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RESUMEN

La pérdida de biodiversidad representa un importante desafio global que requiere herramientas
avanzadas para un monitoreo efectivo de la vida silvestre. Las camaras trampa generan grandes
volimenes de informacion, pero, la anotacién manual requiere el un alto costo y tiempo, reduciendo
su utilidad. Esta tesis investiga la aplicacion de enfoques de aprendizaje supervisado y auto-
supervisado para la clasificaciéon de imagenes de vida silvestre utilizando datos de la Estacion de
Biodiversidad Tiputini en Ecuador, un punto de alta importancia para la biodiversidad global.
Se evaluan arquitecturas como Vision Transformers (ViT), ResNet, EfficientNet y el modelo auto-
supervisado SimCLR, abordando desafios como datos etiquetados limitados, clases desequilibradas y
calidad de imagen pobre.

Una comparacion sisteméatica de los resultados permite concluir que ViT presenta el mejor
desempeno con una precisién de clasificacion del 90.1%. SimCLR, aunque con un rendimiento inferior
en sugiere un potencial para aprovechar datos no etiquetados en contextos ecoldgicos con recursos
limitados. Contribuciones clave: i) flujo de trabajo de aprendizaje automatico adaptado a nuestros
datos de biodiversidad; ii) optimizacién exhaustiva de hiperpardametros; iii) analisis de las perdida
relativa entre eficiencia computacional y precision.

Dado el mejor desempeno de ViT, se puede concluir que la deteccién de caracteristicas pequenas
es altamente importante para aplicaciones de inteligencia artificial en clasificacién de imagenes
ecologicas. Adicionalmente, se sugiere explorar con mayor profundidad los métodos de aprendizaje
auto-supervisado.

Palabras clave: Aprendizaje Supervisado, Aprendizaje Auto-Supervisado, Vision Transformers (ViT), SimCLR,
Clasificacion de Imégenes de Vida Silvestre



ABSTRACT

The loss of biodiversity poses a major global challenge that requires advanced tools for effective
wildlife monitoring. Camera traps generate large datasets, but the high cost and time required
for manual annotation reduces their utility. This thesis investigates the application of supervised
and self-supervised learning approaches to the classification of wildlife images using data from
the Tiputini Biodiversity Station in Ecuador, a hotspot of global biodiversity. It evaluates state-
of-the-art architectures, including Vision Transformers (ViT), ResNet, EfficientNet, and the self-
supervised SimCLR framework, addressing challenges such as limited labeled data, imbalanced classes,
environmental variability, and challenging image quality.

A systematic comparison of results allows to assert a superior performance of ViT, achieving
a classification accuracy of 90.1% on highly challenging datasets. SimCLR, while underperforming
compared to supervised approaches, underscores the potential to take advantage of unlabeled data
in resource-constrained ecological contexts. Key contributions include a tailored machine learning
pipeline for biodiversity data, exhaustive hyperparameter optimization, and analyzing the trade-offs
between computational efficiency and accuracy.

This research emphasizes the importance of fine-grained feature detection in ecological Al
applications and suggests future exploration of self-supervised learning methods.

Key words: Supervised Learning, Self-Supervised Learning, Vision Transformers (ViT), SimCLR, Wildlife Image
Classification.
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Advancing Wildlife Image Classification: A
Comparative Study of Supervised and Selt-Supervised
Learning in Tiputini, Ecuador

Diego Villacreses, Student Member IEEE, Felipe Grijalva, Senior Member IEFE,

Abstract—The loss of biodiversity poses a major
global challenge that requires advanced tools for ef-
fective wildlife monitoring. Camera traps generate large
datasets, but the high cost and time required for
manual annotation reduces their utility. This thesis
investigates the application of supervised and self-
supervised learning approaches to the classification of
wildlife images using data from the Tiputini Biodiversity
Station in Ecuador, a hotspot of global biodiversity.
It evaluates state-of-the-art architectures, including
Vision Transformers (ViT), ResNet, EfficientNet, and
the self-supervised SimCLR framework, addressing
challenges such as limited labeled data, imbalanced
classes, environmental variability, and challenging image
quality.

A systematic comparison of results allows to assert a
superior performance of ViT, achieving a classification
accuracy of 90.1% on highly challenging datasets. Sim-
CLR, while underperforming compared to supervised
approaches, underscores the potential to take advantage
of unlabeled data in resource-constrained ecological
contexts. Key contributions include a tailored machine
learning pipeline for biodiversity data, exhaustive hy-
perparameter optimization, and analyzing the trade-offs
between computational efficiency and accuracy.

This research emphasizes the importance of fine-grained
feature detection in ecological AI applications and
suggests future exploration of self-supervised learning
methods.

Index Terms—Supervised Learning, Self-Supervised
Learning, Vision Transformers (ViT), SimCLR, Wildlife
Image Classification.

I. INTRODUCTION

IODIVERSITY loss is an increasing global concern

given the current rate of species extinction, estimated
to be tens of times higher than the historical average
over the past ten million years [1]. Effective biodiversity
monitoring is essential for assessing human impact on
habitats and species [2]. Camera traps have emerged as
a widely used tool for non-invasive wildlife monitoring,
generating vast amounts of visual data from biodiversity
hotspots like the Tiputini Biodiversity Station (TBS) in
Ecuador [3], [4].

However, the sheer volume of collected data, combined with
the high cost and time required for manual annotation,

D. Villacreses and F. Grijalva are with Universidad San Francisco
de Quito USFQ

represents a significant challenge. Deep learning models
have shown promising results in automating wildlife image
classification, offering scalable solutions to these challenges
[5], [6], [7]. Although the final goal is to monitor population
trends and species dynamics, much of the current research
remains focused on improving classification accuracy [8].

The limited availability of high-quality labeled datasets
has constrained progress, particularly in biodiversity-rich
regions like TBS, where existing models have struggled to
achieve satisfactory results [4]. This study aims to address
these limitations by leveraging transfer learning with
state-of-the-art architectures and exploring self-supervised
learning techniques to improve classification performance
on the TBS dataset.

A. Context and Problem Statement

Biodiversity monitoring is the cornerstone to understand
ecosystems’ health, to assess the impact of environmental
changes, and inform conservation strategies, especially
in the face of climate change and wide animal species
extinction [2], [9]. Advances in camera trap technology
have revolutionized wildlife monitoring, enabling large-
scale, non-invasive data collection in remote ecosystems [3],
[10]. However, the scale of these datasets poses significant
challenges, particularly, given that data annotation is costly,
time-consuming, and prone to error [7], [11], [2].

Deep learning has emerged as a powerful framework for au-
tomating image classification reducing dependence on man-
ual annotation [12], [10]. Supervised learning approaches,
particularly, Convolutional Neural Networks (CNNs) like
ResNet [13] and EfficientNet [14], have demonstrated
strong performance in general image classification tasks.
Vision Transformers (ViT), which are based on attention
mechanisms, have shown superior performance to CNNs
in capturing fine-grained features for specific tasks [15].

Despite their success, applying these models to wildlife
classification remains challenging due to three primary
factors:

o Data scarcity: Supervised learning models require
extensive labeled datasets, which are often unavailable
in biodiversity monitoring due to the high cost of
annotation. This reliance on annotated data represents
a significant bottleneck in scaling Deep Learning based



solutions for real-world biodiversity monitoring tasks
[11], [7]. [12] states that addressing the scarcity of
labeled data requires developing methods to leverage
large amounts of unlabeled data such as unsupervised
or self-supervised learning.

+ Domain generalization: Models trained on datasets
such as ImageNet often fail to generalize to ecological
data due to domain shifts in species and environmental
contexts, limiting their applicability across diverse
ecosystems [10], [11].

o Environmental factors: Wildlife images are fre-
quently low resolution, poorly lit, and occluded, fur-
ther complicating classification tasks and requiring
models robust to noisy inputs [3], [4].

B. Research Context: Tiputini Biodiversity Station

The Tiputini Biodiversity Station (TBS), located in Yasun{
National Park, Ecuador, is a globally recognized hotspot
of biodiversity, with hundreds of species recorded in a
single square kilometer [16]. Over 97,000 images have been
captured through camera traps at TBS, providing a rich
dataset for ecological research. However, only 5,214 images
have been labeled, focusing on two primary species: Taypec
(65.1%) and Taytaj (34.9%). The classification of species
in Tiputini presents unique challenges [4]:

o Visual similarity: The two species exhibit subtle
morphological differences, making it difficult to dif-
ferentiate them even for human annotators (Image
1).

o Imbalanced data: The dataset is skewed, with fewer
images of Taytaj compared to Taypec, which can
bias model training and evaluation. To mitigate this,
undersampling of the majority class was employed,
though alternative techniques such as oversampling
or weighted loss functions could be explored in future
work.

o Environmental variability: Images often include
occlusions, poor focus, and diverse lighting conditions,
reflecting the complexities of field data collection.
Non-independence of data: Each image may con-
tain multiple animals, which introduces the risk of
having related instances (e.g., two animals from the
same image) appearing in both training and testing
sets during cross-validation. This could lead to data
leakage. To address this, cross-validation is carefully
designed to ensure that all animals from the same
image are kept exclusively within either training,
validation or testing set.

C. Research Objective and Scope

To address these challenges, the general objective of this
study is to assess the effectiveness of supervised and self-
supervised learning models for wildlife classification in TBS.
The specific objectives are:

o Specific Objective 1: To compare the classification
performance of supervised models (ResNet, MobileNet,
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EfficientNet and ViT) using transfer learning with
different percentages of frozen layers and hyperparam-
eter configurations, and a self-supervised approach
(SimCLR) on a small labeled dataset.

o Specific Objective 2: To assess the trade-offs
between computational efficiency and classification
accuracy for these models in a resource-constrained
ecological context.

D. Contributions

This research contribution is threefold:

1) Comparative Analysis: A systematic evaluation
of supervised models using transfer learning with
varying degrees of layer freezing and hyperparameters,
and self-supervised models for wildlife classification.

2) Tailored Pipeline: Development of a robust ma-
chine learning pipeline, including data augmentation,
transfer learning configurations, and hyperparameter
optimization, designed to address the specific chal-
lenges of the TBS dataset.

3) Hyperparameter Insights: Exploration of the
impact of key hyperparameters (e.g., learning rate,
batch size, and number of epochs) on model per-
formance, contributing to a deeper understanding of
how to fine-tune deep learning models for biodiversity
monitoring tasks.

E. Structure of the Document

The rest of this thesis is organized as follows:

o The State of the Art section states a review of the
relevant literature and highlights how this document
contributes to the current discussion in wildlife image
classification.

o The Materials and Methods section provides an
overview the TBS dataset, preprocessing steps, and
experimental setup, including model configurations,
hyperparameter tuning strategies, and evaluation
metrics.

o The Results and Discussion section presents and
analyzes the performance of the supervised and self-
supervised models, emphasizing the role of transfer
learning and hyperparameter tuning.

e The Conclusion summarizes the key findings, dis-
cusses limitations, and proposes directions for future
work.

II. STATE OF THE ART
A. Deep Learning

Supervised Deep learning methods remain the predominant
paradigm in computer vision, excelling in image classifica-
tion when sufficient labeled data is available [17], such as
Imagenet [18]. When labeled data is limited, alternative
approaches tend to show better results, after a careful liter-
ature review, we want to highlight the following approaches:



i) transfer learning, ii) semi-supervised learning, iii) self-
supervised learning and iv) active learning [19], [20], [21],
[22]. A brief discussion about these approaches is included:

o Transfer learning uses models pretrained on large
datasets and fine-tunes them for specific tasks with
limited labeled data [23]. This approach reduces the
need for extensive domain-specific data, making it
particularly effective in scenarios like wildlife moni-
toring, where annotated datasets are small. Its ad-
vantages include reduced training time and improved
performance on small datasets (compared against
pure supervised learning). However, transfer learning
assumes that the pretrained features are transferable
to the target domain, which may not always hold
true, particularly when the source and target domains
differ significantly [24]. Recent research shows that the
excessive usage of ImageNet is leading to overfitting
and poor generalization when test images are harder
than train images [25].

o Semi-Supervised learning leverages a small amount
of labeled data from a large unlabeled dataset [26].
Two common approaches are: i) Self-Training: trains
a model on labeled data, pseudo-labels unlabeled
samples, and iteratively retrains with the expanded
dataset; ii) Label Propagation: models data as a graph,
spreading labels to unlabeled nodes based on similarity.
However, this group of models heavily depends on the
assumption that the unlabeled data follows a similar
distribution as the labeled data [27].

o Self-Supervised learning uses a pretext tasks to
learn from unlabeled data, enabling the model to ac-
quire meaningful representations independently of hu-
man labeling [28]. Frameworks such as SimCLR have
shown impressive results on benchmark datasets, nar-
rowing the performance gap with supervised methods
[28]. The main advantage of self-supervised learning
is its ability to exploit large-scale unlabeled datasets,
which are more readily available. However, the choice
of pretext tasks and computational requirements can
be significant challenges.

e Active Learning aims to minimize labeling effort by
identifying the most informative samples for annota-
tion. By iteratively asking a human annotator to label
the most uncertain samples, active learning reduces
the overall data labeling cost [29]. This framework has
shown promising results in domains like medical diag-
nostics [30] or biodiversity monitoring [20]. However,
the iterative nature of the process can be restrictive
when the labeling team is no longer available.

Considering that we no longer have access to a team that
could correctly label more images Active Learning is not a
viable option. According to [28] Self-Supervised Learning
tends to outperform Semi-Supervised Learning, statement
confirmed by [31] for wildlife images. Additionally, in this
study, the primary distinction between Supervised Learning
and Transfer Learning lies in the percentage of frozen
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layers. Therefore, throughout this document, the term
"Supervised Learning" includes both approaches unless
otherwise specified.

B. Challenges of Camera-Trap Data

Based on the methodologies reviewed in the previous
subsection, we now proceed to discuss the applications of
deep learning in wildlife classification. While supervised and
self-supervised learning offer powerful frameworks for image
classification, their deployment in real-world contexts like
wildlife monitoring must address the challenges presented
by camera-trap data. These difficulties impact data quality
and a tailored literature review must be performed to
select relevant supervised architectures. Lets start with the
challenges of camera trap data.

o Environmental Variability: Illumination issues,
such as poor lighting at night, and weather conditions
like fog or rain, often result in low-quality images [3],
[5], [32]. Temporal changes, including seasonal vari-
ations, exacerbate inconsistencies within the dataset
[3].

e Motion Blur Fast-moving animals often appear
blurred, and some animals occupy only a small fraction
of the frame, making feature extraction and classifica-
tion more difficult [3], [5].

e Occlusions and Perspective Issues: Vegetation, en-
vironmental obstructions, or other animals frequently
occlude the subject. Additionally, different proximity
to the camera also increase the difficulty of computer
vision tasks [3], [32].

o False Triggers and Dataset Noise: Non-animal
triggers caused by wind, vegetation, or human activity
often dominate datasets, requiring extensive prepro-
cessing to remove irrelevant images [3], [5].

o Dataset Imbalance: Wildlife datasets are typically
imbalanced, with rare species underrepresented and
non-animal images disproportionately frequent [5],
[32].

o Camera Malfunctions: Equipment issues, such as
lens discoloration or hardware failures, introduce
additional artifacts and noise into the dataset [3].

To address these challenges, specialized preprocessing
techniques or human-driven image selection are often
required. Also, a rigorous approach to result analysis is
required to ensure reliable results.

1) Supervised Learning Applications in Wildlife Classifi-
cation: Supervised Learning is the dominant paradigm
for computer vision tasks, including wildlife classification,
thanks to its ability to extract meaningful features from
image data [12]. In the context of wildlife images obtained
from camera traps, Supervised Learning address the com-
plex challenges mentioned earlier when paired with Data
Augmentation techniques. The use of Convolutional Neural
Networks (CNNs) and Vision Transformers (ViTs) has
become prevalent, showing promising performance across
diverse datasets.



Convolutional Neural Networks (CNNs). CNNs has
been extensively employed in wildlife classification, the
following architectures have shown promising results:

o ResNet: [11] reported an 83% accuracy using ResNet-
50 (with a similar result using VGG-16) on a dataset
compiled from camera traps in Gorongosa National
Park, Mozambique. This dataset contains over 111
thousand images from 20 species and did not suffer
from occlusion or heavy blurring, although it faced
some challenges related to lighting conditions. Addi-
tionally, [10] demonstrated that ResNet-101 achieved
an accuracy of 91.5% on the Snapshot Serengeti
dataset for an image classification task. This dataset
consists of 3.2 million camera trap images, including
48 labeled species. However, the data suffered from
issues such as heavy imbalanced classes, blurring due
to animal movement, varying lighting conditions, and
differences in the distances of the targets.

o VGG: [32] leveraged VGG-16 with transfer learning to
achieve an accuracy of 89.12%. The dataset comprised
over 33 thousand labeled images from 19 species
captured via camera traps in the Ladakh region of
India. The authors do not discuss the complete extent
of image-related challenges but mention that, as in
other studies, issues as changing weather, improper
illumination, and obstructed camera angles were
present. They addressed the most problematic images
by manually deleting outliers. Similarly, [22] employed
the Missouri Camera Traps dataset, which consists
of approximately 20,000 images distributed across six
animal classes. Class imbalance and environmental
variability, including differences in lighting, weather
conditions, and backgrounds, made the classification
task challenging. The authors found that VGG-16
achieved the best classification accuracy at 69.5%. As
previously mentioned, [11] observed nearly identical
results when comparing ResNet-50 and VGG-16.

o EfficientNet: Although EfficientNet is less fre-
quently used than other architectures, it demonstrates
strengths in training speed and achieves superior
results on certain datasets. [5] applied EfficientNet
to rank 7Tth in the iWildCam 2019 competition. The
corresponding dataset contains over 243,000 training
images representing 14 animal species. Key challenges
included class imbalance, poor image quality, and
regional variations.

Vision Transformers (ViTs): The introduction of Vision
Transformers (ViTs) has marked a important shift in
wildlife classification, moving from traditional CNNs to
Transformer based architectures. Recent research demon-
strating their superior performance on certain datasets. For
example, [33] highlights the application of ViTs in marine
animal classification, achieving higher accuracy (90%) than
ResNet-50 on a dataset of marine wildlife containing 600
training samples across eight species. The dataset exhibits
significant class imbalance, with images often displaying
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blurring and cluttered backgrounds. Similarly, [34] utilized
the OpenAnimalTracks dataset, a challenging classification
dataset designed to predict animal species based solely on
their tracks. This dataset comprises 3579 images from 18
different species and suffers from severe class imbalance.
ViT outperformed ResNet-50, VGG-16, and EfficientNet,
achieving an accuracy of 68.01%.

C. Self-Supervised Learning

Although Supervised Learning is the dominant paradigm
for computer vision tasks, when facing label scarcity Self-
Supervised Learning could help to significantly improve
accuracy [12], [28]. A recent literature review of 350 papers
concluded that self-supervised learning plays a critical
role in the development of ChatGPT-3 and ChatGPT-
4, given its ability to effectively leverage unlabeled data,
which constitutes the most prevalent dataset type for
current GPT models [35]. For camera trap images, [36]
shows an improvement using SimCLR over Supervised
Learning in the Serengeti dataset, the same used by
[10], reaching an accuracy of 94.4%, almost 3 percentage
points improvement compared against ResNet-101. Other
studies, like [37] evaluate various Self-Supervised Learning
methods applied to camera trap datasets. The authors
compare three methods: SimCLR, MoCo v2, and a novel
temporal positive selection (TPS) method. On the Snapshot
Serengeti dataset, TPS achieves the best results, with
an accuracy of 64.2% using only 1% of labeled data,
outperforming SimCLR (61.8%) and MoCo v2 (62.1%). At
10% labeled data, TPS reaches 76.2%, surpassing SimCLR
(74.8%) and MoCo v2 (75.4%). This study concludes that
Self-Supervised Learning hold great promise for biodiver-
sity monitoring as unlabeled datasets expand. Although
SimCLR is not always ranked as the top classification
algorithm, its performance difference compared to the best
performer is usually minimal. Moreover, its implementation
is relatively straightforward compared to MoCo or other
tailored algorithms. Therefore, it is the algorithm we will
use in this document.

D. Supervised and Self-Supervised Algorithms

Considering the literature review from the last subsection,
we are going to train ResNet, VGG, EfficientNet, Vision
Transformers (ViT), and SimCLR. This subsection provides
a technical overview of those algorithms.

o ResNet (Residual Networks): introduced by [13],
focus on reducing the vanishing gradient problem by
introducing residual connections. These connections
facilitate the training of deep architectures by enabling
the learning of identity mappings, which allows a
stable gradient movement during backpropagation.
The backbone of ResNet’s architecture consists of:
i) a residual block, which bypass the input to an
intermediate layer; ii) a convolutional layer; iii) batch
normalization; iv) ReLU activation functions. ResNet-
152 achieves a top-1 accuracy of 77.0% on the
ImageNet dataset [18].



e VGG (Visual Geometry Group Networks): de-
veloped by [38], is characterized by its use of small
convolutional filters (3x3) throughout the network,
combined with max-pooling layers to gradually reduce
spatial dimensions and increase the number of feature
channels, enabling the extraction of more abstract
and complex features at each stage. This uniform
configuration enhances feature hierarchy learning and
simplifies the design compared to earlier architectures.
VGG16 achieves a top-1 accuracy of 71.5%, while
VGG19 reaches 71.6% on ImageNet.

« EfficientNet: proposed by [39], introduces a com-
pound scaling method to systematically scale net-
work dimensions—depth, width, and input resolu-
tion—using a fixed scaling coefficient. The architecture
is based on mobile inverted bottleneck convolutions
(MBConv) and incorporates squeeze-and-excitation
blocks for improved channel-wise feature recalibration.
The EfficientNet-B7 variant achieves a top-1 accuracy
of 84.4% on ImageNet, while being significantly more
computationally efficient than traditional architectures
like ResNet and VGG.

o Vision Transformers (ViT): Vision Transformers
(ViT), introduced [15], uses self-attention instead of
convolutional layers. Self-attention consist in dividing
input images into fixed-size subsets, which are linearly
represented into a sequence and then processed by
a transformer decoder. The self-attention mechanism
enables ViT to model to learn dependencies between
all subsets within the input. Pretrained on ImageNet-
21k and fine-tuned on ImageNet, ViT achieves a top-1
accuracy of 84.0% with the ViT-B/16 configuration.

o SimCLR (Simple Framework for Contrastive
Learning): introduced by [28], is a self-supervised
model that learns by maximizing the similitude be-
tween augmented frames (heavily distorted views of
the original image) of the same image while separating
frames of different images in a latent space. SimCLR
achieve this objective by optimizing a contrastive loss.
When fine-tuned on ImageNet, SimCLR, achieves a
top-1 accuracy of 76.5% using a ResNet-50 encoder.
SimCLR showcases the ability of self-supervised learn-
ing to rival or even outperform supervised algorithms
in computer vision classification tasks.

E. Agnostic Approach to Training

Given the uncertainty about how pretrained features align
with the unique characteristics of biodiversity datasets, this
study adopts an agnostic approach to model training;:

1) Fully Retraining All Layers: When labeled data is
sufficiently available, retraining models like ResNet,
MobileNet, EfficientNet, or ViT from scratch allows
them to learn task-specific representations. However,
this approach requires significant computational re-

sources and risks overfitting in scenarios with limited
data [12].

15

2) Transfer Learning with Partial Fine-Tuning:
Transfer learning is particularly useful when labeled
data is scarce or computational resources are limited
to re-train the full architecture. Given the pretrained
weights, it keeps knowledge from low-level features,
such as edges and textures, while fine-tuning the
last layers. When fine-tuning, the model learn high-
level features of the data that usually represent data-
specific information [17].

3) Self-Supervised Learning with SimCLR: offers
an alternative by leveraging unlabeled data [28], we
are going to use ResNet as encoder, retraining the
full model without experimenting with percentage of
frozen layers for computational reasons.

F. Key Insights

By evaluating these architectures under fully retrained,
partially fine-tuned, and SimCLR-based self-supervised
settings, this study represents a comprehensive analysis
of current Computer Vision classifiers’ performance for
wildlife image classification.

III. MATERIALS AND METHODS
A. Materials

1) Dataset Description: The datasets utilized in this study
were collected at the Tiputini Biodiversity Station (TBS) in
Yasuni National Park, Ecuador, one of the most biodiverse
regions in the world [16]. These datasets are categorized
into labeled and unlabeled subsets:

Labeled Dataset:: This dataset is the same as the one used
on [4], it comprises of 5,214 images manually annotated and
selected by biology experts. The dataset include two species:
Taypec and Taytaj, species selected for their physical
similitude, posing a particularly difficult task for computer
vision. These images were captured using camera traps. All
labeled images were resized to a fixed resolution of 416x416
pixels, given that our objective is pure classification we
decide to use bounding box as given, hence, for each image
we only use the information within bounding box.

Taypec

Taytaj

Figure 1: Representative images of labeled data

Key characteristics of the labeled dataset:



¢ Species Distribution: The dataset is imbalanced,
with 65.1% of images classified as Taypec and 34.9%
as Taytaj.

e Animal Count per Image: Taypec images contain
an average of 2.88 animals, with a maximum of 12,
whereas Taytaj images feature an average of 1.71
animals, with a maximum of 7.

o Diversity in Capture Conditions: Images include
a range of lighting conditions, times of day, and
varying environmental backgrounds. Characteristics
handpicked in order to provide the most diverse and
challenging dataset.

Unlabeled Dataset:: The unlabeled dataset is significantly
larger, containing approximately 97,000 high-resolution
images captured through the same camera traps. Unlike the
labeled dataset, it includes images of around 70 different,
unidentified species, which remain unlabeled [4]. These
images were processed using the MegaDetector-v5, model
applied for this particular dataset by [40], which identified
45,000 frames containing wildlife and provided a bounding
box, we only use the information within the bounding box.
We used an arbitrary cut-point of 85% of confidence in
order to select images with animals. This cut-point could
be used as a hyperparameter in future studies.

Details about the unlabeled dataset:

o Resolution Variability: The images retain their
original high-resolution format, which varies across
the dataset. This higher resolution aids in detecting
fine-grained details but adds computational time to
the analysis.

o Species Diversity: The dataset features a diverse ar-
ray of species and environmental conditions, which en-
hances its value for self-supervised learning approaches
like SiImCLR, where feature representation from a wide
variety of contexts increases the probability of the
model to improve accuracy in validation and test sets.

¢ Role in Study: This dataset complements the labeled
subset by providing a rich source for unsupervised
training.

2) Hardware and Software Specifications: The computa-
tional experiments were conducted using advanced hard-
ware and software configurations to allow for the dataset
size and complexity:

« Hardware:

— NVIDIA A100 GPU with 80 GB of VRAM.
o Software:

— Frameworks and Libraries:

Python: 3.10.15

PyTorch: 2.5.1+cul2.1
Torchvision: 0.20.14cul2.1
PyTorch Lightning: 2.4.0
Transformers: 4.46.3

PIL (Pillow): 11.0.0
Pandas: 2.2.2

Numpy: 1.26.4

*
*
*
*
*
*
*
*
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— Operating System:
* Ubuntu 22.04.4 LTS (GNU/Linux 5.15.0-124-
generic x86_ 64)
3) Preprocessing Techniques: To optimize the datasets for
training and evaluation, distinct preprocessing pipelines
were applied to the labeled and unlabeled datasets, tailored
to their respective roles in the study.

Unlabeled Dataset:

For the unlabeled dataset, a preprocessing pipeline was
designed to maximize the effectiveness of SimCLR based
on the recommendations from [41] a follow up paper from
the original where states a possible best preprocessing for
SimCLR.

« Random Horizontal Flip: Flips the image horizon-
tally with a 50% probability.

o« Random Resized Crop: Crops a random portion of
the image and resizes it to 224 x 224 pixels, introducing
positional variation.

« Random Color Jitter: Applies brightness, contrast,
saturation, and hue adjustments with a probability of
0.8. Particularly:

— Brightness, contrast, and saturation: randomly
modified within +£50%.
— Hue: Randomly modified within +0.1.

« Random Grayscale: Introduces grayscale with a
probability of 0.2, simulating images with reduced
color information.

e Gaussian Blur: Introduces a Gaussian blur with
a kernel size of 9, which applies a smoothing effect,
simulating lower image clarity.

¢ Normalization: Normalizes the image pixel values
to have a mean of 0.5 and a standard deviation of 0.5
for each channel, improving model convergence.

Labeled Dataset:

Due to the high degree of visual similarity between the
Taypec and Taytaj classes, we adopted a comprehensive
data augmentation pipeline to increase intra-class vari-
ance and improve generalization performance. Similar
approaches have been suggested in prior research, which
highlights the effectiveness of augmentation strategies such
as random cropping, flipping, color jittering, and Gaussian
blurring in handling visually challenging datasets [42]. The
following steps were applied:

¢ Training Preprocessing:

— Random Resized Crop: Crops a random region
of the image and resizes it to the target size. The
scale of the crop is randomly selected between
80% and 100% of the original size, with an aspect
ratio chosen between 0.75 and 1.33.

— Random Horizontal and Vertical Flip: Flips
the image horizontally and vertically, each with a
probability of 0.5.

— Random Color Jitter: Introduces random vari-
ations in brightness, contrast, saturation, and hue,



with maximum changes of 0.4, 0.4, 0.4, and 0.2,
respectively, applied with a probability of 0.8.

— Random Grayscale: Converts the image to
grayscale with a probability of 0.2.

— Gaussian Blur: Applies a Gaussian blur with a
kernel size of 5 and a sigma range of 0.1 to 2.0,
applied with a probability of 0.5.

— Random Affine Transformations: Applies
geometric transformations simulating variations
in viewpoint and orientation:

+ Rotation: Randomly rotates the image to a
maximum of 15 degrees.

+ Translation: Shifts the image horizontally and
vertically to a maximum of 10% of its size.

x Scaling: Scales the image by a random factor
between 0.9 and 1.1.

* Shearing: Applies a shift in the x-axis while
keeping y-axis fixed, with a maximum angle of
10 degrees.

— Random Erasing: Randomly erases a subsection
of the image with a probability of 0.5. The region
encompasses between 2% to 33% of the image
area. This region is replaced with random values.

— Normalization: Pixel values were normalized to
a mean of [0.485,0.456,0.406] and a standard de-
viation of [0.229,0.224,0.225], based on ImageNet
parameters.

o Validation and Test Preprocessing: Validation
and test does not uses any data augmentation, only
formatting for easier computations:

— Resizing: All images were resized to the target
size.

— Normalization: mean of [0.485, 0.456, 0.406] and
a standard deviation of [0.229,0.224, 0.225].

B. Methodology

The methodology for this study is structured into four
distinct blocks: preprocessing, supervised training, self-
supervised training, and performance comparison. Each
block is tailored to address the challenging aspects of
this particular dataset, using both labeled and unlabeled
images.

1) Block 1: Preprocessing:

e Unlabeled Dataset: The unlabeled dataset, compris-
ing approximately 97,000 images captured through
camera traps at the Tiputini Biodiversity Station
(TBS), was processed using MegaDetector-v5. Images
with a detection confidence of 85% or higher were
extracted, resulting in a filtered subset of 45,000
images. These images, featuring a wide variety of
species and environmental conditions, were cropped
into the suggested bounding box and then resized to
224 x 224 pixels, for compatibility with ResNet-50.
Data augmentation, as described in the Preprocessing
Techniques subsection, was applied, to comply with
contrastive learning data requirements.
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o Labeled Dataset: The suggested bounding box was
used, then, the dataset was downsampled to ensure
balanced classes. The balanced dataset was then
divided into:

— Training set: 70% of the images.

— Validation set: 20% of the images.

— Testing set: 10% of the images.
Special care was taken to avoid data contamination,
as many images contain multiple animals, which could
appear in different subsets if not handled properly.

o Contrastive Task Splitting: For the self-supervised
contrastive task, the unlabeled dataset was split into:

— Training set: 80% of the images.
— Validation set: 20% of the images.
The labeled dataset was retained exclusively for super-
vised tasks, following the same train-validation-test
split as described before.
2) Block 2: Supervised Training:

o Models: We use four select architectures based on
the state-of-the-art review: i) ResNet-50, ii) VGG-16,
iii) EfficientNet-B7, iv) ViT

o Hyperparameter Optimization: Hyperparameters
were optimized via grid search:

— Learning rate: {0.001, 0.0001}.

— Batch size: {32, 64}.

— Frozen layers: {0%, 15%, 50%, 80%, 95%},
allowing exploration of transfer learning with total
and partial fine-tuning.

Models were trained for up to 200 epochs, with early
stopping applied after 10 epochs of no improvement
in validation binary cross-entropy loss.

3) Block 3: Self-Supervised Training with StimCLR:

o Encoder: ResNet-50.

o« Data Augmentation: as described in the Prepro-
cessing Techniques subsection.

e Contrastive Loss Optimization: SimCLR’s con-
trastive loss was optimized with the following param-
eters:

— Temperature parameter: 0.1.

— Batch size: 256.

— Learning rate: le-4.
Training was conducted for 500 epochs and model
patience of 20 epochs to ensure convergence of the
learned representations.

o Fine-Tuning: The learned feature representations
from SimCLR were fine-tuned on the labeled training
dataset. Performance was evaluated using the valida-
tion set to keep consistency with supervised models.
This step also involves hyperparameter optimization
of the classifier with the following values: i) batch size:
16, 32, 64; ii) learningn rate: le-5, le-4, le-3; iii) weight
decay: 0.1, 0.01, 0.001, 0.

4) Block 4: Performance Comparison:

e Initial Evaluation: All models were first evaluated
using a single train-validation split, using the accuracy



as the only metric given the balanced information we
get after undersampling.
Cross-Validation: The top two models from the
initial evaluation were subjected to repeated k-fold
cross-validation:

— Folds: 5 folds.

— Repetitions: 5 repetitions.
Folds were sampled from the combined training and
validation sets of the original labeled dataset and then
undersampled.
Embedding Visualization: To compare the learned
feature representations, t-distributed Stochastic Neigh-
bor Embedding (t-SNE) was applied. t-SNE provides
a visual representation of the embeddings, helping
understand class separability and clustering behavior.
Final Testing: The best-performing model from the
cross-validation phase was evaluated on the test set,
providing a definitive measure of its generalization
performance.
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EfficientNet with 12.3 minutes. Showing that the
best results are achieved without the most expensive
computational models, but if training speed is the
principal concerning ResNet-50 could be used.

Also, we can see that ViT and EfficientNet-B7 show
similar training accuracy, but ViT have better gen-
eralization on unseen images. Additionally, VGG-16
shows high instability in validation accuracy (Figure
6).

Broadly, these results demonstrate the effectiveness of
ViT’s attention-based architecture in distinguishing
between the highly similar classes, despite the limited
size of the labeled dataset. Statistical analysis after
repeated k-fold cross-validation confirmed that the
performance of ViT against EfficientNet is superior (p
< 0.05).

SimCLR Performance: The self-supervised Sim-
CLR model underperformed all supervised approaches,
achieving an accuracy of 84.0% under the best
hyperparameters of its classifier (Table III). Statistical

In order to better illustrate the pipeline of our work
we present a graph summarizing a supervised learning
example:

analysis confirmed that the performance difference
against ViT were significant (p < 0.05). Although for
this particular application SimCLR did not showed

Data Collection Data Labeling Data Wrangling

Data Augmentation

Multiple
augmentations
for complex
images

- One frame for
Zurita et al. [4] cach bounding
labeling team box
- Undersampling

Metrics Prediction

ViT Architecture

MLP.
Head
I

Class
Taypec
Taytaj

-Accuracy
-Loss  |e——

Transformer Encoder

] | [
-!4"'11 Vi

Figure 2: Flow Chart for ViT Training

The full implementation of this work can be found in the
GitHub repository.

IV. RESULTS AND DISCUSSION

stellar performance, its near the top accuracy suggest
it could be valuable for future research during the
labeling process, potentially reducing the need for
expensive labeling efforts.

Frozen Layers Analysis:

The best validation accuracy for ViT is achieved
when all its layers are retrained (0% frozen layers),
suggesting that the features learned from ImageNet
are not informative for these camera traps images.
Observation which is further supported by the reduc-
tion in accuracy across all four supervised models
as more layers are frozen. In contrast, SimCLR re-
trains the full Resnet-50 architecture achieving relative
poor results. This performance gap suggests that this
SimCLR configuration is less effective than supervised
models for tasks that require fine-grained classification.
Together, these findings emphasize the importance of
full retraining for models when ImageNet features are
insufficiently transferable, while also demonstrating
the limitations of self-supervised approaches like Sim-
CLR with ResNet-50 as encoder in certain domains.

A. Quantitative Results

o Supervised Models: Within the supervised models,
Vision Transformer (ViT) achieved the highest accu-
racy, reaching 90.1%. EfficientNet-B7 and ResNet-

B. Qualitative Results
o Embedding Visualization (t-SNE): The t-SNE

50 followed with accuracies of 88.0% and 86.4%,
respectively. VGG-16 showed the weakest performance
with 86.0% (Figure 4). These results correspond to the
best accuracy for each architecture after grid-search,
to see all results refer to Table I and II. Since ViT is
the best result overall we compute its test accuracy
getting a robust value 89.38.

Training time shows interesting results, ResNet-50
is the fastest with 4.12 minutes, followed by ViT
with 9.6 minutes, VGG-16 with 10.5 minutes and

visualization of learned embeddings (computed on
validation dataset) shows differences between ViT and
SimCLR. ViT’s embeddings form an almost linearly
separable space, underscoring its ability to learn
features to differentiate between the two species. ViT’s
embeddings exhibit a relatively smooth dispersion of
points, suggesting the absence of well-defined clusters
beyond the separation of the target classes. In con-
trast, SiImCLR’s embeddings produce a more complex
and less separable space, showing limitations when
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Figure 5: Embedding Visualization (t-SNE). Comparing
SimCLR against best Supervised Model (ViT).

Figure 3: SimCLR Contrastive Training and Validation
Results per Epoch.
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contains most of the non separable samples, which

correspond to very low quality frames; iii) Cluster 6
and 12 are also challenging regions, its images shows
blurring, occlusion and poor lightning. Despite the
poor quality of the images the classifier only shows
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Figure 4: Best Accuracy per architecture and percentage
of frozen layer: SImCLR vs. Supervised Learning Models.

C. Discussion

e Insights from Results: The results clearly shows

learning a representation that captures the species
differences.(Figure 5).

e Error Analysis: In order to perform an analysis of
misclassifications we introduced a k-means clustering
to the t-SNE space from ViT’s embeddings (Figure
7). Despite the smooth structure of ViT’s t-SNE,
we identified 15 clusters. Insights were found from
five randomly selected images per cluster (Figure
8): i) Clusters 0 and 5 are the more distant to the
apparent linear separation of classes, those images
are clear with no occlusion or blurring; ii) Cluster 2

the advantages of ViT ability to detected small details
and separate images based on them within a complex
ecological dataset, demonstrating strong performance
against CNN despite its reliance on a small labeled
dataset. The results from SimCLR, although relative
worse, could still be considered useful when labeled
data is typically scarce and expensive to obtain.

Limitations: The applicability of our results to
other biodiversity datasets may face challenges due
to domain-specific factors such as differing species
characteristics and environmental conditions. Further
experimentation is needed to address these challenges.



V. CONCLUSIONS
A. Summary of Findings

The study demonstrated the efficacy of transformer-based
learning for challenging wildlife image classification. ViT
outperformed by 2 percentage points the second-best model,
with a validation accuracy of 90.1% and a robust test
accuracy of 89.38. This highlights the importance of
fine-grained feature detection in challenging environments.
Furthermore, the comparatively strong performance of self-
supervised learning (accuracy of 84%) suggests potential
to reduce the need for extensive labeled datasets.

B. Broader Implications

Our findings emphasize the importance of fine-grained
feature detection and the potential to leverage unlabeled
data in ecological AI applications. Transformer-based
image classifiers offer promising results in complex real-
life datasets. Self-supervised learning approaches, such as
SimCLR, might reduce the requirement of large labeled
datasets, lowering the price of biodiversity monitoring.
These techniques facilitate the development of more robust
classification models, even in scenarios of poor-quality
images and limited labeled data.

C. Future Work

Potential directions for future research can be explored to
advance this:

Future research directions in this domain can focus on the
following aspects:

o Self-Supervised Algorithm Exploration: Investi-
gate and implement alternative self-supervised learn-
ing algorithms beyond SimCLR, given the rapid
advancements in Deep Learning since its introduction
in 2020. At the time of writing, the best self-supervised
model for ImageNet is DINOv2 (with a transformer
based architecture) with an accuracy of 82.7% against
76.5% of the original SImCLR [43].

¢ Enhaced SimCLR Hyperparameter Optimiza-
tion: Perform further optimization of SimCLR hyper-
parameters and use additional encoder architectures
like ViT instead of ResNet-50. This approach leads to
an improvement of 3.5 percentage points in accuracy
in ImageNet against standard SimCLR according to
[44].

o Active Learning for Labeling: Incorporate active
learning strategies to improve labeling efficiency if
possible during the labeling process with biology
experts.
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APPENDIX A
ADDITIONAL RESULTS

Table I: Grid Search Results for Supervised Architectures (Part 1)

Model Learning Batch Frozen Layers Validation Validation Training Time
Rate Size Proportion Loss Accuracy in Minutes
EfficientNet 0.0001 32 0.00 0.2871 0.8760 9.77
EfficientNet 0.0001 32 0.15 0.2888 0.8801 12.33
EfficientNet 0.0001 32 0.50 0.3147 0.8557 6.50
EfficientNet 0.0001 32 0.80 0.4773 0.7683 25.26
EfficientNet 0.0001 32 0.95 0.6031 0.6941 21.56
EfficientNet 0.0001 64 0.00 0.3290 0.8689 9.41
EfficientNet 0.0001 64 0.15 0.3251 0.8659 9.30
EfficientNet 0.0001 64 0.50 0.3307 0.8608 6.67
EfficientNet 0.0001 64 0.80 0.4944 0.7520 17.89
EfficientNet 0.0001 64 0.95 0.5896 0.7063 42.30
EfficientNet 0.0010 32 0.00 0.3753 0.8333 9.75
EfficientNet 0.0010 32 0.15 0.3305 0.8486 12.67
EfficientNet 0.0010 32 0.50 0.3608 0.8384 6.43
EfficientNet 0.0010 32 0.80 0.4969 0.7490 4.85
EfficientNet 0.0010 32 0.95 0.5862 0.6951 4.92
EfficientNet 0.0010 64 0.00 0.3560 0.8496 11.55
EfficientNet 0.0010 64 0.15 0.3492 0.8557 11.30
EfficientNet 0.0010 64 0.50 0.3695 0.8516 10.02
EfficientNet 0.0010 64 0.80 0.4891 0.7663 4.88
EfficientNet 0.0010 64 0.95 0.5759 0.7002 9.05
ResNet 0.0001 32 0.00 0.3181 0.8648 4.12
ResNet 0.0001 32 0.15 0.3422 0.8608 4.27
ResNet 0.0001 32 0.50 0.3594 0.8608 3.71
ResNet 0.0001 32 0.80 0.6090 0.6728 5.76
ResNet 0.0001 32 0.95 0.6090 0.6728 5.80
ResNet 0.0001 64 0.00 0.3542 0.8547 4.74
ResNet 0.0001 64 0.15 0.3709 0.8404 4.25
ResNet 0.0001 64 0.50 0.3558 0.8496 3.07
ResNet 0.0001 64 0.80 0.5956 0.6707 12.84
ResNet 0.0001 64 0.95 0.5956 0.6707 13.83
ResNet 0.0010 32 0.00 0.4398 0.7917 5.51
ResNet 0.0010 32 0.15 0.4125 0.8079 4.81
ResNet 0.0010 32 0.50 0.3743 0.8272 6.96
ResNet 0.0010 32 0.80 0.5570 0.7215 5.27
ResNet 0.0010 32 0.95 0.5570 0.7215 4.97
ResNet 0.0010 64 0.00 0.4150 0.8232 5.83
ResNet 0.0010 64 0.15 0.4117 0.8201 6.29
ResNet 0.0010 64 0.50 0.4080 0.8283 3.34
ResNet 0.0010 64 0.80 0.5497 0.7307 6.46
ResNet 0.0010 64 0.95 0.5497 0.7307 6.22
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Table II: Grid Search Results for Supervised Architectures (Part 2)

Model Learning Batch Frozen Layers Validation Validation Training Time
Rate Size Proportion Loss Accuracy in Minutes
VGG 0.0001 32 0.00 0.3826 0.8323 6.74
VGG 0.0001 32 0.15 0.3590 0.8476 6.69
VGG 0.0001 32 0.50 0.3702 0.8293 3.23
VGG 0.0001 32 0.80 0.4297 0.8028 8.82
VGG 0.0001 32 0.95 0.5539 0.7104 6.68
VGG 0.0001 64 0.00 0.3590 0.8415 9.38
VGG 0.0001 64 0.15 0.3305 0.8618 10.51
VGG 0.0001 64 0.50 0.3478 0.8486 4.75
VGG 0.0001 64 0.80 0.4386 0.7967 3.80
VGG 0.0001 64 0.95 0.5574 0.7154 7.53
VGG 0.0010 32 0.00 0.6913 0.5102 2.27
VGG 0.0010 32 0.15 0.6917 0.4837 2.72
VGG 0.0010 32 0.50 0.6932 0.5000 2.03
VGG 0.0010 32 0.80 0.4904 0.7673 2.73
VGG 0.0010 32 0.95 0.5276 0.7470 3.64
VGG 0.0010 64 0.00 0.6931 0.5000 4.60
VGG 0.0010 64 0.15 0.6932 0.5000 2.81
VGG 0.0010 64 0.50 0.6932 0.5000 2.76
VGG 0.0010 64 0.80 0.4536 0.7846 5.51
VGG 0.0010 64 0.95 0.5065 0.7612 5.85
ViT 0.0001 32 0.00 0.2498 0.8933 10.69
ViT 0.0001 32 0.15 0.2508 0.8984 9.01
ViT 0.0001 32 0.50 0.2860 0.8780 7.89
ViT 0.0001 32 0.80 0.3460 0.8384 6.09
ViT 0.0001 32 0.95 0.5243 0.7480 5.47
ViT 0.0001 64 0.00 0.2551 0.9014 9.63
ViT 0.0001 64 0.15 0.2662 0.8933 9.59
ViT 0.0001 64 0.50 0.2801 0.8720 8.38
ViT 0.0001 64 0.80 0.3353 0.8608 7.82
ViT 0.0001 64 0.95 0.5048 0.7409 10.58
ViT 0.0010 32 0.00 0.5560 0.7124 39.75
ViT 0.0010 32 0.15 0.3770 0.8404 19.57
ViT 0.0010 32 0.50 0.3292 0.8506 7.35
ViT 0.0010 32 0.80 0.3199 0.8699 4.62
ViT 0.0010 32 0.95 0.4690 0.7724 4.14
ViT 0.0010 64 0.00 0.6763 0.5772 9.54
ViT 0.0010 64 0.15 0.3133 0.8608 31.11
ViT 0.0010 64 0.50 0.3042 0.8689 8.35
ViT 0.0010 64 0.80 0.3132 0.8659 5.83
ViT 0.0010 64 0.95 0.4738 0.7774 3.65
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Figure 6: SimCLR Contrastive Training and Validation Results per Epoch.
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Table III: Grid Search Results for SimCLR Logistic Classifier

Batch Learning Weight Validation

Size Rate Decay Accuracy
16 0.00001 0.000 0.8130
16 0.00001 0.001 0.8130
16 0.00001 0.010 0.8130
16 0.00001 0.100 0.8130
16 0.00010 0.000 0.8343
16 0.00010 0.001 0.8354
16 0.00010 0.010 0.8333
16 0.00010 0.100 0.8343
16 0.00100 0.000 0.8323
16 0.00100 0.001 0.8354
16 0.00100 0.010 0.8354
16 0.00100 0.100 0.8333
32 0.00001 0.000 0.7988
32 0.00001 0.001 0.7988
32 0.00001 0.010 0.7988
32 0.00001 0.100 0.7978
32 0.00010 0.000 0.8333
32 0.00010 0.001 0.8293
32 0.00010 0.010 0.8303
32 0.00010 0.100 0.8333
32 0.00100 0.000 0.8364
32 0.00100 0.001 0.8364
32 0.00100 0.010 0.8404
32 0.00100 0.100 0.8384
64 0.00001 0.000 0.7815
64 0.00001 0.001 0.7805
64 0.00001 0.010 0.7815
64 0.00001 0.100 0.7815
64 0.00010 0.000 0.8262
64 0.00010 0.001 0.8272
64 0.00010 0.010 0.8252
64 0.00010 0.100 0.8262
64 0.00100 0.000 0.8374
64 0.00100 0.001 0.8364
64 0.00100 0.010 0.8394

64 0.00100 0.100 0.8404




Figure 7: Elbow Method Graph and t-SNE Colored by Cluster.
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Figure 8: Sample Images from Selected Clusters.
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