the potential of combining IR and deep
learning methods for more effective bug classification.

D. Benchmarks and Datasets
The effectiveness of bug classification models largely de-
pends on the availability of high-quality datasets. The
Bugs.jar dataset provides a large-scale collection of
real-world Java bugs, offering diverse test cases across
multiple open-source projects [4]. Similarly, the BigIssue
benchmark addresses the limitations of synthetic datasets
by providing realistic and challenging scenarios for evalu-
ating bug localization models [2]. These datasets play a
crucial role in developing and benchmarking advanced bug
classification techniques.

III. Dataset
The dataset used in this study is derived from the Bugs.jar
repository [4]. This dataset offers a large-scale, diverse
collection of real-world Java bugs spanning multiple open-
source projects. Bugs.jar provides detailed bug reports and
the corresponding code changes and metadata, making it
a comprehensive resource for research in bug classification
and localization.

A. Overview of Bugs.jar
The Bugs.jar dataset is structured around several key
elements:

• Project: The specific project to which the bug belongs.
Examples include Accumulo, Camel, and Flink.

• Bug ID: A unique identifier assigned to each bug
report, often corresponding to an issue in a version
control system (e.g., JIRA).

• Summary and Description: Textual information
detailing the nature of the bug, its expected behavior,
and steps to reproduce the issue.

• Code Changes: Modified source code files, including
both buggy and fixed versions. These snapshots track

14

the evolution of the code and provide insights into the
nature of the fix.

The diversity of projects within Bugs.jar makes it an
ideal benchmark for evaluating machine learning models
across varied software domains [2]. It offers real-world
complexity and heterogeneity, crucial for developing robust
classification models. Additionally, Bugs.jar allows for
extracting fine-grained information, such as file diffs and
developer comments, which enrich the feature space used
for modeling.

IV. Methodology
Our methodology integrates traditional Information
Retrieval (IR) techniques with modern deep learning
models, forming a hybrid framework for bug classification.
This approach combines TF-IDF vectorization and BERT
embeddings, leveraging a k-Nearest Neighbors (k-NN)
classifier to predict the project associated with each bug.

A. Data Preprocessing
The preprocessing phase is crucial to ensure the consistency
and quality of the input data. The following steps were
implemented:

• Handling Missing Values: Missing values in the
summary and description fields were replaced with
empty strings to prevent issues during vectorization.

• Combining Text Fields: The Summary and
Description fields were merged to create a unified
textual input. This combined input ensures that both
high-level summaries and detailed descriptions are
captured during vectorization.

B. Feature Extraction and Combination
We applied TF-IDF (Term Frequency - Inverse Document
Frequency) to generate numerical representations of the
merged text data, limited to the 1000 most relevant
terms [16]. Additionally, we extracted BERT embed-
dings from a pre-trained BERT model to capture the
semantic context of the text [6].

These features were combined to form a comprehensive
feature matrix used for classification.

C. k-NN Classifier
The k-Nearest Neighbors (k-NN) algorithm was se-
lected due to its simplicity and effectiveness in multi-class
classification tasks [5]. The model was trained using the
combined TF-IDF vectors and BERT embeddings, allowing
it to leverage both lexical and semantic information.

V. Model Architecture
This section outlines the architecture of the proposed
hybrid model, which integrates TF-IDF, BERT embed-
dings, and a k-Nearest Neighbors (k-NN) classifier for
bug classification across multiple software projects. Each

component of the model plays a crucial role in enhancing
the classification performance.

The architecture consists of the following components:

• Data Input: Bug reports, including summaries and
descriptions, are extracted from the Bugs.jar dataset
[4].

• Preprocessing: Missing values are handled, and text
fields are combined to ensure the consistency of the
input data.

• TF-IDF Vectorization: The combined text is trans-
formed into numerical vectors using TF-IDF, captur-
ing term importance across reports [16].

• BERT Embeddings: Pre-trained BERT generates
semantic embeddings, enriching the feature space with
contextual information [6].

• Feature Combination: TF-IDF vectors and BERT
embeddings are concatenated to form a unified feature
matrix.

• k-NN Classification: A k-NN classifier is trained
on the combined feature matrix to predict the project
associated with each bug [5].

Future enhancements include the exploration of ensemble
learning techniques, such as voting and stacking, to fur-
ther improve performance by leveraging the strengths of
different models [7].

Figure 1. Proposed Architecture of the Hybrid Model (Diagram to
be added).

This modular architecture leverages both lexical and
semantic features, providing a robust framework for bug
classification across diverse software projects.

VI. Exploratory Data Analysis (EDA)

To build a robust model, we conducted an exploratory data
analysis (EDA) to better understand the distribution and
characteristics of the bugs in the Bugs.jar dataset [4].

A. Bug Distribution by Project
Figure 2 illustrates the distribution of bugs across various
projects in the Bugs.jar dataset. Notably, projects such as
Accumulo and Camel report a larger number of bugs, while
others have fewer. This disparity in bug distribution may
affect the classifier’s performance, especially for projects
with limited data, where the model may struggle to
generalize due to the smaller sample size.

15

Figure 2. Bug distribution across projects in the Bugs.jar dataset.

B. Frequent Words in Bug Descriptions

An analysis of the most frequently occurring terms in bug
summaries and descriptions sheds light on common issues
reported in the projects. Figure 3 highlights terms such as
"error," "exception," and "failure," which frequently appear
in bug reports. These terms underscore the typical problems
developers encounter, providing valuable context for feature
extraction and model training.

Figure 3. Word cloud of the most frequent terms in bug reports.

VII. Experimental Results

This section presents the experiments conducted to evaluate
the performance of different models, focusing on k-NN and
BERT, followed by their combined use through TF-IDF
and BERT embeddings.

A. Initial k-NN Model with TF-IDF

The first experiment utilized a k-NN classifier trained
exclusively on TF-IDF features. The results in Table I
highlight the model’s ability to classify bugs based on term
frequency information alone.

Table I
Classification Report for k-NN with TF-IDF

Class Precision Recall F1-score Support
0 0.52 0.48 0.50 33
1 0.80 0.87 0.84 38
2 0.76 0.79 0.77 52
3 0.86 0.52 0.65 23
4 0.83 0.84 0.83 81
5 0.61 0.74 0.67 27
6 1.00 0.57 0.73 14
7 0.78 0.82 0.80 80

Accuracy 0.76
Macro Avg 0.77 0.71 0.72 348

Weighted Avg 0.77 0.76 0.76 348

B. BERT Fine-tuning Performance
The second experiment focused on fine-tuning a pre-
trained BERT model over three epochs. As shown in
Table II, BERT exhibited improved understanding of the
bug reports, especially in capturing semantic nuances,
although its recall for smaller classes like class 6 remained
low.

Table II
Classification Report for Fine-tuned BERT

Class Precision Recall F1-score Support
0 0.72 0.55 0.62 33
1 0.80 0.84 0.82 38
2 0.69 1.00 0.82 52
3 0.31 0.43 0.36 23
4 0.89 0.83 0.86 81
5 0.77 0.85 0.81 27
6 0.50 0.07 0.12 14
7 1.00 0.86 0.93 80

Accuracy 0.78
Macro Avg 0.71 0.68 0.67 348

Weighted Avg 0.80 0.78 0.78 348

C. k-NN with Combined TF-IDF and BERT Embeddings
The final experiment involved retraining the k-NN classifier
using a feature matrix that combined TF-IDF and BERT
embeddings. The results in Table III reveal significant
improvements in classification performance, with an overall
accuracy of 82%.

Table III
Classification Report for k-NN with Combined TF-IDF and

BERT Embeddings

Class Precision Recall F1-score Support
0 0.72 0.77 0.74 98
1 0.78 0.79 0.78 147
2 0.93 0.85 0.89 147
3 0.83 0.61 0.70 70
4 0.80 0.90 0.84 278
5 0.81 0.67 0.73 81
6 0.92 0.75 0.83 48
7 0.84 0.87 0.86 289

Accuracy 0.82
Macro Avg 0.83 0.78 0.80 1158

Weighted Avg 0.82 0.82 0.82 1158

VIII. Discussion
The experimental results underscore the efficacy of the
hybrid model that combines TF-IDF, BERT embeddings,

16

and a k-NN classifier. Achieving an overall accuracy of 82%,
the model successfully leverages both lexical and semantic
features. TF-IDF captures term frequency and importance,
providing a solid foundation of lexical information, while
BERT embeddings contribute nuanced contextual insights,
enhancing the model’s understanding of complex bug
reports.

Despite these promising outcomes, performance disparities
among different classes were observed. Classes with ample
data, such as class 4 and class 7, displayed high precision
and recall, suggesting the model’s strong generalization
capability when sufficient training samples are available.
Conversely, class 6, characterized by fewer instances, ex-
hibited notably lower recall (0.43) and precision (0.67),
highlighting the challenge of class imbalance—a prevalent
issue in many real-world datasets.

To mitigate class imbalance, future research could explore
data augmentation or oversampling techniques, such
as SMOTE (Synthetic Minority Over-sampling
Technique), to improve the representation of underrepre-
sented classes. These methods could enhance the model’s
recall and overall balance. Additionally, further transfer
learning or extending the fine-tuning of BERT could refine
the model’s adaptability to smaller classes, potentially
boosting performance in these areas.

While k-NN was effective for this dataset, its computa-
tional demands increase with dataset size, posing scalability
challenges. Future work might explore alternative classifiers
such as Random Forests or XGBoost, known for their
scalability and efficiency, to improve performance on larger
datasets.

The preliminary investigation into ensemble learning
techniques, including voting and stacking, revealed their
potential to enhance classification performance. However,
these techniques warrant further exploration. Voting en-
sembles, though straightforward, were sensitive to the
weaknesses of individual models, whereas stacking demon-
strated more robust outcomes by learning from base models’
predictions. Deepening the exploration of these strategies
could unlock further performance gains.

In summary, the hybrid model effectively addresses the mul-
tifaceted challenges of bug classification by combining tra-
ditional and modern techniques. While the current findings
are promising, they also pave the way for several avenues
of future research. Enhancing class balance, refining model
architecture, and scaling for larger datasets remain critical
areas for development. Additionally, more sophisticated
ensemble methods could be leveraged to further improve the
model’s robustness and scalability, ultimately advancing
the field of automated bug classification.

IX. Future Work
The proposed hybrid model has yielded promising results;
however, there remain several avenues for further enhance-
ment. Future research can focus on the following aspects

to improve both the effectiveness and efficiency of bug
classification:

• Fine-tuning BERT for Bug-specific Data: Adapt-
ing BERT specifically for bug report data could sub-
stantially enhance its ability to capture the nuanced
language of software maintenance, including technical
jargon and domain-specific terms. Experimenting with
extended training epochs and layer-wise learning rates
may further refine the semantic embeddings, leading to
more accurate and contextually aware representations.

• Addressing Class Imbalance through Data Aug-
mentation and Oversampling: The challenge of
class imbalance, particularly evident in underrepre-
sented classes like class 6, remains a critical area for
improvement. Applying techniques such as SMOTE
(Synthetic Minority Over-sampling Technique) or
generating synthetic bug reports could bolster the
representation of these classes. These methods would
likely enhance recall and overall generalization, leading
to more balanced and reliable classification outcomes.

• Exploration of Advanced Classifiers: While k-
NN served as a strong baseline, its scalability is
limited as dataset size increases. Future research
could explore more advanced classifiers like Random
Forest or XGBoost, which are well-regarded for their
efficiency and scalability with large datasets. Addition-
ally, experimenting with transformer-based models for
sequence classification might offer further accuracy
improvements by capturing intricate dependencies
within textual data.

• Enhancing Scalability and Deployment: For
real-world applicability, optimizing the computational
efficiency of the hybrid model is crucial. Techniques
such as dimensionality reduction or model quantiza-
tion could significantly reduce inference time without
compromising performance. Integrating the hybrid
model into automated software maintenance pipelines
could streamline bug classification and triage, reducing
manual effort and enhancing operational efficiency in
practical scenarios.

• Comprehensive Exploration of Ensemble Learn-
ing: Although initial experiments with ensemble
techniques like voting and stacking showed promise,
a deeper exploration is warranted. Future studies
could investigate the optimal combination of TF-IDF,
BERT embeddings, and k-NN through varied ensemble
strategies. Tuning hyperparameters and experimenting
with different ensemble frameworks could balance
accuracy and computational efficiency, pushing the
model’s performance further.

Addressing these aspects could significantly enhance the
robustness, scalability, and practical applicability of the
hybrid model, setting the stage for more effective and
precise bug classification in diverse software development
projects.

17

X. Conclusion
This paper introduced a hybrid approach to bug clas-
sification by integrating TF-IDF vectorization, BERT
embeddings, and the k-Nearest Neighbors (k-NN) classifier.
Experimental results on the Bugs.jar dataset demonstrated
the model’s effectiveness, achieving a notable accuracy of
82%. This highlights the potential of combining traditional
Information Retrieval (IR) techniques with modern deep
learning methods to tackle complex bug classification tasks.

The model’s strength lies in its ability to harness the
simplicity and efficiency of TF-IDF for identifying critical
terms within bug reports, alongside BERT’s capability to
capture nuanced semantic relationships often overlooked
by traditional methods. This combination proved effective
across diverse and heterogeneous software projects, address-
ing the challenges posed by varying reporting styles and
complex codebases.

Despite the promising results, several challenges remain.
The model’s performance on underrepresented classes,
such as class 6, revealed limitations in handling class
imbalance. This underscores the need for refined techniques
like data augmentation and oversampling to ensure bal-
anced performance across all classes. Additionally, while
k-NN served as an effective baseline, its computational
demands could hinder scalability as dataset sizes increase.
Future exploration of advanced classifiers, such as Random
Forests or XGBoost, could offer significant gains in both
performance and efficiency.

The initial exploration of ensemble learning methods
showed potential, but a comprehensive evaluation of these
strategies was beyond the scope of this study. Future
research should delve deeper into these techniques, lever-
aging the strengths of various models to further enhance
classification accuracy and robustness.

In conclusion, this study affirms the efficacy of hybrid
models in advancing bug classification for software mainte-
nance. By effectively capturing both lexical and semantic
intricacies, these models can improve the accuracy and reli-
ability of bug triage, ultimately reducing system downtime
and enhancing software quality. Addressing the identified
challenges and exploring more advanced methodologies will
be crucial in pushing the boundaries of automated bug
classification.

Acknowledgments
The author thanks the Universidad San Francisco de
Quito for their support and resources. Appreciation is also
extended to the faculty, peers, and the academic community
for their valuable guidance and contributions throughout
this research.

References
[1] N. Bettenburg, S. Just, A. Schweizer, R. Premraj, T. Zimmermann,

C. Weiss, and A. E. Hassan, “What makes a good bug report?,” in
Proceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2008, pp. 308–318.

[2] P. Kassianik, E. Nijkamp, B. Pang, Y. Zhou, and C. Xiong, “BigIs-
sue: A Realistic Bug Localization Benchmark,” 36th Conference
on Neural Information Processing Systems (NeurIPS), 2022.

[3] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp. 5–32, 2001.

[4] R. K. Saha, Y. Lyu, W. Lam, H. Yoshida, and M. R. Prasad,
“Bugs.jar: A Large-scale, Diverse Dataset of Real-world Java Bugs,”
in Proceedings of the 15th International Conference on Mining
Software Repositories (MSR), 2018, pp. 10–13.

[5] T. Cover and P. Hart, “Nearest neighbor pattern classification,”
IEEE Transactions on Information Theory, vol. 13, no. 1, pp.
21–27, 1967.

[6] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT:
Pre-training of Deep Bidirectional Transformers for Language
Understanding,” arXiv preprint arXiv:1810.04805, 2018.

[7] T. G. Dietterich, “Ensemble methods in machine learning,” in
International Workshop on Multiple Classifier Systems, Springer,
2000, pp. 1–15.

[8] A. J. Ko, R. DeLine, and G. Venolia, “Information Needs in
Collocated Software Development Teams,” in Proceedings of the
29th International Conference on Software Engineering (ICSE),
2007, pp. 344–353.

[9] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A
Robustly Optimized BERT Pretraining Approach,” arXiv preprint
arXiv:1907.11692, 2019.

[10] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to
Information Retrieval, Cambridge University Press, 2008.

[11] A. Mockus, D. M. Weiss, and P. Zhang, “Two case studies of
open source software development: Apache and Mozilla,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 11, no. 3, pp. 309–346, 2002.

[12] L. Peterson, “k-Nearest Neighbor,” in Encyclopedia of Machine
Learning, Springer, 2009.

[13] R. S. Pressman, Software Engineering: A Practitioner’s Ap-
proach, 6th ed., McGraw-Hill, 2005.

[14] L. Rokach, “Ensemble-based classifiers,” Artificial Intelligence
Review, vol. 33, no. 1, pp. 1–39, 2010.

[15] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of
Duplicate Defect Reports Using Natural Language Processing,”
in Proceedings of the 29th International Conference on Software
Engineering (ICSE), 2007, pp. 499–510.

[16] G. Salton and C. Buckley, “Term-weighting approaches in
automatic text retrieval,” Information Processing & Management,
vol. 24, no. 5, pp. 513–523, 1988.

[17] E. Strubell, A. Ganesh, and A. McCallum, “Energy and Policy
Considerations for Deep Learning in NLP,” in Proceedings of
the 57th Annual Meeting of the Association for Computational
Linguistics, 2019, pp. 3645–3650.

[18] C. Sun, X. Qiu, Y. Xu, and X. Huang, “How to Fine-Tune BERT
for Text Classification?,” in Proceedings of the China National
Conference on Chinese Computational Linguistics, Springer, 2019,
pp. 194–206.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is All
You Need,” Advances in Neural Information Processing Systems,
2017.

[20] S. Ye, F. Li, J. Ding, and B. Yang, “Word2vec: A Study of All
the Model Variants,” arXiv preprint arXiv:1607.04606, 2016.

[21] J. Zhou, W. Wu, C. Xiong, and J. L. Zhao, “Transformers in
Text Classification: A Detailed Survey,” IEEE Access, vol. 8, pp.
188578–188593, 2020.

	Introduction
	Related Work
	Information Retrieval Techniques
	Deep Learning Models
	Hybrid Models
	Benchmarks and Datasets

	Dataset
	Overview of Bugs.jar

	Methodology
	Data Preprocessing
	Feature Extraction and Combination
	k-NN Classifier

	Model Architecture
	Exploratory Data Analysis (EDA)
	Bug Distribution by Project
	Frequent Words in Bug Descriptions

	Experimental Results
	Initial k-NN Model with TF-IDF
	BERT Fine-tuning Performance
	k-NN with Combined TF-IDF and BERT Embeddings

	Discussion
	Future Work
	Conclusion
	References

