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RESUMEN

El monitoreo manual de fauna silvestre mediante cAmaras trampa representa un desafio significativo
por el volumen de datos y el tiempo requerido para su analisis, particularmente en regiones megadiversas
como el bosque del Chocé. Para abordar esta problematica, se presenta un sistema automatizado
basado en aprendizaje profundo para la deteccién y clasificacion de seis especies objetivo (Aguti
Centroamericano, Ardillas, Armadillo de Nueve Bandas, Paca de Tierras Bajas, Roedores y Tinami
Grande) en la Reserva Jocotoco Canandé del bosque del Chocé en Ecuador. El sistema incorpora un
enfoque de dos etapas: deteccion de objetos utilizando YOLO para identificar la presencia de animales
en videos de cdmaras trampa (con umbral de confianza >55% para la extraccién inicial de frames),
seguido de la clasificacion de especies utilizando arquitecturas ResNet50 y MobileNetV3. Los resultados
demuestran que ResNet50 alcanza un rendimiento superior con un Fl-score ponderado de 0.951 al ser
entrenado con frames que superan un umbral de confianza del 60%), mientras que MobileNetV3 alcanza
un Fl-score de 0.946. El andlisis comparativo de ambas arquitecturas sugiere diferentes escenarios
de aplicacién: ResNet50 destaca en aplicaciones que requieren maxima precisién en la clasificacién,
mientras que MobileNetV3 se presenta como una alternativa eficiente para implementaciones con
recursos computacionales limitados, manteniendo un rendimiento competitivo.

Palabras clave: YOLO, deep learning, conservation, Resnet, Movilenet, Transfer learning, camera
traps.



ABSTRACT

Manual wildlife monitoring using camera traps represents a significant challenge due to the volume
of data and the time required for its analysis, particularly in megadiverse regions such as the Chocé
forest. To address this issue, we present an automated system based on deep learning for the detection
and classification of six target species (Central Agouti, Squirrels, Nine-banded Armadillo, Lowland
Paca, Rodents and Great Tinami) in the Jocotoco Canandé Reserve of the Chocé forest in Ecuador.
The system incorporates a two-stage approach: object detection using YOLO to identify the presence
of animals in camera trap videos (with confidence threshold >55% for initial frame extraction),
followed by species classification using ResNet50 and MobileNetV3 architectures. The results show
that ResNetb0 achieves superior performance with a weighted Fl-score of 0.951 when trained with
frames exceeding a 60% confidence threshold, while MobileNetV3 achieves an Fl-score of 0.946. The
comparative analysis of both architectures suggests different application scenarios: ResNet50 excels in
applications requiring maximum classification accuracy, while MobileNetV3 is presented as an efficient
alternative for implementations with limited computational resources, while maintaining competitive
performance.

Key words: YOLO, deep learning, conservation, Resnet, Mobilenet, Transfer learning, camera traps.
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Automated Detection and Classification of Wildlife in
the Chocé Forest (Canandé) using Camera Traps

Felipe Grijalva, Senior Member, IEEE, Edwin Montenegro, Member, IEEE

Abstract—The manual monitoring of wildlife using
camera traps presents a significant challenge due to
the volume of data and the time required for its
analysis, particularly in megadiverse regions such as
the Chocé forest. To address this issue, an automated
system based on deep learning is proposed for the
detection and classification of six target species (Central
American Agouti, Squirrels, Nine-Banded Armadillo,
Lowland Paca, Rodents, and Great Tinamou) in the
Jocotoco Canandé Reserve of the Chocé forest in
Ecuador. The system incorporates a two-stage approach:
object detection using YOLO to identify the presence
of animals in camera trap videos (with a confidence
threshold >55% for initial frame extraction), followed by
species classification using ResNet50 and MobileNetV3
architectures. The results show that ResNet50 achieves
superior performance with a weighted F1-score of 0.951
when trained with frames exceeding a 60% confidence
threshold, while MobileNetV3 achieves an F1l-score of
0.946. The comparative analysis of both architectures
suggests different application scenarios: ResNet50 ex-
cels in applications requiring maximum classification
accuracy, whereas MobileNetV3 emerges as an efficient
alternative for implementations with limited computa-
tional resources, maintaining competitive performance.

Index Terms—YOLO, deep learning, conservation,
Resnet, Mobilenet, Transfer learning, camera traps.

I. INTRODUCTION

he conservation and management of wildlife communi-
T ties require precise and extensive data on population
status to minimize human-wildlife conflicts and ensure
long-term survival. Camera traps have become essential
tools in biodiversity monitoring, enabling continuous data
collection in remote areas. However, traditional methods,
such as tracking footprints or collecting hunting data,
remain inefficient and difficult to scale, limiting their
applicability in large-scale wildlife studies [1].

Despite their utility, camera traps generate vast amounts of
data that require manual processing, creating a significant
bottleneck for research and conservation decision-making
[2]. This challenge often restricts the scope of studies,
reducing sampling intensity and limiting the geographic
and temporal extent of wildlife monitoring efforts [1].

The Canandé Reserve, managed by the Jocotoco Foun-
dation, is located in the Ecuadorian Choco, one of the

F. Grijalva and E. Montenegro are with Universidad San Francisco

of Quito USFQ

most biodiverse regions on the planet and a priority for
conservation. Home to over 400 bird species and iconic
mammals, this ecosystem faces severe threats from defor-
estation, mining, and agribusiness, which have drastically
reduced forest cover and fragmented habitats [3], [4].
Addressing these challenges requires efficient tools for
species identification and monitoring to inform conservation
policies.

Recent advances in deep and artificial learning offer a
powerful solution to this bottleneck, enabling fast and
accurate processing of camera trap data. Norouzzadeh [5]
demonstrated their ability to process millions of images,
while Willi [6] showed these techniques could achieve species
identification accuracy comparable to human experts.
These innovations enable large-scale studies and provide
actionable tools for ecologists.

Wildlife in the Chocé Forest (Canandé)
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Figure 1: Location of the Canandé Reserve in Esmeraldas
province, Quinindé canton, 00°31°33.8" N, 79°12’46.9" W

In this context, the Jocotoco Foundation has developed
initiatives to collect wildlife data through camera traps
strategically installed in the Canandé Reserve. While these
cameras enable non-invasive video capture of local species,
the volume of data generated exceeds the capacity for
manual analysis, limiting the speed and effectiveness of
conservation decisions.

Therefore, this project focuses on automating species
identification and monitoring through advanced artifi-
cial intelligence technologies, implementing detection and
classification models that not only significantly reduce
data analysis time but also provide tools for informed
decision-making in protecting the Chocé ecosystems. This



approach facilitates the identification of emerging threats
and supports the implementation of more effective and
targeted conservation policies.

A. Related Works

Recent advancements in deep learning have enabled the
development of automated systems for wildlife detection
and classification. Among these, various versions of the
YOLO model have been extensively used for real-time
animal detection. For example, in [7], YOLOv8 was applied
to mitigate conflicts between humans and wildlife near
forests. Three model variations (YOLOv8m, YOLOvS], and
YOLOvVS8x) were trained on a dataset of 1,619 annotated
images of lions, tigers, leopards, and bears. The results
demonstrated that YOLOv8x achieved the highest perfor-
mance, with a mean Average Precision (mAP) of 94.3%,
proving its effectiveness in challenging environments.

Similarly, YOLOv5 has been utilized for wildlife detection
and alert systems. In [8], real-time videos captured with
sensors and drones were processed using YOLOv5, which
successfully identified animals and issued alerts to improve
the safety of communities near wildlife reserves. This
implementation highlighted YOLOvV5’s efficiency in areas
with high wildlife activity.

Beyond object detection, convolutional neural networks
(CNNs) have also been employed for species classification.
In Colombia, AlexNet was used to create a classification
system for endangered animals, achieving a validation
accuracy of 97.52%. This demonstrates the model’s capacity
for species identification and monitoring in conservation
efforts [9]..

Another relevant study was conducted at the Tiputini
Biodiversity Station (TBS), where YOLOv5 and Faster
R-CNN were applied for detecting and classifying peccaries
(Tayassu pecari and Dicotyles tajacu). Using a dataset
of 7,733 images, YOLOv5 outperformed Faster R-CNN,
achieving higher mAP and lower loss rates. These results
underscore YOLOvV5’s robustness for species monitoring in
Amazonian environments [10].

In larger-scale implementations, Tabak [11] employed
ResNet-18 to process over 3 million camera trap images
in Yellowstone National Park. The system achieved 98%
accuracy across 28 species, showcasing the scalability and
reliability of deep learning models for biodiversity research.

Building on these advances, our work introduces an au-
tomated monitoring and classification system tailored to
the wildlife of the Ecuadorian Chocé. Utilizing camera
trap videos collected in the Canandé Reserve from 2020 to
2021, the proposed system employs a dual-stage approach:
YOLOvV5! and YOLOv8x are used for frame detection
in low-resolution videos, and ResNet50 and MobileNetV3
architectures are applied for precise species classification.
Unlike previous studies, our approach accounts for the
computational constraints typical of nature reserves, offer-
ing adaptable solutions for varying technological resources
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and environmental conditions. By addressing these chal-
lenges, our system enhances conservation strategies and
contributes to the long-term protection of the Chocd’s
unique biodiversity.

II. MATERIAL AND METHODS
A. Dataset Description

This study was conducted using data collected in the
Jocotoco Canandé Reserve, located in the Chocé rainforest
of Ecuador, a region of great ecological importance and
biodiversity. The initial dataset comprises 2,347 wildlife
videos captured through camera traps, covering 51 species
of mammals and birds. Based on the frequency of videos in
the metadata and considering computational limitations,
we focused on the six most frequently captured species,
which represent approximately 35% of the total dataset
and serve as representative target species of the ecosystem:

o Central American Agouti (Dasyprocta punctata)
e Squirrels (Family Sciuridae)

o Nine-banded Armadillo (Dasypus novemcinctus)
o Lowland Paca (Cuniculus paca)

e Rodents

o Greater Tinamou (Tinamus major)

The videos were captured with a standard resolution of
640x368 pixels at 30 frames per second (fps), with durations
ranging from 20-30 seconds. The diversity in capture
conditions significantly enriches the dataset, including
variations in lighting from daylight to nighttime captures,
different weather conditions such as rain, cloudiness, and
direct sunlight, as well as varying capture angles, including
frontal, lateral, and oblique views, and different distances
between the camera and the subject.

Figure 2: Species distribution in metadata.

B. Data Processing Pipeline

1) Video Processing: Data processing was structured
through a robust pipeline designed to maximize the quality
and traceability of the analysis. The initial preparation
phase involved the careful selection of 130 videos per
species, implementing a unique SHA-256 hash system
and an ID to ensure data integrity and facilitate tracking
throughout the analysis process. The dataset was divided
using Scikit-Learn, implementing stratification to ensure



the representativeness of each species: 70% for training,
providing a solid foundation for model learning; 15% for
validation, allowing fine-tuning of hyperparameters; and
15% for testing, for final performance evaluation.

2) Frame Detection and Extraction: Frame extraction was
executed using a dual detection approach, employing two
complementary architectures. YOLOv5] was configured
with a 55% confidence threshold for general detection, while
YOLOv8x was used in cases requiring higher precision due
to challenging conditions or complex species patterns. The
extraction process was optimized by limiting the analysis
to 350 frames per video, where each detection generated
specific bounding boxes that frame the animal in the scene.
For each successful detection, the precise coordinates of the
bounding box, along with their respective confidence scores,
were stored, creating a detailed record that allows for trace-
ability and subsequent evaluation of detection quality.Each
detection generated bounding boxes and confidence scores,
which were stored for traceability. To ensure the quality
of the extracted frames, visual inspections were conducted
to confirm the presence and clarity of the target species
before proceeding to classification. Although manual, this
process ensured the reliability of the dataset for subsequent
stages.

3) Final Dataset Distribution: The extraction process
resulted in a specific distribution per species:

e ID 0 (Central American Agouti): 10,227 frames for
training, 1,069 for validation, and 2,275 for testing.

e ID 1 (Squirrel): 2,200 frames for training, 327 for
validation, and 451 for testing.

e ID 2 (Nine-banded Armadillo): 4,800 frames for train-
ing, 970 for validation, and 509 for testing.

o ID 3 (Lowland Paca): 1,690 frames for training, 419
for validation, and 129 for testing.

o ID 4 (Rodent): 586 frames for training, 86 for valida-
tion, and 708 for testing.

e ID 5 (Greater Tinamou): 7,955 frames for training,
1,985 for validation, and 1,938 for testing.

Distribution of Animal Classes by Partition

Animal Classes
B Central American Agouti
. Squirrel SCIURIDAE
B Nine-banded Armadillo
= Lowland Paca
= Rodent
= Great Tinamou

Number of Samples

2275
1,985 1938

451509 08
86 129

Valdation

Figure 3: Frequency of captured instances per target
species.

C. Model Architectures

1) Detection Models: In this study, two architectures from
the YOLO family were implemented, chosen for their effi-
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ciency and accuracy in real-time object detection. YOLOv5
was used as the primary detector, taking advantage of its
pretraining on the COCO dataset, which includes 200,000
images and 80 categories, providing a solid foundation
for wildlife detection [12]. On the other hand, YOLOvS8
represents a significant evolution in the YOLO architecture,
incorporating substantial improvements in its optimization
techniques and feature extraction capabilities. This newer
version was specifically used in situations that required
superior precision in detection, particularly in challenging
lighting conditions or when species presented complex
camouflage patterns [13].

2) Classification Models: For the classification task, two
complementary architectures were selected:

MobileNetV3 and ResNet50. MobileNetV3 is optimized
for resource-constrained environments and incorporates
innovations like "squeeze-and-excitation" attention blocks.
ResNetb0, a deeper architecture with 50 layers and residual
connections, efficiently handles the vanishing gradient
problem, making it ideal for extracting complex features.
Both models were pretrained on ImageNet to leverage
transfer learning for the target species[14], [15].

D. Training Setup

1) Preprocessing and Data Augmentation: Image pre-
processing was implemented using PyTorch Lightning,
establishing a modular and organized structure. The ex-
tracted images were normalized to standardize pixel values
and cropped according to the bounding box dimensions
provided by the detectors. To increase the robustness
of the model and prevent overfitting, data augmenta-
tion techniques were applied, including RandomCrop for
framing variations, RandomHorizontalFlip for horizontal
symmetry, RandomRotation for orientation variations, and
ColorJitter for modifications in brightness and contrast,
thereby enriching the variability of the training dataset.
2) Handling Class Imbalance: To address the inherent class
imbalance in the dataset, an adaptive weighting strategy
was implemented in the cross-entropy loss function. Class
weights were calculated using the following formula from
Scikit-Learn:

Nsamples

(1)

w; =

Nelasses X Nsamples;

where w; represents the weight assigned to class 4, nsamples
is the total number of samples, n¢qsses 1S the total number
of classes, and nsgmpies; is the number of samples in class
i.

This formulation ensures that minority classes receive a
proportionally higher penalty during training, compen-
sating for their lower representation in the dataset. The
implementation was carried out using the PyTorch CrossEn-
tropyLoss function, configured with the weight parameter
that accepts a tensor of class weights. This approach is
particularly effective in our scenario, where species such as



Rodents are significantly underrepresented compared to the
Central American Agouti. Adaptive weighting ensures that
the gradient during training is adjusted proportionally,
facilitating a more balanced learning of discriminative
features for each species [16], [17].

3) Transfer Learning Strategy: The implementation of
transfer learning was optimized specifically for each archi-
tecture, leveraging their distinct structural characteristics
[18]. For MobileNetV3, a selective freezing strategy was
adopted, where the first 10 convolutional layers were kept
unchanged, preserving the low-level features learned during
pretraining on ImageNet (basic shapes, edges, and textures).
The upper layers were kept trainable to adapt the model
to the specific features of local wildlife, allowing for an
optimal balance between transferred knowledge and the
necessary specialization.

For ResNet50, the strategy was based on the hierarchical
nature of its residual architecture. All layers were frozen
except for the fourth residual block and the final classifica-
tion layer, based on the assumption that high-level features
are more specific to the target task.

4) Hyperparameter Configuration: The hyperparameters
were carefully selected to optimize the training process:

o Learning rate of 0.0001, chosen to allow stable learning
and avoid divergence.

o Batch size of 32, balancing computational efficiency
and training stability.

e Maximum of 100 epochs with early stopping imple-
mented at 10 epochs without improvement, preventing
overfitting.

o Confidence Threshold of 60% and 70% for filtering
frames during classification, ensuring the quality of
predictions.

The selection of the Confidence Threshold plays a
crucial role in the processing pipeline. This hyperparameter
determines which frames are considered for training and
evaluation of the classification model, ensuring that only
detections with high confidence contribute to the learning
process.

5) Implementation Environment: The system was imple-
mented using PyTorch 1.10.12 as the main deep learning
framework. The experiments were conducted on a DGX
workstation equipped with 256GB of RAM and 128 GPUs,
enabling efficient model training and parallel processing
of large volumes of data. The complete source code of
the project, including training scripts, analysis notebooks,
and detailed documentation, is available in the public
repository: GitHub.

E. FEvaluation Metrics

1) Class-specific Metrics: The detailed evaluation by
species was performed using a set of complementary
metrics that include precision, to assess the proportion
of correct positive predictions made by the model; recall,
which quantifies the model’s ability to correctly identify
all existing positive cases; and F1 score, which provides
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a balanced measure by calculating the harmonic mean
between precision and recall. Additionally, support was
recorded for each class, indicating the number of instances
available in the evaluation set.

2) Global Metrics: To assess the overall model performance,
metrics were implemented to provide a comprehensive
view of the system. Global accuracy quantifies the total
proportion of correct predictions over the total predictions
made, while the macro average calculates the unweighted
average of individual class metrics, offering a fair evaluation
independent of class imbalance. The weighted average, on
the other hand, weights the metrics based on the number
of instances in each class, offering a more representative
perspective of the actual system performance.

3) Visual and Statistical Analysis: For a deeper evaluation,
the following were generated:

o Confusion matrices: A detailed visualization of the
distribution of correct and incorrect predictions.

e« ROC-AUC curves: Evaluation of the model’s discrimi-
native ability at different decision thresholds.

e Learning curves: Monitoring the model’s behavior
during training, visualizing the evolution of loss and
accuracy metrics.

These metrics were calculated for both the training and val-
idation sets, allowing a complete evaluation of the model’s
behavior and early detection of issues like overfitting or
underfitting.

DATA AUGMENTATION

Figure 4: Block diagram of the proposed processing pipeline

III. RESuLTS AND DISCUSSION

The results of this project are divided into two parts: the
first focuses on the efficiency of the object detector, and the
second centers on the multiclass classification of different
species.

In the detector analysis, YOLOvVS5I] proved to be a robust
tool for general frame extraction, efficiently processing
most species under favorable lighting conditions with a
confidence threshold of 55%. However, for the Nine-Banded
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Armadillo and Rodents, the implementation of YOLOv8x,
a more advanced architecture, was required. These species
were predominantly captured under nighttime conditions
and exhibited complex camouflage patterns that made them
difficult to distinguish from their surroundings, particularly
in the presence of dense vegetation and low light. This
dual detection strategy maximized the quality of extracted
frames for all species, ensuring a solid foundation for the
subsequent classification phase.

Table I: Detailed Comparison of MobileNetV3 Model by
Class

Modelo Conf. Clase Precision | Recall | Fl-score | Support
0 0.991 0.955 0.973 2012.0
1 0.550 0.750 0.635 44.0
2 0.964 0.930 0.947 316.0
. . o 3 0.516 0.926 0.663 121.0
MobileNet V3| 60% 4 0.912 0.989 | 0.949 378.0
5 0.958 0.926 0.942 1834.0
accuracy - - 0.942 4705.0
macro avg 0.815 0.913 0.851 4705.0
weighted avg 0.954 0.942 0.946 4705.0
0 0.989 0.964 0.984 1555.0
1 0.759 1.000 0.863 22.0
2 0.875 0.980 0.925 100.0
. 3 0.484 0.859 0.619 71.0
MobileNet V3| 70% 4 0.7 0.988 | 0.954 166.0
5 0.938 0.938 0.956 1459.0
accuracy - - 0.940 3373.0
macro avg 0.791 0.816 0.751 3373.0
weighted avg 0.937 0.940 0.925 3373.0

Table II: Detailed Comparison of ResNet50 Model by Class

Modelo | Conf. Clase Procision | Recall | Fi-score | Support
0 5.989 | 0.990 | 0.989 3012.0

1 0.667 | 0.818 | 0.735 440

2 0.695 0.975 | 0.812 316.0

3 0.920 | 0.860 | 0.893 121.0

ResNet50 | 60% 4 0.899 0.704 | 0.789 378.0
5 0.989 | 0.963 | 0.976 1834.0

accuracy B = 0.950 1705.0

macro avg 0.861 0.885 | 0.866 4705.0

weighted avg | 0.957 | 0.950 | 0.951 4705.0

0 0.988 | 0.976 | 0.982 1555.0

1 0.647 1.00 0.786 22.0

2 0.375 0.980 | 0.543 100.0

3 0.438 | 0.789 | 0.563 71.0

ResNet50 | 70% 4 0.636 0.042 | 0.079 166.0
5 0.975 0.938 | 0.956 1459.0

accuracy B B 0.910 3373.0

macro avg 0.677 | 0.787 | o0.651 3373.0

weighted avg | 0.923 | 0.910 | 0.903 3373.0

The comparative analysis of MobileNetV3 and ResNet50
classification models was conducted under two scenar-
ios: one where frames with confidence above 60% were
processed, and another more restrictive scenario with
frames exceeding 70% confidence. ResNet50 demonstrated
marginal but statistically significant superiority, achieving
a weighted Fl-score of 0.951 with frames above 60%
confidence, compared to MobileNetV3’s 0.946. The im-
plementation of weighted cross-entropy loss to address
class imbalance showed differential effectiveness: ResNet50
maintained remarkable stability in its performance across
the class spectrum (macro avg: 0.866), while MobileNetV3
exhibited a more pronounced degradation in minority
classes (macro avg: 0.851), suggesting a more limited
generalization capacity in its shallower architecture.

Processing frames with confidence above 70% revealed
a significant divergence in model robustness: ResNet50
experienced a sharper drop in its macro average Fl-score
(from 0.866 to 0.651) compared to MobileNetV3 (from 0.851
to 0.751), although ResNet50 retained superior accuracy in
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(a) ResNet50 learning curve (b) ResNet50 learning curve
with 60% confidence threshold  with 70% confidence threshold

(d) MobileNetV3 learning
curve with 70% confidence
threshold

(¢) MobileNetV3 learning
curve with 60% confidence
threshold

Figure 5: Comparative learning curves: ResNet50 vs Mo-
bileNetV3

majority classes. This behavior suggests that ResNet50’s
deeper architecture, with its residual connections, provides
better capacity for extracting discriminative features but is
more sensitive to frame selection constraints. The support
metric evidenced a substantial reduction in the set of
considered frames when increasing the confidence threshold,
with direct implications for the practical applicability of
the models in continuous monitoring scenarios.

The learning curve analysis revealed distinctive behaviors
in convergence and stability patterns. ResNet50 exhibited
higher volatility in its validation loss, particularly when
processing frames with confidence above 60%, with pro-
nounced peaks suggesting greater sensitivity to variability
in validation data and batch composition. This can be at-
tributed to its deeper architecture and residual connections.
In contrast, MobileNetV3 demonstrated more stable and
consistent convergence in both confidence scenarios, with
a more uniform separation between training and validation
curves. The implementation of early stopping at 10 epochs
proved effective for both models, preventing significant
overfitting.

The evaluation through ROC-AUC curves provided detailed
insights into the discriminative behavior of each model.
Both architectures exhibited excellent areas under the curve
for the most represented species in the dataset, such as
the Central American Agouti and the Great Tinamou,
demonstrating a high ability to distinguish these species
under various conditions. However, less-represented species,
particularly Rodents, displayed significantly lower AUC
values, highlighting the influence of class imbalance on



model performance. This disparity can be attributed to
the limited availability of samples for certain species, which
affects the model’s ability to learn robust discriminative fea-
tures. Additionally, less-represented species tend to appear
under more challenging conditions, such as nighttime scenes
or partial occlusion, increasing classification complexity.
Given these limitations, analyzing the impact of the
70% confidence threshold revealed contrasting behaviors
between the models: ResNet50 showed greater sensitivity to
data restriction, while MobileNetV3 managed to maintain
more stable performance across the different classes.

Receiver Operating Characteristic to Multi-Class

1.0

0.8

True Positive Rate

= Micro-average (AUC = 0.99613)
= Macro-average (AUC = 0.99593)
Class 0 (AUC = 0.99868)
Class 1 (AUC = 0.99537)
Class 2 (AUC = 0.99883)
Class 3 (AUC = 0.99390)
Class 4 (AUC = 0.99896)
Class 5 (AUC = 0.98975)

0.6 1

Figure 6: ROC curves for MobileNetV3 with a 60%
confidence threshold.
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Class 1 (AUC = 1.00000)
Class 2 (AUC = 0.99965)
Class 3 (AUC = 0.98517)
Class 4 (AUC = 0.99500)
Class 5 (AUC = 0.99814)

0.6

Figure 7: ROC curves for MobileNetV3 with a 70%
confidence threshold.

The evaluation of confusion matrices corroborated the
observed trends, where ResNet50 demonstrated superior
overall discriminative capability, particularly notable in
the Central American Agouti and Great Tinamou (classes
0 and 5). However, it showed more complex patterns of
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Figure 8: ROC curves for ResNet50 with a 60% confidence
threshold.
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Figure 9: ROC curves for ResNet50 with a 70% confidence
threshold.

confusion in intermediate species, especially between the
Armadillo and Rodents (106 cases with frames above 60%
confidence). When increasing the restriction to frames
above 70% confidence, ResNet50 showed a significant
reduction in interspecies confusion (81 cases between
Armadillo and Rodents), but also a notable decrease
in the total number of valid predictions. For its part,
MobileNetV3, although exhibiting slightly inferior overall
performance, demonstrated a more consistent error dis-
tribution and better adaptation to the increased frame
confidence restriction. This was evidenced by a more
uniform reduction in confusion between adjacent species
and a more stable number of valid predictions across both
confidence thresholds.
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Figure 10: Confusion matrix: MobileNetV3 with a 60%
confidence threshold.
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Figure 11: Confusion matrix: MobileNetV3 with a 70%
confidence threshold.
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IV. CONCLUSION

The results demonstrate the effectiveness of the two-stage
approach implemented for automated wildlife monitoring.
The system efficiently processed 780 trap camera videos,
generating approximately 33,000 frames with good accu-
racy. The YOLOv5I and YOLOv8x detectors showed com-
plementary effectiveness, processing videos under various
environmental conditions. However, the unique character-
istics of images from the Chocé forest, such as extreme
environmental variability and changing lighting conditions,
suggest the need for specialized detectors like Megadetector,
specifically optimized for wildlife scenarios. This could
significantly improve detection accuracy for elusive species,
particularly under nocturnal and low-visibility conditions.

The performance of the classification models revealed sig-
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Figure 12: Confusion matrix: ResNet50 with a 60% confi-
dence threshold.
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Figure 13: Confusion matrix: ResNet50 with a 70% confi-
dence threshold

nificant patterns: ResNet50 emerged as the superior option
for applications prioritizing precision. On the other hand,
MobileNetV3 demonstrated greater stability when varying
the confidence threshold, making it a viable alternative for
implementations with limited computational resources.

Expanding the dataset emerges as a crucial factor for future
development. A larger and more diverse dataset would allow
for more robust metrics, especially for underrepresented
species such as rodents (586 frames) compared to the
Central American agouti (10,227 frames). Optimizing the
confidence threshold is presented as a critical parameter
that should be adjusted according to the specific require-
ments of each application, considering the balance between
accuracy and monitoring coverage.

The developed system not only meets the established
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technical objectives but also offers a practical solution
to the challenge of manual monitoring, significantly re-
ducing video processing time from weeks to hours. This
contribution sets a methodological precedent for the devel-
opment of similar systems in other natural reserves in the
Andean and Amazon regions, where similar challenges in
wildlife monitoring are faced. The implementation of these
technologies on public-use platforms has the potential to
democratize biodiversity monitoring, directly benefiting
biologists, researchers, and institutions dedicated to the
conservation of the Chocé forest, and establishing a new

Boshre o 01-21-2021 14:20:58

standard in data-driven conservation practices.
Figure 16: YOLOVS Detector for Class 2 (Nine-banded
Armadillo)

APPENDIX A
EXAMPLES OF HOW FRAME DETECTOR WORKS WITH
YOLO
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Figure 17: YOLOV5 Detector for Class 3 (Lowland Paca)

Agouti)

Bushnell 03-03-2021 23:42:50

sushvel ' — 03-12-2021 22:11:23
Figure 15: YOLOVS5 Detector for Class 1 (Squirrels)
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Figure 19: YOLOV5 Detector for Class 5 (Great Tinamou)
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