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RESUMEN

El monitoreo de la vida silvestre presenta desafios significativos en la clasificacion de especies
visualmente similares, especialmente cuando se dispone de datos etiquetados limitados. Este trabajo se
centra en clasificar dos especies relacionadas, el pecari de labios blancos ( Tayassu pecari) y el pecari de
collar (Pecari tajacu), utilizando técnicas de aprendizaje semisupervisado. Aprovechando extractores
de caracteristicas de tltima generacion—GoogLeNet, EfficientNet y Vision Transformer (ViT)—y
explorando métodos como el autoentrenamiento y la propagacion de etiquetas, esta investigacion
demuestra el potencial de los modelos semisupervisados para mejorar el desempefio de clasificacion
con conjuntos de datos etiquetados limitados. La validaciéon cruzada Monte Carlo confirma la robustez
de estos hallazgos, revelando que més alld del 70% de datos etiquetados, las mejoras en el desempeno
disminuyen debido a los rendimientos sin mejoras representativas. El estudio también resalta el
rendimiento superior de los modelos completamente supervisados con el 100% de datos etiquetados,
subrayando la compensacién entre el esfuerzo de etiquetado y la precision del modelo.

Palabras clave: monitoreo de vida silvestre, aprendizaje semisupervisado, pecari de labios blancos,
pecari de collar, Vision Transformer, propagacion de etiquetas, autoentrenamiento, validacion cruzada
Monte Carlo, monitoreo de biodiversidad.



ABSTRACT

Wildlife monitoring poses significant challenges in the classification of visually similar species,
especially with limited labeled data. This work focuses on classifying two related species, the white-
lipped peccary (Tayassu pecari) and the collared peccary (Pecari tajacu), using semi-supervised
learning techniques. By leveraging state-of-the-art feature extractors—GoogLeNet, EfficientNet, and
Vision Transformer (ViT)—and exploring methods such as self-training and label propagation, this
research demonstrates the potential of semi-supervised models in improving classification performance
with limited labeled datasets. The Monte Carlo cross-validation validates the robustness of these
findings, revealing that beyond 70% labeled data, performance gains diminish due to diminishing
returns. The study also highlights the superior performance of fully supervised models with 100%
labeled data, underscoring the trade-off between labeling effort and model accuracy.

Key words: wildlife monitoring, semi-supervised learning, white-lipped peccary, collared peccary,
Vision Transformer, label propagation, self-training, Monte Carlo cross-validation, biodiversity
monitoring.
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Optimizing Semi-Supervised Models for Wildlife
Classification in Tiputini Camera Trap Images

Felipe Toscano and Felipe Grijalva, Senior Member, IEEE

Abstract—Wildlife monitoring poses significant chal-
lenges in the classification of visually similar species,
especially with limited labeled data. This work focuses
on classifying two related species, the white-lipped
peccary (Tayassu pecari) and the collared peccary
(Pecari tajacu), using semi-supervised learning tech-
niques. By leveraging state-of-the-art feature extrac-
tors—GoogLeNet, EfficientNet, and Vision Transformer
(ViT)—and exploring methods such as self-training
and label propagation, this research demonstrates the
potential of semi-supervised models in improving classi-
fication performance with limited labeled datasets. The
Monte Carlo cross-validation validates the robustness of
these findings, revealing that beyond 70% labeled data,
performance gains diminish due to diminishing returns.
The study also highlights the superior performance
of fully supervised models with 100% labeled data,
underscoring the trade-off between labeling effort and
model accuracy.

Index Terms—wildlife monitoring, semi-supervised
learning, white-lipped peccary, collared peccary, Vision
Transformer, label propagation, self-training, Monte
Carlo cross-validation, biodiversity monitoring.

I. INTRODUCTION

N wildlife monitoring, the classification of animal species

from camera trap images poses a significant challenge,
especially when the species are visually similar and the
available labeled data is limited [1]. This project focuses
on classifying two closely related species: the white-lipped
peccary (Taypec) and the collared peccary (Taytaj). These
species are difficult to distinguish due to their similar
physical characteristics, such as minor differences in snout
length and neck color. The challenge is further compounded
by the imbalanced nature of the dataset, which includes
significantly fewer images of collared peccaries than white-
lipped peccaries.

The dataset used for this project consists of three fold-
ers—Train, Validation (Val), and Test—each containing
images of the animals annotated with bounding boxes.
The distribution of bounding boxes across these folders is
imbalanced:

o Train: 3396 white-lipped peccaries, 1816 collared
peccaries

o Val: 875 white-lipped peccaries, 491 collared peccaries

o Test: 486 white-lipped peccaries, 269 collared peccaries

Felipe Toscano and Felipe Grijalva are with the Universidad
San  Francisco de Quito (USFQ), Ecuador. E-mails:
ftoscanoa@estud.usfq.edu.ec, fgrijalvaQusfq.edu.ec.

To address the data imbalance, data augmentation tech-
niques were applied exclusively to the training set for the
class with fewer images (collared peccary). These augmen-
tations include horizontal flips and small rotations between
-10 and 10 degrees, avoiding any transformations that could
distort the animals’ color or proportions. This decision
ensures that the key distinguishing features between the
two species, such as the length of the snout or neck color,
are not altered, which could lead to misclassification.

Given that collecting and labeling images is resource-
intensive and requires expert knowledge [2], the use of
semi-supervised learning models is explored in this work.
Semi-supervised learning allows the model to make use of
both labeled and unlabeled data, which is crucial when
labeled data is scarce. By leveraging the information from
labeled images, the model can infer labels for the unlabeled
images, thereby increasing the overall data available for
training.

In this project, two different semi-supervised learning
approaches are employed. Alongside this, three different
pretrained models—GoogleNet [3], EfficientNet [4], and
ViT [5]—are used as feature extractors before applying
the semi-supervised models. These models were chosen
for their varied architectures and strengths: GoogleNet’s
inception modules, EfficientNet’s balance between accuracy
and computational efficiency, and ViT’s novel approach of
processing images as sequences of patches. As Domingos
highlights in "The Master Algorithm" [6], integrating
diverse machine learning paradigms can effectively address
complex, real-world problems such as wildlife monitoring.

The expected outcome of this research is to demonstrate
that semi-supervised learning can significantly improve
classification accuracy in wildlife monitoring projects, espe-
cially in cases where labeled data is limited. By automating
parts of the labeling process, this approach could reduce
the need for extensive manual labeling, making it easier to
scale biodiversity monitoring efforts. Ultimately, this could
aid conservation initiatives by providing more accurate
data on species populations, particularly for species that
are difficult to distinguish visually.

II. PRIOR WORKS

Previous research has explored the use of supervised deep
learning models for the classification of animal species
in wildlife monitoring. One notable study, titled Towards
Automatic Animal Classification in Wildlife Environments
for Native Species Monitoring in the Amazon [7], focused



on using the YOLOv5 and Faster R-CNN architectures
to classify white-lipped peccaries (Taypec) and collared
peccaries (Taytaj) from camera trap images. This work
demonstrated the effectiveness of these state-of-the-art
object detection models in detecting and classifying these
species with a high degree of accuracy. YOLOvV5, in
particular, was found to outperform Faster R-CNN in
terms of mean Average Precision (mAP) and robustness,
especially in challenging conditions where multiple animals
appeared in the frame.

However, these approaches were fully supervised, rely-
ing entirely on labeled data for training, which limits
their applicability when labeled data is scarce. Given
the resource-intensive nature of manual image labeling,
this study highlights a gap in existing methodologies,
specifically in cases where data collection and annotation
are constrained. Wildlife communities often exhibit a
long-tailed distribution, with fewer images of rare species,
making classification challenging due to the imbalance in
data representation [8], [9]. Additionally, it is not just the
rarity of some species that poses a challenge; in many
wildlife datasets, a significant portion of the collected
information remains unlabeled. For example, Liu et al.
(2024) report that in their study of aquatic biodiver-
sity monitoring, only 15% of their dataset—comprising
300,000 hours of video—was labeled [10]. Miao et al.
(2021) addressed the labeling challenge by implementing
an iterative human-in-the-loop framework, where human
intervention is required only for low-confidence predictions.
This approach reduced the need for human annotations
by approximately 80% without sacrificing classification
accuracy. By leveraging high-confidence predictions as
pseudo-labels, their method efficiently updated the model
while maintaining an accuracy rate of about 90% in high-
confidence predictions, demonstrating the effectiveness of
minimizing expert intervention.

FixMatch, a recent semi-supervised learning (SSL) method,
combines pseudo-labeling (also referred to as self-training)
with consistency regularization to enhance model per-
formance with limited labeled data [11]. This approach
uses pseudo-labeling by generating artificial labels from
weakly-augmented unlabeled images, retaining these labels
only if the model’s confidence exceeds a certain threshold.
These pseudo-labels are then used to train the model
on strongly-augmented versions of the same images. The
effectiveness of self-training in this context demonstrates
that pseudo-labeling is a viable component for SSL models,
particularly in scenarios with limited labeled data, as
shown by FixMatch’s state-of-the-art results across various
benchmarks.

Building upon this foundation, our research proposes the
use of semi-supervised learning techniques to overcome
these limitations. By incorporating both labeled and
unlabeled data, we aim to improve classification perfor-
mance while reducing dependency on exhaustive manual
labeling. Additionally, our work applies data augmentation
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techniques to address the class imbalance inherent in the
dataset, focusing specifically on the collared peccary, which
has fewer labeled images. This semi-supervised approach
offers a scalable solution that could enhance biodiversity
monitoring efforts, particularly for visually similar species
where labeled data is scarce.

III. MATERIALS AND METHODS
A. Dataset

The dataset used in this study was provided by the Tiputini
Biodiversity Station USFQ, specifically curated for wildlife
monitoring of peccary species. It includes images and
bounding box annotations for two species: the white-lipped
peccary (Tayassu pecari, referred to as "Taypec") and the
collared peccary (Pecari tajacu, referred to as "Taytaj")
[12].

Figure 1. White-Lipped Peccary Figure 2. Collared Peccary

Figure 3. Comparison of White-Lipped Peccary (Taypec) and
Collared Peccary (Taytaj).

Tables I, II, and IIT summarize the distribution of images
and bounding boxes for each dataset subset.

Table 1
TRAINING SET DISTRIBUTION

Species | Images | Bounding Boxes
Taypec 1,178 3,396
Taytaj 1,070 1,816
Total 2,248 5,212
Table II
VALIDATION SET DISTRIBUTION
Species | Images | Bounding Boxes
Taypec 336 875
Taytaj 306 491
Total 642 1,366
Table ITT

TEST SET DISTRIBUTION

Species | Images | Bounding Boxes
Taypec 175 486

Taytaj 163 269

Total 338 755

To address class imbalance, weak data augmentation
techniques, including horizontal flips and small rotations



between -10 and 10 degrees, were applied exclusively to
the training set for the class with fewer examples (Taytaj).

B. Feature extraction models

In this study, three feature extraction models were selected
to leverage their unique architectures and the progression
of innovations over time: GoogLeNet, EfficientNet, and
Vision Transformer (ViT). GoogleNet, introduced in 2015
by Szegedy et al. [3], pioneered the use of inception modules,
which allow the model to capture multi-scale information
within the same layer. EfficientNet, developed by Tan and
Le in 2019 [4], optimizes both model accuracy and compu-
tational efficiency by systematically scaling depth, width,
and resolution, making it well-suited for computationally
constrained environments. Finally, ViT, introduced by
Dosovitskiy et al. in 2021 [5], represents a novel approach in
image processing by treating images as sequences of patches,
akin to words in natural language processing, which allows
it to capture long-range dependencies within an image.
These models were chosen for their varied architectures,
time of introduction, and their suitability for handling
complex image data.

C. Training Procedure

To evaluate the semi-supervised models, a baseline model
was created using a Support Vector Machine with a radial
basis function (RBF) kernel. The parameters for this model
were optimized using a grid search across a range of values:

o Regularization (C): 0.1, 1, 10, 100
» Kernel Coefficient (gamma): 1, 0.1, 0.01, 0.001
o Kernel Type: RBF

In addition, two semi-supervised techniques were tested:
self-training and label propagation.

For self-training, the following parameters were adjusted:

o Labeled Data Percentages: 10%, 30%, 50%, 70%,
90%, 100%

e Criterion: threshold-based or k-best selection

o Confidence Thresholds: 0.6, 0.75, 0.9 (relevant only
if threshold criterion is selected)

o k-best Values: 5, 10, 20 (relevant only if k-best
criterion is selected)

o Maximum Iterations: 20 (evaluated based on con-
vergence warnings)

For label propagation, several configurations were ex-
plored based on varying the percentage of labeled data and
kernel choice:

o Labeled Data Percentages: 10%, 30%, 50%, 70%,
90%, 100%

o Kernel Types: RBF and k-nearest neighbors (kNN)

o Gamma: 0.0001, 0.001, 0.01, 0.1, 1, 10 (relevant only
if RBF Kernel is selected)

o Neighbors: 3, 5, 7, 9, 11, 13 (relevant only if kNN
Kernel is selected)
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¢ Maximum Iterations: 5000
o Tolerance for Convergence: 0.001

This structured parameter setup provided a robust basis
for comparing the performance of semi-supervised models
against the fully supervised SVM baseline.

D. Baseline Comparison

To evaluate the effectiveness of the semi-supervised learning
models, a Support Vector Machine (SVM) with a radial
basis function (RBF) kernel was used as the baseline. The
SVM-RBF model served as a fully supervised compari-
son, allowing for a direct assessment of the performance
improvements gained through semi-supervised techniques.
This baseline model provided a controlled standard to gauge
the advantages of leveraging unlabeled data in scenarios
with limited labeled samples.

E. FEvaluation Metrics

To assess model performance, multiple metrics were consid-
ered, with all metrics calculated using the macro averaging
method. This approach gives equal weight to each class,
making it particularly useful for datasets with class imbal-
ances. The primary metrics used include:

e Accuracy: Measures the overall proportion of correct
predictions.

o Precision: Assesses the proportion of true positives
out of all positive predictions.

o Recall: Measures the proportion of true positives
identified out of the actual positives.

e F1 Score: The harmonic mean of precision and recall,
emphasizing balanced performance. The F1 score was
used as the main criterion for model selection.

F. Implementation Details

All experiments were implemented using Python 3.10.12,
with PyTorch 2.4.1 and PyTorch Lightning 2.3.3 as the
primary deep learning frameworks. Training and evaluation
were conducted on a system equipped with two NVIDIA
A100 GPUs, each with 80GB of memory, running CUDA
version 12.6.

G. Validation and Testing

The evaluation process began with validating all models,
including the baseline SVM-RBF and the semi-supervised
models, on the validation set. This initial validation
step was used to fine-tune hyperparameters and assess
preliminary model performance. Finally, the test set was
used to evaluate the best-performing model, ensuring an
unbiased assessment of their final performance. To ensure
robustness in the results, a Monte Carlo cross-validation
with 10 iterations and a confidence level of 95% was
conducted, providing a statistical basis for comparison.

H. GitHub
https://github.com/FelipeT03/MMIA
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IV. RESULTS AND DISCUSSION
A. GoogLeNet

GoogleNet, a convolutional neural network architecture
known for its innovative inception modules, has been used
for its ability to perform multi-scale feature extraction
[3]. Specifically, the network was truncated before its
classification layers, retaining only the feature extraction
components. The output of the feature extractor was a
feature vector of size 50 176, representing rich spatial
and semantic features extracted from the input images.
These feature vectors served as inputs for the subsequent
classification models.

GooglLeNet Feature Extraction Layers

Input Image (224x224x3)
Conv + Pooling
Inception (3a)
Inception (3b)
MaxPooling
Inception (4a)
Inception (ab)
Inception (4c)
Inception (4d)
Inception (4e)
MaxPooling
Inception (5a)
Inception (5b)

Feature Vector (7x7x1024)

Figure 4. GoogLeNet Feature Extraction Layers

1) SVM-RBF: After performing a grid search, the optimal
parameters for the SVM model with an RBF kernel were
found to be C = 10 and gamma = 0.001. Using these
parameters, The model was evaluated on the validation
set, yielding the results shown in Figure 5.

ROC Curves for Taypec and Taytaj - GoogleNet
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Figure 5. ROC curves for Taypec and Taytaj - GoogLeNet

B. EfficientNet

EfficientNet, a convolutional neural network architecture
known for its compound scaling approach, has been utilized
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for its ability to balance depth, width, and resolution
effectively [4]. Specifically, the network was truncated
before its classification layers, retaining only the feature
extraction components. The output of the feature extractor
was a feature vector of size 62 720, representing rich spatial
and semantic features extracted from the input images.
These feature vectors served as inputs for the subsequent
classification models.

EfficientNet Feature Extraction Layers

Input Image (224x224x3)
Conv + SE Block
MBConvl (Stage 1)
MBConvé (Stage 2)
MBConvé (Stage 3)
MBConvé (Stage 4)
MBConvé (Stage 5)
MBConvé (Stage 6)
MBConvé (Stage 7)
Global Pooling

Feature Vector (7x7x1280)

Figure 6. EfficientNet Feature Extraction Layers

1) SVM-RBF: After performing a grid search, the optimal
parameters for the SVM model with an RBF kernel
were found to be C = 0.1 and gamma = 1. Using these
parameters, the model was evaluated on the validation set,
yielding the results shown in Figure 7 and Table IV.

ROC Curves for Taypec and Taytaj - EfficientNet
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Figure 7. ROC curves for Taypec and Taytaj - EfficientNet

Table IV
CLASSIFICATION REPORT FOR THE MODEL ON THE VALIDATION SET
Class Precision | Recall | F1-Score | Support
0 0.64 1.00 0.78 875
1 0.00 0.00 0.00 491
Accuracy 0.64
Macro Avg 0.32 0.50 0.39 1366
Weighted Avg 0.41 0.64 0.50 1366




The high-dimensional output of the feature extractor
(62,720 dimensions per image) likely contributes to severe
overfitting, as evidenced by the F1 score of 1 achieved
on the training set. This behavior results from the curse
of dimensionality, where the sparsity and complexity of
the feature space hinder the model’s ability to generalize
effectively. In such spaces, data becomes sparse, and
distance metrics lose effectiveness, which poses a significant
challenge for methods like SVM with an RBF kernel [13],
[14]. This is compounded by the relatively small dataset,
with only 6 792 training samples. The imbalance between
the feature dimensions and the dataset size makes it difficult
for the model to generalize effectively.

To address this, dimensionality reduction techniques like
Principal Component Analysis (PCA) can be applied.
PCA projects the high-dimensional features into a lower-
dimensional space, retaining most of the variance while
discarding noise and redundant information. For instance,
applying PCA to retain 95% of the variance could reduce
the 62,720-dimensional feature vectors to a manageable size,
improving computational efficiency and reducing overfitting.
Incorporating PCA into the preprocessing pipeline could
enhance the generalization of the SVM model and improve
validation performance.

c. viT

The Vision Transformer (ViT) feature extractor utilizes
the embeddings from each patch and the embedding of
the class token. For each image, the ViT model outputs a
768-dimensional vector, which was used as the input for
the subsequent classification models.

Vision Transformer (ViT) Feature Extraction Layers

Input Image (224x224x3)
Patch Embedding (16x16 patches)
Position Embeddings
Transformer Encoder (1 Layer x12)
Classification Token (CLS)

Feature Vector (768)

Figure 8. Vision Transformer (ViT) Feature Extraction Layers. Each
encoder block processes the input sequentially, repeating the self-
attention and feed-forward layers 12 times. The CLS token captures
the global representation of the image.

1) SVM - RBF: After performing a grid search, the
optimal parameters for the SVM model with an RBF kernel
were found to be C = 1 and gamma = 0.001. Using these
parameters, the model was evaluated on the validation set,
yielding the results shown in Figure 9.

The classification report for the validation set is shown in
Table V. The model achieved an accuracy of 88%, with

precision, recall, and F1-scores for each class detailed below.
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ROC Curves for Taypec and Taytaj - ViT
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Figure 9. ROC curves for Taypec and Taytaj - ViT

Table V
CLASSIFICATION REPORT FOR SVM-RBF MODEL ON VALIDATION SET
Class Precision | Recall | F1-Score | Support
0 (Taypec) 0.90 0.91 0.91 875
T (Taytaj) 0.84 0.83 0.84 191
Accuracy 0.88
Macro Avg 0.87 0.87 0.87 1366
Weighted Avg 0.88 0.88 0.88 1366

2) Self-training: After conducting a grid search, as il-
lustrated in Figure 10, the optimal parameters for the
self-training model were determined to be criterion =
threshold and threshold = 0.9. Although the perfor-
mance of both criteria was comparable, the threshold
criterion was chosen to maintain greater control over noisy
pseudo-labels. Additionally, a threshold value of 0.9 was
selected as it yielded better results for lower percentages
of labeled data.

Evolution of F1 Score Across Percentages for Threshold and K-Best Criteria

F1 Score

// —e— Threshold Criterion
l/ —= K-Best Criterion
081 o — - SVM RBF (F1 Score)
) £ < - L Ky

Percentage of Labeled Data (%)

Figure 10. Evolution of F'1 Score for Self Training - ViT

3) Label Propagation: A grid search was conducted to opti-
mize the parameters for the label propagation model. The
results identified kernel = rbf as the most suitable choice
due to its superior performance at lower percentages of
labeled data, with the optimal value for gamma determined
to be 0.001.




Table VI
BEST CONFIGURATIONS FOR CRITERION = ’THRESHOLD’ - VIT
Threshold | Labeled Percentage (%) | F1-Score
0.9 10.0 0.8139
0.9 30.0 0.8446
0.9 50.0 0.8543
0.9 70.0 0.8685
0.6 90.0 0.8698
0.6 100.0 0.8799

Table VII
BEST CONFIGURATIONS FOR CRITERION = ’K_ BEST’ - VIT
K-Best | Labeled Percentage (%) | F1-Score
5.0 10.0 0.8085
10.0 30.0 0.8486
5.0 50.0 0.8566
5.0 70.0 0.8656
5.0 90.0 0.8659
5.0 100.0 0.8799

4) Best Model: Before performing the Monte Carlo cross-
validation, the Vision Transformer (ViT) was identified as
the best-performing feature extractor, achieving the highest
results when combined with the self-training technique.
This combination is used as the basis for the Monte Carlo
cross-validation, and the results for F1 score are presented
in Table X and Figure 12.

The Monte Carlo cross-validation was conducted using the
test validation set, performing 10 iterations for each per-
centage of labeled data with a confidence level of 0.95. The
results demonstrated an upward trend as the percentage
of labeled data used for the supervised section increased.
However, beyond approximately 70% labeled data, the
improvements became marginal, indicating diminishing re-
turns. Specifically, a statistical comparison of the F1 scores
for 70% and 90% labeled data using the Confidence Interval
Difference Test showed that the difference in their means
(0.001729) was not statistically significant, as the 95%
confidence interval for the difference [—0.00178,0.00524]
includes zero. This suggests that increasing the labeled data
beyond 70% does not provide a meaningful improvement
in performance.

Additionally, the model with 100% labeled data represents
a fully supervised learning approach and achieved the
best results among all models tested. This is expected,
as supervised learning has access to all labeled data,
unlike the semi-supervised models, which rely on smaller
labeled datasets combined with unlabeled data (10% to 90%
labeled). While the semi-supervised models demonstrate
strong performance with limited labeled data, they do not
surpass the fully supervised model’s results, highlighting
the advantage of having a completely labeled dataset in
terms of classification accuracy.
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Evolution of F1 Score Across Percentages for KNN and RBF Kernels
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Figure 11. Evolution of F1 Score for Label Propagation - ViT

Table VIII
BEST CONFIGURATIONS FOR LABEL PROPAGATION WITH RBF KERNEL
Percentage (%) | Best Gamma | F1-Score
10% 0.1 0.6545
30% 0.1 0.6987
50% 0.1 0.7055
70% 0.1 0.7259
90% 0.1 0.7317
100% 0.1 0.7395

F1 Score with Confidence Intervals Across Percentages
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Figure 12. F1 Score with Confidence Intervals Across Percentages.
The shaded area represents the 95% confidence interval for the mean
F1 score at different percentages of labeled data.

V. CONCLUSION

This study presents a novel approach to wildlife monitor-
ing by leveraging semi-supervised learning techniques to
classify visually similar species with limited labeled data.
Focusing on the white-lipped peccary and collared peccary,
the work addresses critical challenges, including class
imbalance and the resource-intensive nature of manual la-
beling. By incorporating state-of-the-art feature extraction
models—GoogLeNet, EfficientNet, and Vision Transformer
(ViT)—and exploring semi-supervised methods such as
self-training and label propagation, this research provides
scalable solutions for improving biodiversity monitoring
efforts.



Table IX
BEST CONFIGURATIONS FOR LABEL PROPAGATION WITH KNN
KERNEL
Percentage (%) | Best n_neighbors | F1-Score
10% 3 0.5678
30% 5 0.6806
50% 5 0.7041
70% 11 0.7298
90% 13 0.7430
100% 11 0.7448
Table X

AcCCURACY RESULTS

Percentage (%) | Accuracy Mean | Accuracy CI
10 0.812318 0.8066, 0.8188
30 0.835497 0.8322, 0.8388
50 0.848784 0.8454, 0.8523
70 0.855497 0.8528, 0.8582
90 0.858146 0.8565, 0.8598
100 0.860927 0.8609, 0.8609

The experiments demonstrated that semi-supervised learn-
ing techniques can significantly enhance classification
performance with limited labeled data. Among the meth-
ods evaluated, the ViT feature extractor combined with
self-training achieved the best results in most scenarios,
illustrating the power of transformer-based models for
this domain. The Monte Carlo cross-validation further
validated the robustness of these findings, highlighting an
upward trend in accuracy and F1 score as the percentage
of labeled data increased. However, statistical analysis
using the Confidence Interval Difference Test revealed
that beyond 70% labeled data, the performance gains
diminished, suggesting a point of diminishing returns for
adding more labeled data.

The fully supervised model with 100% labeled data
achieved the highest performance, as expected, underscor-
ing the inherent advantage of complete labeling. Never-
theless, this study demonstrates the potential of semi-
supervised learning to approximate such performance while
significantly reducing the need for exhaustive manual
annotations. Similar findings have been reported in aquatic
biodiversity monitoring, where semi-supervised learning ad-
vanced species recognition efforts [2]. Additionally, the ap-
plication of deep learning models, including semi-supervised
approaches, has shown promise in detecting and classifying
wildlife in aerial images, further supporting the effectiveness
of these methods in biodiversity monitoring [15].

This research contributes to the field of wildlife monitoring
by offering a practical framework for handling imbalanced
and limited datasets. By automating parts of the labeling
process and incorporating innovative models, it paves the
way for more efficient and accurate species classification.
Future work could focus on extending this approach to
include additional species, incorporating more complex
augmentation techniques, and exploring advanced semi-
supervised frameworks like consistency-based regularization
to further enhance performance. Additionally, dimension-
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Table XI
PRECISION RESULTS

Percentage (%) | Precision Mean | Precision CI
10 0.795358 0.7891, 0.8016
30 0.823383 0.8168, 0.8293
50 0.835326 0.8318, 0.8388
70 0.842443 0.8394, 0.8455
90 0.846827 0.8450, 0.8468
100 0.849693 0.8497, 0.8497
Table XII
REcCALL RESULTS
Percentage (%) | Recall Mean Recall CI

10 0.800107 0.7944, 0.8058

30 0.822589 0.8185, 0.8265

50 0.835307 0.8306, 0.8400

70 0.842692 0.8397, 0.8457

90 0.844329 0.8442, 0.8443

100 0.845499 0.8455, 0.8455

ality reduction techniques could be investigated to address
the high dimensionality of feature vectors generated by
certain extractors, such as GoogleNet and EfficientNet,
which may help mitigate overfitting and improve compu-
tational efficiency. Another promising direction involves
fine-tuning the feature extractors specifically for this task,
training them with a focus on distinguishing the white-
lipped peccary and collared peccary to improve their ability
to capture subtle species-specific features.

APPENDIX A
CONFIDENCE INTERVAL DIFFERENCE TEST
CALCULATIONS
The statistical analysis using the Confidence Interval
Difference Test demonstrated that beyond 70% labeled
data, the performance gains diminished, suggesting a point
of diminishing returns. This appendix provides the detailed
calculations.

A. Data and Parameters

The following data was used for the calculations:
e Mean F1 Score for 70% labeled data: 0.842547
e Mean F1 Score for 90% labeled data: 0.844276

» Confidence Interval for 70%: [0.8396, 0.8455]
» Confidence Interval for 90%: [0.8424, 0.8462]

B. Standard Error Calculation
The standard error (SE) for each group is calculated as:

Upper Bound — Lower Bound

E =
§ 2 x 1.96
e For 70%:
0.8455 — 0.8396
Eqy= ————— =0.001504
SErg 5% 196 0.00150
o For 90%:
0.8462 — 0.8424
SEgg = ——— = 0.000969

2 x 1.96



Table XIII
F1 Score RESULTS
Percentage (%) | F1 Mean F1 CI
10 0.797219 0.7915, 0.8030
30 0.823110 0.8177, 0.8249
50 0.835251 0.8312, 0.8393
70 0.842547 0.8396, 0.8455
90 0.844276 0.8424, 0.8462
100 0.847504 0.8475, 0.8475

C. Standard Error of the Difference
The standard error of the difference (SEqg;g) is calculated

as:
SEqig = \/ SE%, + SEZ,

SEais = 1/(0.001504)2 + (0.000969)% = 0.00178

D. Mean Difference and Confidence Interval
The mean difference (Ap) is:

Ap = poo — pro = 0.844276 — 0.842547 = 0.001729

The 95% confidence interval (Clgig) for the difference is
calculated as:

Clag = [Ap — 1.96 - SEqigr, Apt + 1.96 - SEqigt]
Clgg = [0.001729—1.96-0.00178,0.001729+1.96-0.00178]
Clgg = [—0.00178,0.00524]

E. Interpretation

Since the confidence interval for the difference includes zero
([-0.00178,0.00524]), the difference in F1 scores between
70% and 90% labeled data is not statistically significant
at the 95% confidence level. This suggests that increasing
the labeled data beyond 70% does not result in meaningful
performance improvements.
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